高二下册物理电磁感应知识点梳理-电磁感应线圈

合集下载

有关高二物理期末电磁感应现象必背知识点

有关高二物理期末电磁感应现象必背知识点

有关高二物理期末电磁感应现象必背知识点高二物理期末电磁感应现象必背知识点电磁感应现象的产生条件;感应电流的大小及方向的确定;电磁感应现象的应用第一部分:12节第一节划时代的发现历史背景:1、奥斯特发现电流磁效应:电流磁效应的发现揭示了电现象和磁现象之间存在的联系。

2.法拉第发现电磁感应现象:(1)磁生电是一种在变化、运动的过程中才能出现的效应。

(2)五类情况:变化的电流,变化的磁场,运动的恒定电流,运动的磁铁,在磁场中运动的导体。

第二节探究感应电流的产生条件产生感应电流的条件:1.闭合回路2.穿过回路的磁通量发生变化第二部分:第3节第三节楞次定律1.内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化,这就是楞次定律2.应用楞次定律判断感应电流方向的基本步骤:(1)明确原磁场的方向。

(2)判断穿过闭合电路的磁通量是增加还是减少。

(3)根据楞次定律确定感应电流的磁场方向。

(4)利用安培定则确定感应电流的方向。

3.右手定则:导体切割磁感线引起感应电流的方向可以由右手定则来判断。

伸开右手让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四指指的就是感应电流的方向。

第三部分:第4---5节第四节法拉第电磁感应定律1、感应电动势:在电磁感应现象中产生的电动势叫感应电动势2、电磁感应定律(1)内容:电路中感应电动势的大小,跟穿过这一电路磁通量的变化率成正比,即e。

这就是法拉第电磁感应定律(2)表达式:e=n3、导线切割磁感线时的感应电动势e=blv该式通常用于导体垂直切割磁感线,且导线与磁感线互相垂直(l^b)。

一般用于导体各部分切割磁感线的速度相同当导体的运动方向跟磁感线方向有一个夹角时,e=blv1=blvsin 第五节:电磁感应规律的应用1.电磁感应现象中的感生电场(感生电动势)磁场的变化而激发的电场叫感生电场。

感生电场对自由电荷的作用力充当了非静电力。

高二物理磁感应强度知识点讲解n匝线圈磁感应强度公式

高二物理磁感应强度知识点讲解n匝线圈磁感应强度公式

高二物理磁感应强度知识点讲解n匝线圈磁感应强度公式高二物理磁感应强度知识点讲解【一】感应电流产生的磁场,总是在阻碍引起感应电流的原磁场的磁通量的变化。

楞次定律的核心,也是最需要大家记住的是“阻碍”二字。

在高中物理利用楞次定律解题,我们可以用十二个字来形象记忆:“增反减同,来拒去留,增缩减扩”。

楞次定律(Lenzlaw)是一条电磁学的定律,从电磁感应得出感应电动势的方向。

其可确定由电磁感应而产生之电动势的方向。

它是由物理学家海因里希·楞次(HeinrhFriedrhLenz)在4年发现的。

楞次定律是能量守恒定律在电磁感应现象中的具体体现。

楞次定律还可表述为:感应电流的效果总是反抗引起感应电流的原因。

对楞次定律的正确理解与使用分析^p :第一,电磁感应楞次定律的核心内容是“阻碍”二字,这恰恰表明楞次定律实质上就是能的转化和守恒定律在电磁感应现象中的特殊表达形式第二,这里的“阻碍”,并非是阻碍引起感应电流的原磁场,而是阻碍(更确切来描述应该是“减缓”)原磁场磁通量的变化第三,正因阻碍是的是“变化”,所以,当原磁场的磁通量增加(或减少)而引起感应电流时,则感应电流的磁场必与原磁场反向(或同向)而阻碍其磁通量的增加(或减少),概括起来就是,增加则反向,减少则同向。

这就是老师总结的做题应用定律“增反减同”四字要领的由来。

楞次定律阻碍的表现有哪些方式?(1)产生一个反变化的磁场。

(2)导致物体运动。

(3)导致围成闭合电路的边框发生形变。

楞次定律的应用步骤具体应用包括以下四步:第一,明确引起感应电流的原磁场在被感应的回路上的方向第二,搞清原磁场穿过被感应的回路中的磁通量增减情况第三,根据楞次定律确定感应电流的磁场的方向第四,运用安培定则判断出感生电流的方向。

高中物理网编辑提醒大家,楞次定律要灵活运用,有些题可以通过“感应电流的磁场阻碍相对运动”出发来判断。

在一些由于某种相对运动而引起感应电流的电磁感应现象中,如运用楞次定律从“感应电流的磁场总是阻碍引起感应电流的原磁场的磁通量变化”出发来判断感应电流方向,往往会比较困难。

高中物理电磁感应知识点汇总

高中物理电磁感应知识点汇总

电磁感应(磁生电)第一部分电磁感应现象楞次定律一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向B的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:若从一面穿入为正,则从另一面穿入为负.4.5.6.(1)(2)(3)1.2.表述表述3.合,源.1.,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量的变化.3.判断感应电流方向的思路:用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,如下:根据原磁场(Φ原方向及ΔΦ情况) 确定感应磁场(B感方向) 判断感应电流(I感方向).重点题型汇总一、磁通量及其变化的计算:由公式Φ=BS计算磁通量及磁通量的变化应把握好以下几点:1、此公式只适用于匀强磁场。

2、式中的S 是与磁场垂直的有效面积3、磁通量Φ为双向标量,其正负表示与规定的正方向是相同还是相反4、磁通量的变化量ΔΦ是指穿过磁场中某一面的末态磁通量Φ2与初态磁通量Φ1的差值, 即ΔΦ=|Φ2-Φ1|. 【例】 面积为S 的矩形线框abcd,处在磁感应强度为B 的匀强磁场中(磁场区域足够大),磁场方向与线框平面成θ角,如图9-1-1所示,当线框以ab 为轴顺时针转90过程中,穿过 abcd 的磁通量变化量ΔΦ= .【解析】设开始穿过线圈的磁通量为正,则在线框转过900的过程中,穿过线圈的磁量为:ΔΦ【答案】通量为正 :楞次定律A.a → C.先b,其极。

1.法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.公式:n t∆ΦE =∆公式理解:① 上式适用于回路中磁通量发生变化的情形,回路不一定闭合.② 感应电动势E 的大小与磁通量的变化率成正比,而不是与磁通量的变化量成正比,更不是与磁通量成正比. 要注意t∆Φ∆与ΔФ和Φ三个量的物理意义各不相同,且无大小上的必然关系.③ 当∆Φ由磁场变化引起时, t ∆∆Φ常用t B S ∆∆来计算;当∆Φ由回路面积变化引起时,t∆∆Φ常用t S B ∆∆来计算.图9-1-3④ 由tnE ∆∆Φ=算出的是时间t ∆内的平均感应电动势,一般并不等于初态与末态电动势的算术平均值. ⑤ n 表示线圈的匝数,可以看成n 个单匝线圈串联而成。

电磁感应、电磁场电磁波的知识点总结全

电磁感应、电磁场电磁波的知识点总结全

可编辑修改精选全文完整版高二物理电磁感应、电磁场电磁波的知识点总结2012.6一、产生感应电流的条件:1.磁通量发生变化(产生感应电动势的条件)2.闭合回路*引起磁通量变化的常见情况:(1)线圈中磁感应强度发生变化(2)线圈在磁场中面积发生变化(如:闭合回路中的部分导体做切割磁感线运动)(3)线圈在磁场中转动二、感应电流的方向判定:1.楞次定律:(适用磁通量发生变化)感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

关于“阻碍”的理解:(1)“阻碍”是“阻碍原磁通量的变化”,而不是阻碍原磁场;(2)“阻碍”不是“阻止”,尽管“阻碍原磁通量的变化”,但闭合回路中的磁通量仍然在变化;(3)“阻碍”是“阻碍变化”,当原磁通量增加时,感应电流的磁场方向与原磁场方向相反——阻碍原磁通量的增加;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同——阻碍原磁通量的减少。

2.右手定则:(适用导体切割磁感应线)伸开右手,让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四指指的就是感应电流的方向。

其中四指指向还可以理解为:感应电动势高电势处。

*应用楞次定律判断感应电流方向的具体步骤①明确闭合回路中原磁场方向(穿过线圈中原磁场的磁感线的方向)。

②把握闭合回路中原磁通量的变化(φ原是增加还是减少)。

③依据楞次定律,确定回路中感应电流磁场的方向(B感取什么方向才能阻碍φ原的变化)。

④利用安培定则,确定感应电流的方向(B感和I感之间的关系)。

*楞次定律的拓展1.当闭合回路中磁通量变化而引起感应电流时,感应电流的效果总是阻碍原磁通量的变化。

(增反减同)2.当线圈和磁场发生相对运动而引起感应电流时,感应电流的效果总是阻碍二者之间的相对运动(来斥去吸)。

3.当线圈中自身电流发生变化而引起感应电流时,感应电流的效果总是阻碍原电流的变化(自感现象)。

三、感应电动势的大小:1. 法拉第电磁感应定律:在电磁感应现象中,电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

高中物理 电磁感应 知识点归纳[汇编]

高中物理 电磁感应 知识点归纳[汇编]

高中物理电磁感应知识点归纳[汇编]电磁感应是指导体内部的自由电子在磁场作用下发生的运动所产生的电动势的现象。

以下是针对电磁感应的知识点归纳。

1. 电磁感应原理当导体在磁场中运动时,导体内部的自由电子将发生运动,并在导体两端产生电动势。

这种现象被称为电磁感应。

电磁感应原理是法拉第电磁感应定律,它描述了磁场和电场之间的相互作用。

2. 磁通量磁通量是磁场通过某一平面的量度。

磁通量的单位是韦伯(Wb),它等于磁场的强度在时间上的积分。

如果随着时间而改变的磁场穿过一个闭合的线圈,该线圈内将会产生一个电动势。

此时,电动势与磁通量的改变率成正比。

3. 法拉第电磁感应定律法拉第电磁感应定律是指一个变化的磁场穿过一个闭合电路时,该电路中将会产生电动势。

电动势的大小和磁场的变化率成正比。

若闭合电路中还存在电阻,则可产生电流。

电磁感应有着广泛的应用,如电磁感应式发电、变压器、感应加热、感应炉、电感传感器等。

其中,电磁感应式发电是最广泛应用的电磁感应原理。

5. 感应电动势感应电动势是指导体内部的自由电子在磁场作用下运动所产生的电动势。

感应电动势大小与磁通量变化率成正比。

若磁通量不变,则感应电动势为零。

感应电动势的方向遵循楞次定律。

当导体在变化的磁场中运动时,产生的感应电动势遵循楞次定律:感应电动势的方向是这样的,即它的磁作用面积的方向与感应电流方向构成右手法则,并且感应电动势方向与磁场的变化方向相反。

若导体不断旋转,则电动势的方向将始终相同,即感应电动势的方向与导体运动的轴线相垂直。

为了研究电磁感应现象,可以进行一些简单的实验。

例如,在一个磁场中放置一个闭合线圈,使它在磁场中旋转。

当线圈旋转时,将会产生一个感应电动势。

这个电动势可以通过连接电阻来产生电流。

总之,了解这些基本的电磁感应知识点是理解该领域的关键。

它们不仅是高中物理的重要部分,也是应用于电力和电子工程的基础。

电磁感应高中物理知识点

电磁感应高中物理知识点

电磁感应高中物理知识点1. 电磁感应的基本概念电磁感应是指当导体相对于磁场运动或磁场的强度发生变化时,会在导体中产生感应电动势和感应电流的现象。

电磁感应是电磁学的重要基础,具有广泛的应用。

2. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的重要定律。

它的表达式为:感应电动势的大小与导体中磁场的变化率成正比。

3. 磁通量和磁感应强度磁通量表示磁场穿过某个面积的数量,用符号Φ表示,单位为韦伯(Wb)。

磁感应强度表示单位面积上的磁通量,用符号B表示,单位为特斯拉(T)。

4. 楞次定律和楞次圈定律楞次定律是描述电磁感应中电流方向的定律。

根据楞次定律,感应电流会产生一个磁场,其方向与原磁场相反。

楞次圈定律是描述电磁感应中感应电动势的方向的定律。

根据楞次圈定律,感应电动势的方向使得感应电流产生一个磁场,其磁场的方向与原磁场相反。

5. 弗莱明右手定则弗莱明右手定则是判断电流在磁场中受力方向的定则。

根据该定则,当右手大拇指指向电流方向,四指指向磁场方向时,手掌所指方向就是电流受力方向。

6. 涡流和涡流损耗涡流是指在导体中由于磁场的变化而产生的感应电流。

涡流会在导体内部产生能量损耗,称为涡流损耗。

涡流损耗的大小与导体特性、磁场强度、频率等因素有关。

7. 互感和自感互感是指两个或多个线圈之间由于磁场的相互作用而产生感应电动势的现象。

互感的大小与线圈的匝数、磁场强度等因素有关。

自感是指线圈中自身磁场变化所产生的感应电动势。

自感的大小与线圈的匝数、磁场强度等因素有关。

8. 电磁感应的应用电磁感应在生活和工业中有广泛的应用,如变压器、电动机、发电机、电磁感应炉等。

它们的原理都是利用电磁感应现象。

以上是电磁感应的高中物理知识点的简要介绍。

电磁感应是电磁学中的重要概念,对于理解电磁现象和应用具有重要意义。

希望这份文档能对你有所帮助!。

物理电磁感应知识点

物理电磁感应知识点

物理电磁感应知识点
电磁感应是物理学中的一个重要概念,它描述了磁场与电流、电压之间的关系。

以下是关于电磁感应的主要知识点:
1. 法拉第电磁感应定律:当一个线圈中的磁通量发生变化时,在线圈中会产生感应电动势。

感应电动势的大小与磁通量变化率成正比,即E=-dΦ/dt,其中E是感应电动势,Φ是磁通量,t是时间。

2. 楞次定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

换句话说,感应电流的磁场总是试图阻止产生它的磁通量变化。

3. 右手定则:当导线在磁场中运动,并且导线中的电流方向已知时,可以用右手定则来判断导线受到的安培力方向。

具体来说,伸开右手,使拇指与其余四指垂直,并让磁感线穿过手心,拇指指向电流的方向,四指指向安培力的方向。

4. 交流电和电磁场:交流电会产生变化的磁场,这个变化的磁场又会产生感应电动势。

在电力系统中,变压器就是利用这个原理来升高或降低电压的。

5. 麦克斯韦方程组:麦克斯韦方程组是描述电场、磁场和电荷密度、电流密度之间关系的方程组。

它包括高斯定律、高斯磁定律、法拉第电磁感应定律和安培环路定律。

以上是关于电磁感应的主要知识点,掌握这些知识点有助于理解电场和磁场之间的相互作用,以及它们在电力系统和电子设备中的应用。

物理高二年级下册电磁感应知识点总结

物理高二年级下册电磁感应知识点总结

物理高二年级下册电磁感应知识点总结
高中物理是高中理科(自然科学)基础科目之一,小编准备了物理高二年级下册电磁感应知识点,希望你喜欢。

[感应电动势的大小计算公式]
1)E=n/t(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,/t:磁通量的变化率}
2)E=BLV垂(切割磁感线运动){L:有效长度(m)}
3)Em=nBS(交流发电机最大的感应电动势){Em:感应电动势峰值}
4)E=BL2/2(导体一端固定以旋转切割){:角速度(rad/s),V:速度(m/s)}
2.磁通量=BS{:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
*4.自感电动势E自=n/t=LI/t{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),I:变化电流,t:所用时间,I/t:自感电流变化率(变化的快慢)}
注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点;(2)自感电流总是阻碍引起自感电动势的
电流的变化;(3)单位换算:1H=103mH=106H。

物理高二年级下册电磁感应知识点就为大家介绍到这里,希
望对你有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二下册物理电磁感应知识点梳理:电磁感应线

1.电磁感应现象电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。

(1)产生感应电流的条:穿过闭合电路的磁通量发生变化,即0。

(2)产生感应电动势的条:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。

产生感应电动势的那部分导体相当于电源。

(3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。

2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。

如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。

任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。

反之,磁通量为负。

所求磁通量为正、反两面穿入的磁感线的代数和。

3.楞次定律(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。

楞次定律适用于一般情况的感应电流方
向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。

(2)对楞次定律的理解①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。

②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。

③阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。

④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。

(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:
①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。

4.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

表达式E=n/t 当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsin。

当B、L、v 三者两两垂直时,感应电动势E=BLv。

(1)两个公式的选用方法
E=n/t计算的是在t时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。

E=BLvsin中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。

(2)公式的变形
①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSB/t。

②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbs/t。

5.自感现象(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象。

(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势。

自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化。

6.日光灯工作原理(1)起动器的作用:利用动触片和静触片的接通与断开起一个自动开关的作用,起动的关键就在于断开的瞬间。

(2)镇流器的作用:日光灯点燃时,利用自感现象产生瞬时高压;日光灯正常发光时,利用自感现象,对灯管起到降压限流作用。

7.电磁感应中的电路问题在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流。

因此,电磁感应问题往往与电路问题联系在一起。

解决与电路相联系的电磁感应问题的基本方法是:
(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向。

(2)画等效电路。

(3)运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解。

8.电磁感应现象中的力学问题(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向。

②求回路中电流强度。

③分析研究导体受力情况(包含安培力,用左手定则确定其方向)。

④列动力学方程或平衡方程求解。

(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势感应电流通电导体受安培力合外力变化加速度变化速度变化周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点。

9.电磁感应中能量转化问题导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受
力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:
(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向。

(2)画出等效电路,求出回路中电阻消耗电功率表达式。

(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程。

10.电磁感应中图像问题
电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定。

用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围。

另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断。

相关文档
最新文档