电磁场与电磁波(第4版)第4章部分习题参考解答
《电磁场与电磁波》第4版(谢处方 编)课后习题答案 四章习题解答

四章习题解答4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为0U ,求槽内的电位函数。
解 根据题意,电位(,)x y ϕ满足的边界条件为① (0,)(,)0y a y ϕϕ== ② (,0)0x ϕ=③ 0(,)x b U ϕ=根据条件①和②,电位(,)x y ϕ的通解应取为1(,)sinh()sin()n n n y n xx y A a aππϕ∞==∑ 由条件③,有01sinh()sin()n n n b n x U A a aππ∞==∑ 两边同乘以sin()n xaπ,并从0到a 对x 积分,得到 002sin()d sinh()an U n xA x a n b a a ππ==⎰2(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ⎧=⎪⎨⎪=⎩,故得到槽内的电位分布 01,3,5,41(,)sinh()sin()sinh()n U n y n xx y n n b a a aππϕππ==∑4.2 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。
上板和薄片保持电位0U ,下板保持零电位,求板间电位的解。
设在薄片平面上,从0=y 到d y =,电位线性变化,0(0,)y U y d ϕ=。
解 应用叠加原理,设板间的电位为(,)x y ϕ=12(,)(,)x y x y ϕϕ+其中,1(,)x y ϕ为不存在薄片的平行无限大导体平面间(电压为0U )的电位,即10(,)x y U y b ϕ=;2(,)x y ϕ是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:① 22(,0)(,)0x x b ϕϕ==②2(,)0()x y x ϕ=→∞③a题4.1图题 4.2图002100(0)(0,)(0,)(0,)()U U y y d by y y U U y y d y b db ϕϕϕ⎧-≤≤⎪⎪=-=⎨⎪-≤≤⎪⎩根据条件①和②,可设2(,)x y ϕ的通解为 21(,)sin()e n x b n n n y x y A b ππϕ∞-==∑ 由条件③有 00100(0)sin()()n n U U y y d n y bA U U b y y d y b db π∞=⎧-≤≤⎪⎪=⎨⎪-≤≤⎪⎩∑ 两边同乘以sin()n yb π,并从0到b 对y 积分,得到 0002211(1)sin()d ()sin()d d bn dU U y n y n y A y y y b b b b d b b ππ=-+-=⎰⎰022sin()()U b n d n d b ππ 故得到 (,)x y ϕ=0022121sin()sin()e n x bn U bU n d n y y b d nb b ππππ∞-=+∑ 4.3 求在上题的解中,除开0U y b 一项外,其他所有项对电场总储能的贡献。
电磁场与电磁波(第四版)习题解答

电磁场与电磁波(第四版)习题解答第1章习题习题1.1给定三个矢量A 、B 和C 如下:23x y z =+-A e e e .4y z=-+B e e ,52x z =-C e e ,解:(1)22323)12(3)A x y z e e e A a e e e A+-===+-++- (2)2641x y z A B e e e -=+-==(3)(23)(4)11x y z y z A B e e e e e •=+-•-+=-(4)arccos135.5A B AB θ•===︒ (5)1711cos -=⋅=⋅⋅==B B A A B B A A A A AB Bθ(6)12341310502xy zx Y Z e e e A C e e e ⨯=-=---- (7)0418520502xy zx Y Z e e e B C e e e ⨯=-=++-()(23)(8520)42x Y Z x Y Z A B C e e e e e e •⨯=+-•++=-123104041xy zx Y Z e e e A B e e e ⨯=-=---- ()(104)(52)42x Y Z x Z A B C e e e e e ⨯•=---•-=-(8)()10142405502x y zx Y Z e e e A B C e e e ⨯⨯=---=-+-()1235544118520xy zx Y Z e e e A B C e e e ⨯⨯=-=-- 习题1.4给定两矢量 234x y z =+-A e e e 和 456x y z =-+B e e e ,求它们之间的夹角和 A 在 B上的分量。
解:29)4(32222=-++=A776)5(4222=+-+=B31)654()432(-=+-⋅-+=⋅z y x z y x e e e e e e B A则A 与B之间的夹角为131772931cos =⎪⎪⎭⎫ ⎝⎛⋅-=⎪⎪⎪⎭⎫⎝⎛⋅⋅=ar BA B A arcis ABθ A 在B上的分量为532.37731cos -=-=⋅=⋅⋅⋅==B B A BA B A A A A AB Bθ习题1.9用球坐标表示的场225rr =E e , (1)求在直角坐标中点(3,4,5)--处的E 和x E ;(2)求在直角坐标中点(3,4,5)--处E 与矢量22x y z =-+B e e e 构成的夹角。
电磁场与电磁波第四版课后思考题答案第四版全谢处方饶克谨高等教育出版社

电磁场与电磁波第四版课后思考题答案第四版全谢处方饶克谨高等教育出版社2.1点电荷的严格定义是什么?点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。
当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。
就可将带电体所带电荷看成集中在带电体的中心上。
即将带电体抽离为一个几何点模型,称为点电荷。
2.2研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的?常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷;常用的电流分布模型有体电流模型、面电流模型和线电流模型,他们是根据电荷和电流的密度分布来定义的。
2,3点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢?点电荷的电场强度与距离r的平方成反比;电偶极子的电场强度与距离r的立方成反比。
E/和E0所表征的静电场特性2.4简述/表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。
E0表明静电场是无旋场。
E2.5表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。
高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以与闭合面外的电荷无1关,即ES在电场(电荷)分布具有某些对称性时,可应用高斯定律求解给定电荷分ddVS0V布的电场强度。
2.6简述BB0表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的闭合线,J表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源B00和BJ0所表征的静电场特性。
2.7表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。
安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和倍,即B0I如果电路分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。
dl2.8简述电场与电介质相互作用后发生的现象。
《电磁场与电磁波》(第四版)课后习题解答(全)

第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++ 【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c +=即只要满足3b+8c=1就可以使向量错误!未找到引用源。
和向量错误!未找到引用源。
垂直。
(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=-可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3))()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a ) 所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223y z A x yze xy e =+而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y x e x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。
电磁场与电磁波课后习题及答案四章习题解答

如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为,求槽内的电位函数。
解根据题意,电位满足的边界条件为①②③根据条件①和②,电位的通解应取为题图由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布两平行无限大导体平面,距离为,其间有一极薄的导体片由到。
上板和薄片保持电位,下板保持零电位,求板间电位的解。
设在薄片平面上,从到,电位线性变化,。
题图解应用叠加原理,设板间的电位为其中,为不存在薄片的平行无限大导体平面间(电压为)的电位,即;是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:①②③根据条件①和②,可设的通解为由条件③有两边同乘以,并从0到对积分,得到故得到求在上题的解中,除开一项外,其他所有项对电场总储能的贡献。
并按定出边缘电容。
解在导体板()上,相应于的电荷面密度则导体板上(沿方向单位长)相应的总电荷相应的电场储能为其边缘电容为如题图所示的导体槽,底面保持电位,其余两面电位为零,求槽内的电位的解。
解根据题意,电位满足的边界条件为①题图②③根据条件①和②,电位的通解应取为由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布为一长、宽、高分别为、、的长方体表面保持零电位,体积内填充密度为的电荷。
求体积内的电位。
解在体积内,电位满足泊松方程(1)长方体表面上,电位满足边界条件。
由此设电位的通解为代入泊松方程(1),可得由此可得或(2)由式(2),可得故如题图所示的一对无限大接地平行导体板,板间有一与轴平行的线电荷,其位置为。
求板间的电位函数。
解由于在处有一与轴平行的线电荷,以为界将场空间分割为和两个区域,则这两个区域中的电位和都满足拉普拉斯方程。
而在的分界面上,可利用函数将线电荷表示成电荷面密度。
电位的边界条件为题图①②③由条件①和②,可设电位函数的通解为由条件③,有(1)(2)由式(1),可得(3)将式(2)两边同乘以,并从到对积分,有(4)由式(3)和(4)解得故如题图所示的矩形导体槽的电位为零,槽中有一与槽平行的线电荷。
电磁场与电磁波(第四版)课后答案__谢处方

电磁场 与电磁波(第四版) 课后答案第一章 习 题 解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的 分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z +-===+-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由c o sAB θ=11238=A B A B ,得1c o s AB θ-=(135.5= (5)A 在B 上的分 量 B A =A c o s AB θ==A B B (6)⨯=A C 123502xyz-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502xyz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)4x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点 为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(完整版)《电磁场与电磁波》(第4版)谢处方第四章_时变电磁场00

在于内外导体之间的理想介质中,内外导体表面的电场无切向分量,
只有电场的径向分量。利用高斯定理和安培环路定理,容易求得内
外导体之间的电场和磁场分别为
rr U
E
e
ln(b
, a)
r rI
H e 2
(a b)
内外导体之间任意横截面上的坡印廷矢量
r S
rr EH
r [e
U
ln(b
a
)
]
r (e
I )
11
4.3 电磁能量守恒定律 讨论内容
电磁能量及守恒关系 坡印廷定理 坡印廷矢量
第4章 时变电磁场
12
电磁能量及守恒关系
电场能量密度:
we
1 2
rr ED
磁场能量密度:
wm
1
r H
r B
2
dW
dt V
S
电磁能量密度:
w
we
wm
1 2
rr ED
1
r H
r B
2
空间区域V中的电磁能量:
W
V
w dV
V
r H
(
r E
)
t
r
r ( H )
r 2H
2H
t 2
r
r 2H
2H t 2
0
若为有源空间,结果如何?
若为导电媒质,结果如何?
第4章 时变电磁场
4
4.2 电磁场的位函数
讨论内容
位函数的定义 位函数的性质 位函数的规范条件 位函数的微分方程
第4章 时变电磁场
5
引入位函数的意义 引入位函数来描述时变电磁场,使一些问题的分析得到简化。
(1 2
电磁场与电磁波第四版课后答案

2—8 一长度 l = 1m ,内外导体半径分别为 a = 1m m , b = 3.5 m m 的同轴电容器中填 充相对介电常数 εr = 7 的介质,内外导体间的外加电压 u = 200 sin(377t)V。求位
5
移电流 id ,并同传导电流 ic 比较。 答案: id = 2.34 ×10−5 cos(377t) A 。 2—9 一平板电容器的极板面积 s = 15 cm2 ,间距 d = 0.2 cm 电容器内填充媒质的电参数
答案: E = 8.34(ax − 3ay + 6az ) V m 。 2—5 一点电荷 Q = 50 nC ,位于直角坐标系的原点,求点(2,4,− 5)处的电通量密度。
答案: D
=
5 54π
(2ax
+ 4ay
− 5az ) 。
2—6 两种理想电介质的相对介电常数分别为 εr1 = 2.5和εr2 = 5 ,其分界面为 z = 0 的平
a
答案:
=
−
2
5 5
⎫ ⎪⎪ ⎬
或
b=
5 5
⎪ ⎪⎭
a
=
25 5
⎫ ⎪⎪ ⎬
b=−
5⎪ 5 ⎪⎭
( ) 1-3
若矢量 A 和矢量 B 是任意常矢量,证明:
2
A× B
=
A2B2 −
A•B 2。
1-4 求圆柱坐标系中从 z 轴上的 z = z0 指向点处 p(r,ϕ,0)的单位矢量。
答案: aR
=
rar − z0az r 2 + z02
⎡ 2 sinhξ cosη
⎢ ⎢
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GG G G G G − j(k x + k y + k z ) ∇ 2 E (r ) = E0∇ 2 e − jk ⋅r = E0∇ 2 e x y z
G ⎛ ∂2 ∂2 ∂ 2 ⎞ − j(k x + k y + k z ) = E0 ⎜ 2 + 2 + 2 ⎟ e x y z ⎝ ∂x ∂y ∂z ⎠ G − j(k x + k y + k z ) G G 2 = (− k x2 − k y − k z2 ) E0 e x y z = − k 2 E (r ) G G G G 代入方程 ∇ 2 E (r ) + ω 2 με E (r ) = 0 ,得 G G − k 2 E + ω 2 με E = 0
G G ω ∂2 ω G (3) ∇ 2 E = ey E0∇ 2 cos(ωt + z ) = ey E0 2 cos(ωt + z ) ∂z c c
ω G ω = −ey ( ) 2 E0 cos(ωt + z ) c c
G ∂2 E G ∂2 ω ω G = e E cos(ωt + z ) = −eyω 2 E0 cos(ωt + z ) y 0 2 2 ∂t ∂t c c G G 1 ∂2 E ω 1 ⎡ G ω ⎤ G ω 2 ∇ E − 2 2 = −ey ( ) 2 E0 cos(ωt + z ) − 2 ⎢ −e yω 2 E0 cos(ωt + z ) ⎥ = 0 c ∂t c c c ⎣ c ⎦
得
G G G G ∂⎛ ∂A ⎞ 2 ∇(∇ ⋅ A) − ∇ A = μ J + με ⎜ −∇ϕ − ⎟ ∂t ⎝ ∂t ⎠
(1)
又由
G ∇⋅D = ρ
得
G ⎛ ∂A ⎞ ρ ∇ ⋅ ⎜ −∇ϕ − ⎟ = ∂t ⎠ ε ⎝
即
∇ 2ϕ +
G ∂ ρ (∇ ⋅ A) = − ∂t ε
(2)
G 按库仑条件,令 ∇ ⋅ A = 0 ,将其代入式(1)和式(2),得 G G G ∂2 A ⎛ ∂ϕ ⎞ 2 ∇ A − με 2 = − μ J + με∇ ⎜ ⎟ ∂t ⎝ ∂t ⎠
G ∂ ω ω ω 另一方面, ∇ ⋅ E = E0 cos(ωt − x) = E0 sin(ωt − x) ≠ 0 ∂x c c c G 而在无源的真空中, E 应满足麦克斯韦方程为 G ∇⋅E = 0
G G ω 故矢量函数 E = ex E0 cos(ωt − x) 不满足麦克斯韦方程组。 c
但不满足麦克斯韦方程。 证: G G ω ∂2 ω ω G G G ω ∇ 2 E (r , t ) = ex E0∇ 2 cos(ωt − x) = ex E0 2 cos(ωt − x) = −ex ( ) 2 E0 cos(ωt − x) ∂x c c c c
∂2 G 2 G ∂2 ω ω G G E (r , t ) = ex E0 2 cos(ωt − x) = −exω 2 E0 cos(ωt − x) 2 ∂t ∂t c c
G ∂2 E G ∂2 ⎡ ω ω G ⎤ ⎡ ⎤ = e E sin( z ) cos(ωt ) ⎥ = −exω 2 E0 ⎢sin( z ) cos(ωt ) ⎥ x 0 2 2 ⎢ ∂t ∂t ⎣ c c ⎦ ⎣ ⎦ G G 1 ∂2 E ω 1 ⎡ G ω G ω ⎤ 2 ∇ E − 2 2 = −ex ( ) 2 E0 sin( z ) cos(ωt ) − 2 ⎢ −exω 2 E0 sin( z ) cos(ωt ) ⎥ = 0 c ∂t c c c ⎣ c ⎦ G G G G 1 ∂2 E ω 即矢量函数 E = ex E0 sin( z ) cos(ωt ) 满足波动方程 ∇ 2 E − 2 2 = 0 。 c ∂t c
G ∂2 E G ∂2 ω ω G = e E cos(ωt − z ) = −exω 2 E0 cos(ωt − z ) x 0 2 2 ∂t ∂t c c G G 1 ∂2 E ω 1 ⎡ G ω ⎤ G ω 2 ∇ E − 2 2 = −ex ( ) 2 E0 cos(ωt − z ) − 2 ⎢ −exω 2 E0 cos(ωt − z ) ⎥ = 0 c ∂t c c c ⎣ c ⎦ G G G G 1 ∂2 E ω 即矢量函数 E = ex E0 cos(ωt − z ) 满足波动方程 ∇ 2 E − 2 2 = 0 。 c ∂t c
G G G G ∂ 2 H (r , t ) = 0 ,得 代入方程 ∇ H (r , t ) − μ0ε 0 ∂t 2 G ey {[−(10π ) 2 − k 2 ] + μ0ε 0 (6π × 109 ) 2 } 0.1sin(10πx) cos(6 π × 109 t − kz ) = 0
2
于是有 [−(10π ) 2 − k 2 ] + μ0ε 0 (6π × 109 ) 2 = 0 故得 k = μ0ε 0 (6 π × 109 ) 2 − (10 π ) 2 = 10 3π
G G ω 4.4 证明:矢量函数 E = ex E0 cos(ωt − x) 满足真空中的无源波动方程 c G G 1 ∂2 E 2 ∇ E− 2 2 =0 c ∂t
G G B = ∇× A
和电磁标量位 ϕ 的关系式
G G ∂A E = −∇ϕ − ∂t G G G ∂E 代入麦克斯韦第一方程 ∇ × H = J + ε ∂t
得
G G G ∂⎛ ∂A ⎞ ∇ × (∇ × A) = J + ε ⎜ −∇ϕ − ⎟ ∂t ⎝ ∂t ⎠ μ 1
利用矢量恒等式
G G G ∇ × ∇ × A = ∇(∇ ⋅ A) − ∇ 2 A
G G G G 证:在直角坐标系中 r = ex x + ey y + ez z G G G G 设 k = ex k x + ey k y + ez k z G G G G G G G G 则 k ⋅ r = (ex k x + ey k y + ez k z ) ⋅ (ex x + ey y + ez z ) = k x x + k y y + k z z
故
G G G G ∂ ∇(∇ ⋅ H ) − ∇ 2 H = ∇ × J + ε (∇ × E ) ∂t
将式(2)和式(3)代入式(5),得
(5)
G G G ∂2 H ∇ H − με 2 = −∇ × J ∂t
2
G 这就是 H 的波动方程,是二阶非齐次方程。
同样,对式(2)两边取旋度,得
G G ∂ ∇ × ∇ × E = − μ (∇ × H ) ∂t
G G G ∂E ∇× H = J +ε ∂t G G ∂H ∇ × E = −μ ∂t G ∇⋅H = 0 G ρ ∇⋅E =
(1) (2) (3) (4)
ε
对式(1)两边取旋度,得
G G G ∂ ∇ × ∇ × H = ∇ × J + ε (∇ × E ) ∂t
而
G G G ∇ × ∇ × H = ∇(∇ ⋅ H ) − ∇ 2 H
G G ω ∂2 ⎡ ⎤ G (2) ∇ 2 E = ex E0∇ 2 ⎢sin( z ) cos(ωt ) ⎥ = ex E0 2 ∂z c ⎣ ⎦
ω ⎡ ⎤ sin( z ) cos(ωt ) ⎥ ⎢ 2 E0 sin( z ) cos(ωt ) c c
以上结果表明,波动方程的解不一定满足麦克斯韦方程。 G G 4.5 证明:在有电荷密度 ρ 和电流密度 J 的均匀无损耗媒质中,电场强度 E 和磁 G 场强度 H 的波动方程为 G G G G G G ∂2 E ∂J ρ ∂2 H 2 2 ∇ E − με 2 = μ + ∇( ) , ∇ H − με 2 = −∇ × J ∂t ∂t ∂t ε G 证:在有电荷密度 ρ 和电流密度 J 的均匀无损耗媒质中,麦克斯韦方程组为
所以
G G 1 ∂2 E ω 1 G ω ∇ E − 2 2 = −ex ( ) 2 E0 cos(ωt − x) − 2 c ∂t c c c
2
ω ⎤ ⎡ G 2 −exω E0 cos(ωt − x) ⎥ = 0 ⎢ c ⎦ ⎣ G G 1 ∂2 E G G ω 2 即矢量函数 E = ex E0 cos(ωt − x) 满足波动方程 ∇ E − 2 2 = 0 。 c ∂t c
G G G G 1 ∂2 E ω 2 即矢量函数 E = ey E0 cos(ωt + z ) 满足波动方程 ∇ E − 2 2 = 0 。 c ∂t c G G 4.2 在无损耗的线性、各向同性媒质中,电场强度 E (r ) 的波动方程为 G G G G ∇ 2 E (r ) + ω 2 με E (r ) = 0 G G G G G G GG G 已知矢量函数 E (r ) = E0 e − jk ⋅r ,其中 E0 和 k 是常矢量。试证明 E (r ) 满足波动方程 G 的条件是 k 2 = ω 2 με ,这里 k = k 。
G G 1 ∂2 E 4.1 证 明 以 下 矢 量 函 数 满 足 真 空 中 的 无 源 波 动 方 程 ∇ E − 2 2 = 0 , 其 中 c ∂t G G 1 ω ω G G , E0 为常数。(1) E = ex E0 cos(ωt − z ) ;(2) E = ex E0 sin( z ) cos(ωt ) ; c2 = c c μ 0ε 0
(3) (4)
∇ 2ϕ = −
ρ ε
G 式(3)和式(4)就是采用库仑条件时,电磁位函数 A 和 ϕ 所满足的微分方程。 G G 4.7 证明在无源空间( ρ = 0 、 J = 0 )中,可以引入矢量位 Am 和标量位 ϕ m ,定