2019年深圳市罗湖区中考数学二模试卷
深圳市中考数学二模复习试题(二)(解析卷)

【2019年深圳数学中考】二模复习卷(二)(解析卷)(全卷满分100分限时90分钟)一.选择题:(每小题3分共36分)1.下列图形中,主视图为①的是()A. B.C. D.【分析】主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.【解答】解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选:B.2.下列计算正确的是()A. =2 B. =±2 C. =2 D. =±2【分析】根据=|a|进行计算即可.【解答】解:A、=2,故原题计算正确;B、=2,故原题计算错误;C、=4,故原题计算错误;D、=4,故原题计算错误;故选:A.3.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°【分析】依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.【解答】解:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选:D.4.如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为()A. B. C.2π D.【分析】先计算圆心角为120°,根据弧长公式=,可得结果.【解答】解:连接OD,∵∠ABD=30°,∴∠AOD=2∠ABD=60°,∴∠BOD=120°,∴的长==,故选:D.5.某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计它们假期参加社团活动的时间,绘成频数分布直方图(如图),则参加社团活动时间的中位数所在的范围是()A.4﹣6小时B.6﹣8小时C.8﹣10小时 D.不能确定【分析】100个数据的中间的两个数为第50个数和第51个数,利用统计图得到第50个数和第51个数都落在第三组,于是根据中位数的定义可对各选项进行判断.【解答】解:100个数据,中间的两个数为第50个数和第51个数,而第50个数和第51个数都落在第三组,所以参加社团活动时间的中位数所在的范围为6﹣8(小时).故选B.6.分式方程=1的解是()A.x=1 B.x=﹣1 C.x=3 D.x=﹣3【分析】观察可得最简公分母是x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:=1,去分母,方程两边同时乘以x(x﹣2)得:(x+1)(x﹣2)+x=x(x﹣2),x2﹣x﹣2+x=x2﹣2x,x=1,经检验,x=1是原分式方程的解,故选:A.7.已知下列命题:①若a3>b3,则a2>b2;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c;④周长相等的所有等腰直角三角形全等.其中真命题的个数是()A.4个 B.3个 C.2个 D.1个【分析】依据a,b的符号以及绝对值,即可得到a2>b2不一定成立;依据二次函数y=x2﹣2x﹣1图象的顶点坐标以及对称轴的位置,即可得y1>y2>﹣2;依据a∥b,b⊥c,即可得到a∥c;依据周长相等的所有等腰直角三角形的边长对应相等,即可得到它们全等.【解答】解:①若a3>b3,则a2>b2不一定成立,故错误;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2﹣2x﹣1的图象上,且满足x1<x2<1,则y1>y2>﹣2,故正确;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a⊥c,故错误;④周长相等的所有等腰直角三角形全等,故正确.故选:C.8.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A. B.1 C. D.【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【解答】解:连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选:B.9.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2 B.3 C. D.【分析】由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根据△DA′E ∽△DAB知()2=,据此求解可得.【解答】解:如图,∵S△ABC=9、S△A′EF=4,且AD为BC边的中线,∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=2或A′D=﹣(舍),故选:A.10.在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A.B.C.D.【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【解答】解:A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a、b异号,即b<0.所以反比例函数y=的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a、b同号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项正确;故选:D.11.若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程+=1有整数解,则满足条件的所有a的值之和是()A.﹣10 B.﹣12 C.﹣16 D.﹣18【分析】根据不等式的解集,可得a的范围,根据方程的解,可得a的值,根据有理数的加法,可得答案.【解答】解:,解①得x≥﹣3,解②得x≤,不等式组的解集是﹣3≤x≤.∵仅有三个整数解,∴﹣1≤<0∴﹣8≤a<﹣3,+=13y﹣a﹣12=y﹣2.∴y=∵y≠﹣2,∴a≠﹣6,又y=有整数解,∴a=﹣8或﹣4,所有满足条件的整数a的值之和是﹣8﹣4=﹣12,故选:B.12.如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1 B.2 C.3 D.4解:∵在y=(x+2)(x﹣8)中,当y=0时,x=﹣2或x=8,∴点A(﹣2,0)、B(8,0),∴抛物线的对称轴为x==3,故①正确;∵⊙D的直径为8﹣(﹣2)=10,即半径为5,∴⊙D的面积为25π,故②错误;在y=(x+2)(x﹣8)=x2﹣x﹣4中,当x=0时y=﹣4,∴点C(0,﹣4),当y=﹣4时, x2﹣x﹣4=﹣4,解得:x1=0、x2=6,所以点E(6,﹣4),则CE=6,∵AD=3﹣(﹣2)=5,∴AD≠CE,∴四边形ACED不是平行四边形,故③错误;∵y=x2﹣x﹣4=(x﹣3)2﹣,∴点M(3,﹣),设直线CM解析式为y=kx+b,将点C(0,﹣4)、M(3,﹣)代入,得:,解得:,所以直线CM解析式为y=﹣x﹣4;设直线CD解析式为y=mx+n,将点C(0,﹣4)、D(3,0)代入,得:,解得:,所以直线CD解析式为y=x﹣4,由﹣×=﹣1知CM⊥CD于点C,∴直线CM与⊙D相切,故④正确;故选:B.二.填空题:(每小题3分共12分)13.单项式5mn2的次数 3 .【分析】根据单项式次数的定义来求解.单项式中所有字母的指数和叫做这个单项式的次数.【解答】解:单项式5mn2的次数是:1+2=3.故答案是:3.14.如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是.【分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.【解答】解:∵AB=AC,∠A=36°,∴∠B=∠ACB==72°,∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,∴AE=CE,∠A=∠ECA=36°,∴∠CEB=72°,∴BC=CE=AE=,故答案为:.15.如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B.平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数表达式是y=x﹣3 .【分析】首先利用图象上点的坐标特征得出A点坐标,进而得出正比例函数解析式,再利用平移的性质得出答案.【解答】解:∵正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),∴2m=6,解得:m=3,故A(2,3),则3=2k,解得:k=,故正比例函数解析式为:y=x,∵AB⊥x轴于点B,平移直线y=kx,使其经过点B,∴B(2,0),∴设平移后的解析式为:y=x+b,则0=3+b,解得:b=﹣3,故直线l对应的函数表达式是:y=x﹣3.故答案为:y=x﹣3.16.如图,在Rt△ABC中,∠C=90°,BC=2,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE的长为3或.【分析】利用三角函数的定义得到∠B=30°,AB=4,再利用折叠的性质得DB=DC=,EB′=EB,∠DB′E=∠B=30°,设AE=x,则BE=4﹣x,EB′=4﹣x,讨论:当∠AFB′=90°时,则∴BF=cos30°=,则EF=﹣(4﹣x)=x﹣,于是在Rt△B′EF中利用EB′=2EF得到4﹣x=2(x﹣),解方程求出x得到此时AE的长;当∠FB′A=90°时,作EH⊥AB′于H,连接AD,如图,证明Rt△ADB′≌Rt△ADC得到AB′=AC=2,再计算出∠EB′H=60°,则B′H=(4﹣x),EH=(4﹣x),接着利用勾股定理得到(4﹣x)2+[(4﹣x)+2]2=x2,方程求出x得到此时AE的长.【解答】解:∵∠C=90°,BC=2,AC=2,∴tanB===,∴∠B=30°,∴AB=2AC=4,∵点D是BC的中点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F∴DB=DC=,EB′=EB,∠DB′E=∠B=30°,设AE=x,则BE=4﹣x,EB′=4﹣x,当∠AFB′=90°时,在Rt△BDF中,cosB=,∴BF=cos30°=,∴EF=﹣(4﹣x)=x﹣,在Rt△B′EF中,∵∠EB′F=30°,∴EB′=2EF,即4﹣x=2(x﹣),解得x=3,此时AE为3;当∠FB′A=90°时,作EH⊥AB′于H,连接AD,如图,∵DC=DB′,AD=AD,∴Rt△ADB′≌Rt△ADC,∴AB′=AC=2,∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,∴∠EB′H=60°,在Rt△EHB′中,B′H=B′E=(4﹣x),EH=B′H=(4﹣x),在Rt△AEH中,∵EH2+AH2=AE2,∴(4﹣x)2+[(4﹣x)+2]2=x2,解得x=,此时AE为.综上所述,AE的长为3或.故答案为3或.三.解答题:(共52分)17.计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣1【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣1+﹣1+2=1+.18.先化简,再求值:,其中x=+1.【分析】根据分式的运算法则即可求出答案.【解答】解:当x=+1时原式=•=x﹣1=19.在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.(1)求证:△ABE≌△ADF;(2)试判断四边形AECF的形状,并说明理由.【分析】(1)根据正方形的性质和全等三角形的判定证明即可;(2)四边形AECF是菱形,根据对角线垂直的平行四边形是菱形即可判断;【解答】证明:(1)∵正方形ABCD,∴AB=AD,∴∠ABD=∠ADB,∴∠ABE=∠ADF,在△ABE与△ADF中,∴△ABE≌△ADF(SAS);(2)连接AC,四边形AECF是菱形.理由:∵正方形ABCD,∴OA=OC,OB=OD,AC⊥EF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.20.为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)节目类型新闻体育动画娱乐戏曲人数36 90 a b 27根据表、图提供的信息,解决以下问题:(1)计算出表中a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?【分析】(1)先求出抽取的总人数,再求出b的值,进而可得出a的值;(2)求出a的值与总人数的比可得出结论;(3)求出喜爱新闻类人数的百分比,进而可得出结论.【解答】解:(1)∵喜欢体育的人数是90人,占总人数的20%,∴总人数==450(人).∵娱乐人数占36%,∴a=450×36%=162(人),∴b=450﹣162﹣36﹣90﹣27=135(人);(2)∵喜欢动画的人数是135人,∴×360°=108°;(3)∵喜爱新闻类人数的百分比=×100%=8%,∴47500×8%=3800(人).答:该地区七年级学生中喜爱“新闻”类电视节目的学生有3800人.21.某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?【分析】(1)设甲种商品的每件进价为x元,乙种商品的每件进价为y元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程;(2)设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式.【解答】解:(1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元.根据题意,得, =,解得 x=40.经检验,x=40是原方程的解.答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;(2)甲乙两种商品的销售量为=50.设甲种商品按原销售单价销售a件,则(60﹣40)a+(60×0.7﹣40)(50﹣a)+(88﹣48)×50≥2460,解得 a≥20.答:甲种商品按原销售单价至少销售20件.22.如图,AB是⊙O的直径,点D在⊙O上(点D不与A,B重合),直线AD交过点B的切线于点C,过点D作⊙O的切线DE交BC于点E.(1)求证:BE=CE;(2)若DE∥AB,求sin∠ACO的值.【分析】(1)证明:连接OD,如图,利用切线长定理得到EB=ED,利用切线的性质得OD⊥DE,AB⊥CB,再根据等角的余角相等得到∠CDE=∠ACB,则EC=ED,从而得到BE=CE;(2)作OH⊥AD于H,如图,设⊙O的半径为r,先证明四边形OBED为正方形得DE=CE=r,再利用△AOD和△CDE都为等腰直角三角形得到OH=DH=r,CD=r,接着根据勾股定理计算出OC=r,然后根据正弦的定义求解.【解答】(1)证明:连接OD,如图,∵EB、ED为⊙O的切线,∴EB=ED,OD⊥DE,AB⊥CB,∴∠ADO+∠CDE=90°,∠A+∠ACB=90°,∵OA=OD,∴∠A=∠ADO,∴∠CDE=∠ACB,∴EC=ED,∴BE=CE;(2)解:作OH⊥AD于H,如图,设⊙O的半径为r,∵DE∥AB,∴∠DOB=∠DEB=90°,∴四边形OBED为矩形,而OB=OD,∴四边形OBED为正方形,∴DE=CE=r,易得△AOD和△CDE都为等腰直角三角形,∴OH=DH=r,CD=r,在Rt△OCB中,OC==r,在Rt△OCH中,sin∠OCH===,即sin∠ACO的值为.23.如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标;如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.【分析】(1)根据顶点式可求得抛物线的表达式;(2)根据轴对称的最短路径问题,作E关于对称轴的对称点E',连接E'F交对称轴于G,此时EG+FG 的值最小,先求E'F的解析式,它与对称轴的交点就是所求的点G;(3)如图2,先利用待定系数法求AB的解析式为:y=﹣2x+6,设N(m,﹣m2+2m+3),则Q(m,﹣2m+6),(0≤m≤3),表示NQ=﹣m2+4m﹣3,证明△QMN∽△ADB,列比例式可得MN的表达式,根据配方法可得当m=2时,MN有最大值,证明△NGP∽△ADB,同理得PG的长,从而得OP的长,根据三角形的面积公式可得结论,并将m=2代入计算即可.【解】:(1)设抛物线的表达式为:y=a(x﹣1)2+4,把(0,3)代入得:3=a(0﹣1)2+4,a=﹣1,∴抛物线的表达式为:y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)存在,如图1,作E关于对称轴的对称点E',连接E'F交对称轴于G,此时EG+FG的值最小,∵E(0,3),∴E'(2,3),易得E'F的解析式为:y=3x﹣3,当x=1时,y=3×1﹣3=0,∴G(1,0)(3)如图2,∵A(1,4),B(3,0),易得AB的解析式为:y=﹣2x+6,过N作NH⊥x轴于H,交AB于Q,设N(m,﹣m2+2m+3),则Q(m,﹣2m+6),(1<m<3),∴NQ=(﹣m2+2m+3)﹣(﹣2m+6)=﹣m2+4m﹣3,∵AD∥NH,∴∠DAB=∠NQM,∵∠ADB=∠QMN=90°,∴△QMN∽△ADB,∴,∴,∴MN=﹣(m﹣2)2+,∵﹣<0,∴当m=2时,MN有最大值;过N作NG⊥y轴于G,∵∠GPN=∠ABD,∠NGP=∠ADB=90°,∴△NGP∽△ADB,∴=24=12,∴PG=12NG=12m,∴OP=OG﹣PG=﹣m2+2m+3﹣12m=﹣m2+32m+3,∴S△PON=12OP•GN=12(﹣m2+32m+3)•m,当m=2时,S△PON=12×2(﹣4+3+3)=2.(方法2:根据m的值计算N的坐标为(2,3),与E是对称点,连接EN,同理得:EP=12EN=1,则OP=2,根据面积公式可得结论).。
广东省深圳市2019-2020学年中考数学二模试卷(含答案)

广东省深圳市2019-2020学年中考数学二模试卷(含答案)一、选择题(共36分)1.给出四个数0,﹣1,﹣2,,其中最小的是()A. ﹣2B. ﹣1C. 0D.【答案】A【考点】有理数大小比较2.马大哈做题很快,但经常不仔细思考,所以往往错误率很高,有一次做了四个题,但只做对了一个,他做对的是()A. a8÷a4=a2B. a3•a4=a12C. =±2D. 2x3•x2=2x5【答案】D【考点】算术平方根,同底数幂的乘法,同底数幂的除法,单项式乘单项式3.下列图形中,既是轴对称又是中心对称图形的是()A. B. C. D.【答案】B【考点】轴对称图形,中心对称及中心对称图形4.由吴京特别出演的国产科幻大片《流浪地球》自今年1月放映以来实现票房与口碑双丰收,票房有望突破50亿元,其中50亿元可用科学记数法表示为()元.A. 0.5×1010B. 5×108C. 5×109D. 5×1010【答案】C【考点】科学记数法—表示绝对值较大的数5.如图,直线a∥b.将一直角三角形的直角顶点置于直线b上,若∠1=28°,则∠2的度数是()A. 108°B. 118°C. 128°D. 152°【答案】B【考点】余角、补角及其性质,平行线的性质6.下列立体图形中,主视图是三角形的是()A. B. C. D.【答案】B【考点】简单几何体的三视图7.下表来源市气象局2019年3月7日发布的全市六个监测点监测到空气质量指数(AQ)数据上述(AQI)数据中,中位数是()A. 15B. 42C. 46D. 59【答案】B【考点】中位数8.在2018﹣2019赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x场,则可列方程为()A. 3x+(30﹣x)=74B. x+3 (30﹣x)=74C. 3x+(26﹣x)=74D. x+3 (26﹣x)=74【答案】C【考点】根据数量关系列出方程9.定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角A的正对记作sadA,即sadA=底边:腰.如图,在△ABC中,AB=AC,∠A=4∠B.则cosB•sadA=()A. 1B.C.D.【答案】B【考点】等腰三角形的性质,解直角三角形10.如图仔细观察其中的两个尺规作图痕迹,两直线相交于点O,则下列说法中不正确的是()A. EF是△ABC的中位线B. ∠BAC+∠EOF=180°C. O是△ABC的内心D. △AEF的面积等于△ABC的面积的【答案】C【考点】作图—基本作图11.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()A. B. C. D.【答案】 D【考点】一次函数图像、性质与系数的关系,二次函数y=ax^2+bx+c的性质12.如图,正方形ABCD中,以BC为边向正方形内部作等边△BCE.连接AE.DE,连接BD交CE于F,下列结论:①∠AED=150°②△DEF~△BAE;③tan∠ECD=④△BEC的面积:△BFC的面积(+1):2,其中正确的结论有()个.A. 4B. 3C. 2D. 1【答案】A【考点】全等三角形的判定与性质,相似三角形的判定与性质二、填空题(共12分)13.已知a﹣2b=10,则代数式a2﹣4ab+4b2的值为________.【答案】100【考点】因式分解﹣运用公式法14.深圳市去年中考首次对九年级学生进行了物理,化学实验操作考试,其中化学实验操作考试有3个考题,分别记为A、B、C供学生选择,每个学生都可以从3个考题中随机抽取一个考题进行操作,如果每一个考题被抽到的机会均等,那么甲乙两个学生抽到的考题都是A的概率是________.【答案】【考点】简单事件概率的计算15.如图在平面直角坐标系中,周长为12的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上.点B,在反比例函数y=位于第一象限的图象上.则k的值为________.【答案】【考点】反比例函数的性质,正多边形的性质16.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CB于点F.交CD于点E.若AC=6,sinB=,则DE的长为________.【答案】【考点】全等三角形的判定与性质,角平分线的性质,勾股定理,锐角三角函数的定义三、解答题(共52分)17.计算:﹣2cos60°+()﹣1﹣|﹣5|.【答案】解:﹣2cos60°+()﹣1﹣|﹣5|=3﹣2× +4﹣5=3﹣1﹣1=1【考点】实数的运算,特殊角的三角函数值18.先化简,再求值:(1+ )÷ ,其中x是不等式组的整数解.【答案】解:不等式组解①,得x<3;解②,得x>1.∴不等式组的解集为1<x<3.∴不等式组的整数解为x=2.∵(1+ )÷==4(x﹣1).当x=2时,原式=4×(2﹣1)=4.【考点】利用分式运算化简求值,解一元一次不等式组19.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了________位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,求“A”对应扇形的圆心角度数.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?【答案】(1)30(2)解:①设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A类人数为10、D类人数为2,补全图形如下:②扇形图中,“A”对应扇形的圆心角为360°× =120°③估计大约6月1日这天行走的步数超过10000步的好友人数为150× =70人.【考点】用样本估计总体,利用统计图表分析实际问题20.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC.BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=.OE=2,求线段CE的长.【答案】(1)证明:∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形(2)解:∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC=2,∴OB==1,∵∠AOB=∠AEC=90°,∠OAB=∠EAC,∴△AOB∽△AEC,∴,∴=,∴CE=.【考点】角平分线的性质,菱形的判定与性质,相似三角形的判定与性质21.如图所示,要在某东西走向的A、B两地之间修一条笔直的公路,在公路起点A处测得某农户C在A的北偏东68°方向上.在公路终点B处测得该农户c在点B的北偏西45°方向上.己知A、B两地相距2400米.(1)求农户c到公路B的距离;(参考数据:sin22°≈ ,cos22°≈ ,tan22°≈(2)现在由于任务紧急,要使该修路工程比原计划提前4天完成,需将该工程原定的工作效率提高20%,求原计划该工程队毎天修路多少米?【答案】(1)解:如图,过C作CH⊥AB于H.设CH=x,由已知有∠EAC=68°,∠FBC=45°,则∠CAH=22°,∠CBA=45°.在Rt△BCH中,BH=CH=x,在Rt△HBC中,tan∠HBC=,∴HB==,∵AH+HB=AB,∴x+ x=2400,解得x=(米),∴农户C到公路的距离米.(2)解:设原计划完成这项工程需要y天,则实际完成工程需要(y﹣4)天.根据题意得:=(1+20%)× ,解得:y=24.经检验知:y=24是原方程的根,2400÷24=100(米).答:原计划该工程队毎天修路100米.【考点】分式方程的实际应用,解直角三角形的应用﹣方向角问题22.如图,在R△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点.经过点A,D两点的⊙O 分別交AB,AC于点F、E,(1)求证:BC是⊙O的切线;(2)已知AD=2 ,试求AB•AE的值;(3)在(2)的条件下,若∠B=30°,求图中阴影部分的面积,(结果保留π和根号)【答案】(1)证明:如图1,连接OC,∵AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,∴OD⊥BC,∴BC是⊙O的切线。
深圳市中考数学二模试卷

深圳市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2019七下·海曙期中) 世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无花果,质量只有0.000000076克,将0.000000076科学计数法表示为()A .B .C .D .2. (2分) (2019九上·綦江期末) 方程的根是()A .B .C .D .3. (2分)如图,锐角△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,那么∠ACB与∠DFE的关系是()A . 互余B . 互补C . 相等D . 不互余、不互补也不相等4. (2分)当x=3时,下列不等式成立的是()A . x+3>5B . x+3>6C . x+3>7D . x+3<55. (2分)如果点(-a,-b)在反比例函数y=的图象上,那么下列各点中,在此图象上的是()B . (b,-a)C . (-a,b)D . (-b,a)6. (2分) (2019八下·滦南期末) 为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是()A . 方案一B . 方案二C . 方案三D . 方案四7. (2分)如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADB+∠EDC=120°,BD=3,CE=2,则△ABC的边长为()A . 9B . 12C . 16D . 188. (2分)(2018·沙湾模拟) 如图,正方形中,点、分别是边,的中点,连接、交于点,则下列结论错误的是()A .B .D .二、二.填空题 (共8题;共8分)9. (1分)(2017·埇桥模拟) 分解因式:x2y+2xy+y=________.10. (1分) (2018九上·耒阳期中) 函数y= 中,自变量x的取值范围是________.11. (1分)若分式方程有增根,则这个增根是________.12. (1分)(2017·深圳模拟) 有A、B两只不透明口袋,每只口袋装有两只相同的球,A袋中的两只球上分别写了“细”、“致”的字样,B袋中的两只球上分别写了“信”、”心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是________.13. (1分)甲、乙两同学参加跳远训练,在相同条件下各跳了6次,统计两人的成绩得:平均数=,方差S2甲>S2乙,则成绩较稳定的是________ .(填甲或乙)14. (1分) (2019七下·许昌期末) 如图,将一张长方形纸条沿某条直线折叠,若,则∠2等于________.15. (1分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:x…-4-3-2-10…y…3-2-5-6-5…则x<-2时, y的取值范围是________.16. (1分)(2017·海口模拟) 如图,边长为1的正方形ABCD中绕点A逆时针旋转30°得到正方形AB′C′D′,则图中阴影部分的面积为________.三、三.解答题 (共10题;共113分)17. (10分)(2018·成华模拟)(1)计算:(2)解不等式组,并写出该不等式组的最大整数解.18. (5分) (2020九上·镇平期末) 先化简(﹣1)÷ ,再求值,其中x是一元二次方程x2﹣3x+2=0的两根.19. (5分) (2020九上·渭滨期末) 数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m.经测量,得到其它数据如图所示.其中∠CAH=37°,∠DBH=67°,AB=10m,请你根据以上数据计算GH的长.(参考数据tan67° ,tan37° )20. (8分)(2019·合肥模拟) 九(1)班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类别,每位同学仅选一项.根据调査结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说a0.5戏剧4散文100.25其他6合计b1根据图表提供的信息,回答下列问题:(1)直接写出:a=________.b=________m=________;(2)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请求选取的2人恰好是甲和乙的概率.21. (17分)(2020·铁西模拟) 某校为了做好“营造清洁生活环境”活动的宣传,对本校学生进行了有关知识的测试,测试后随机抽取了部分学生的测试成绩,按“优秀、良好、及格、不及格”四个等级进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:(1)求抽取的学生总人数;(2)抽取的学生中,等级为“优秀”的人数为________人;扇形统计图中等级为“不合格”部分的圆心角的度数为________°;(3)补全条形统计图;(4)若该校有学生3500人,请根据以上统计结果估计成绩等级为“优秀”和“良好”的学生共有多少人.22. (20分) (2017八上·龙泉驿期末) 某食品加工厂需要一批食品包装盒,供应这样包装盒有两种方案可供选择:方案一:从包装盒加工厂直接购买,购买所需的费y1与包装盒数x满足如图1所示的函数关系.方案二:租赁机器自己加工,所需费用y2(包括租赁机器的费用和生产包装盒的费用)与包装盒数x满足如图2所示的函数关系.根据图象回答下列问题:(1)方案一中每个包装盒的价格是多少元?(2)方案二中租赁机器的费用是多少元?生产一个包装盒的费用是多少元?(3)请分别求出y1、y2与x的函数关系式.(4)如果你是决策者,你认为应该选择哪种方案更省钱?并说明理由.23. (8分)(2017·深圳模拟) 某班13位同学参加每周一次的卫生大扫除,按学校的卫生要求需要完成总面积为60m2的三个项目的任务,三个项目的面积比例和每人每分钟完成各所示:项目的工作量如图:(1)从统计图中可知:擦玻璃的面积占总面积的百分比为________,每人每分钟擦课桌椅________ m2;(2)扫地拖地的面积是________ m2;(3)他们一起完成扫地和拖地任务后,把这13人分成两组,一组去擦玻璃,一组去擦课桌椅,如果你是卫生委员,该如何分配这两组的人数,才能最快地完成任务?24. (10分)(2020·辽阳模拟) 如图,在中,,是的角平分线,平分交于点E,点O在边上,以点O为圆心的经过B、E两点,交于点F.(1)求证:是的切线;(2)若,,求阴影部分的面积.25. (15分) (2019八下·新罗期末) 如图,正方形,点为对角线上一个动点,为边上一点,且.(1)求证:;(2)若四边形的面积为25,试探求与满足的数量关系式;(3)若为射线上的点,设,四边形的周长为,且,求与的函数关系式.26. (15分)(2012·海南) 如图,顶点为P(4,﹣4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M、N关于点P对称,连接AN、ON,(1)求该二次函数的关系式;(2)若点A的坐标是(6,﹣3),求△ANO的面积;(3)若点A在对称轴l右侧的二次函数图象上运动时,请解答下面问题:①证明:∠ANM=∠ONM;②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标;如果不能,请说明理由.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、二.填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、三.解答题 (共10题;共113分)17-1、17-2、18-1、19-1、20-1、20-2、21-1、21-2、21-3、21-4、22-1、22-2、22-3、22-4、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。
2019年广东中考二模 数学

中考第二次模拟考试数 学校区____ _____ 姓名_____________ 原就读学校_____________ 成绩_____________说明:1.全卷共10页,满分为120分,考试用时为100分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在试卷上填写自己的校区、姓名、原就读学校。
3.选择题每小题选出答案后,用黑色字迹的签字笔或钢笔在试卷上对应题目选项写上答案,如需改动,先划掉原来的答案,然后再写上新的答案;4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在试卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持卷面的整洁。
考试结束时,将试卷交回。
一、 选择题(每小题3分,共30分)1.如果a 与-2互为倒数,那么a 是( ) A .-2 B .-21 C .21D .2 2.据统计,2012“中国好声音”短信投票的总票数约327 000 000张,将这个数写成科学记数法是( ) A .63.2710⨯ B .73.2710⨯ C .83.2710⨯ D .93.2710⨯ 3.不等式组⎩⎨⎧>->-03,042x x 的解集为( )A .x >2B .x <3C .x >2或x <-3D .2<x <34.若反比例函数y x=-1的图象经过点A (2,m ),则m 的值是( ) A .-2 B .2 C .-12 D .215.一个袋中装有1个红球,2个白球,3个黄球,它们除颜色外完全相同.小明从袋中任意摸出1个球, 摸出的是 白球的概率是( )A .61B .31C .21 D .16.已知a 为等边三角形的一个内角,则cos a 等于( )A . 21B .22C .23D .337.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( ).A .1个 B .2个 C .3个 D .4个8.教练组对运动员正式比赛前的5次训练成绩进行分析,判断谁的成绩更加稳定,一般需要考察这5次成绩的 ()A .平均数或中位数B .众数或频率C .方差或极差D .频数或众数9.如图所示,把一个正方形三次对折后沿虚线剪下,则所得的图形是( )10.某学习小组在讨论“变化的鱼”时,知道右图中的大鱼与小鱼是位似图形, 若小鱼上的点P (a ,b )对应大鱼上的点Q ,则点Q 的坐标为( )A .(-2a ,-2b )B .(-a ,-2b )C .(-2b ,-2a )D .(-2a ,-b )二、填空题(每小题4分,共24分)11.比较大小:(选填“>”、“<”或“=”). 12.用字母表示图中阴影部分的面积为 .13.某商店销售一批服装,每件售价150元,打8折后,仍可获利20%, 设这种服装的成本价为x 元,则x 满足的方程是 .14矩形、菱形、正方形);②矩形(不包括正方形);③正方形;④等边三角形;⑤等腰直 角三角形,其中一定能拼成的图形是 .(只填序号)15.某班有49位学生,其中有21位女生. 在一次活动中,班上每一位学生的名字都各自写在一张小纸条上,放入一盒中搅匀. 如果老师闭上眼睛从盒中随机抽出一张纸条,那么抽到写有女生名字纸条的概率是 .(第10题)(第14题)16.计算0|3|(1tan 45--的结果是 .三、解答题(一)(每小题5分,共15分)17.先化简,再求值:x -y x ÷⎝ ⎛⎭⎪⎫x -2xy -y 2x ,其中x =2,y =-1.18.日本福岛出现核电站事故后,我国国家海洋局高度关注事态发展,紧急调集海上巡逻的海检船,在相关海域进行现场监测与海水采样,针对核泄漏在极端情况下对海洋环境的影响及时开展分析评估.如图,上午9时,海检船位于A 处,观测到某港口城市P 位于海检船的北偏西67.5°方向,海检船以21海里/时的速度向正北方向行驶,下午2时海检船到达B 处,这时观察到城市P 位于海检船的南偏西36.9°方向,求此时海检船所在B 处与城市P 的距离?⎝⎛参考数据:sin 36.90≈35,tan 36.90≈34,⎭⎪⎫sin 67.50≈1213,tan 67.50≈12519. 如图,在由边长为1的小正方形组成的方格纸中,有两个全等的三角形, 即111A B C △和222A B C △.请你指出在方格纸内如何运用平移、旋转变换,将111A B C △重合到222A B C △上.四、解答题(二)(每小题8分,共24分)20.如图,将一张矩形纸片ABCD 折叠,使AB 落在AD 边上,然后打开,折痕为AE ,顶点B 的落点为F .你认为四边形ABEF 是什么特殊四边形?请说出你的理由.21. 如图,把一个木制正方体的表面涂上颜色,然后将正方体分割成64个大小相同的小正 方体.从这些小正方体中任意取出一个,求取出的小正方体: (1)三面涂有颜色的概率; (2)两面涂有颜色的概率; (3)各个面都没有颜色的概率.22.对于任何实数,我们规定符号⎪⎪⎪ a c⎪⎪⎪b d 的意义是⎪⎪⎪ a c⎪⎪⎪b d =ad -bc . (1)按照这个规定请你计算⎪⎪⎪ 57⎪⎪⎪68的值; (2)按照这个规定请你计算:当x 2-3x +1=0时,⎪⎪⎪⎪⎪⎪x +1x -23xx -1的值.D DD五、解答题(三)(每小题9分,共27分)23.如图,已知反比例函数y =kx的图象经过第二象限内的点A (-1,m ),AB ⊥x 轴于点B ,△AOB 的面积为2.若直线y =ax +b 经过点A ,并且经过反比例函数y =k x的图象上另一点C (n ,-2). (1)求直线y =ax +b 的解析式;(2)设直线y =ax +b 与x 轴交于点M ,求AM 的长.24. 如图,Rt△ABC 的内切圆⊙O 与AB 、BC 、CA 分别相切于点D 、E 、F ,且∠ACB=90°,AB =5,BC =3。
广东省深圳市2019届中考数学模拟试卷(二)含答案解析

2019年广东省深圳市中考数学模拟试卷(二)一、选择题(共12小题,每小题3分,共36分)1.在实数0.3,0,,,0.123456…中,无理数的个数是( ) A .2 B .3 C .4D .5 2.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( )A .和B .谐C .凉D .山3.北京时间2010年4月14日07时49分,青海省玉树县发生地震,它牵动了全国亿万人民的心,深圳市慈善总会在一星期内接受了54840000元的捐款,将54840000用科学记数法(精确到百万)表示为( )A .54×106B .55×106C .5.484×107D .5.5×1074.如果一个有理数的平方根和立方根相同,那么这个数是( )A .±1B .0C .1D .0和15.一组数据:2,4,5,6,x 的平均数是4,则这组数的标准差是( )A .2B .C .10D .6.如图:下列四个图案中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .7.一个面积等于3的三角形被平行于一边的直线截成一个小三角形和梯形,若小三角形和梯形的面积分别是y 和x ,则y 关于x 的函数图象大致是图中的( )A .B .C .D .8.下列各式计算正确的是( )A.(a5)2=a7B.2x﹣2=C.4a3•2a2=8a6D.a8÷a2=a69.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是()A.B.C.D.10.“五•一”黄金周,巴中人民商场“女装部”推出“全部服装八折”,男装部推出“全装八五折”的优惠活动,某顾客在女装部购买了原价x元,男装部购买了原价为y元服装各一套,优惠前需付700元,而他实际付款580元,则可列方程组为()A.B.C.D.11.如图,直线AB:y=x+1分别与x轴、y轴交于点A,点B,直线CD:y=x+b分别与x轴,y 轴交于点C,点D.直线AB与CD相交于点P,已知S△ABD=4,则点P的坐标是()A.(3,)B.(8,5) C.(4,3) D.(,)12.如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC 边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形,③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A.①②③ B.①④⑤ C.①③④ D.③④⑤二、填空题(本题共4小题,每小题3分,共12分)13.因式分解:x3﹣xy2=.14.不等式组的解是.15.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED 的正切值等于.16.如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积是.三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题9分,第22题8分,第23题9分,共52分)17.计算:.18.解方程:.19.2010年4月14日青海玉树发生7.1级地震,地震灾情牵动全国人民的心.某社区响应恩施州政府的号召,积极组织社区居民为灾区人民献爱心活动.为了解该社区居民捐款情况,对社区部分捐款户数进行分组统计(统计表如下),数据整理成如图所示的不完整统计图.已知A、B两组捐款户数直方图的高度比为1:5,请结合图中相关数据回答下列问题.捐款分组统计表:(1)A组的频数是多少?本次调查样本的容量是多少?(2)求出C组的频数并补全直方图.(3)若该社区有500户住户,请估计捐款不少于300元的户数是多少?20.如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.(1)求证:BD是⊙O的切线;(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=,求△ACF 的面积.21.恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额﹣收购成本﹣各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?22.如图,在梯形ABCD中,AD∥BC,DC⊥BC,AD=2,CD=4,tanB=.点P在AB上,PM⊥BC 于点M,PN⊥CD于点N,若点P从点B开始沿BA向点A运动,(1)求AB的长度;(2)设BP=x,用含x的代数式表示矩形CMPN的面积S.(3)当点P移动到何位置时,矩形CMPN的面积S取最大值,并求最大值.23.已知:如图,抛物线y=x2﹣x+m与x轴交于A、B两点,与y轴交于C点,∠ACB=90°,(1)求m的值及抛物线顶点坐标;(2)过A、B、C的三点的⊙M交y轴于另一点D,连接DM并延长交⊙M于点E,过E点的⊙M 的切线分别交x轴、y轴于点F、G,求直线FG的解析式;(3)在条件(2)下,设P为上的动点(P不与C、D重合),连接PA交y轴于点H,问是否存在一个常数k,始终满足AH•AP=k?如果存在,请写出求解过程;如果不存在,请说明理由.2019年广东省深圳市中考数学模拟试卷(二)参考答案与试题解析一、选择题(共12小题,每小题3分,共36分)1.在实数0.3,0,,,0.123456…中,无理数的个数是( ) A .2 B .3 C .4D .5 【考点】无理数.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据即可得出答案.【解答】解:实数0.3,0,,,0.123456…中,无理数有:,,0.123456…,共3个.故选:B .【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式.2.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( )A .和B .谐C .凉D .山【考点】专题:正方体相对两个面上的文字.【专题】压轴题.【分析】本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.【解答】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选D .【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.3.北京时间2010年4月14日07时49分,青海省玉树县发生地震,它牵动了全国亿万人民的心,深圳市慈善总会在一星期内接受了54840000元的捐款,将54840000用科学记数法(精确到百万)表示为()A.54×106B.55×106C.5.484×107 D.5.5×107【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于54840000有8位,所以可以确定n=8﹣1=7.因为54840000的十万位上的数字是8,所以用“五入”法.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:54840000=5.484×107≈5.5×107.故选D.【点评】本题考查科学记数法的表示方法以及掌握利用“四舍五入法”,求近似数的方法.4.如果一个有理数的平方根和立方根相同,那么这个数是()A.±1 B.0 C.1 D.0和1【考点】立方根;平方根.【分析】根据平方根和立方根的概念可知,一个有理数的平方根和立方根相同,那么这个数是0.【解答】解:0的平方根和立方根相同.故选:B.【点评】本题主要考查了平方根和立方根的概念,要掌握其中的几个特殊数字(0,±1)的特殊性质.5.一组数据:2,4,5,6,x的平均数是4,则这组数的标准差是()A.2 B.C.10 D.【考点】标准差.【专题】计算题.【分析】先根据平均数的定义得到2+4+5+6+x=4×5,解得x=3,再根据方差公式计算这组数据的方差,然后根据标准差的定义求解.【解答】解:根据题意得2+4+5+6+x=4×5,解得x=3,这组数据为:2,4,5,6,3,所以这组数据的方差S2=[(2﹣4)2+(4﹣4)2+(5﹣4)2+(6﹣4)2+(3﹣4)2]=2所以这组数据的标准差是S==.故选B.【点评】本题考查了标准差:样本方差的算术平方根表示样本的标准差,标准差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.6.如图:下列四个图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.【解答】解:∵A.此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,但不是中心对称图形,故此选项错误;B:此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,也是中心对称图形,故此选项正确;C.此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180°不能与原图形重合,不是中心对称图形,故此选项错误;D:此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的定义,熟练掌握其定义是解决问题的关键.7.一个面积等于3的三角形被平行于一边的直线截成一个小三角形和梯形,若小三角形和梯形的面积分别是y和x,则y关于x的函数图象大致是图中的()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】通过求函数解析式的方法求解则可.【解答】解:A、根据题意小三角形的面积减小,梯形的面积增大,而且x与y满足一次函数关系.故选A.【点评】本题考查通过写函数的解析式来判断图形的形状.8.下列各式计算正确的是()A.(a5)2=a7B.2x﹣2=C.4a3•2a2=8a6D.a8÷a2=a6【考点】同底数幂的除法;幂的乘方与积的乘方;单项式乘单项式;负整数指数幂.【专题】计算题.【分析】根据幂的乘方的性质,负整数指数幂的性质,单项式的乘法法则,同底数幂的除法的性质,对各选项分析判断后利用排除法求解.【解答】解:A、(a5)2=a5×2=a10,故本选项错误;B、2x﹣2=,故本选项错误;C、4a3•2a2=4×2a3+2=8a5,故本选项错误;D、a8÷a2=a8﹣2=a6,正确.故选D.【点评】本题考查了幂的乘方,负整数指数幂,单项式的乘法,同底数幂的除法,理清指数的变化是解题的关键.9.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是()A.B.C.D.【考点】概率公式.【分析】列举出所有情况,看能被3整除的数的情况占总情况的多少即可.【解答】解:第一个数字有4种选择,第二个数字有3种选择,易得共有4×3=12种可能,而被3整除的有4种可能(12、21、24、42),所以任意抽取两个数字组成两位数,则这个两位数被3整除的概率为=,故选A.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.“五•一”黄金周,巴中人民商场“女装部”推出“全部服装八折”,男装部推出“全装八五折”的优惠活动,某顾客在女装部购买了原价x元,男装部购买了原价为y元服装各一套,优惠前需付700元,而他实际付款580元,则可列方程组为()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【专题】应用题;压轴题.【分析】关键描述语是:优惠前需付700元,而他实际付款580元.等量关系为:①优惠前:男装原价+女装原价=700;②打折后:0.8×女装原价+0.85×男装原价=580.【解答】解:根据优惠前需付700元,得x+y=700;打折后需付580元,得0.8x+0.85y=500.列方程组为.故选D.【点评】找到两个等量关系是解决本题的关键,还需注意相对应的原价与折数.全部服装八折即女装原价的80%,全装八五折即男装原价的85%.11.如图,直线AB:y=x+1分别与x轴、y轴交于点A,点B,直线CD:y=x+b分别与x轴,y 轴交于点C,点D.直线AB与CD相交于点P,已知S△ABD=4,则点P的坐标是()A.(3,)B.(8,5) C.(4,3) D.(,)【考点】两条直线相交或平行问题.【专题】数形结合.【分析】首先求出A,B两点的坐标,用含b的代数式表示D,C两点的坐标,根据S△ABD=4,求出D,C两点的坐标,用待定系数法求出直线CD的函数解析式,将直线AB与直线CD的解析式联立,即可求出P的坐标.【解答】解:由直线AB:y=x+1分别与x轴、y轴交于点A,点B,可知A,B的坐标分别是(﹣2,0),(0,1),由直线CD:y=x+b分别与x轴,y轴交于点C,点D,可知D的坐标是(0,b),C的坐标是(﹣b,0),根据S△ABD=4,得BD•OA=8,∵OA=2,∴BD=4,那么D的坐标就是(0,﹣3),C的坐标就应该是(3,0),CD的函数式应该是y=x﹣3,P点的坐标满足方程组,解得,即P的坐标是(8,5).故选B.【点评】本题考查了两直线的交点,要求利用图象求解各问题,要认真体会点的坐标,一次函数与一元一次方程组之间的内在联系.12.如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC 边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形,③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A.①②③ B.①④⑤ C.①③④ D.③④⑤【考点】正方形的判定;全等三角形的判定与性质;等腰直角三角形.【专题】压轴题;动点型.【分析】解此题的关键在于判断△DEF是否为等腰直角三角形,作常规辅助线连接CF,由SAS定理可证△CFE和△ADF全等,从而可证∠DFE=90°,DF=EF.所以△DEF是等腰直角三角形.可证①正确,②错误,再由割补法可知④是正确的;判断③,⑤比较麻烦,因为△DEF是等腰直角三角形DE=DF,当DF与BC垂直,即DF最小时,DE取最小值4,故③错误,△CDE最大的面积等于四边形CDEF的面积减去△DEF的最小面积,由③可知⑤是正确的.故只有①④⑤正确.【解答】解:连接CF;∵△ABC是等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF(SAS);∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形(故①正确).当D、E分别为AC、BC中点时,四边形CDFE是正方形(故②错误).∵△ADF≌△CEF,=S△AFC,(故④正确).∴S△CEF=S△ADF∴S四边形CEFD由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=BC=4.∴DE=DF=4(故③错误).当△CDE面积最大时,由④知,此时△DEF的面积最小.此时S△CDE=S﹣S△DEF=S△AFC﹣S△DEF=16﹣8=8(故⑤正确).四边形CEFD故选:B.【点评】此题考查的知识点有等腰直角三角形,全等三角形的判定与性质等知识点,考查知识点较多,综合性强,能力要求全面,难度较大.但作为选择题可采用排除法等特有方法,使此题难度稍稍降低一些.二、填空题(本题共4小题,每小题3分,共12分)13.因式分解:x3﹣xy2=x(x﹣y)(x+y).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y).故答案为:x(x﹣y)(x+y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.不等式组的解是0<x≤.【考点】解一元一次不等式组.【分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.【解答】解:解不等式组得,即不等式组的解是0<x≤.【点评】不等式组解集确定的法则是:同大取大、同小取小、大小小大取中间,大大小小是无解.在数轴上的反映就是取它们都含有的公共部分.15.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于.【考点】圆周角定理;锐角三角函数的定义.【专题】压轴题;网格型.【分析】在Rt△ABC中,易知∠ABC的正切值为;根据圆周角定理可得,∠AED=∠ABC,由此可求出∠AED的正切值.【解答】解:在Rt△ABC中,AC=1,AB=2;∴tan∠ABC==;∵∠AED=∠ABC,∴tan∠AED=tan∠ABC=.故答案为:.【点评】本题主要考查圆周角定理及锐角三角函数的概念:在直角三角形中,正弦等于对比斜;余弦等于邻比斜;正切等于对比邻.16.如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积是2﹣2.【考点】菱形的性质;翻折变换(折叠问题).【分析】首先设CD与AB1交于点O,由在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,可求得AE的长,继而求得△ABB1、△AEB1、△COB1的面积.则可求得答案.【解答】解:如图,设CD与AB1交于点O,∵在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,∴AE=,由折叠易得△ABB1为等腰直角三角形,∴S△ABB1=BA•AB1=2,S△ABE=1,∴CB1=2BE﹣BC=2﹣2,∵AB∥CD,∴∠OCB1=∠B=45°,又由折叠的性质知,∠B1=∠B=45°,∴CO=OB1=2﹣.∴S△COB1=OC•OB1=3﹣2,∴重叠部分的面积为:2﹣1﹣(3﹣2)=2﹣2.【点评】此题考查了菱形的性质以及等腰直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题9分,第22题8分,第23题9分,共52分)17.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用负指数幂法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=2﹣×+1﹣2=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解方程:.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:6=x2﹣1﹣(2x﹣5)(x+1),整理得:x2﹣3x+2=0,即(x﹣1)(x﹣2)=0,解得:x=1或x=2,经检验,x=1是增根,分式方程的解为x=2.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.2010年4月14日青海玉树发生7.1级地震,地震灾情牵动全国人民的心.某社区响应恩施州政府的号召,积极组织社区居民为灾区人民献爱心活动.为了解该社区居民捐款情况,对社区部分捐款户数进行分组统计(统计表如下),数据整理成如图所示的不完整统计图.已知A、B两组捐款户数直方图的高度比为1:5,请结合图中相关数据回答下列问题.捐款分组统计表:(1)A组的频数是多少?本次调查样本的容量是多少?(2)求出C组的频数并补全直方图.(3)若该社区有500户住户,请估计捐款不少于300元的户数是多少?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【专题】压轴题;阅读型;图表型.【分析】(1)根据B组的户数和所占的份数,计算每一份有2户,A组的频数是2,样本的容量=A、B两组捐款户数÷A、B两组捐款户数所占的百分比;(2)C组的频数=样本的容量×C组所占的百分比;(3)捐款不少于300元的有D、E两组,捐款不少于300元的户数=500×D、E两组捐款户数所占的百分比;【解答】解:(1)A组的频数是:(10÷5)×1=2,调查样本的容量是:(10+2)÷(1﹣40%﹣28%﹣8%)=50(2)C组的频数是:50×40%=20,(3)估计捐款不少于300元的户数是:500×(28%+8%)=180户.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.(1)求证:BD是⊙O的切线;(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=,求△ACF 的面积.【考点】锐角三角函数的定义;等边三角形的性质;圆周角定理;切线的性质;相似三角形的判定与性质.【专题】综合题;压轴题.【分析】(1)利用斜边上的中线等于斜边的一半,可判断△DOB是直角三角形,则∠OBD=90°,BD是⊙O的切线;(2)同弧所对的圆周角相等,可证明△ACF∽△BEF,得出一相似比,再利用三角形的面积比等于相似比的平方即可求解.【解答】(1)证明:连接BO,方法一:∵AB=AD∴∠D=∠ABD∵AB=AO∴∠ABO=∠AOB又在△OBD中,∠D+∠DOB+∠ABO+∠ABD=180°∴∠OBD=90°,即BD⊥BO∴BD是⊙O的切线;方法二:∵AB=AO,BO=AO∴AB=AO=BO∴△ABO为等边三角形∴∠BAO=∠ABO=60°∵AB=AD∴∠D=∠ABD又∠D+∠ABD=∠BAO=60°∴∠ABD=30°∴∠OBD=∠ABD+∠ABO=90°,即BD⊥BO∴BD是⊙O的切线;方法三:∵AB=AD=AO∴点O、B、D在以OD为直径的⊙A上∴∠OBD=90°,即BD⊥BO∴BD是⊙O的切线;(2)解:∵∠C=∠E,∠CAF=∠EBF∴△ACF∽△BEF∵AC是⊙O的直径∴∠ABC=90°在Rt△BFA中,cos∠BFA=∴又∵S△BEF=8∴S△ACF=18.【点评】本题综合考查了圆的切线的性质、圆的性质、相似三角形的判定及性质等内容,是一个综合较强的题目,难度较大.21.恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额﹣收购成本﹣各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?【考点】二次函数的应用.【分析】(1)根据等量关系“销售总金额=(市场价格+0.5×存放天数)×(原购入量﹣6×存放天数)”列出函数关系式;(2)按照等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出函数方程求解即可;(3)根据等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出函数关系式并求最大值.【解答】解:(1)由题意y与x之间的函数关系式为y=(10+0.5x)(2000﹣6x),=﹣3x2+940x+20000(1≤x≤110,且x为整数);(2)由题意得:﹣3x2+940x+20000﹣10×2000﹣340x=22500解方程得:x1=50,x2=150(不合题意,舍去)李经理想获得利润22500元需将这批香菇存放50天后出售;(3)设利润为w,由题意得w=﹣3x2+940x+20000﹣10×2000﹣340x=﹣3(x﹣100)2+30000∵a=﹣3<0,∴抛物线开口方向向下,=30000∴x=100时,w最大100天<110天∴存放100天后出售这批香菇可获得最大利润30000元.【点评】本题考查了同学们列函数关系式及求其最值的能力.22.如图,在梯形ABCD中,AD∥BC,DC⊥BC,AD=2,CD=4,tanB=.点P在AB上,PM⊥BC 于点M,PN⊥CD于点N,若点P从点B开始沿BA向点A运动,(1)求AB的长度;(2)设BP=x,用含x的代数式表示矩形CMPN的面积S.(3)当点P移动到何位置时,矩形CMPN的面积S取最大值,并求最大值.【考点】相似三角形的判定与性质;二次函数的最值;梯形.【分析】(1)作AE⊥BC于点E,根据正切的定义,即可求得AE和BE的值,然后利用勾股定理即可求解;(2)根据(1)的解法,利用x表示出PM和CM的长,即可得到函数解析式;(3)利用二次函数的性质即可求解.【解答】解:(1)作AE⊥BC于点E.则BE=BC﹣AD=4﹣2=2,∵tanB=,∴设PM=4y,则BM=3y,则BP=5y.当AE=CD=4时,4y=4,则y=1,则AB=5y=5,BE=3;(2)BC=AD+BE=2+3=5.设BP=x,即5y=x,解得:y=x,PM=x,BM=x,则CM=5﹣x,则S=x(5﹣x),即S=﹣x2+4x;=﹣×()2+4×=.(3)当x=﹣=﹣=,则S最大【点评】本题是二次函数的性质与直角梯形的应用,以及三角函数的定义,正确求得直角△BPM中的三边之间的关系是关键.23.已知:如图,抛物线y=x2﹣x+m与x轴交于A、B两点,与y轴交于C点,∠ACB=90°,(1)求m的值及抛物线顶点坐标;(2)过A、B、C的三点的⊙M交y轴于另一点D,连接DM并延长交⊙M于点E,过E点的⊙M 的切线分别交x轴、y轴于点F、G,求直线FG的解析式;(3)在条件(2)下,设P为上的动点(P不与C、D重合),连接PA交y轴于点H,问是否存在一个常数k,始终满足AH•AP=k?如果存在,请写出求解过程;如果不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)已知抛物线过C点,因此C点的坐标为(0,m).OC=﹣m,在直角三角形ACB中,由于OC⊥AB,根据射影定理可得出OC2=OA•OB,而OA•OB可根据一元二次方程根与系数的关系求出,由此可得出关于m的方程,求出m的值,即可确定抛物线的解析式,根据二次函数的解析式即可得出其顶点坐标.(2)由于△AOC和△MOD中,∠ACO和∠MDO的正切值相同,因此这两角也相等,可得出AC∥DE,也就能求出DE⊥CB,因此BC∥FG,由此可得出直线FG与直线BC的斜率相同,可先根据B、C的坐标求出直线BC的解析式,然后即可得出直线FG的斜率.那么关键是求出E点的坐标.连接CE,DC⊥CE,C点的纵坐标就是E点的纵坐标,在直角三角形DCE中,可根据DE,DC 的长求出CE的长,也就能求出E点的坐标,然后根据E点的坐标即可求出直线FG的解析式.(3)连接CP、AP,利用垂径定理、三角形相似(△ACH∽△APC)、勾股定理解答即可;【解答】解:(1)由抛物线可知,点C的坐标为(0,m),且m<0.设A(x1,0),B(x2,0).则有x1•x2=3m又OC是Rt△ABC的斜边上的高,∴△AOC∽△COB∴∴,即x1•x2=﹣m2∴﹣m2=3m,解得m=0或m=﹣3而m<0,故只能取m=﹣3这时,y=x2﹣x﹣3=﹣4故抛物线的顶点坐标为(,﹣4).(2)由已知可得:M(,0),A(﹣,0),B(3,0),C(0,﹣3),D(0,3)∵抛物线的对称轴是x=,也是⊙M的对称轴,连接CE∵DE是⊙M的直径,∴∠DCE=90°,∴直线x=,垂直平分CE,∴E点的坐标为(2,﹣3)∵,∠AOC=∠DOM=90°,∴∠ACO=∠MDO=30°,∴AC∥DE∵AC⊥CB,∴CB⊥DE又∵FG⊥DE,∴FG∥CB由B(3,0)、C(0,﹣3)两点的坐标易求直线CB的解析式为:y=﹣3可设直线FG的解析式为y=+n,把(2,﹣3)代入求得n=﹣5故直线FG的解析式为y=﹣5.(3)存在常数k=12,满足AH•AP=12,假设存在常数k,满足AH•AP=k连接CP,∵AB⊥CD,∴=∴∠P=∠ACH(或利用∠P=∠ABC=∠ACO),又∵∠CAH=∠PAC,∴△ACH∽△APC,=,∴即AC2=AH•AP,在Rt△AOC中,AC2=AO2+OC2=()2+(3)2=12,∴AH•AP=k=12;【点评】本题着重考查了待定系数法求二次函数解析式、三角形相似、一次函数的性质、相交弦定理等重要知识点,综合性强,考查学生数形结合的数学思想方法.。
2019年深圳中考数学模拟题

2019年深圳市中考数学模拟题2019年初中数学命题比赛试题罗湖区韵翠园中学东晓校区命题人:杨紫题第一部分选择.其中只有一个是正确的)(本部分共12小题.每小题3分.共36分。
每小题给出4个选项1.下列各式中结果为负数的是()A.﹣(﹣2)B.|﹣2|C.(﹣2)2D.﹣|﹣2|图.那么在原正方体的表面上. 2.某正方体的每一个面上都有一个汉字.如图是它的一种表面展开与“国”字相对的面上的汉字是()A.厉B.害C.了D.我3.下列运算中.正确的是()2)3=x5B.x2+2x3=3x5C.(﹣ab)3=a3bD.x3?x3=x6 A.(x4.如图.四个图标中是轴对称图形的是()A.B.C.D.5.某市元宵节灯展参观人数约为470000.将这个数用科学记数法表示为()6B.4.7×105C.0.47×106D.47×10A.4.7×1046.如图.在3×3的方格中.已有两个小正方形被涂黑.若在其余空白小正方形中任选一个涂黑.则所得图案是一个轴对称图形的概率是()A.B.C.D.A.m≤4B.m≥4C.m<4D.m=4 ..8.如图.△ABC中.AB=AC.∠B=30°.点D是AC的中点.过点D作DE⊥AC交BC于点E.连接EA.则∠BAE的度数为()A.30°B.80°C.90°D.110°9.小亮在同一直角坐标系内作出了y=﹣2x+2和y=﹣x﹣1的图象.方程组的解()A.B.C.D.10.某书店把一本书按进价提高60%标价.再按七折出售.这样每卖出一本书就可盈利6元.设每本书的进价是x元.根据题意列一元一次方程.正确的是()A.(1+60%)x=6B.60%x﹣x=6C.(1+60%)x﹣x=6D.(1+60%)x﹣x=611.小李家距学校3千米.中午12点他从家出发到学校.途中路过文具店买了些学习用品.12点50 分到校.下列图象中能大致表示他离家的距离S(千米)与离家的时间t(分钟)之间的函数关系的是()A.B.C.D.12.已知:如图.在正方形ABCD外取一点E.连接AE.BE.D E.过点A作AE的垂线交DE于点P.若A E的距离为;③EB⊥ED;AE=AP=1.PB=.下列结论:①△APD≌△AEB;②点B到直线④S△APD+S△APB=1+.其中正确结论的序号是()A.①②③B.①②④C.②③④D.①③④题择第二部分非选填空题(本题共4小题.每小题3分.共12分)2b+ab2=.13.a+b=0.ab=﹣7.则a.CA为半径的圆与AB交于点D.14.如图.在Rt△ABC中.∠ACB=90°.AC=3.BC=4.以点C为圆心则BD的长为..15.如图.按此规律.第行最后一个数是2017.则此行的数之和.且∠AOB=60°.16.在平面直角坐标系中.O为坐标原点.B在x轴上.四边形O ACB为平行四边形反比例函数y=(k>0)在第一象限内过点A.且与BC交于点F.当F为BC的中点.且S△AOF =12时.OA的长为.解答题(本题共7小题.其中第17题5分.第18题6分.第19题7分.第20分8分.第21题8分.17.计算:cos245°+﹣?tan30°..再求值:(+)÷.其中x=.18.先化简19.某校学生会向全校3800名学生发起了“献爱心”捐款活动.为了解捐款情况.学生会随机调.请根据相关信息.解答额.并用得到的数据绘制了如下统计图①和图②查了部分学生的捐款金:下列问题(1)本次接受随机抽样调查的学生人数为.图①中m的值是;数是、众数是和中位数是;(2)求本次调查获取的样本数据的平均10元的学生人数.为(3)根据样本数据.估计该校本次活动捐款金额.工人师傅欲减小传送带与20.如图是某货站传送货物的平面示意图.为了提高传送过程的安全性.使其由45°改为30°.已知原传送带A B长为3米地面的夹角(1)求新传送带A C的长度;(2)如果需要在货物着地点C的左侧留出2.5米的通道.请判断距离B点5米的货物MNQP是否需要挪走.并说明理由.(参考数据:≈1.4.≈1.7.).包邮单价定为50元时.每周可测场预21.某网店准备经销一款儿童玩具.每个进价为35元.经市加1元销售将减少10个.已知每成交一个.店主要承付5元的快递费售出200个.包邮单价每增y(元).用.设该店主包邮单价定为x(元)(x>50).每周获得的利润为;(1)求该店主包邮单价定为53元时每周获得的利润(2)求y与x之间的函数关系式;(3)该店主包邮单价定为多少元时.每周获得的利润大?最大值是多少?22.如图.AB是⊙O的弦.过AB的中点E作EC⊥O A.垂足为C.过点B作直线BD交CE的延长线于点D.使得DB=DE.(1)求证:BD是⊙O的切线;(2)若AB=12.DB=5.求△AOB的面积.23.如图.在平面直角坐标系中.抛物线y=ax2+bx+3经过A(﹣3.0)、B(1.0)两点.其顶点为D.连接A D.点P是线段AD上一个动点(不与A、D重合).(1)求抛物线的函数解析式.并写出顶点D的坐标;(2)如图1.过点P作PE⊥y轴于点E.求△PAE面积S的最大值;(3)如图2.抛物线上是否存在一点Q.使得四边形OAPQ为平行四边形?若存在求出Q点坐标.若不存在请说明理由.罗湖区2019年初中数学命题比赛试题参考答案与试题解析12小题)一.选择题(共123456789101112DDDCBAACBCCA4小题)二.填空题(共13.0.14..15.673.1345 2.16.8.解析:第12题解析【考点】:全等三角形的判定与性质;LE:正方形的性质.菁优网版权所有【解答】解:①∵∠EAB+∠BAP=90°.∠P A D+∠BAP=90°.∴∠EAB=∠P A D.又∵AE=AP.AB=AD.∵在△APD和△AEB中..∴△APD≌△AEB(SAS);故此选项成立;③∵△APD≌△AEB.∴∠APD=∠AEB.∵∠AEB=∠AEP+∠BEP.∠APD=∠AEP+∠PAE.∴∠BEP=∠PAE=90°.∴EB⊥ED;故此选项成立;②过B作BF⊥AE.交AE的延长线于F.∵AE=AP.∠EAP=90°.∴∠AEP=∠APE=45°.又∵③中EB⊥E D.BF⊥AF.∴∠FEB=∠FBE=45°.又∵BE==.∴BF=EF=.故此选项正确;④如图.连接B D.在Rt△AEP中.∵AE=AP=1.∴EP=.又∵PB=.∴BE=.∵△APD≌△AEB.∴PD=BE=.×DP×BE=×(4+)﹣××=+.∴S△ABP+S△ADP=S△ABD﹣S△BDP=S正方形ABCD﹣故此选项不正确.综上可知其中正确结论的序号是①②③.故选:A.【点评】此题分别考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾.理股定决问题.强.解题时要求熟练掌握相关的基础知识才能很好综合性比较解第16题解析【考点】:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;平行四边形的性质.菁优网版权所有【解答】解:如图作A H⊥OB于H.连接A B.∵四边形OACB 是平行四边形.∴OA ∥BC.∵∠AOB =60°.设O H =m .则A H =m .∵BF =CF.A 、F 在y =上.∴A (m .m ).F (2m.m ).∵S △AOF =12.∴?(m +m )?m =12.∴m =4(负根已经舍弃).∴OA =2OH =8.故答案为8.【点评】本题考查反比例函数系数k 的几何意义.平行四边形的性质等知识.解题的关键是学会利用参数.构建方程解决问题.属于中考填空题中的压轴题.三.解答题(共7小题)17(5分).计算:cos245°+﹣?tan30°.【解答】解:原式=() 2+﹣×⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分=+﹣1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分【点评】本题考查了特殊角三角函数值.熟记特殊角三角函数值是解题关键.18.(6分)先化简.再求值:(+)÷.其中x=.【解答】解:原式=[+]?=(+)?⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分=?=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分当x=时.原式==﹣1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分.【点评】本题主要考查分式的化简求值.解题的关键是熟练掌握分式的混合运算顺序和运算法则方程求解.解分式方程一定注意要验根.19.(7分)【考点】全面调查与抽样调查;用样本估计总体;条形统计图;算术平均数;中位数;众数.菁优网版权所有【解答】解:(1)根据条形图4+16+12+10+8=50(人).⋯⋯⋯⋯⋯⋯⋯1分8=32.m=100﹣20﹣24﹣16﹣⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分故答案为:50.32;(2)∵=(5×4+10×16+15×12+20×10+30×8)=16.∴这组数据的平均数为:16.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分∵在这组样本数据中.10出现次数最多为16次.∴这组数据的众数为:10.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分∵将这组样本数据按从小到大的顺序排列.其中处于中间的两个数都是15.∴这组数据的中位数为:(15+15)=15;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(3)∵在50名学生中.捐款金额为10元的学生人数比例为32%...∴该校本次活动捐款金额为10元的学生约有1216人.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分【点评】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列.位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据.注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.20.(8分)【考点】解直角三角形的应用﹣坡度坡角问题.菁优网版权所有【解答】解:(1)在Rt △ABD 中.sin ∠ABD =.∴AD =AB ×sin ∠ABD =3×=3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分∵∠ADC =90°.∠ACD =30°.∴AC =2AD =6.答:新传送带AC 的长度为6米;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分(2)距离B 点5米的货物M NQP 不需要挪走.理由如下:在Rt △ABD 中.∠ABD =45°.∴BD =AD =3.由勾股定理得.CD ==3≈5.1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分∴CB =CD ﹣BD ≈2.1.PC =PB ﹣CB ≈2.9.∵2.9>2.5.∴距离B 点5米的货物M NQP 不需要挪走.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题.掌握锐角三角函数的定义、坡度坡角的概念是解题的关键.21.(8分)【考点】一元二次方程的应用.菁优网版权所有【解答】解:(1)(53﹣35﹣5)×[200﹣(53﹣50)×10]=13×170=2210(元).答:每周获得的利润为2210元;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(2)由题意.y =(x ﹣35﹣5)[200﹣10(x ﹣50)]即y 与x 之间的函数关系式为:y =﹣10x2+1100x ﹣28000;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分..(3)∵y=﹣10x2+1100x﹣55)2+2250.28000=﹣10(x﹣10<0.∵﹣∴包邮单价定为55元时.每周获得的利润最大.最大值是2250元.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分语.找到等量关系准.找到关键描述【点评】此题主要考查了一元二次方程的应用.二次函数的应用确的列出方程是解决问题的关键.22.(9分)【考点】勾股定理;垂径定理;切线的判定与性质;相似三角形的判定与性质.菁优网版权所有【解答】(1)证明:∵OA=O B.DB=D E.∴∠A=∠O B A.∠DEB=∠D B E.∵EC⊥O A.∠DEB=∠A E C.∴∠A+∠DEB=90°.∴∠O B A+∠DBE=90°.∴∠OBD=90°.∵OB是圆的半径.∴BD是⊙O的切线;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分(2)过点D作DF⊥AB于点F.连接O E.∵点E是AB的中点.AB=12.∴AE=EB=6.OE⊥AB.又∵DE=D B.DF⊥BE.DB=5.DB=D E.∴EF=BF=3.∴DF==4.∵∠AEC=∠DEF.∴∠A=∠EDF.∵OE⊥AB.DF⊥AB.∴∠AEO=∠DFE=90°.∴△AEO∽△DFE.∴.即.得EO=4.5...∴△AOB的面积是:=27.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分【点评】本题考查切线的判定与性质、垂径定理、勾股定理、相似三角形的判定与性质.解答本题件.利用数形结合的思想解答.的关键是明确题意.找出所求问题需要的条23.(9分)此题来源于广东中山市【考点】二次函数综合题.菁优网版权所有【解答】解:(1)∵抛物线y=ax2+bx+3经A(﹣3.0)、B(1.0)两点.过∴.得.2+4.∴抛物线解析式为y=﹣x2﹣2x+3=﹣(x+1)2﹣2x+3=﹣(x+1)∴抛物线的顶点坐标为(﹣1.4).即该抛物线的解析式为y=﹣x2﹣2x+3.顶点D的坐标为(﹣1.4);⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分(2)设直线AD的函数解析式为y=kx+m..得.∴直线AD的函数解析式为y=2x+6.∵点P是线段A D上一个动点(不与A、D重合).∴设点P的坐标为(p.2p+6).∴S△PAE==﹣(p+)2+.∵﹣3<p<﹣1.∴当p=﹣时.S△PAE取得最大值.此时S△PAE=.即△PAE面积S的最大值是;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分(3)抛物线上存在一点Q.使得四边形OAPQ为平行四边形.∵四边形OAPQ为平行四边形.点Q在抛物线上.∴OA=P Q. ..∵点A(﹣3.0).∴OA=3.∴PQ=3.xA D上.点Q在抛物线y=﹣∵直线AD为y=2x+6.点P在线段2﹣2x+3上.q∴设点P的坐标为(p.2p+6).点Q(q.﹣2﹣2q+3).∴.解得.或(舍去).q当q=﹣2+时.﹣2﹣2q+3=2﹣4.即点Q的坐标为(﹣2+.2﹣4).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分本题是一道二次函数综合题.解答本题的关键是明确题意.找出所求问题需要的条件.求出【点评】相应的函数解析式.利用二次函数的性质和数形结合的思想解答.欢迎您的光临,Word文档下载后可修改编辑双击可删除页眉页脚谢谢!希望您提出您宝贵的意见,你的意见是我进步的动力。
深圳市2019年中考数学模拟测试卷二含答案

2019年深圳市初中毕业生学业考试数学模拟试卷(二)说明:1、答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的位置上,将条形码粘贴好。
2、全卷分二部分,第一部分为选择题,第二部分为非选择题,共 4页。
考试时间90分钟,满分100分。
3、本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效。
答题卡必须保持清洁,不能折叠。
4、考试结束,请将本试卷和答题卡一并交回.第一部分 选择题(本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确..的) 1. 2019的倒数是( ) A.20191 B.-2019 C.2019 D.-201912.下列运算正确的是( )A.()222y x y x +=+B.()422xy y x =C.()322xy xy y x =+ D.224x x x =÷3.一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为( )4. 下列图形不是中心对称图形的是( )5.如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为( )A.14° B.16° C.90°﹣α D.α﹣44°6.不等式组的解集在数轴上表示正确的是()A. B.C. D.7.如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SASB.SSSC.ASAD.AAS8.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元9.已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()10.在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为()11.点A(﹣1,y1),B(﹣2,y2)在反比例函数y=的图象上,则y1,y2的大小关系是()12.如图,在△ABC中,AB=BC,∠ABC=90°,BM是AC边中线,点D,E分别在边AC和BC上,DB=DE,EF⊥AC于点F,以下结论:(1)∠DBM=∠CDE;(2)S△BDE <S四边形BMFE;(3)CD•EN=BN•BD;(4)AC=2DF.其中正确结论的个数是()第二部分 非选择题填空题(本题共4小题,每小题3分,共12分)13.分解因式:9a 3﹣ab 2= .14.从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为_____________.15.在矩形ABCD 中,AD=5,AB=4,点E ,F 在直线AD 上,且四边形BCFE 为菱形.若线段EF 的中点为点M ,则线段AM 的长为 .16.如图,抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x=﹣1,与x 轴的一个交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则下列结论:①4ac ﹣b 2<0;②2a ﹣b=0;③a+b+c <0;④点M (x 1,y 1)、N (x 2,y 2)在抛物线上,若x 1<x 2,则y 1≤y 2,其中正确结论的个数是三、解答题:(本题共7小题,其中第17小题6分,第18小题6分,第19小题7分,第20小题7分,第21小题8分,第22小题9分,第23小题9分,共52分.)17.0130tan 3131)2019(+--⎪⎭⎫⎝⎛---π18.先化简:(x﹣)÷,其中的x选一个适当的数代入求值.19.为倡导“低碳出行”,环保部门对某城市居民日常出行使用交通方式的情况进行了问卷调查,将调查结果整理后,绘制了如下不完整的统计图,其中“骑自行车、电动车”所在扇形的圆心角是162°.请根据以上信息解答下列问题:(1)本次调查共收回多少张问卷?(2)补全条形统计图,在扇形统计图中,“其他”对应扇形的圆心角是度;(3)若该城市有32万居民,通过计算估计该城市日常出行“骑自行车、电动车”和“坐公交车”的共有多少人?20.某中学开学初在天虹商场购进A、B两种品牌的足球,购买A品牌足球花费了2500元,购买B品牌足球花费了2000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元?(2)该中学响应习总书记“足球进校园”的号召,决定两次购进A、B两种品牌足球共50个,恰逢天虹商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌足球的总费用不超过3260元,那么该中学此次最多可购买多少个B品牌足球?21.如图,一次函数y=kx+b的图象与反比例函数y=﹣的图象交于A(﹣1,m)、B(n,﹣1)两点(1)求一次函数的解析式;(2)求△AOB的面积.22.如图,四边形ABCD内接于⊙O,AD∥BC,P为BD上一点,∠APB=∠BAD.(1)证明:AB=CD;(2)证明:DP•BD=AD•BC;(2)证明:BD2=AB2+AD•BC.23.如图,已知抛物线y=ax2+bx+c与x轴交于点A、B,与直线AC:y=﹣x﹣6交y轴于点C、D,点D是抛物线的顶点,且横坐标为﹣2.(1)求出抛物线的解析式.(2)判断△ACD的形状,并说明理由.(3)直线AD交y轴于点F,在线段AD上是否存在一点P,使∠ADC=∠PCF?若存在,直接写出点P的坐标;若不存在,说明理由.2019年深圳市初中毕业生学业考试数学模拟试卷二答案及评分标准一、选择题(本题共12小题,每题3分,共36分)二、填空题:(本题4小题,每题3分,共12分)三、解答题:(本题共7小题,其中第17小题6分,第18小题6分,第19小题7分,第20小题7分,第21小题8分,第22小题9分,第23小题9分,共52分.)••,.==12.5%=×,得:=8,=,=,=,,解得x(,解得,=,,,(舍去),)﹣,,﹣).。
深圳市中考数学二模试卷及答案

深圳市中考数学二模试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)4的算术平方根为()A.﹣2B.2C.±2D.2.(3分)下列运算正确的是()A.(a﹣b)(b﹣a)=a 2﹣b2B.(2x3)2=2x6C.D.(x+3)2=x2+6x+93.(3分)2019年世界超高清视频产业发展大会在广州召开,到2022年我国超高清视频产业规模将超过4万亿元.4万亿用科学记数法表示为()A.4×104B.4×108C.4×1012D.4×10134.(3分)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图5.(3分)下列是假命题的是()A.对角线互相平分且相等的四边形是矩形B.垂直于弦的直径必平分弦C.在同圆或等圆中,相等的弦所对的圆周角相等D.顺次连接平行四边形的四边中点,得到的四边形是平行四边形6.(3分)一组数据1,4,5,2,8,它们的数据分析正确的是()A.平均数是5B.中位数是4C.方差是30D.极差是6 7.(3分)罗湖区对一段全长2000米的道路进行改造,为了尽量减少施工对城市交通造成的影响,实际施工时,若每天修路比原计划提高效率25%,就可以提前5天完成修路任务.设原计划每天修路x米,则根据题意可得方程()A.B.C.D.8.(3分)如图,在圆O中,弦AB、CD所对的圆心角分别是∠AOB、∠COD,若∠AOB 和∠COD互补,且AB=2,CD=4,则圆O的半径是()A.B.2C.D.49.(3分)如图,在平面直角坐标系中,直线l1:y=﹣x+1与x轴,y轴分别交于点A 和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则k的值为()A.B.C.D.210.(3分)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了 5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块11.(3分)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0C.2a﹣b=0D.a﹣b+c=012.(3分)如图,E为正方形ABCD边AB上一动点(不与A重合),AB=4,将△DAE绕点A逆时针旋转90°得到△BAF,再将△DAE沿直线DE折叠得到△DME.下列结论:①连接AM,则AM∥FB;②连接FE,当F、E、M三点共线时,AE=;③连接EF、EC、FC,若△FEC是等腰三角形,则AE=;④连接EF,设FC、ED 交于点O,若EF平分∠BFC,则O是FC的中点,且AE=;其中正确的个数有()个.A.4B.3C.2D.1二、填空题(本大题共4小题,每小题3分,共12分)13.(3分)分解因式:x3﹣6x2+9x=.14.(3分)在﹣4,﹣2,1,2四个数中,随机取2个数分别作为函数y=ax+b中a,b的值,则该一次函数图象经过第一、二、四象限的概率为.15.(3分)如图,Rt△AOB的一条直角边OB在x轴上,双曲线y=经过斜边OA 的中点C,与另一直角边交于点D.若S△OCD=9,则S△OBD的值为.16.(3分)如图,矩形OABC的边OC在y轴上,边OA在x轴上,C点坐标为(0,3),点D是线段OA上的一个动点,连接CD,以CD为边做矩形CDEF,使边EF过点B,连接OF,当点D与点A重合时,所作矩形CDEF的面积为12.在点D运动过程中,当线段OF有最大值时,点F的坐标为.三、解答题(本大题共7小题,共52分)17.(5分)计算:18.(6分)解不等式组,并将解集在数轴上表示出来.19.(7分)深圳某校初三为提高学生长跑成绩,把每天的课间操改为“环校跑”,现测得初三(1)班全体同学的成绩如图,请你根据提供的信息,解答下列问题:(1)初三(1)班共有人;(2)在扇形统计图中,“良好”所在扇形圆心角等于度;(3)请你补充条形统计图;(4)若该年级共有650名学生,请你估计该年级喜欢“不及格”的学生人数约是人.20.(8分)如图,在?ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC 于点E,连接EF,则所得四边形ABEF是菱形.(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,AE=4,求∠C的大小.21.(8分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本).该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人.如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?22.(9分)如图,点P在曲线上,P A⊥x轴于点A,点B在y轴正半轴上,P A =PB,OA、OB的长是方程t2﹣8t+12=0的两个实数根,且OA>OB,点C是线段PB 延长线上的一个动点,△ABC的外接圆⊙M与y轴的另一个交点是D.(1)填空:OA=;OB=;k=;(2)设点Q是⊙M上一动点,若圆心M在y轴上且点P、Q之间的距离达到最大值,则点Q的坐标是;(3)试问:在点C运动的过程中,BD﹣BC的值是否为定值?若是,请求出该定值;若不是,请给出合理的解释.23.(9分)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2ax+与x轴交于点A、B(点A在点B的左侧),抛物线的顶点为C,直线AC交y轴于点D,D为AC的中点.(1)如图1,求抛物线的顶点坐标;(2)如图2,点P为抛物线对称轴右侧上的一动点,过点P作PQ⊥AC于点Q,设点P 的横坐标为t,点Q的横坐标为m,求m与t的函数关系式;(3)在(2)的条件下,如图3,连接AP,过点C作CE⊥AP于点E,连接BE、CE分别交PQ于F、G两点,当点F是PG中点时,求点P的坐标.深圳市中考数学二模试卷答案一、选择题(本大题共12小题,每小题3分,共36分)1.【解答】解:∵22=4,∴4的算术平方根是2,故选:B.2.【解答】解:∵(a﹣b)(b﹣a)=﹣a 2+2ab﹣b2,故选项A错误;(2x3)2=4x6,故选项B错误;=x+1,故选项C错误;(x+3)2=x2+6x+9,故选项D正确;故选:D.3.【解答】解:4万亿=4×1012.故选:C.4.【解答】解:从上边看是一个十字,“十”字是中心对称图形,故选:C.5.【解答】解:A、对角线互相平分且相等的四边形是矩形,正确,是真命题;B、垂直于弦的直径必平分弦,正确,是真命题;C、在同圆或等圆中,相等的弦所对的圆周角相等或互补,故错误,是假命题;D、顺次连接平行四边形的四边中点,得到的四边形是平行四边形,正确,是真命题,故选:C.6.【解答】解:将数据重新排列为1、2、4、5、8,则这组数据的平均数为=4,中位数为4,方差为×[(1﹣4)2+(2﹣4)2+(4﹣4)2+(5﹣4)2+(8﹣4)2]=6,极差为8﹣1=7,故选:B.7.【解答】解:设原计划每天修路x米,则实际每天修路(1+25%)x米,依题意,得:﹣=5.故选:A.8.【解答】解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=4,∵AE为⊙O的直径,∴∠ABE=90°,∴AE===2,∴OA=故选:C.9.【解答】解:直线l1:y=﹣x+1中,令x=0,则y=1,令y=0,则x=2,即A(2,0)B(0,1),∴Rt△AOB中,AB==3,如图,过C作CD⊥OA于D,∵∠BOC=∠BCO,∴CB=BO=1,AC=2,∵CD∥BO,∴OD=AO=,CD=BO=,即C(,),把C(,)代入直线l2:y=kx,可得=k,即k=,10.【解答】解:设这批手表有x块,550×60+(x﹣60)×500>55000解得,x>104∴这批电话手表至少有105块,故选:C.11.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.12.【解答】解:①如图1中,连接AM,延长DE交BF于J.由旋转的性质得:△BAF≌△DAE,∴∠ABF=∠ADE,∠BAF=∠DAE=90°,∵∠ADE+∠AED=90°,∠AED=∠BEJ,∴∠BEJ+∠EBJ=90°,∴∠BJE=90°,由翻折可知:EA=EM,DM=DA,∠AED=∠MED,∴DE垂直平分线段AM,∴AM∥BF,故①正确,②如图2中,当F、E、M共线时,∵AE=AF,∠BAF=90°,∴∠AEF=∠AFE=45°,∴∠DEA=∠DEM=67.5°,在MD上取一点J,使得ME=MJ,连接EJ,∵∠MEJ=∠MJE=45°,∴∠JED=∠JDE=∠MJE=22.5°,∴EJ=JD,设AE=EM=MJ=x,则EJ=JD=x,则有x+x=4,∴x=4﹣4,∴AE=4﹣4,故②正确,③如图3中,连接EC,CF,∵∠AEF=45°,∠AED=67.5°,∴∠DEF=45°+67.5°=112.5°,∴∠CEF>90°,∵△FEC是等腰三角形,∴EF=CE,设AE=AF=m,则有:2m2=42+(4﹣m)2,∴m=4﹣4或﹣4﹣4(舍弃),∴AE=4﹣4,故③正确,④如图4中,当OF=OC时,设AE=AF=n.∵∠FDC=90°,OF=OC,∴OF=OD,∴∠OFD=∠ODF,∴tan∠CFD=tan∠EDA,∴=,∴n=2﹣2,或﹣2﹣2(舍去),∴AE=2﹣2,故④正确.故选:A.二、填空题(本大题共4小题,每小题3分,共12分)13.【解答】解:x 3﹣6x 2+9x ,=x (x 2﹣6x+9),=x (x ﹣3)2.故答案为:x (x ﹣3)2.14.【解答】解:画树状图为:共有12种等可能的结果数,满足该一次函数图象经过第一、二、四象限,即a <0,b >0的结果数为4,∴该一次函数图象经过第一、二、四象限的概率为=;故答案为:.15.【解答】解:如图,过C 点作CE ⊥x 轴,垂足为E .∵Rt △OAB 中,∠OBA =90°,∴CE ∥AB ,∵C 为Rt △OAB 斜边OA 的中点C ,∴CE 为Rt △OAB 的中位线,∵△OEC ∽△OBA ,∴=.∵双曲线的解析式是y =,即xy =k ∴S △BOD =S △COE =|k|,∴S △AOB =4S △COE =2|k|,由S △AOB ﹣S △BOD =S △AOD =2S △DOC =18,得2k ﹣k =18,k =12,S △BOD =S △COE =k =6,故答案为:6.16.【解答】解:当点D与点A重合时,如图:∵S矩形CDEF=2S△CBD=12,S矩形OABC=2S△CBD,∴S矩形OABC=12,∵C点坐标为(0,3),∴OC=3,∴OA=4,∵∠CFB=90°,C、B均为定点,∴F可以看作是在以BC为直径的圆上,取BC的中点M,则MF=BC=2,OM==,∴OF的最大值=OM+BC=+2,即O、M、F三点共线,设点F的横坐标为2x,则纵坐标为3x,∴(2x)2+(3x)2=(+2)2,解得:x1=,x2=﹣(舍去),∴点F的坐标为:(,),故答案为:(,).三、解答题(本大题共7小题,共52分)17.【解答】解:原式=3﹣2×+1﹣4=2﹣3.18.【解答】解:,解不等式①得:x≥﹣0.5,解不等式②得:x<2,则不等式组的解集是:﹣0.5≤x<2.解集在数轴上表示为:19.【解答】解:(1))三(1)班共有学生:20÷40%=50(人),故答案为50;(2)“良好”所在扇形圆心角:=108°,故答案为108;(3)及格人数:50﹣20﹣15﹣5=10(人),补充条形统计图如下:(4)该年级“不及格”的学生人数:650×=65(人),故答案为65.20.【解答】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴EB=EF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴四边形ABEF是菱形;(2)如图,连结BF,交AE于G.∵菱形ABEF的周长为16,AE=4,∴AB=BE=EF=AF=4,AG=AE=2,∠BAF=2∠BAE,AE⊥BF.在直角△ABG中,∵∠AGB=90°,∴cos∠BAG===,∴∠BAG=30°,∴∠BAF=2∠BAE=60°.∵四边形ABCD是平行四边形,∴∠C=∠BAF=60°.21.【解答】解:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得7500(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去)答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800×(1+0.2)=12960(本)10800÷1350=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.5%.故a的值至少是12.5.22.【解答】解:(1)t 2﹣8t+12=0,解得:t=2或6,即OA=6,OB=2,即点A、B的坐标为(﹣6,0)、(0,2),设点P(﹣6,),由P A=PB得:36+(2+)2=()2,解得:k=﹣60,故点P(﹣6,10),故答案为:6,2,﹣60;(2)当PQ过圆心M时,点P、Q之间的距离达到最大值,tan∠ACO=,线段AB中点的坐标为(﹣3,1),则过AB的中点与直线AB垂直的直线PQ的表达式为:y=mx+n=﹣3x+n,将点(﹣3,1)的坐标代入上式并解得:n=﹣8,即点M的坐标为(0,﹣8),则圆的半径r=MB=2+8=10=MQ,tan∠QMG=tan∠HMP===,则sin∠QMG=过点Q作QG⊥y轴于点G,故GQ=MQ sin∠QMG=,故点Q(,﹣8﹣3);(3)是定值,理由:延长P A交圆M于E,过点E作EH⊥BD于H,连接CE,DE,∵P A=PB,∴∠PAB=∠PBA,∵四边形ABCE是圆的内接四边形,∴∠P AB=∠PCE,∠PBA=∠PEC,∴∠PEC=∠PCE,∴PE=PC,∴AE=BC,∵AO⊥BD,EH⊥BD,P A⊥OA,∴四边形AODE是矩形,∴AO=EH,AE=OH=BC,∵P A∥BD,∴=,∴,∴∠ABD=∠BDE,且∠AOB=∠EHD=90°,AO=EH,∴△AOB≌△EDH(AAS)∴OB=DH=2,∴BD﹣BC=BD﹣OH=OB+DH=4.23.【解答】解:(1)∵抛物线y=ax2﹣2ax+,∴抛物线对称轴为x=﹣=1,∵抛物线的顶点为C,∴点C的横坐标为1,设点A(n,0)∵直线AC交y轴于点D,D为AC的中点.∴=0,∴n=﹣1,∴A(﹣1,0),∵点A在抛物线y=ax2﹣2ax+上,∴a+2a+=0,∴a=﹣,∴抛物线解析式为y=﹣x2+x+=(x﹣1)2+2,∴抛物线的顶点坐标C(1,2)(2)由(1)有,抛物线解析式为y=﹣x2+x+,∵点x轴上的点B在抛物线上,∴B(3,0),∵直线AC交y轴于点D,D为AC的中点.且A(﹣1,0),C(1,2),∴D(0,1),∵A(﹣1,0),C(1,2),∴直线AC解析式为y=x+1,∵PQ⊥AC,∴设直线PQ解析式为y=﹣x+b,∵设点P(t,﹣t2+t+),∴直线PQ解析式为y=﹣x﹣t2+2t+,∵点Q在直线AC上,且点Q的横坐标为m,∴,∴m=﹣t2+t+;(3)如图,连接DE,BD,BC,∵CE⊥AP,∴∠ACE+∠CAE=90°,∵PQ⊥AC,∴∠APQ+∠CAE=90°,∴∠ACE=∠APQ,∵∠CAE=∠CAE∴△ACE∽△APQ,∴∠APQ=∠ACE,∵∠AEC=90°,∴DE=AD=CD,∴∠ACE=∠DEC,∵∠CEP=90°,∴EF=QF=PF,∴∠APQ=∠PEF,∴∠PEF=∠APQ=∠ACE=∠CED,∴∠CED+∠BEC=∠PEF+∠BEC=∠PEC=90°,∵点A(﹣1,0),D(0,1),∴OA=OD,∴∠BAC=45°∵点A,B是抛物线与x轴的交点,点C是抛物线的顶点,∴AC=BC,∴∠ABC=∠BAC=45°,∴∠ACB=90°在Rt△BCD和Rt△BED中,,∴Rt△BCD≌Rt△BED,∴∠BDC=∠BDE,∵DE=DC,∴BD⊥CE,∵AP⊥CE,∴AP∥BD,∵B(3,0),D(0,1),∴直线BD解析式为y=﹣x+1,∵A(﹣1,0),∴直线AP解析式为y=﹣x﹣,联立抛物线和直线AP解析式得,,∴,(舍)∴P(,﹣).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. 300 米
B. 250 米
C. 400 米
D. 100 米
8. 某服装加工厂计划加工 400 套运动服,在加工完 160 套后,采用了新技术,工作效率比原计划提高了 20%,
结果共有了 18 天完成全部任务.设原计划每天加工 x 套运动服,根据题意可列方程为
A.
160 x
1
400
20%
x
=18
(1)k=
;
(2)记△POQ 的面积为 S,求 t 为何值时 S 取得最大值;
(3)当△POQ 的面积最大时,以 PQ 为直径的圆与直线 n 有怎样的位置关系,请说明理由.
23.如图已知抛物线 y=﹣x2+(1﹣m)x﹣m2+12 交 x 轴于点 A,交 y 轴于点 B(0,3),顶点 C 位于第二象限, 连接 AB,AC,BC. (1)求抛物线的解析式; (2)在 x 轴上是否存在点 P,使得△PAB 的面积等于△ABC 的面积?如果存在,求出点 P 的坐标. (3)将△ABC 沿 x 轴向右移动 t 个单位长度(0<t<1)时,平移后△ABC 和△ABO 重叠部分的面积为 S, 求 S 与 t 之间的函数关系.
A. 15.6×108
B. 1.56×108
C. 1.56×109
D. 156×108
3.下列运算正确的是( )
A. x6+x6=2x12
B. a2•a4﹣(﹣a3)2=0
C (x﹣y)2=x2﹣2xy﹣y2
D. (a+b)(b﹣a)=a2+b2
4.下列品牌图形中,是中心对称图形的是( )
A.
B.
C.
5
三、解答题(本大题共 7 小题,共 52 分)
3
17.计算:( 1 )﹣2﹣4cos30°+(﹣2)0+ 2
12
2x 7 3(x 1)
18.解不等式组:
4 3
x
3
1
2 3
x
,并将解集表示在数轴上.
19.2014 年深圳市全市生产总值(GDP)公布,从 2011 年迈入万亿城市俱乐部之后,继续稳步增长,位列
点 D 做 DE⊥BC 交 AB 于点 E,将∠B 沿着直线 DE 翻折,点 B 落在 BC 边上的点 F 处,若∠AFE=90°,
则 BD 的长是_____.
16.如图,点 A 在双曲线 y= k 的第一象限的那一支上,AB 垂直于 x 轴与点 B,点 C 在 x 轴正半轴上,且 x
OC=2AB,点 E 在线段 AC 上,且 AE=3EC,点 D 为 OB 的中点,若△ ADE 的面积为 3,则 k 的值为_____.
(1)求证:四边形 ACED 是平行四边形
(2)求四边形 ACEB 的周长.
21.五一期间,某商场计划购进甲、乙两种商品,已知购进甲商品 1 件和乙商品 3 件共需 240 元;购进甲商 品 2 件和乙商品 1 件共需 130 元. (1)求甲、乙两种商品每件的进价分别是多少元? (2)商场决定甲商品以每件 40 元出售,乙商品以每件 90 元出售,为满足市场需求,需购进甲、乙两种商 品共 100 件,且甲种商品的数量不少于乙种商品数量的 4 倍,请你求出获利最大的进货方案,并确定最大利 润.
C. 5000
D. 6500
7.如图,小山岗的斜坡 AC 的坡度是 tanα= 3 ,在与山脚 C 距离 200 米的 D 处,测得山顶 A 的仰角为 26.6°,
4
1
则小山岗的高 AB 是( )(结果取整数,参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50)
4
22.如图,直线 m:y=kx(k>0)与直线 n: y 3 x 2 3 相交于点 C,点 A、B 为直线 n 与坐标轴 3
的交点,∠COA=60°,点 P 从 O 点出发沿线段 OC 向点 C 匀速运动,速度为每秒 1 个单位,同时点 Q 从
点 A 出发沿线段 AO 向点 O 匀速运动,速度为每秒 2 个单位,设运动时间为 t 秒.
D. AB
二、填空题(本大题共 4 小题,每小题 3 分,共 12 分)
13.分解因式:9m3﹣m=_____.
14.张明想给单位打电话,可八位数的电话号码中的一个数字记不起来了,只记得 2884□432,他想随意选
一个数字补上,请问恰好是单位电话的概率是_____.
15.如图,在 Rt△ABC 中,∠C=90°,∠B=30°,BC=3,点 D 是 BC 边上一动点(不与 B,C 重合),过
D.
5.某公司员工的月工资统计表如下,这个公司员工工资的中位数为( )
月工资/ 元
9000
8000
7000
6000
5000
4000
.人数
1
2
5
12
30
10
A. 7000
B. 6000
6.下列命题中正确的是( )
A. 平行四边形的对角线相等
B 对顶角相等
C 两条腰对应相等的两个等腰三角形全等
D 同旁内角相等,两直线平行
B.
160 x
400 160
1 20% x
=18
C. 160 400 160=18 x 20%x
D.
400 x
400 160
1 20% x
=18
9.如图,在△ABC 中,∠B=70°,∠C=30°,分别以点 A 和点 C 为圆心,大于 1 AC 的长为半径画弧, 2
两弧相交于点 M、N,作直线 MN,交 BC 于点 D,连接 AD,则∠BAD 的度数为( )
A. 40°
B. 45°
C. 50°
10.已知
k1<0<k2,则函数
y
k1x
1和
y
k2 x
的图象大致是
A.
B.
C.
D. 60° D.
11.如图菱形 OABC 中,∠A=120°,OA=1,将菱形 OABC 绕点 O 顺时针方向旋转 90°,则图中阴影部分 的面积是( )
2
2 A.
3
B. 2 3 32
C. 11 3 12 2
D. 2 ﹣1 3
12.如图,甲、乙两动点分别从正方形 ABCD 的顶点 A,C 同时沿正方形的边开始移动,甲按顺时针方向环
形,乙按逆时针方向环行,若乙的速度是甲的 3 倍,那么它们第一次相遇在 AD 边上,请问它们第 2015 次
相遇在( )边上.
A. AD
B. DC
C. BC
2019 年广东省深圳市罗湖区中考数学二模试卷
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分)
.1. -5的倒数是
1
A.
B. 5
5C. - 1 5D. -52.4 月 12 号上映的《速度与激情 7》在短短两周票房就突破了 15.6 亿,成为开年第一部现象级影片.该片已
经打破了所有进口影片票房纪录.15.6 亿用科学记数法表示是( )
全国第 4 位.其中,各区的 GDP 如下统计图,请你依据图解答下列问题:
(1)2014 年,深圳全市 GDP 是
亿元;
(2)补全条形统计图;
(3)求出原宝安区所在扇形的圆心角度数
.
(4)2014 年深圳市常住人口约为 1000 万人,请你算出 2014 年深圳市人均 GDP.
20.如图,在△ABC 中,∠ACB=90°,D 是 BC 的中点,DE⊥BC,CE∥AD,若 AC=2,CE=4;