金属材料的力学性能

合集下载

金属材料的力学性能

金属材料的力学性能

(一)、布氏硬度
1、布氏硬度试验(布氏硬度计)
原理:用一定直径的球体(淬火钢球或硬质合金球)以相应的试验力压入待测 材料表面,保持规定时间并达到稳定状态后卸除试验力,测量材料表面压痕直径, 以计算硬度的一种压痕硬度试验方法。
2、布氏硬度值 用球面压痕单位面积上所承受有平均压力表示。 如: 120HBS 500HBW 600HBS1/30/20
它是设计和选材的主要依据之一,是工程技术上的主要强度。
二、刚度和弹性 由图1-2可测出材料的弹性模量,即可确定该材料的刚度和弹性。弹性模量
是指金属材料在弹性状态下的应力与应变的比值,即
在应力-应变曲线上,弹性模量就是试样在弹性变形阶段线段的斜率。它表 示了金属材料抵抗弹性变形的能力,工程上将材料抵抗弹性变形的能力称为刚 度。
金属材料的力学性能
材料的力学性能,是指材料在外力(载荷)作用下所表现出来的性能,或称机 械性能,包括强度、刚性、弹性、塑性、硬度及疲劳强度。
一、强度 金属材料抵抗塑性变形或断裂的能力称为强度。抵抗外力的能力越大,则强
度越强。 依据载荷的不同,可分为抗拉强度、抗压强度、抗弯强度、抗剪强度以及抗
扭强度等几种。
1、拉伸试样
Hale Waihona Puke 2、材料的拉伸曲线oe——弹性变形阶段:变形量与外加载荷成正比,当载荷去掉后试样变形 完全恢复。
es——屈服阶段:此阶段伴随着弹性变形,还发生了塑性变形,当去除载 荷后,试样部分形变恢复,还有一部分形变不能恢复,将这部分不能恢复的形 变称为塑性变形。s为屈服点。
sd——明显塑性变形阶段:该阶段中载荷不再增加或是微量增加,试样却 继续变形。
2、洛氏硬度值 用测量的残余压痕深度表示。可从表盘上直接读出。如: 50HRC

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。

如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。

这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。

这种能力就是材料的力学性能。

金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。

钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。

在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。

金属材料的机械性能1、弹性和塑性:弹性:金属材料受外力作用时产生变形,当外力去掉后能恢复其原来形状的性能。

力和变形同时存在、同时消失。

如弹簧:弹簧靠弹性工作。

塑性:金属材料受外力作用时产生永久变形而不至于引起破坏的性能。

(金属之间的连续性没破坏)塑性大小以断裂后的塑性变形大小来表示。

塑性变形:在外力消失后留下的这部分不可恢复的变形。

2、强度:是指金属材料在静载荷作用下抵抗变形和断裂的能力。

强度指标一般用单位面积所承受的载荷即力表示,单位为MPa。

工程中常用的强度指标有屈服强度和抗拉强度。

拉伸图:金属材料在拉伸过程中弹性变形、塑性变形直到断裂的全部力学性能可用拉伸图形象地表示出来。

材料在常温、静载作用下的宏观力学性能。

是确定各种工程设计参数的主要依据。

这些力学性能均需用标准试样在材料试验机上按照规定的试验方法和程序测定,并可同时测定材料的应力-应变曲线。

对于韧性材料,有弹性和塑性两个阶段。

弹性阶段的力学性能有:比例极限:应力与应变保持成正比关系的应力最高限。

当应力小于或等于比例极限时,应力与应变满足胡克定律,即应力与应变成正比。

弹性极限:弹性阶段的应力最高限。

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能金属材料的力学性能引言:金属材料是一类具有良好力学性能的材料,广泛应用于工业生产和日常生活中。

它们具有高强度、高刚度和良好的塑性变形能力,使其在结构工程中发挥重要作用。

本文将介绍金属材料的力学性能,包括强度、刚度、韧性和延展性等方面的特性。

一、强度强度是金属材料的抵抗外力破坏和变形的能力。

常见的强度指标有屈服强度、抗拉强度、抗压强度、剪切强度等。

屈服强度是指金属材料开始塑性变形时的应力值,抗拉强度是金属材料抗拉应力下发生断裂的能力,抗压强度是金属材料抗压应力下发生断裂的能力,剪切强度是金属材料发生滑移断裂的能力。

强度与金属材料内部的晶体结构密切相关,晶体间的结合力越强,金属材料的强度越高。

二、刚度刚度是指金属材料抵抗外力变形的能力,也称为弹性模量。

刚度与材料的原子结构相关,原子之间的键合越紧密,材料的刚度就越高。

刚度是测量金属材料在受力作用下的弹性恢复能力。

常见的刚度指标是杨氏模量和剪切模量,取决于金属材料中原子之间的键合性质和晶体结构。

三、韧性韧性是指金属材料在受力作用下能够吸收大量能量而不断裂的能力。

韧性是将金属材料弯曲、扭转或拉伸时的表现,具有良好的韧性的材料可以获得较大的塑性变形能力。

韧性材料能够在受到冲击或震动时,通过塑性变形来吸收能量,从而减少外界力量对结构的破坏。

韧性与金属材料内部晶粒的细化、晶界的加强以及材料中的组织缺陷等因素有关。

四、延展性延展性是指金属材料在外力作用下能够发生塑性变形,较大程度延长而不发生断裂的能力。

延展性与金属材料的晶粒形态及其排列方式密切相关,也与材料中晶界的运动有关。

延展性较好的材料可以用于制造需要大变形的构件,如容器、管道等。

延展性较差的材料容易发生局部失稳和断裂。

结论:综上所述,金属材料具有优异的力学性能,包括强度、刚度、韧性和延展性等方面的特点。

这些性能是由金属材料的晶体结构和内部组织决定的。

对于不同的应用需求,可以选择不同力学性能的金属材料来满足要求。

第一章 金属材料的力学性能

第一章  金属材料的力学性能


A、C标尺为100
B标尺为130
机 械 制



§1.2 硬度
第一章 金属材料的力学性能
二、洛氏硬度
标注——用符号HR表示, A标尺HRA B标尺HRB C标尺HRC
如: 42 HRA


硬度值 A标尺




§1.2 硬度
第一章 金属材料的力学性能
三、维氏硬度 测定原理——基本上和布氏硬度相同,只是所用 压头为金刚石正四棱锥体
冲击韧度高

•冲击能量高时, --材料的冲击韧度主要取决于材料的塑性,塑性高则
韧度高
械 制



第一章 金属材料的力学性能
第一章 金属材料的力学性能
§1.1 强度和塑性
§1.2 硬度
§1.3 冲击韧度
§1.4 疲劳强度
本章小结






§1.4 疲劳强度
第一章 金属材料的力学性能
疲劳强度
Sl110000%%Sl10lS0 110100%0%
Sl 二者的值越大塑性越好 00
lS0 0
机 械 制
原始原横始截标面距积
试样拉试断样后断的裂标处距截面积
造 基

第一章 金属材料的力学性能
第一章 金属材料的力学性能
§1.1 强度和塑性
§1.2 硬度
§1.3 冲击韧度
§1.4 疲劳强度
本章小结
第一章 金属材料的力学性能
由主金要属内材容料:制成的零、部件,在工作过
程中金都属要材承料受的外力力学性(或能称指载标荷和) 测作试用方而法产,

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能使用性能⎪⎩⎪⎨⎧性)高温。

氧化性(热稳定化学性能:耐蚀性、抗密度、熔点等性、导热性、热膨胀、物理性能:电学性、磁、塑性、韧性、钢度等力学性能:强度、硬度工艺性能⎪⎪⎪⎩⎪⎪⎪⎨⎧切削加工焊接性压力加工(冲压性)铸造性可锻性金属材料的力学性能:金属材料在一定的温度条件和受外力作用下,抵抗变形、断裂的能力称材料的力学性能又称为机械性能。

主要有四大指标:1、 强度指标:抗拉强度b σ 屈服强度s σ:(疲劳强度、屈强比)2、塑性指标⎩⎨⎧断面收缩率伸长率(延伸率)δ 3、硬度指标⎪⎪⎩⎪⎪⎨⎧D HL HV HRC HB )里氏硬度()维氏硬度()洛氏硬度()布氏强度( 4、韧性指标⎩⎨⎧IC k k K A a 断裂韧度冲击韧性1、强度指标将规定尺寸的试棒在拉伸实验机上进行静拉伸实验,以测定该试件对外力载荷的抗力,可求强度指标和塑性指标。

(1)拉伸曲线图(2)应力应变图应力0A 外力=σ (单位面积所受力) 应变0L L ∆=ε (单位长度的变形量)对原材料、焊接工艺及焊接试板均有严格的标准进行规定。

对圆形拉伸试样分标准试样和比例试样,每种又分为长试样和短试样⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧===(短)(长)任意选用比例试样:短试样)长试样)标距标准试样:直径006000000065.53.11(5(1020A L A L d d L d L L d (3)拉伸试验分为四个阶段中碳钢 低碳钢(拉伸图) 变形量ΔL (应变ε)σ标距L 0①弹性变形阶段:变形量L ∆与外力(或应变和应力)成正比(即虎克定律)。

该阶段最高值:e ':P σ:称比例极限(即保持直线关系的最大负荷)。

e σ:弹性极限:我们把材料产生最大弹性变形时的应力称由于检测精度,国标规定以残余变形量为0.01%时的应力为弹性极限。

A F e e =σ 应力:单位面积上材料抵抗变形的力称为应力。

什么是金属材料的力学性能

什么是金属材料的力学性能

1.什么是金属材料的力学性能?它包括哪些项目?
金属的力学性能是指在力的作用下,材料所表现出来的一系列力学性能指标,反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力。

金属材料的力学性能包括强度、塑性、硬度、冲击韧度和疲劳等项目。

2.什么是强度?金属材料的强度指标有哪些?
材料在外力作用下,抵抗永久变形和断裂的能力称为强度。

金属材料的强度指标有抗拉强度和屈服点两大项。

3.什么是抗拉强度?什么是屈服点?
金属材料在拉断前所能随的最大标称拉应力,称为抗拉强度,以b σ表示,计算公式如下
S F b b =σ,b σ为抗拉强度(MPa );b F 为拉断前试样所承受的最大载荷;0S 为试样的原始横截面积2)(mm 。

由于不少金属材料在作拉伸试验过程中没有明显的塑性变形,通常以变形量达到试样标距部分残余伸长率0.2%时的应力,定义为该钢材的屈服强度,心2.0σ表示。

4.什么是塑性?金属材料的塑性指标有哪些?
材料断裂前,发生不可逆永久变形的能力称为塑性。

金属材料的塑性指标有伸长率、断面收缩率和弯曲角。

焊接接头的塑性指标常用弯曲角表示。

金属的力学性能有哪些

金属的力学性能有哪些

金属的力学性能有哪些金属材料的力学性能包括强度、屈服点、抗拉强度、延伸率、断面收缩率、硬度、冲击韧性等。

金属材料力学性能包括其中包括:弹性和刚度、强度、塑性、硬度、冲击韧度、断裂韧度及疲劳强度等,它们是衡量材料性能极其重要的指标。

1、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。

材料单位面积受载荷称应力。

2、屈服点(6s):称屈服强度,指材料在拉抻过程中,材料所受应力达到某一临界值时,载荷不再增加变形却继续增加或产生0.2%L。

时应力值,单位用牛顿/毫米2(N/mm2)表示。

3、抗拉强度(6b)也叫强度极限指材料在拉断前承受最大应力值。

单位用牛顿/毫米2(N/mm2)表示。

如铝锂合金抗拉强度可达689.5MPa 4、延伸率(δ):材料在拉伸断裂后,总伸长与原始标距长度的百分比。

工程上常将δ≥5%的材料称为塑性材料,如常温静载的低碳钢、铝、铜等;而把δ≤5%的材料称为脆性材料,如常温静载下的铸铁、玻璃、陶瓷等。

5、断面收缩率(Ψ)材料在拉伸断裂后、断面最大缩小面积与原断面积百分比。

6、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度(HBS、HBW)和洛氏硬度(HRA、HRB、HRC)。

7、冲击韧性(Ak):材料抵抗冲击载荷的能力,单位为焦耳/厘米2(J/cm2)。

什么是金属材料金属材料是指具有光泽、延展性、容易导电、传热等性质的材料。

一般分为黑色金属和有色金属两种。

黑色金属包括铁、铬、锰等。

其中钢铁是基本的结构材料,称为“工业的骨骼”。

由于科学技术的进步,各种新型化学材料和新型非金属材料的广泛应用,使钢铁的代用品不断增多,对钢铁的需求量相对下降。

但迄今为止,钢铁在工业原材料构成中的主导地位还是难以取代的。

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能
金属材料的力学性能是指材料在受到力的作用下的行为和性能。

常见的金属材料(如钢、铝、铜等)具有较高的强度和刚性,具有良好的塑性和延展性。

其主要的力学性能包括以下几个方面:
1. 强度:金属材料的强度是指材料在受到外力作用下抵抗变形和破坏的能力。

常见的强度指标有屈服强度、抗拉强度、抗压强度等。

2. 延展性:金属材料具有较好的延展性,即在受到外力作用下能够发生塑性变形。

延展性可以通过材料的延伸率、断面收缩率等指标来描述。

3. 韧性:金属材料的韧性是指材料能够在承受外力作用下吸收较大的能量而不发生断裂或破坏的能力。

韧性也可以通过断裂韧性、冲击韧性等指标来描述。

4. 硬度:金属材料的硬度是指材料抵抗局部变形和外界划
痕的能力。

硬度可以通过洛氏硬度、布氏硬度等进行测量。

5. 弹性模量:金属材料的弹性模量是指材料在受到外力后,能够恢复到原来形状的能力。

弹性模量可以描述材料的刚
度和变形的程度。

6. 疲劳性能:金属材料的疲劳性能是指材料在受到交替或
重复载荷下的疲劳寿命和抗疲劳性能。

疲劳性能可以通过
疲劳寿命、疲劳极限等指标来描述。

以上是金属材料的一些常见力学性能参数,不同的金属材
料在这些性能方面有所差异。

这些性能参数的好坏直接决
定了金属材料在工程实践中的应用范围和性能优势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属材料的力学性能任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。

如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。

这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。

这种能力就是材料的力学性能。

金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。

钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。

在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。

金属材料的机械性能1、弹性和塑性:弹性:金属材料受外力作用时产生变形,当外力去掉后能恢复其原来形状的性能。

力和变形同时存在、同时消失。

如弹簧:弹簧靠弹性工作。

塑性:金属材料受外力作用时产生永久变形而不至于引起破坏的性能。

(金属之间的连续性没破坏)塑性大小以断裂后的塑性变形大小来表示。

塑性变形:在外力消失后留下的这部分不可恢复的变形。

2、强度:是指金属材料在静载荷作用下抵抗变形和断裂的能力。

强度指标一般用单位面积所承受的载荷即力表示,单位为MPa。

工程中常用的强度指标有屈服强度和抗拉强度。

拉伸图:金属材料在拉伸过程中弹性变形、塑性变形直到断裂的全部力学性能可用拉伸图形象地表示出来。

材料在常温、静载作用下的宏观力学性能。

是确定各种工程设计参数的主要依据。

这些力学性能均需用标准试样在材料试验机上按照规定的试验方法和程序测定,并可同时测定材料的应力- 应变曲线。

对于韧性材料,有弹性和塑性两个阶段。

弹性阶段的力学性能有:比例极限:应力与应变保持成正比关系的应力最高限。

当应力小于或等于比例极限时,应力与应变满足胡克定律,即应力与应变成正比。

弹性极限:弹性阶段的应力最高限。

在弹性阶段内,载荷除去后,变形全部消失。

这一阶段内的变形称为弹性变形。

绝大多数工程材料的比例极限与弹性极限极为接近,因而可近似认为在全部弹性阶段内应力和应变均满足胡克定律。

塑性阶段的力学性能有:屈服强度:材料发生屈服时的应力值。

又称屈服极限。

屈服时应力不增加但应变会继续增加。

屈服点:具有屈服现象的金属材料,试样在拉伸过程中力不增加(保持恒定)仍能继续伸长时的应力,称屈服点。

若力发生下降时,则应区分上、下屈服点。

屈服点的单位为N/mm2(MPa)。

上屈服点(Re H):试样发生屈服而力首次下降前的最大应力;下屈服点(Re L):当不计初始瞬时效应时,屈服阶段中的最小应力。

条件屈服强度:某些无明显屈服阶段的材料,规定产生一定塑性应变量(例如0.2 %)时的应力值,作为条件屈服强度。

应力超过屈服强度后再卸载,弹性变形将全部消失,但仍残留部分不可消失的变形,称为永久变形或塑性变形。

规定非比例延伸强度(Rp):非比例延伸率等于规定的引伸计标距百分率时的应力,例如Rp0.2 表示规定非比例延伸率为0.2%时的应力。

规定总延伸强度(Rt ):总延伸率等于规定的引伸计标距百分率时的应力。

例如Rt0.5 表示规定总延伸率为0.5%时的应力。

断面收缩率(Z)强化与强度极限:应力超过屈服强度后,材料由于塑性变形而产生应变强化,即增加应变需继续增加应力。

这一阶段称为应变强化阶段。

强化阶段的应力最高限,即为强度极限(抗拉强度)。

应力达到强度极限后,试样会产生局部收缩变形,称为颈缩。

抗拉强度(Rm试样在拉伸过程中,在拉断时所承受的最大力(Fm,除以试样原横截面积(so)所得的应力(Rm,称为抗拉强度,单位为N/mm2( MPa。

它表示金属材料在拉力作用下抵抗破坏的最大能力。

计算公式为:Rm=Fm/ So 式中:Fm--试样拉断时所承受的最大力,N(牛顿);So--试样原始横截面积,mm2工程中常用的塑性指标有伸长率和断面收缩率。

断后伸长率(A)在拉伸试验中,试样拉断后其标距所增加的长度与原标距长度的百分比,称为伸长率。

以A表示,单位为% 一般A >5%为塑性材料,A V 5%为脆性材料。

在拉伸试验中,试样拉断后其缩径处横截面积的最大缩减量与原始横截面积的百分比,称为断面收缩率。

以Z表示,单位为%伸长率和断面收缩率越大,其塑性越好;反之,塑性越差。

良好的塑性是金属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然脆断的必要条件。

对于脆性材料(A W 5%),没有明显的屈服与塑性变形阶段,试样在变形很小时即被拉断,这时的应力值称为强度极限。

某些脆性材料的应力-应变曲线上也无明显的直线阶段,这时,胡克定律是近似的。

弹性模量由应力-应变曲线的割线的斜率确定。

压缩时,大多数工程韧性材料具有与拉伸时相同的屈服强度与弹性模量,但不存在强度极限。

大多数脆性材料,压缩时的力学性能与拉伸时有较大差异。

例如铸铁压缩时会表现出明显的韧性,试样破坏时有明显的塑性变形,断口沿约45°斜面剪断,而不是沿横截面断裂;强度极限比拉伸时高4〜5倍。

拉伸试验:拉伸试件的加工须按GB/T228-2002的有关要求进行,分为长比例、短比例两种。

如标准圆截面试件有:长试件:Lo=10d o 短试件:Lo=5d o式中Lo为圆形截面试件的标距长度;do为试样在标距内的初始直径,通常为3〜25mm,多数情况下取do =10mm。

试件一般有四种形式:双肩头部试件、单肩头部试件、螺纹头部试件和光面圆柱形头部试件。

下图为光面圆柱形头部试件的简图及加工要求。

为测定低碳钢的断后伸长率A,须用刻线机(或小钢冲)在试样标距范围内刻划圆周线(或打小冲点),将标距Lo分为等长的10格。

(b)图1-1拉伸试件试验原理拉伸试验是测定材料力学性能最基本的实验之一。

材料的力学性能如屈服点、抗拉强度、断后伸长率和断面收缩率等均是由拉伸试验测定的。

低碳钢(I)荷载-伸长曲线的绘制。

通过试验机绘图装置可自动绘成以轴向力F P为纵坐标、试件伸长量丨为横坐标的荷载-伸长曲线(Fp l图),如图1-2(a)所示。

低碳钢的荷载-伸长曲线是一种典型的形式,整个拉伸变形分四个阶段:弹性变形阶段、屈服阶段、强化阶段和缩颈阶段。

(2)屈服点的测定。

当载荷增加,变形也与载荷成正比增加,Fp 1图上为一直线,此即直线弹性阶段。

过了直线弹性阶段,尚有一极小的非直线弹性阶段,因此,弹性阶段包括直线弹性阶段和非直线弹性阶段。

图1-2低碳钢及铸铁拉伸图当载荷增加到一定程度,测力指针往回偏转,继而缓慢地来回摆动,相应地在Fp 1图上画出一段锯齿形曲线,此段即屈服阶段。

经过抛光的试样,在屈服阶段可以观察到与轴线大约成45。

的滑移线纹。

曲线在屈服阶段初次瞬时效应之后的最低点所对应的荷载作为下屈服载荷,与其对应的应力称为下屈服强度。

Re- =F PS/S O式中,S O为试件标距范围内的原始横截面面积,单位为mm2, F PS为下屈服载荷,单位为N , Re-为下屈服应力,单位为MPa。

(3)抗拉强度的测定。

过了屈服阶段,随着荷载的增加,试件恢复承载能力,F P l图的曲线上升,此即强化阶段。

荷载增加到最大值处,测力主动指针回退,试件明显变细变长,F P l图的曲线下降,试件某一局部截面面积急速减小而出现“颈缩”现象,很快即被拉断,此即缩颈阶段。

试件断裂面的两面各成凹凸状。

由测力度盘上从动指针停留处读取最大荷载值,来计算抗拉强度。

试验出现下列情况之一时,试验结果无效:1、试样断在标距外或断在机械刻划的标距标记上,而且断后伸长率小于规定最小值时。

2、试验期间设备发生故障,影响了试验结果。

冲击试验冲击韧性金属材料抵抗冲击载荷的能力称为冲击韧性,冲击韧性常用一次摆锤冲击弯曲试验测定。

冲击试验原理如图所示。

试验在摆锤式冲击试验机上进行,将标准试样水平放置于试验机支座上,缺口位于冲击相背方向。

冲击时将具有一定质量G勺摆锤举至具有一定高度H1的位置。

使其获得一定位能GH1,释放摆锤冲断试样后摆锤的剩余能量为GH2则摆锤冲断试样失去的位能为GH1- GH2此即为试样变形和断裂所吸收的功。

具体的试验与方法及操作规范可参考GB/T229- 1994。

图3-L伸击淡她岷理摆锤式冲击试验机主要有机架、摆锤、试样支座、指示装置及摆锤释放、制动和提升机构等组成。

目前常用的国产摆锤式冲击试验机型号很多,500J、300J冲击试验机比较常用。

冲击试验因试验温度不同而分为常温、低温和高温冲击试验三种;若按试样缺口形状又可分为"V"形缺口和"U" 形缺口冲击试验两种。

冲击试验:用一定尺寸和形状( 10X 10X 55mm 的试样(长度方向的中间处有"U"型或"V"型缺口,缺口深度2mm在规定试验机上受冲击负荷打击下自缺口处折断的试验。

冲击吸收功Akv(u)--具有一定尺寸和形状的金属试样,在冲击负荷作用下折断时所吸收的功。

单位为焦耳( J)。

冲击韧性值akv(u)--冲击吸收功除以试样缺口处底部横截面积所得的商。

单位为焦耳/厘米2 (J/cm2 )。

圈3-2 13型缺口试样尺寸及加工要求图3-3 M型缺廿试样尺寸及加工要求常温冲击试验温度为20 ± 2 C;低温冲击试验温度范围为<10〜-192 C;高温冲击试验温度范围为35〜1000C。

冲击试样一般均采用标准试样,即55 X 10X 10mm当试验材料的厚度在10mn以下而无法制备标准试样时,可采用宽度为7.5mn或5mn的小尺寸试样。

低温冲击试验所用冷却介质一般为无毒、安全、不腐蚀金属和在试验温度下不凝固的液体或气体。

如无水乙醇(酒精)、固态二氧化碳(干冰)或液氮雾化气(液氮)等。

国家标准规定冲击弯曲试验用标准试样分别为夏比(Charpy)U型缺口试样和夏比V型缺口试样,两种试样的形状及尺寸如图所示所测得的冲击吸收功分别记为AkU和A kV。

另外。

测量陶瓷、铸铁或工具钢等脆性材料的冲击吸收功时,常采用10 mn XX 10 mn X 55 mnn勺无缺口冲击试样。

冲击试样缺口的作用:在缺口附近造成应力集中,使义的,所以这指标目前已不大使用。

目前常用的韧性指标是冲击功Akv,由于它对材料成分、内部组织变化十分敏感,而且一次冲击弯曲试验方法塑性变形局限在缺口附近不大的体积范围内,并保证在缺口处发生断裂,以便正确测定材料承受冲击负荷的能力。

试样应在规定的温度下保持足够的时间,,使用液体介质时,保温时间不少于5分钟,使用气体介质时,保温时间不少于20分钟。

冲击吸收功的表示方法:V型缺口试样的冲击吸收功,表示为A kv深度为2mm的U型缺口试样的冲击吸收功,表示为A ku2冲击试验中几种情况的处理:1、由于试验机打击能量不足使试样未完全折断时,应在试验数据之前加大于“〉”符号,其他情况则应注明“未折断”。

相关文档
最新文档