无线电波的传播特性
电磁波谱可见光和无线电波的特性

电磁波谱可见光和无线电波的特性电磁波谱是指在不同波长范围内的电磁波的分布情况。
其中,可见光和无线电波是电磁波谱中的两个重要组成部分。
它们在物理特性、应用领域和技术应用上有着显著的差异。
本文将介绍可见光和无线电波的特性,以及它们在不同领域的应用。
一、可见光的特性可见光是指人眼能够感知到的电磁波,其波长范围约为380纳米到780纳米。
可见光波长短、波速快,具有较高的频率和能量。
以下是可见光的主要特性:1. 色彩丰富:可见光由七种颜色的光组成,即红、橙、黄、绿、蓝、靛、紫。
通过颜色的混合和变化,可以呈现出丰富多彩的色彩。
2. 光的传播:可见光具有直线传播的特性,当光线遇到障碍物时会发生折射、反射和散射。
这些特性决定了我们能够看到物体的原因。
3. 光的波粒二象性:可见光既可以看作波动,也可以看作微粒(光子)。
这种波粒二象性使得可见光具备了干涉、衍射和光电效应等特性。
二、无线电波的特性无线电波是一种波长较长的电磁波,主要用于通信和远距离传输。
无线电波的波长范围广泛,从几毫米到几百千米不等。
以下是无线电波的主要特性:1. 长波长:无线电波的波长较长,这使得它能够穿透建筑物并具有良好的穿透能力。
同时,长波长也决定了无线电波传播的范围较广。
2. 高频率:无线电波的频率通常较低,这使得其具有较低的能量。
与可见光相比,无线电波的频率较低,无法直接被人眼感知。
3. 大范围传播:无线电波具有远距离传播的特性,在通信领域具有广泛的应用。
它可以在地球的大气层内反射、折射和经过衍射,实现远距离传输。
三、可见光和无线电波的应用可见光和无线电波在不同的领域有着广泛的应用。
1. 可见光应用:a. 照明:可见光作为最基本的光源,广泛用于照明和照明设计领域。
b. 彩色显示:可见光的不同颜色可以用于显示器、电视等彩色显示设备。
c. 光学通信:可见光通信利用可调幅度和相位调制技术,实现高速、可靠的数据传输。
d. 光谱分析:通过对物质所产生的可见光吸收和发射的分析,可以获得物质的组成和性质信息。
无线电波的产生与传播

无线电波的产生与传播无线电波是一种特殊的电磁波,它具有广泛的应用范围,我们日常生活中许多设备和通信系统都离不开无线电波的产生和传播。
本文将从产生无线电波的物理原理、无线电波的传播特性以及无线电通信系统中的应用等方面进行探讨。
一、无线电波的产生无线电波是由振动频率在无线电频段内的电子所产生的。
它的产生是通过一种特殊的电子器件——发射器来实现的。
发射器中的振荡电路会产生高频振荡信号,这些信号随后经过功率放大和调制等处理,最终被传输至天线,从而以无线电波的形式发出。
无线电波的产生可根据不同的原理进行分类,包括震荡振荡原理、放电原理、反馈原理等。
其中,震荡振荡原理是应用最广泛的一种。
例如,无线电广播中的发射机通过震荡电路中的电子组件,如电感、电容和晶体管等,产生稳定的高频振荡信号,进而发出电磁波。
二、无线电波的传播特性无线电波在传播过程中具有一些特殊的性质和规律。
了解这些特性可以帮助我们更好地设计和优化通信系统。
1. 方向性传播:无线电波在空间中以直线传播,呈现出“直线传播”或“射线传播”的特点。
它的行进路径受到反射、折射、散射等影响,从而在传播过程中发生多次的反射和绕射现象。
2. 衰减和衰落:无线电波在传播过程中会经历衰减和衰落。
衰减指的是电磁波强度随着传输距离的增加而减弱;衰落表示电磁波接收信号的强度在时间和空间上的随机性变化。
3. 多径传播:多径传播是指无线电波在传播过程中,由于遇到不同的障碍物或媒介的影响,会有多个传播路径同时存在。
这导致接收到的信号由多个不同的波前构成,产生多径干扰。
4. 功率密度:无线电波的功率密度随着距离的增加而逐渐减小。
这是由于能量随着波传播的面积扩散而变得更为稀疏。
三、无线电通信系统中的应用无线电通信系统以其便捷性和广泛性在现代社会扮演着重要的角色。
以下是几种常见的无线电通信系统及其应用:1. 无线电广播:通过无线电波的传播,向广大听众提供信息、音乐等广播节目。
2. 手机通信:通过无线电波的传输,实现移动电话之间、手机与基站之间的通信。
浅谈无线电波的传播特性

维普资讯
弱 , 以, 回来 的信号忽大忽小 , 所 发射 很不稳定。
() 2 地波传播 是沿地表面传播。无线 电波沿着地球表 面以绕射方式到达视线范 围以外 , 为地面波传播 , 成 其特点 是信 号 比较稳定 , 电波频率愈高 , 但 地面波随距 离 的增加 衰减愈 快。这种传 播方 式主要适用 于长 波 ( 频 ) 中波 段 ( 低 和 中频 ) 。
作用中图分类号tn8文献标识码a文章编号10085149200804006302随着电子技术的迅猛发展无线电波的利用更加广泛无线电波的传播方式也日趋多样化无线电波能用来传播广播和电视节目还可用来进行不同领域的通讯遥控和遥测等因此在各种传媒日益竞争激烈的情形下掌握好无线电波的传播特性对满足我们的实践需要具有重要的作用
不停地变化 , 于是 导线 附近空 间的电场也 随着变动 , 这样 , 在变动 的电场周 围产生变动 的磁 场 , 变动的磁场 周围又产生变 动 的 电场。这种持续不断的交替变 化形成的 向空 中传播 的电场和磁 场 , 就是无线 电波。
2 无线 电波 的频率及 频 段划分
() 1 无线电波按频率从几 十 H ( 至更 低) 30 G z z甚 到 0 0 H 频谱范围 内的 电磁波 , 为无线 电波。 称
随着 电子技术 的迅猛发展 , 电波的利用更加广泛 , 电波的传播 方式也 日趋 多样化 , 无线 无线 无线 电波 能用 来传 播广 播 和电视节 目, 还可用来进行不 同领域的通讯 、 控和遥测等 , 遥 因此 , 在各种传 媒 日益 竞争激 烈 的情形 下 , 握好无线 电波 的 掌
无线电波的传播特性

无线电波的传播特性(一)移动通信的一个重要基础是无线电波的传播,无线电波通过多种方式从发射天线传播到接收天线,我们按照无线电波的波长人为地把电波分为长波(波长 1000米以上),中波(波长100-1000米),短波(波长10-100米),超短波和微波(波长为10米以下)等等。
为了更好地说明移动通信的问题,我们先介绍一下电波的各种传播方式:1. 表面波传播表面波传播是指电波沿着地球表面传播的情况。
这时电波是紧靠着地面传播的,地面的性质,地貌,地物等的情况都会影响电波的传播。
当电波紧靠着实际地面--起伏不平的地面传播时,由于地球表面是半导体,因此一方面使电波发生变化和引起电波的吸收。
另一方面由于地球表面是球型,使沿它传播的电波发生绕射。
从物理知识中我们已经知道,只有当波长与障碍物高度可以比较的时候,才能有绕射功能。
由此可知,在实际情况中只有长波,中波以及短波的部分波段能绕过地球表面的大部分障碍到达较远的地方。
在短波的部分波段和超短波,微波波段,由于障碍高度比波长大,因而电波在地面上不绕射,而是按直线传播。
2. 天波传播短波能传至地球上较远的地方,这种现象并不能用绕射或其他的现象做解释。
直到1925年,利用在地面上垂直向上发射一个脉冲,并收到其反射回波,才直接证明了高层大气中存在电离层。
籍此电离层的反射作用,电波在地面与电离层之间来回反射传播至较远的地方。
我们把经过电离层反射到地面的电波叫作天波。
电离层是指分布在地球周围的大气层中,从60km以上的电离区域。
在这个区域中,存在有大量的自由电子与正离子,还可能有大量的负离子,以及未被电离的中性离子。
发现电离层后,尤其近三四十年来,随着火箭与卫星技术的发展,利用这些工具对电离层进行了深入的试验和研究。
当前电离层的研究已经成为空间物理的一个重要的组成部分,其研究的空间范围和频段也日益宽广。
在电离层中,当被调制的无线电波信号在电离层内传播时,组成信号的不同频率成分有着不同的传播速度。
无线电波的传播特性分析

无线电波的传播特性分析随着社会的发展和科技的改善,人们越来越依赖于无线电通讯系统。
无线电通讯试验表明,无线电波在移动通信、卫星通信、广播电视、雷达、导航、天文学、医学设备、物理实验等领域都有着重要的应用。
因此无线电波的传播特性研究是通信领域的重要课题。
本文将对无线电波的传播特性进行分析。
一、无线电波的概念及特点无线电波是指具有从发射端到接收端传输信息的电磁波。
其特点是不需要空气、水、电线或其他物质介质的支持,具有穿透力强、速度快、方向性好等特点。
无线电波的振幅、频率和波长是测量其特性的重要参数。
二、无线电波的传播方式通常无线电波的传播方式可以分为地波传播和空气波传播两种方式。
1.地波传播地波传播是指在接收机基准面附近的地面或水面上以及建筑物等障碍物中反射、散射和直射而形成的波。
无线电波在地面或水面上远距离传输时,会遇到地球曲率、地形以及自然和人为障碍物的影响。
因此,地波传播适用于距离较短、发射功率较小的低频率无线电信号。
2.空气波传播空气波传播是指无线电波以大气为传导介质,经过电离层反射折射等多次反射模式,形成传播现象。
空气波传播分为天距通信和地距通信两种。
地距通信主要指空气波与障碍物的地面相互作用,而天距通信则是指空气波穿透电离层达到对地通信。
三、无线电波的频率对传输距离的影响无线电波的频率对于通信质量和可靠性具有很大的影响。
从传播距离和功率来看,如果无线电波的频率越高,那么穿透障碍物的能力就越弱,信号的传输距离就越短且对障碍物更敏感;如果无线电波的频率越低,传输的距离则越远,而穿透障碍物的能力也越强。
因此,不同频率的无线电波适用于不同的场合,需要根据实际情况来选择信号的频率。
四、无线电波的衰减和传播损耗无线电波在传输过程中会受到一系列的影响,如传输途经的障碍物、电离层、大气层摩擦阻力等。
由于这些变量的存在,无线电波会产生衰减和传播损耗。
当信号从透明的媒介中穿过非均匀材料时,无论是反射、吸收、散射还是折射,都会使信号发生衰减和传播损耗,影响信号的传输质量和可靠性。
无线电波传播特性的研究与应用

无线电波传播特性的研究与应用在我们的日常生活中,无线电波无处不在。
从手机通信到广播电视,从卫星导航到无线网络,无线电波在信息传递和通信领域发挥着至关重要的作用。
然而,要实现高效、稳定和可靠的无线电通信,就必须深入了解无线电波的传播特性。
本文将对无线电波的传播特性进行研究,并探讨其在各个领域的广泛应用。
无线电波是一种电磁波,其频率范围非常广泛,从低频的长波到高频的微波和毫米波。
它们在空间中以光速传播,不需要任何介质,可以在真空、空气、水和其他物质中传播。
但无线电波在不同的环境中传播时,会受到多种因素的影响,从而表现出不同的特性。
首先,让我们来了解一下无线电波的直射传播特性。
当无线电波在自由空间中传播时,没有障碍物的阻挡,它会沿着直线传播。
这种传播方式称为直射传播。
在直射传播中,无线电波的强度会随着距离的增加而逐渐减弱,遵循反平方定律。
也就是说,距离发射源的距离增加一倍,信号强度会降低为原来的四分之一。
这是因为无线电波的能量在传播过程中会逐渐扩散,导致单位面积上的能量减少。
然而,在实际环境中,很难存在完全没有障碍物的自由空间。
建筑物、山脉、树木等都会对无线电波的传播产生阻挡和反射。
这就引出了无线电波的反射传播特性。
当无线电波遇到障碍物时,一部分能量会被反射回来。
反射的程度取决于障碍物的材质、形状和粗糙度等因素。
例如,金属表面会对无线电波产生强烈的反射,而粗糙的墙壁则会导致反射信号的散射和衰减。
除了反射,无线电波还会发生折射现象。
当无线电波穿过不同介质的分界面时,由于介质的折射率不同,电波的传播方向会发生改变。
这就像光线从空气进入水中会发生折射一样。
在大气中,由于温度、湿度和气压的变化,会导致大气层的折射率不均匀,从而影响无线电波的传播路径。
这种现象在卫星通信和远程通信中尤为重要。
另外,无线电波还会发生散射传播。
当无线电波遇到尺寸小于波长的障碍物时,会向各个方向散射。
例如,雨滴、灰尘颗粒等都会引起无线电波的散射。
无线电波传播特性与频段的划分

无线电波传播特性与频段的划分
1.3 无线电管理
2、无线电管理的内容
(1)无线电台设置和使用管理 设置、使用无线电台(站)的单位或个人,必须
提出书面申请,办理设台审批手续,领取电台执 照。
(2)频率管理 国家无线电管理机构对无线电频率实行统一划分
和分配。频率使用期满,需要继续使用,必须办理 续用手续。
天 波 传 播
无线电波传播特性与频段的划分
1.2 无线电波的传播特性 (4)散射传播 :包括对流层散射传播和电离层散射传播两种模
式
无线电波传播特性与频段的划分
1.2 无线电波的传播特性 (5)地空传播:穿透电离层的直射传播模式称为地空传播 模式
无线电波传播特性与频段的划分
1.2 无线电波的传播特性
高频电子技术
无线电波传播特性与频段的划分
1.1 无线电频段和波段的划分 按频率高低划分的称为频段,按波长划分的称为波段。
无线电波传播特性与频段的划分
1.1 无线电频段和波段的划分
各个频段无线电波的应用范围也有所不同,下 表给出了不同频段无线电波的主要应用。
无线电波传播特性与频段的划分
1.2 无线电波的传播特性 1、无线电波的传播模式:
2、介质对无线电波传播的影响 (1)金属对于无线电波的屏蔽作用
金属是良导体,电磁波在金属中传播时会感应 出传导电流,这一电流在金属中流动时发热,电 磁波能量转化为热能,无线电波很快衰减。因此, 无线电波不能在金属等良导体介质中传播。根据 这个道理,用金属板围成一个密闭的房间,外面 的无线电信号就无法进入这个房间,这表明金属 对于无线电波有屏蔽作用。
管理的主要内容有以下三个方面:Biblioteka 无线电波传播特性与频段的划分
4-无线电波传播特性详解

极 化 特 性
极化:电磁波在传播过程中,其电场矢量的方向和幅度随时间 变化的状态。 电磁波的极化形式: 线极化、圆极化和椭圆极化。
线极化的两种特殊情况
水平极化(电场方向平行于地面) 垂直极化(电场方向垂直于地面)
极化反射系数: 对于地面反射,当工作频率高于150MHz 1 ,算得 ( 2m )时,
多径传播模型
无线电传播特性的研究
考虑问题
衰落的物理机制 功率的路径损耗 接收信号的变化和分布特性
应用成果
传播预测模型的建立 为实现信道仿真提供基础
理论分析方法(如射线跟踪法)
基本方法
应用电磁传播理论分析电波在移动环境中的传播特性来建立预 测模型
现场测试方法(如冲激响应法)
若移动台朝向入射波方向运动,则多普勒频移为正(接收信号频率上升); 反之若移动台背向入射波方向运动,则多普勒频移为负(接收信号频率下 降)。
信号经过不同方向传播,其多径分量造成接收机信号的多普勒扩散, 因而增加了信号带宽。
3、多径信道的信道模型
原理 多径信道对无线信号的影响表现为多径衰落特性。 将信道看成作用于信号上的一个滤波器,可通过分析 滤波器的冲击相应和传递函数得到多径信道的特性 推导冲击响应 只考虑多径效应 再考虑多普勒效应 多径和多普勒效应对传输信号的影响 多径信道的冲击响应
d
发 射 天 线
直射波
B
接 收 天 线
直射波
hb
反射波
C
hm
Pr Pt G G 1 Re r t 4d
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无线电波的传播特性
传播特性(一)
移动通信的一个重要基础是无线电波的传播,无线电波通过多种方式从发射天线传播到接收天线,我们按照无线电波的波长人为地把电波分为长波(波长1000米以上),中波(波长100-1000米),短波(波长10-100米),超短波和微波(波长为10米以下)等等.为了更好地说明移动通信的问题,我们先介绍一下电波的各种传播方式:
1.表面波传播
表面波传播是指电波沿着地球表面传播情况.这时电波是紧靠着地面传播的,地面的性质,地貌,地物等的情况都会影响着电波的传播.
当电波紧靠着实际地面--起伏不平的地面传播时,由于地表面是半导体,因此一方面使电波发生变化和引起电波的吸收.另一方面由于地球表面是球型,使沿它传播的电波发生绕射.
从物理课程中我们已经知道,只有当波长与障碍物高度可以比较的时候,才能有绕射功能.由此可知,在实际情况中只有长波,中波以及短波的部分波段能绕过地球表面的大部分障碍到达较远的地方.在短波的部分波段和超短波,微波波段,由于障碍高度比波长大,因而电波在地面上不绕射,而是按直线传播.
2.天波传播
短波能传至地球上较远的地方,这种现象并不能用绕射或其他的现象做解释.直到1925年,利用在地面上垂直向上发射一个脉冲,并收到其反射回波,才直接证明了高层大气中存在电离层.籍此电离层的反射作用,电波在地面与电离层之间来回反射传播至较远的地方.我们把经过电离层反射到地面的电波叫天波.
电离层是指分布在地球周围的大气层中,60km以上的电离区域.在这个区域中,存在有大量的自由电子与正离子,还可能有大量的负离子,以及未被电离的中性离子.发现电离层后,尤其近三四十年来,随着火箭与卫星技术的发展,利用这些工具对电离层进行了深入的试验和研究.当前电离层的研究已经成为空间物理的一个重要的组成部分,其研究的空间范围和频段也日益宽广.
在电离层中,当被调制的无线电波信号在电离层内传播时,组成信号的不同频率成分有着不同的传播速度.所以波形会发生失真.这就是电离层的色散性.同时,由于自由电子受电波电场作用而发生运动,所以当电波经过电离层,其能量会被吸收一部分.而且,从电离层吸收电波的规律看,若使用电波的工作频率太低,则电离层对电波的吸收作用很强.所以天波传播中有一个最低可用频率,低于这个频率,就会因为电离层对电波的吸收作用太大而无法工作.
传播特性(二)
1.空间波传播
当发射以及接收天线架设得较高的时候,在视线范围内,电磁波直接从发射天线传播到接收天线,另外还可以经地面反射而到达接收天线.所以接收天线处的场强是直接波和反射波的合成场强,直接波不受地面影响,地面反射波要经过地面的反射,因此要受到反射点地质地形的影响.
空间波在大气的底层传播,传播的距离受到地球曲率的影响.收,发天线之间的最大距离被限制在视线范围内,要扩大通信距离,就必须增加天线高度.一般地说,视线距离可以达到50km左右.
空间波除了受地面的影响以外,还受到低空大气层即对流层的影响.
移动通信中,电波主要以空间波的形式传播.类似的还有微波传播.
2.散射传播
大气对流层中,除了有规则的片状或层状气流外,还存在有不规则的,这类似于水流中漩涡的不均匀体.相应的,在电离层中则有电子密度的不均匀性.当天线辐射出去的电波,投射到这些不均匀体的时候,类似于光的散射和反射现象,电波发生散射或反射,一部分能量传播到接收点的这种传播称为散射传播.这种通信方式通信距离可达300-800km,适用于无法建立微波中继站的地区,例如用于海岛之间和跨越湖泊,沙漠,雪山等地区.但是,由于散射信号相当微弱,所以散射传播接收点的接收信号也相当微弱,即传播损耗很大,这样,散射通信必须采用大功率发射机,高灵敏度接收机和高增益天线.
3.外层空间传播
电磁波由地面发出(或返回),经低空大气层和电离层而到达外层空间的传播,如卫星传播,宇宙探测等均属于这种远距离传播.由于电磁波传播的距离很远,且主要是在大气以外的宇宙空间内进行,而宇宙空间近似于真空状态,因而电波在其中传播时,它的传输特性比较稳定.我们可以把电波穿过电离层外面的空间传播,基本上当作自由空间中的传播来研究.至于电波在大气层中传播所受到的影响,可以在考虑这一简单的情况基础上加以修正. 传播特性(三)
前面我们对电磁波的各种传播方式做了介绍,在这里,我们简单地介绍一下各个波段的传播特点,我们按照无线电波的波长人为地把电波分为长波(波长1000米以上),中波(波长100-1000米),短波(波长10-100米),超短波和微波(波长为10米以下)等等.各个波段的传播特点如下:
1.长波传播的特点
由于长波的波长很长,地面的凹凸与其他参数的变化对长波传播的影响可以忽略.在通信距离小于300km时,到达接收点的电波,基本上是表面波.长波穿入电离层的深度很浅,受电离层变化的影响很小,电离层对长波的吸收也不大.因而长波的传播比较稳定.虽然长波通信在接收点的场强相当稳定,但是它有两个重要的缺点:
①由于表面波衰减慢,发射台发出的表面波对其他接受台干扰很强烈.
②天电干扰对长波的接收影响严重,特别是雷雨较多的夏季.
2.中波传播的特点
中波能以表面波或天波的形式传播,这一点和长波一样.但长波穿入电离层极浅,在电离层的下界面即能反射.中波较长波频率高,故需要在比较深入的电离层处才能发生反射.波长在3000-2000米的无线电通信,用无线或表面波传播,接收场强都很稳定,可用以完成可靠的通信,如船舶通信与导航等.波长在2000-200m的中短波主要用于广播,故此波段又称广播波段.
3.短波传播的特点
与长,中波一样,短波可以靠表面波和天波传播.由于短波频率较高,地面吸收较强,用表面波传播时,衰减很快,在一般情况下,短波的表面波传播的距离只有几十公里,不适合作远距离通信和广播之用.与表面波相反,频率增高,天波在电离层中的损耗却减小.因此可利用电离层对天波的一次或多次反射,进行远距离无线电通信.
4.超短波和微波传播的特点
超短波,微波的频率很高,表面波衰减很大;电波穿入电离层很深,甚至不能反射回来,所以超短波,微波一般不用表面波,天波的传播方式,而只能用空间波,散射波和穿透外层空间的传播方式.超短波,微波,由于他们的频带很宽,因此应用很广.超短波广泛应用于电视,调频广播,雷达等方面.利用微波通信时,可同时传送几千路电话或几套电视节目而互不干扰.
超短波和微波在传播特点上有一些差别,但基本上是相同的,主要是在低空大气层做视
距传播.因此,为了增大通信距离,一般把天线架高.。