2019春八年级数学下册 4.1 因式分解课件.ppt

合集下载

八年级数学《因式分解》优秀课件

八年级数学《因式分解》优秀课件
麻石 杜书蓉
创设情境
1、完成以下各题 (1) m(a+b+c)= (ma+mb+mc) (2)(a+b)(a-b)= ( a2 - b2 ) (3) (a+b)2= ( a2+2ab+b2 )
2、你能做下面的填空吗? (1)ma+mb+mc= ( m )( a+b+c ) (2) a2 - b2 = ( a+b )( a - b ) (3) a2+2ab+b2 = ( a + b )2
3.观察以上两组题目项式化为几个整式的积的 形式,叫做多项式的因式分解
比较判断: 以下各式由左到右的变形,那些是因 式分解?
(1)3(x+2)=3x+6 (2)5a3b-10a2bc=5a2b(a-2c) (3)x2+1=x(x+ 1 )
x
(4)y2+x2-4=y2+(x+2)(x-2)
课堂小结
1、确定公因式的一般方法:
各项系数都是整数时,因式的系数应取 各项系数的最大公约数;字母取各项的相同 的字母,而且各字母的指数取次数最低的.
2、提公因式法分解因式的一般步骤:
第一步,找出公因式; 第二步,提公因式,即用多项式除以公因式.
自我检测 把以下各式分解因式
1、 3 x3 -3x2 –9x
(5)x2-4y2=(x+4y)(x-4y)
合作探究
怎样分解多项式: ma+mb+mc ma+mb+mc=m(a+b+c)
公因式:多项式中的每一项都含有一个相 同的因式,我们称之为公因式。

4.1因式分解(共15张PPT)北师大版初中数学八年级下册

4.1因式分解(共15张PPT)北师大版初中数学八年级下册
课堂小结
布置作业
教科书第94页
习题4.1第1、2、3、4
结同

束学


4.1 因式分解
八年级下册
1.经历从因数分解到因式分解的类比过程,感受类比的方法.




2.经历用几何图形解释因式分解的意义的过程,发展几何直观.
3.了解因式分解的意义,初步体会因式分解与整式乘法的联系.
4.感受因式分解在解决相关问题中的作用.
创设情境
问题导入
探究新知
应用新知
巩固新知
课堂小结
布置作业
创设情境
归纳
因式分解
探究新知
多项式
应用新知
整式乘法与因式分解是互为逆变形.
巩固新知
课堂小结
布置作业
整式乘法
整式乘积
创设情境
课堂练习
判断
判断下列各式从左到右的变形中,是否为因式分解:
探究新知
应用新知
巩固新知
课堂小结
布置作业

. ( − ) = −
. 2 − 1 + 2 = ( − 1)( + 1) + 2
. 2 − 1 = ( − 1)( + 1) 是
. + + = ( + ) + 否
1
E. 2
x
−1
1
=(
x

11)(x+ 1)否否
创设情境
能力提升
思考
若多项式 2 + + 分解因式的结果为 ( − 2)( + 3) ,
探究新知
应用新知

北师大版八年级数学下册第四章 因式分解1 因式分解

北师大版八年级数学下册第四章 因式分解1 因式分解
求 mn 的值. 解:∵ x4 + mx3 + nx - 16 的最高次数是 4, ∴可设 x4 + mx3 + nx -16 = (x - 1)(x - 2)(x2 + ax + b), 则 x4+mx3+nx-16 = x4 +(a-3)x3+(b-3a+2)x2+(2a-3b)x+2b 比较系数得 2b= -16,b- 3a+2 = 0,a - 3=m,2a-3b=n,
其分解结果为 x2 + ax + b = (x + 2)(x + 4) = x2 + 6x + 8, ∴ a = 6. 同理,乙看错了 a,但 b 是正确的, 分解结果为 x2 + ax + b = (x + 1)(x + 9) = x2 + 10x + 9, ∴b = 9. ∴a + b = 15.
(4)(y-3)2 = y2-_6_y_+_9_
(4) y2-6y+9 = ( y-3 )( y-3 )
或 (y-3)2
2 因式分解与整式乘法的关系
想一想:由 a(a + 1)(a - 1) 得到 a3 - a 的变形是什么运算? 由 a3 - a 得到 a(a + 1)(a - 1) 的变形与它有什么不同?
项式化成了几个整式的积,他们的运算是相反的. 问题2:右边一栏表示的正是多项式的“因式分解”, 你能根据我们的分析说出什么是因式分解吗?
归纳总结 把一个多项式化成几个整式的积的形式,这种
变形叫做因式分解,也可称为分解因式.
其中,每个整式都叫做这个多项式的因式.

北师大版数学八年级下册4.因式分解-提取公因式课件

北师大版数学八年级下册4.因式分解-提取公因式课件
②确定字母底数:各项都含有的相同字母
③确定字母次数:相同字母的最低次数
探索新知
问题3:对照乘法分配律的逆运算,你能将 + 写成几个因
式的乘积情势吗?
解:4x3+ 12x2
=4x2∙x+4x2∙3
=4x2(x2+3)
提公因式法:如果一个多项式的各项含有公因式,那么就可以把
这个公因式提出来,从而将多项式化成两个因式乘积的情势,这
b是公因式
(2) 3x2 +x
x是公因式
(3) abx-aby
ab是公因式
多项式中各项都含有的相同因式,叫做这个多项式各项的公因式。
探索新知
问题1:找 2 + 4 3 − 6;的公因式。
2
定系数
mb
定字母
2
公因式是2mb
定指数
问题2:如何确定一个多项式的公因式呢?
①确定数字系数:各项系数的最大公约数
(3) - x2+xy-xz = - x(x+y-z)
= - x(x-y+z)
提出负号时括号里的项没变号
错误
随堂测验
2.多项式-6ab2+18a2b2-12a3b2c的公因式是( C )
A.-6ab2c
B-ab2
C.-6ab2
D.-6a3b2C
3.若多项式-6ab+18abx+24aby的一个因式是-6ab,那么另一个因式
种因式分解的方法叫做提公因式法.
典例分析
例1
把7 3 − 21 2 分解因式
解: = 7 2 ∙ − 7 2 ∙ 3
2
= 7 ( − 3)
例2 把−24 3 + 12 2 − 28因式分解

北师版八年级数学下册教学课件(BS) 第四章 因式分解 第1课时 平方差公式

北师版八年级数学下册教学课件(BS) 第四章 因式分解 第1课时 平方差公式

,
y
3. 2
方法总结:在与x2-y2,x±y有关的求代数式或未知数的值的问 题中,通常需先因式分解,然后整体代入或联立方程组求值.
例4 计算下列各题: (1)1012-992; (2)53.52×4-46.52×4.
解:(1)原式=(101+99)(101-99)=400; (2)原式=4(53.52-46.52) =4(53.5+46.5)(53.5-46.5) =4×100×7=2800.
(2)原式=(a2-4b2)-(a+2b) =(a+2b)(a-2b)-(a+2b) =(a+2b)(a-2b-1).
例3 已知x2-y2=-2,x+y=1,求x-y,x,y的值.
解:∵x2-y2=(x+y)(x-y)=-2,
x+y=1①, ∴x-y=-2②.
联立①②组成二元一次方程组,
解得
x
1 2
(x a p)2 (x b q)2
(x p) (x q) (x p) (x q)
(2x p q)( p q).
方法总结:公式中的a、b无论表示数、单项式、还是多项式,只
要被分解的多项式能转化成平方差的形式,就能用平方差公式因 式分解.
针对训练 分解因式:
(1)(a+b)2-4a2; (2)9(m+n)2-(m-n)2.
8. (1)992-1能否被100整除吗?
(2)n为整数,(2n+1)2-25能否被4整除? 解:(1)∵ 992-1=(99+1)(99-1)=100×98,
∴992-1能否被100整除. (2)原式=(2n+1+5)(2n+1-5)
=(2n+6)(2n-4) =2(n+3) ×2(n-2)=4(n+3)(n-2). ∵n为整数 ∴(2n+1)2-25能被4整除.

八年级数学北师大版初二下册--第四单元 4.1《因式分解》课件

八年级数学北师大版初二下册--第四单元 4.1《因式分解》课件

1 知识小结
1.因式分解的定义: 把一个多项式化成几个整式的积的形式,这种变形 叫做因式分解,也可称为分解因式.
2. 因式分解与整式乘法是一个互逆过程,
即:几个整式相乘 噲垐因整垐式式垐分乘解法垎垐 一个多项式
请完成《典中点》 Ⅱ 、 Ⅲ板块 对应习题!
C.x2(1-3xy2)
D.x(x-3y2)
导引:把各选项进行整式乘法的运算,将所得的积与 x2-3xy2对照,能够与x2-3xy2相等的选项必是 正确答案.
总结
知2-讲
四个选项都是乘积的形式,可以利用因式分解 和整式乘法的互逆关系检验所得结果的正确性.
知2-讲
例3 20162-2016不能被下列哪个数整除?( B )
因此是因式分解,D正确.
知1-练
1 下列由左边到右边的变形,哪些是因式分解?为 什么? (1) (a+3)(a-3)=a2-9 ; (2) m2-4=(m+2)(m-2); (3) a2-b2+1=(a+b)(a-b)+1; (4) 2mR+2mr=2m(R+r).
解:(2)(4)是因式分解.理由:只有(2)(4)是把一个多项 式化成几个整式的积
知1-导
把一个多项式化成几个整式的积的形式,这种 变形叫做因式分解. 例如,a3-a= a (a+1)(a-1), am+bm+cm=m(a+b+c),x2+2x+l=(x+1)2都 是因式分解. 因式分解也可称为分解因式.
(来自《教材》)
知1-讲
例1 下列各式从左到右的变形属于因式分解的是( D ) A.a2+1=a(a+ 1 ) a B.(x+1)(x-1)=x2-1 C.a2+a-5=(a-2)(a+3)+1 D.x2y+xy2=xy(x+y)
A.9a2+y2

北师大版八年级下册数学《因式分解》PPT教学课件

北师大版八年级下册数学《因式分解》PPT教学课件

合作探究
探究点三 问题1:因式分解:把一个多项式化成几个 整式 的 积 的形式,这种变形叫 做因式分解.因式分解也可称为 分解因式 . 问题2:你能说明因式分解与整式的乘法有什么关系吗? 多项式的因式分解与整式的乘法互为逆变形过程. 因此可以用整式的乘法来检验分解因式是否正确.
合作探究
探究点四 例1:已知多项式x2-4x+m因式分解的结果为(x+a)(x-6),求2a-m的值 解:(x+a)(x-6)
课程讲授
1 因式分解的定义
问题1:
完成下列题目: x(x-2)=__x_2_-_2_x_ (x+y)(x-y)=__x_2-_y_2__ (x+1)2=_x_2_+_2_x_+_1_
根据左空,解决下列问题: x2-2x=( x )( x-2 ) x2-y2=( x+y )( x-y ) x2+2x+1=( x+1 )2
4.1 因式分解
八年级下册
学习目标
1 经历从分解因数到分解因式的类比过程. 2 了解因式分解的意义,以及它与整式乘法的相互关系. 3 感受因式分解在解决相关问题中的作用.
前置学习
1.下列等式从左到右的变形,属于因式分解的是( D )
A.a(x-y)=ax-ay
B.x²+2x+1=x(x+2)+1
整式乘法
(x+1)(x-1)
课程讲授
1 因式分解的定义
归纳:因式分解与整式乘法是互逆运算,二者是一个 式子的两种不同表现形式.因式分解的等号右边是两个 或几个因式积的形式,整式乘法的等号右边是多项式的 形式.
随堂练习
1. 下列各式中从左到右的变形属于分解因式的是( C ) A. a(a+b-1)=a2+ab-a B. a2-a-2=a(a-1)-2 C. -4a2+9b2=(-2a+3b)(2a+3b) D.2x +1=x(2+ 1 )

4-1 因式分解(课件)八年级数学下册(北师大版)

4-1 因式分解(课件)八年级数学下册(北师大版)
B.a2-b2-c2=(a-b)(a+b)-c2
C.10x2-5x=5x(2x-1)
D.x2-16+6x=(x+4)(x-4)+6x
随堂练习
3.把x2-3xy2分解因式,结果正确的是( D )
A.(x+3xy)(x-3xy)
பைடு நூலகம்
B.x(x-3xy)
C.x2(1-3xy2)
D.x(x-3y2)
4. 20162-2016不能被下列哪个数整除?( B )
A.a2+1=a(a+
1
)
a
B.(x+1)(x-1)=x2-1
C.a2+a-5=(a-2)(a+3)+1
D.x2y+xy2=xy(x+y)
探究新知
分解因式的要求:
1.分解的结果最后是积的形式;
2.每个因式必须是整式,且每个因式的次数都必须低
于多项式的次数;
3.必须分解到每个因式不能再分解为止
随堂练习
A.6
B.2017
C.2016
D.2015
随堂练习
5.若x2+3x+m=(x+1)(x+2),则m的值为( B )
A.1
B.2
C.3
D.4
6. 一个多项式分解因式的结果是(b3+2)(2-b3),那么
这个多项式是( B )
A.b6-4
B.4-b6
C.b6+4
D.-b6-4
随堂练习
7. (3a-y)(3a+y)是下列哪一个多项式因式分解的结果( C )
(2)2a3b2c+4ab3c-abc
=abc·2a2b+abc·4b2-abc·1
=abc (2a2b+4b2-1)
随堂练习
9.将下列各式分解因式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档