无线电波传播方式与各频段的利用
不同频段信号传输的特点和适用场景

不同频段信号传输的特点和适用场景如下:
1. 长波通信(3kHz~30kHz):长波主要沿地球表面进行传播(又称地波),也可在地面与电离层之间形成的波导中传播,传播距离可达几千公里甚至上万公里。
长波能穿透海水和土壤,因此多用于海上、水下、地下的通信与导航业务。
2. 中波通信(30kHz~3MHz):中波在白天主要依靠地面传播,夜间可由电离层反射传播。
中波通信主要用于广播和导航业务。
3. 短波通信(3MHz~30MHz):短波主要靠电离层发射的天波传播,可经电离层一次或几次反射,传播距离可达几千公里甚至上万公里。
短波通信适用于应急、抗灾通信和远距离越洋通信。
4. VHF(甚高频):频率范围从30 MHz到300 MHz。
其中,FM广播电台的频率范围是88 MHz到108 MHz。
VHF频段在传输中具有较低的传输损耗和较好的穿透能力,适合在城市环境中进行通信。
5. UHF(超高频):频率范围从300 MHz到3 GHz。
UHF频段的特点是具有较高的传输速率和较强的阻抗辐射能力,适用于移动通信、无线局域网和数字电视等。
6. SHF(极高频):频率范围从3 GHz到30 GHz。
SHF频段具有较高的传输速率和较强的阻抗辐射能力,适用于卫星通信、雷达系统等。
7. EHF(极超高频):频率范围从30 GHz到300 GHz。
EHF频段的特征是具有较高的传输速率和较强的阻抗辐射能力,适用于微波通信、无线红外通信等。
短波段无线电波的传播规律与短波无线电通信的频率选择及预测

短波段无线电波的传播规律与短波无线电通信的频率选择及预测一、引言:在无线电通信中,无线电发射机的天线辐射载有信息的电磁波,到达接收点无线电接收机的天线,要经过一段自然路径。
无线电波在自然环境中的传播主要有三个路径常用于无线电通信:视距传播、地波传播、天波传播。
不同波长的无线电波在以上三种传播路径中有不同的传播规律。
短波无线电波(2—30Mhz)的传播有不同于其它频段的特殊规律,只有透彻认识和运用其特殊规律,才能发挥短波无线电通信设备的应有效能,建立稳定可靠的通信联系,提高通信质量。
二、无线电波的传播路径:(1)视距传播:视距传播是指电波在发射天线与接受天线互相“看得见”的距离内的传播方式。
电波在靠近地面的低空大气层中以近似直线的路径传播(见图-1),在发射功率一定的情况下,其通信距离相当大的程度上取决于收发双方的天线高度,多用于超短波通信,本文不多作讨论。
(2)地波传播:地波是指沿地球表面传播的电波。
当电波沿地表传播时,在地表面产生感应电荷,这些电荷随着电波的前进而形成地电流。
由于大地有一定的电阻,电流流过时要消耗能量,形成地面对电波的吸收。
地电阻的大小与电波频率有关,频率越高,地的吸收越大。
因此,地波传播适宜于长波和中波作远距离广播和通信;小型短波电台采用这种方式只能进行几公里至几十公里的近距离通信。
地波是沿着地表面传播的,基本上不受气候条件的影响,因此信号稳定,这是地波传播的突出优点。
(3)天波传播:天波是指地面发出的经电离层折射返回地面的电波。
短波无线电台站可以较小的发射功率,不依赖任何地面系统利用天波路径独自建立数百公里甚至数千公里的通信联系,是为有别于其它通信方式的突出优势。
但是,电离层随昼夜、季节、年度而变化,导致天波传播状况依时间变化。
因此,依赖电离层反射所建立的短波无线电天波通信是不稳定、不可靠的(相对于其他传播路径而言)。
远程短波通信要求设备操作人员对短波波段无线电波的传播规律有深入的了解和较多的实践经验,并且依赖于通信各方的配合默契。
无线电波的传播方式

无线电波的传播方式一、无线电波的传播方式无线电波以每秒三十万公里的速度离开发射天线后,是经过不同的传播路径到达接收点的。
人们根据这些各具特点的传播方式,把无线电波归纳为四种主要类型。
1)地波,这是沿地球表面传播的无线电波。
2)天波,也即电离层波。
地球大气层的高层存在着“电离层”。
无线电波进入电离层时其方向会发生改变,出现“折射”。
因为电离层折射效应的积累,电波的入射方向会连续改变,最终会“拐”回地面,电离层如同一面镜子会反射无线电波。
我们把这种经电离层反射而折回地面的无线电波称为“天波”。
3)空间波,由发射天线直接到达接收点的电波,被称为直射波。
有一部分电波是通过地面或其他障碍物反射到达接收点的,被称为反射波。
直射波和反射波合称为空间波。
4)散射波,当大气层或电离层出现不均匀团块时,无线电波有可能被这些不均匀媒质向四面八方反射,使一部分能量到达接收点,这就是散射波。
在业余无线电通信中,运用最多的是“天波”传播方式,这是短波远距离通信向必要条件。
空间波和散射波的运用多见于超高频通信,而地波传播“般只用于低波段和近距离通信。
二、电离层与天波传播1.电离层概况在业余无线电中,短波波段的远距离通信占据着极重要的位置。
短波段信号的传播主要依靠的是天波,所以我们必需对电离层有所了解。
地球表面被厚厚的大气层包围着。
大气层的底层部分是“对流层”,其高度在极区约为九公里,在赤道约为十六公里。
在这里,气温除局部外总是随高度上升而下降。
人们常见的电闪雷鸣、阴晴雨雪都发生在对流层,但这些气象现象一般只对直射波传播有影响。
在离地面约10到50公里的大气层是“同温层”。
它对电波传播基本上没有影响。
离地面约50到400公里高空的空气很少流动。
在太阳紫外线强烈照射下,气体分子中的电子挣脱了原子的束缚,形成了自由电子和离子,即电离层。
由于气体分子本身重量的不同以及受到紫外线不同强度的照射,电离层形成了四个具有不同电子密度和厚度的分层,每个分层的密度都是中间大两边小。
无线电波传播的基础知识

(a )
(b )
(c)
除了上述3种基本的传播方式外,还有散射传播 – 散射传播是利用低空对流层、高空电离层下缘的不均匀的“ 介质团”对电波的散射特性来达到传播目的的。 – 散射传播的距离可以远远超过地-地视距传播的视距。 – 对流层散射主要用于100MHz~10GHz频段,传播距离 r<800km; – 电离层散射主要用于30~100MHz频段,传播距离r>1000km。 散射通信的主要优点是距离远,抗毁性好,保密性强。
35
36 37 38 39 40 41 42 43 44 45
3.2
4 5.12 6.4 8 10 12.8 16 20 25.6 32
50
51 52 53 54 55 56 57 58 59 60
100
128 160 200 256 320 400 512 640 800 1000
dBm=10logmW
– 从物理知识中我们已经知道,只有当波长与障碍物高度可以 比较的时候,才能有绕射功能。在实际情况中只有长波、中 波以及短波的部分波段能绕过地球表面的大部分障碍到达较 远的地方。 – 在短波的部分波段和超短波、微波波段,由于障碍高度比波 长大,因而电波在地面上不绕射,而是按直线传播。
天波传播
– 发射天线向高空辐射的电波在电离层内经过连续折射而返回 地面到达接收点的传播方式称为天波传播。 – 尽管中波、短波都可以采用这种传播方式,但是仍然以短波 为主。它的优点是能以较小的功率进行可达数千千米的远距 离传播。 – 天波传播的规律与电离层密切相关,由于电离层具有随机变 化的特点,因此天波信号的衰落现象也比较严重。
dBm功率转换表
DBm 0 1 3 4 功率 ( W) 0.001 0.00125 0.002 0.0025 dBm 16 17 18 19 功率 ( W) 0.04 0.048 0.064 0.08 dBm 31 32 33 34 功率 ( W) 1.28 1.6 2 2.56 dBm 46 47 48 49 功率 ( W) 40 51.2 64 80
无线电波传播特性与频段的划分

无线电波传播特性与频段的划分
1.3 无线电管理
2、无线电管理的内容
(1)无线电台设置和使用管理 设置、使用无线电台(站)的单位或个人,必须
提出书面申请,办理设台审批手续,领取电台执 照。
(2)频率管理 国家无线电管理机构对无线电频率实行统一划分
和分配。频率使用期满,需要继续使用,必须办理 续用手续。
天 波 传 播
无线电波传播特性与频段的划分
1.2 无线电波的传播特性 (4)散射传播 :包括对流层散射传播和电离层散射传播两种模
式
无线电波传播特性与频段的划分
1.2 无线电波的传播特性 (5)地空传播:穿透电离层的直射传播模式称为地空传播 模式
无线电波传播特性与频段的划分
1.2 无线电波的传播特性
高频电子技术
无线电波传播特性与频段的划分
1.1 无线电频段和波段的划分 按频率高低划分的称为频段,按波长划分的称为波段。
无线电波传播特性与频段的划分
1.1 无线电频段和波段的划分
各个频段无线电波的应用范围也有所不同,下 表给出了不同频段无线电波的主要应用。
无线电波传播特性与频段的划分
1.2 无线电波的传播特性 1、无线电波的传播模式:
2、介质对无线电波传播的影响 (1)金属对于无线电波的屏蔽作用
金属是良导体,电磁波在金属中传播时会感应 出传导电流,这一电流在金属中流动时发热,电 磁波能量转化为热能,无线电波很快衰减。因此, 无线电波不能在金属等良导体介质中传播。根据 这个道理,用金属板围成一个密闭的房间,外面 的无线电信号就无法进入这个房间,这表明金属 对于无线电波有屏蔽作用。
管理的主要内容有以下三个方面:Biblioteka 无线电波传播特性与频段的划分
无线电波

通常的模拟电视信号采用将图像调幅,调频并合成在同一信号中传播。 数字电视采用MPEG-2图像压缩技术,由此大约仅需模拟电视信号一半的带宽。
移动通信系统选择所用频段时要综合考虑覆盖效果和容量。UHF频段与其他频段相比,在覆盖效果和容量之 间折衷的比较好,因此被广泛应用于手机等终端的移动通信领域。当然,随着人们对移动通信的需求越来越多, 需要的容量越来越大,移动通信系统必然要向高频段发展。
无线电波的速度只随传播介质的电和磁的性质而变化。
传播
感谢观看
雷达
雷达通过测量反射无线电波的延迟来推算目标的距离。并通过反射波的极化和频率感应目标的表面类型。
无线电波的多经传送效应导航雷达使用超短波扫描目标区域。一般扫描频率为每分钟两到四次,通过反射波 确定地形。这种技术通常应用在商船和长距离商用飞机上。多用途雷达通常使用导航雷达的频段。不过,其所发 射的脉冲经过调制和极化以便确定反射体的表面类型。优良的多用途雷达可以辨别暴雨、陆地、车辆等等。
调频广播的边带可以用来传播数字信号如,电台标识、节目名称简介、、股市信息等。在有些国家,当被移 动至一个新的地区后,调频收音机可以自动根据边带信息自动寻找原来的频道。
航海和航空中使用的电台应用VHF调幅技术。这使得飞机和船舶上可以使用轻型天线。
政府、消防、警察和商业使用的电台通常在专用频段上应用窄带调频技术。这些应用通常使用5KHz的带宽。 相对于调频广播或电视的带宽,保真度上不得不作出牺牲。
民用或军用高频服务使用短波用于船舶,飞机或孤立地点间的通讯。
短波段无线电波的传播规律与短波无线电通信的频率选择及预测

短波段无线电波的传播规律与短波无线电通信的频率选择及预测一、引言:在无线电通信中,无线电发射机的天线辐射载有信息的电磁波,到达接收点无线电接收机的天线,要经过一段自然路径。
无线电波在自然环境中的传播主要有三个路径常用于无线电通信:视距传播、地波传播、天波传播。
不同波长的无线电波在以上三种传播路径中有不同的传播规律。
短波无线电波(2—30Mhz)的传播有不同于其它频段的特殊规律,只有透彻认识和运用其特殊规律,才能发挥短波无线电通信设备的应有效能,建立稳定可靠的通信联系,提高通信质量。
二、无线电波的传播路径:(1)视距传播:视距传播是指电波在发射天线与接受天线互相“看得见”的距离内的传播方式。
电波在靠近地面的低空大气层中以近似直线的路径传播(见图-1),在发射功率一定的情况下,其通信距离相当大的程度上取决于收发双方的天线高度,多用于超短波通信,本文不多作讨论。
(2)地波传播:地波是指沿地球表面传播的电波。
当电波沿地表传播时,在地表面产生感应电荷,这些电荷随着电波的前进而形成地电流。
由于大地有一定的电阻,电流流过时要消耗能量,形成地面对电波的吸收。
地电阻的大小与电波频率有关,频率越高,地的吸收越大。
因此,地波传播适宜于长波和中波作远距离广播和通信;小型短波电台采用这种方式只能进行几公里至几十公里的近距离通信。
地波是沿着地表面传播的,基本上不受气候条件的影响,因此信号稳定,这是地波传播的突出优点。
(3)天波传播:天波是指地面发出的经电离层折射返回地面的电波。
短波无线电台站可以较小的发射功率,不依赖任何地面系统利用天波路径独自建立数百公里甚至数千公里的通信联系,是为有别于其它通信方式的突出优势。
但是,电离层随昼夜、季节、年度而变化,导致天波传播状况依时间变化。
因此,依赖电离层反射所建立的短波无线电天波通信是不稳定、不可靠的(相对于其他传播路径而言)。
远程短波通信要求设备操作人员对短波波段无线电波的传播规律有深入的了解和较多的实践经验,并且依赖于通信各方的配合默契。
常见的无线通信传输方式(上篇)(二)

常见的无线通信传输方式(上篇)(二)引言概述:无线通信是指在无线电波和电磁波等无线媒介上进行信息传输的技术。
随着移动通信的快速发展,无线通信传输方式也日益多样化和普及化。
本文将介绍常见的无线通信传输方式,旨在帮助读者更好地理解和运用无线通信技术。
正文内容:1. Wi-Fi传输方式- 基本原理:Wi-Fi利用无线局域网技术,通过接入点和无线设备之间的通信来实现数据传输。
- 工作频段:Wi-Fi工作在2.4GHz和5GHz两个频段,可以提供较高的传输速率和稳定性。
- 优势:Wi-Fi传输方式具有方便、灵活、无线化的特点,适用于家庭、企业及公共场所的局域网环境。
2. 蓝牙传输方式- 基本原理:蓝牙技术通过短距离的无线通信来传输数据,一般用于移动设备之间的文件传输、音频传输等。
- 工作距离:蓝牙传输的有效距离通常在10米左右,适用于近距离的数据传输需求。
- 优势:蓝牙传输方式具有低功耗、快速连接和广泛应用的特点,适用于个人消费类电子设备。
3. GSM传输方式- 基本原理:GSM(全球系统移动通信)是目前世界上应用最广泛的数字蜂窝移动通信标准,通过基站与移动终端之间的无线通信实现数据传输。
- 工作频段:GSM工作在900MHz和1800MHz两个频段,能够提供语音通信和短信等基本服务。
- 优势:GSM传输方式具有全球范围内的覆盖、高质量的语音通话和较低的成本等优势,是现代移动通信的基础。
4. 4G传输方式- 基本原理:4G通信(第四代移动通信)采用全IP网络架构和OFDMA调制技术,提供高速数据传输和多媒体业务。
- 传输速率:4G传输方式的理论传输速率可以达到100Mbps,远高于之前的3G技术。
- 优势:4G传输方式具有高速率、低延迟和高可靠性的特点,适用于大规模数据传输和高清实时视频等应用场景。
5. 5G传输方式- 基本原理:5G通信(第五代移动通信)采用更高频率的毫米波和大规模MIMO技术,实现更大带宽和更低延迟的数据传输。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无线电波传播方式与各频段的利用无线电通信是利用电磁波在空间传送信息的通信方式。
电磁波由发射天线向外辐射出去,天线就是波源。
电磁波中的电磁场随着时间而变化,从而把辐射的能量传播至远方。
无线电波共有以下七种传播方式(附图为无线电波传播方式示意图)。
(1)波导方式当电磁波频率为30kHz以下(波长为10km以上)时,大地犹如导体,而电离层的下层由于折射率为虚数,电磁波也不能进入,因此电磁波被限制在电离层的下层与地球表面之间的空间内传输,称为波导传波方式;(2)地波方式沿地球表面传播的无线电波称为地波(或地表波),这种传播方式比较稳定,受天气影响小;(3)天波方式射向天空经电离层折射后又折返回地面(还可经地面再反射回到天空)的无线电波称为天波,天波可以传播到几千公里之外的地面,也可以在地球表面和电离层之间多次反射,即可以实现多跳传播。
(4)空间波方式主要指直射波和反射波。
电波在空间按直线传播,称为直射波。
当电波传播过程中遇到两种不同介质的光滑界面时,还会像光一样发生镜面反射,称为反射波。
(5)绕射方式由于地球表面是个弯曲的球面,因此电波传播距离受到地球曲率的限制,但无线电波也能同光的绕射传播现象一样,形成视距以外的传播。
(6)对流层散射方式地球大气层中的对流层,因其物理特性的不规则性或不连续性,会对无线电波起到散射作用。
利用对流层散射作用进行无线电波的传播称为对流层散射方式。
(7)视距传播指点到点或地球到卫星之间的电波传播。
附表给出了从甚低频(VLF)至极高频(EHF)频段的电波传播方式、传播距离、可用带宽以及可能形成的干扰情况。
在确定无线电系统实际通信距离、覆盖范围和无线电干扰影响范围时,无线电传播损耗是一个关键参数。
无线电通信系统若不进行科学的频率指配和严格的系统设计与场强预测,会使系统之间产生严重干扰而不能正常工作。
为了保证无线电通信用户的通信质量,确保无线电波发射的业务覆盖服务区和电波传播的可靠程度,必须仔细地计算从接收天线到发射天线之间的传播损耗。
理论上讲,在自由空间无线电波的传播损耗大小与传播距离的平方及使用频率的平方成正比关系,但是在确定无线电系统实际通信距离、覆盖范围和无线电干扰影响范围时,同时还要考虑在传播路径上存在着各种各样的影响,如高空电离层影响,高山、湖泊、海洋、地面建筑、植被以及地球曲面的影响等,因而电波具有反射、绕射、散射和波导传播等传播方式。
在研究电波传播特性时,通常以数学表达式来描述这些传播损耗特性,即所谓的数学模型。
无线电波传播模型通常是很复杂的,必须对不同的频段使用不同的电波传播模型,以预测电台覆盖和传播场强。
下面简要地叙述几种传播方式(详细数学公式略)。
VLF(f< 30kHz) 频率低于30kHz的电波,传播损耗近似等于自由空间传播损耗,即相当于电波在理想的、均匀的、各向同性的介质中传播,不发生反射、折射、绕射和吸收现象,只存在因电磁能量扩散引起的传播损耗。
在此频段内,电波在电离层与地球之间可以以波导方式沿地球表面进行传播。
LF(30kHz< f< 300kHz) 在这个频段内,有两种重要的传播方式:地波方式及电离层天波方式。
天波信号幅度具有明显的昼夜变化,这是由于电离层吸收和变化的缘故。
MF(300kHz< f< 3MHz) 在该频段内,传播方式也是地波和天波。
当评价地波时,还需要知道大地的电气特性,特别是大地电导率的数据。
对150kHz到1.6MHz 频率频段,采用天波传播的预测方法。
在MF广播频带内,天波传播只假定发生在夜间。
在1.6MHz以上频率,HF传播预测方法才开始有效。
超过1.6MHz时,天波对移动通信明显地变得更为重要。
HF(3MHz< f< 30MHz) 在该频率范围内,信号的传播一般是通过电离层,主要以天波方式传播,因而表现出较大的变化。
电离层的传播特点主要表现为会造成长途传输的多径失真,出现信号干扰甚至中断操作的情况。
由于该频段频谱拥挤以及长距离传播应用两方面的原因,人们不得不使用相当复杂的电波传播预测模型。
使用电离层特性来预测HF传播时,ITU-R的P.533建议的预测模型可用来在任意路径上根据季节、太阳黑子数等预测基本的和可用的最高可用频率(MUF)、场强、接收功率、信/噪比和可靠性等。
VHF和UHF(30MHz< f< 3GHz) 该频带内,安排有大量固定和移动业务。
该频段除了低端之外,通常不是通过有规则的电离层来进行电波传播的。
气候只对超折射和传导有影响,这是由大气折射指数中正常梯度的变化引起的。
除了自由空间传播外,对流层散射和绕射也是很重要的。
我们可以按照下述各种特定传播环境的传播模型来估算电波的传播损耗。
(1)自由空间传播模型通常把电磁波在真空中的传播称之为“自由空间传播”。
在某些环境中,假定有用信号只是由于在自由空间所产生的传播损耗。
也就是说,把大气看成为近似真空的均匀介质,电磁波沿直线传播,不发生反射、折射、绕射和散射等现象,这时在大气中的传播就等效于自由空间传播,它只与频率f和距离d有关。
(2)平坦大地的绕射模型适合大于视距的传播范围,对有用信号的预测需要考虑地球的曲率。
(3)粗糙大地上的传播模型适合于世界特定地区和特别粗糙大地上的传播。
(4)OKUMURA-HATA模型以距离和发射机天线的高度为依据。
校正这个损耗须要以建筑物在接收位置附近的百分率、路径类型(陆地、海洋、混合)和大地不规则度为依据,主要用于大城市和郊区环境的传播损耗和场强预测。
(5)LONGLEY-RICE(ITS)模型可用来估算地波和对流层散射的传播衰减。
这个模型是统计模型,也就是预测中值场强和估计信号随时间与空间的变化。
另外,还必须考虑到其他有可能造成干扰的传播机理,包括电离层传播机理,有可能随季节和昼夜时间变化;通过偶尔发生的E层,有可能允许在约70MHz频率上进行长距离传播。
此外还有超折射和大气波导等。
SHF和更高频率(f>3GHz) 如上所述的各传播因素(除天波而外),均适用于更高的频率,但这时必须考虑衰减、散射以及由降雨与其它大气微粒产生的交差极化。
当频率大于10GHz时,雨滴所引起的衰减,会使信号质量严重下降,估算衰减概率分布的方法,通常以超过0.01%时间的雨强密度R0.01(mm/h)为基础。
这个值应以长期降雨观测为基础,大约以一分钟的时间间隔进行取值。
20GHz以上,必须考虑大气衰落,包括气体衰落和降水衰落。
无线发射模块(或电台)在工程安装过程中的注意事项日期:2007-04-20 访问次数:24一.发射天线的安装A.根据使用的模块(或者电台)的发射功率,传输的距离的远近程度选择合适的天线种类。
常用的有橡皮天线,吸盘天线和其他各种高增益的全向或者定向天线。
B.安装前应仔细的阅读天线说明书,有无特殊的要求,检查天线的频段,功率容限是否符合要求。
C.室外天线的架设高度根据需要及实际情况确定,应考虑到发射信号传输的距离远近,周围的干扰情况和馈线的损耗,并非天线架设越高越好。
D.室外天线应安装在避雷针的45度保护角之内,附近不能有金属,以免影响发射波瓣图。
E.室外天线底座接地应良好,安放不能倾斜,安装一定要牢固,能抗风,抗腐蚀耐强烈的气温变化。
二.馈线的安装A.馈线是连接在电台和天线之间的同轴电缆。
在选择时应注意如下的指标:阻抗:50Ω(市面上一般有75Ω和50Ω两种,请注意区别)衰减:每米馈线对信号衰减分贝(dB)数,哀减越小越好。
线径:馈线的直径越粗和屏蔽层越厚实的馈线衰耗越小。
馈线连接头:馈线的两头必须和天线和电台的接头匹配,连接头的阻抗也为50Ω,而且必须牢靠连接。
B. 馈线在留有余地的情况下尽可能短。
C.安装馈线时避免折弯,馈线应固定好,不能随风飘荡,天馈接头要拧紧并用防水胶布缠牢以放雨水沁入、D.在有条件的地方,最好能把馈线的外铜皮与大地相连接。
三.对无线模块的简单测试,检查工作状态是否正常。
A.在系统整体连接好后,一定要再仔细检查一遍天馈线的连接,馈线和无线模块(或者电台)的连接,数据线,控制信号线和电源线的连接是否有误,再确保无误的情况下才能打开电源给系统设备加电。
B.发射功率的测量:将功率计串入发射模块(或者电台)与天线之间。
上电后使无线模块(或者电台)处于发射状态,观察各指示灯状态是否正常,同时读出功率计上测量出来的正向功率和反射功率。
实测功率与标称功率相差±10%即视为正常。
反向功率与正向功率之比应小于3%,若大于3%则说明天馈系统与发射设备不匹配,需要找出原因排除故障后,再测试正反向功率,只有当测量的正反向功率比值小于3%后才能让系统加电长时间工作,否则容易烧毁功率放大模块。
四.无线发射系统的放雷与接地的重要性A.防雷的重要性电闪雷鸣时自然界中瞬间高压大电流放电效应。
如果防雷不好,将给通信设备造成损害。
特别是天线架设在室外的无线通信基站,若防雷不好,雷电从天线引入通信设备,很容易将设备损害,即使天线防雷好,但是交流供电线路防雷不好,同样也会由供电线路引入雷电烧毁供电电源,从而使通信中断。
所以防雷是保护通信设备免遭雷电袭击,保护通信系统正常运行的重要措施。
所以对电源系统和天馈线系统都要尽可能的安装专业防雷器B.接地的重要性:良好的接地降低了通信设备的噪声等干扰,保证了良好的通信;良好的接地保证了通信设备电子部件的工作稳定;良好的接地保证了通信设备中电子部件免受静电高压,瞬间放电脉冲等的损害;良好的接地使通信设备获得良好的屏蔽作用,避免了外界的电磁干扰等;C.无线基站的接地系统:无线发射基站接地系统包括工作接地,保护接地和防雷接地;工作接地包括供系统工作的交流电源,直流电源和通信设备的接地;保护接地使指对保障通信设备正常工作的其他设备(如空调,照明等)都需要保护接地;防雷接地分为:天线,馈线,铁塔的防雷接地。
铁塔的顶端必须安装避雷针,天线应位于避雷针的45度保护角之内。
避雷针应有良好的接地,以保证雷电及时流入大地。
馈线在引入室内之前应做好防雷接地,电源系统也需要做好防雷保护接地措施;如果有长距离数据线也需要做好防雷保护接地措施;D.一个无线基站发射系统的工作接地,保护接地和防雷接地最好分开,因为各自接地作用不同,接地电阻要求不同,分开接地可以达到最佳效果。
如果很难分开接地时,最少要使防雷接地单独接有关频率说明日期:2007-01-24 访问次数:61一、GSM900/1800 双频段数字蜂窝移动台核准频率范围:Tx:885~915MHz/1710~1785MHz Rx:930~960MHz/1805~1880MHz 说明:1800MHz移动台传导杂散发射值:1.710~1.755GHz≤-36dBm 1.755~12.75GHz≤-30dBm二、GSM900/1800 双频段数字蜂窝基站核准频率范围:Tx::930~960MHz/1805~1880MHz Rx::885~915MHz/1710~1785MHz说明:1800MHz基站传导杂散发射限值:1805~1850MHz ≤-36dBm/30/100kHz1852~1855MHz ≤-30dBm/30kHz1855~1860MHz ≤-30dBm/100kHz1860~1870MHz ≤-30dBm/300kHz1870~1880MHz ≤-30dBm/1MHz1880~12.75GHz ≤-30dBm/3MHz1710~1755MHz ≤-98dBm/100kHz三、GSM直放机核准频率范围:下行:930~960MHz/1805~1880MHz 上行:885~915MHz/1710~1785MHz说明:根据移动通信运营商的要求,直放机必须具备仅适用于某运营商使用频段的功能。