北师大版初二数学一次函数优秀教案

合集下载

北师大版八年级数学上册《二元一次方程与一次函数》优秀教学设计

北师大版八年级数学上册《二元一次方程与一次函数》优秀教学设计

北师大版八年级数学上册《二元一次方程与一次函数》优秀教学设计一. 教材分析《二元一次方程与一次函数》是北师大版八年级数学上册的教学内容。

本节课的主要内容是让学生掌握二元一次方程的定义、解法,以及一次函数的图像和性质。

这部分内容是学生学习函数和方程的基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。

二. 学情分析学生在学习本节课之前,已经掌握了初一、初二数学的基础知识,包括一元一次方程、不等式等。

但是,对于二元一次方程和一次函数的关系,以及如何解决实际问题,可能还存在一定的困难。

因此,在教学过程中,需要注重引导学生理解和掌握二元一次方程和一次函数的基本概念和方法,提高他们解决实际问题的能力。

三. 教学目标1.理解二元一次方程的定义和解法;2.掌握一次函数的图像和性质;3.能够运用二元一次方程和一次函数解决实际问题。

四. 教学重难点1.重难点:二元一次方程的解法,一次函数的图像和性质。

2.难点:如何引导学生理解和掌握二元一次方程和一次函数的关系,以及如何解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主学习、合作交流的方式,探索和解决问题;2.使用多媒体辅助教学,通过动画、图片等形式,生动形象地展示二元一次方程和一次函数的图像和性质;3.注重实践操作,让学生通过动手操作,加深对二元一次方程和一次函数的理解。

六. 教学准备1.多媒体教学设备;2.PPT课件;3.练习题和答案;4.教学用具(如黑板、粉笔等)。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何用数学方法解决问题,从而引出二元一次方程和一次函数的概念。

2.呈现(15分钟)利用PPT课件,呈现二元一次方程和一次函数的定义、解法和图像。

通过动画、图片等形式,生动形象地展示二元一次方程和一次函数的图像和性质。

3.操练(15分钟)让学生动手操作,解决一些简单的二元一次方程和一次函数问题。

教师巡回指导,解答学生的疑问。

八年级数学上册《 一次函数》教案 北师大版

八年级数学上册《 一次函数》教案 北师大版

福建省南安市九都中学八年级数学上册《一次函数》教案北师大版一:教学地位这节课的内容是八年级(下)第18章“函数”的第四节“一次函数性质”的第一课时, 内容是结合一次函数图象研究一次函数的性质这一课时在明确了一次函数的图象是一条直线后, 进一步结合图象研究一次函数的的性质.让学生明了它的研究方式和结果.从而使学生对一次函数有了从‘数’到‘形’ 、从‘形’到‘数’两方面的理解,从此展开了一个“数形结合”的新天地.接着重研究如何确定一次函数表达式及其应用.且这节课的研究为将来学习研究反比例函数性质,二次函数性质打下良好的基础.二:学生的学情分析八年级学生刚学函数, 但有了七年级“字母表示数”和“变量之间的关系”铺垫,他们在学一次函数时知识结构中印象最深的用“关系式”表示和用“表格”表示。

虽有前一章“位置的确定”使学生初步接触到数形结合,但只是一种形象的实际应用。

学生还没有抽象成“数形的对应关系”和这种“对应关系的应用”充实到他们的知识结构中。

而且与他们的实际生活经验和学习经验差距较大.也更复杂更抽象.这个学段的学生有好奇心,好强,自尊心强,,但心理较脆弱.大部分的学生正在艰难的由形象思维朝抽象思维发展.观察力偏重于第一印象,仍用自己原有的认识与知识结构作出判断,不会自觉利用直角坐标系从函数的这种数形对应角度出发考虑.使学习产生困难,容易产生畏难情绪。

三:教学目标1、知识与技能目标1、能熟练地作出一次函数的图象,了解一次函数图象的特点。

2、在认识一次函数的图象的基础上,掌握一次函数及其图象简单性质3、能够利用一次函数的性质解决数学问题.2、过程与方法目标1、经历对一次函数的图象的探究过程,在探究中学会解决一次函数问题的一些基本方法和策略2、进一步培养学生数形结合的意识和能力及分类讨论的思想。

3、探究活动中培养学生的探索精神和合作交流意识,团队精神。

3、情感目标让学生全身心地投入学习活动中,能积极与同伴合作交流,并能进行探索的活动,发展实践能力与创新精神。

北师大版数学八年级上册2《一次函数》教案1

北师大版数学八年级上册2《一次函数》教案1

北师大版数学八年级上册2《一次函数》教案1一. 教材分析《一次函数》是北师大版数学八年级上册第2单元的内容。

本节课主要让学生了解一次函数的定义、性质及图像,能够运用一次函数解决实际问题。

教材通过丰富的实例,引导学生探究一次函数的规律,培养学生的抽象思维能力和解决问题的能力。

二. 学情分析学生在七年级时已经学习了平面直角坐标系,对坐标系的认识较为基础。

但他们对一次函数的定义、性质及应用可能还不够清晰。

因此,在教学过程中,教师需要关注学生的认知基础,通过生动的实例和丰富的活动,激发学生的学习兴趣,引导学生主动探究一次函数的规律。

三. 教学目标1.了解一次函数的定义、性质及图像,能运用一次函数解决实际问题。

2.培养学生的抽象思维能力和解决问题的能力。

3.激发学生的学习兴趣,培养他们合作、交流的良好学习习惯。

四. 教学重难点1.一次函数的定义和性质。

2.一次函数图像的特点及其应用。

五. 教学方法1.情境教学法:通过生活实例,引导学生认识一次函数。

2.探究教学法:学生分组讨论,探究一次函数的性质。

3.直观教学法:利用多媒体展示一次函数图像,帮助学生理解一次函数的性质。

4.实践教学法:让学生运用一次函数解决实际问题,巩固所学知识。

六. 教学准备1.多媒体教学设备。

2.一次性函数的实例材料。

3.坐标纸、直尺、铅笔等学习用品。

七. 教学过程导入(5分钟)教师通过展示一些生活中的实例,如身高与年龄的关系、商品价格与销售数量的关系等,引导学生认识一次函数。

让学生思考:这些实例中存在什么规律?怎样用数学语言来描述这些规律?呈现(10分钟)教师给出一次函数的一般形式:y = kx + b(k≠0,k、b为常数),并解释一次函数的各个组成部分。

然后,通过具体的一次函数实例,让学生观察函数图像,分析一次函数的性质。

操练(10分钟)学生分组讨论,每组选择一个实例,探究一次函数的性质。

教师巡回指导,解答学生的疑问。

巩固(10分钟)教师出示一些练习题,让学生独立完成。

北师大版八年级数学上册第四章一次函数4.4一次函数的应用(教案)

北师大版八年级数学上册第四章一次函数4.4一次函数的应用(教案)
五、教学反思
今天在教授一次函数的应用这一章节时,我发现学生们对于一次函数的实际意义和如何建立数学模型感到很有兴趣。他们对于将实际问题转化为数学表达式的过程感到好奇,这也让我意识到,将数学知识与现实生活紧密结合起来,能够有效提升学生的学习积极性。
在讲授过程中,我注意到有些学生在理解斜率的物理意义时遇到了困难。我通过举例和图示来帮助他们理解,但感觉还需要在今后的教学中继续加强这一部分的讲解和练习。可能通过更多的实际案例,让学生自己探索和发现斜率在不同情境下的含义,会更加有助于他们的理解。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
在总结回顾环节,我询问了学生是否有疑问,很高兴的是,他们能够提出一些深入的问题,这表明他们真正在思考和学习。但我也意识到,可能还有部分学生因为害羞或其他原因没有提问。我需要寻找更多途径,如课后辅导、小组互助等,来确保每一个学生都能得到帮助,解决他们的困惑。
北师大版八年级数学上册第四章一次函数4.4一次函数的应用(教案)
一、教学内容
本节课选自北师大版八年级数学上册第四章一次函数的4.4节,主要内容包括:
1.利用一次函数解决实际问题,如斜率与实际意义的联系;
2.一次函数图像在坐标平面上的应用,如何从图像中获取信息;
3.通过一次函数的例子,让学生理解函数与方程的关系;
举例:在讲解斜率的实际意义时,通过具体例子(如物体的匀速运动)来说明斜率与速度的关系,帮助学生理解斜率在现实中的具体应用。在绘制图像时,指导学生通过选取点、画直线等步骤,掌握绘制一次函数图像的技巧。对于变量关系的识别,可以通过案例教学,让学生在实际问题中练习区分变量和常量。在参数估计方面,教授学生使用实际数据点和函数表达式来计算k和b的值,并进行验证。

北师大版数学八年级上册2《一次函数》教学设计4

北师大版数学八年级上册2《一次函数》教学设计4

北师大版数学八年级上册2《一次函数》教学设计4一. 教材分析《一次函数》是北师大版数学八年级上册第2章的内容,本节内容是在学生已经掌握了函数概念的基础上进行学习的。

一次函数是数学中的一种基本函数,它的一般形式为y=kx+b(k≠0,k、b为常数)。

本节内容主要让学生了解一次函数的定义、性质和图像,学会如何运用一次函数解决实际问题。

二. 学情分析八年级的学生已经具备了一定的函数知识,对于函数的概念已经有了初步的了解。

但是,对于一次函数的定义、性质和图像,学生可能还比较陌生,需要通过实例和活动来加深理解。

此外,学生可能对于如何运用一次函数解决实际问题还有一定的困难,需要通过具体的案例和练习来进行引导和训练。

三. 教学目标1.了解一次函数的定义、性质和图像,掌握一次函数的解法。

2.能够运用一次函数解决实际问题,提高学生的应用能力。

3.培养学生的逻辑思维能力和团队协作能力。

四. 教学重难点1.一次函数的定义和性质。

2.一次函数的图像。

3.如何运用一次函数解决实际问题。

五. 教学方法1.案例教学法:通过具体的案例,让学生了解一次函数的定义、性质和图像。

2.实践教学法:让学生通过动手操作,加深对一次函数的理解。

3.问题解决法:引导学生运用一次函数解决实际问题,提高学生的应用能力。

六. 教学准备1.教学PPT:制作一次函数的相关PPT,包括一次函数的定义、性质、图像和实际应用案例。

2.教学素材:准备一些实际问题,用于引导学生运用一次函数解决实际问题。

3.练习题:准备一些练习题,用于巩固学生对一次函数的理解。

七. 教学过程1.导入(5分钟)利用PPT展示一次函数的图像,引导学生思考一次函数的特点和性质。

2.呈现(15分钟)通过PPT呈现一次函数的定义、性质和图像,让学生初步了解一次函数的基本概念。

3.操练(20分钟)让学生分组讨论,根据一次函数的性质,尝试画出给定的一次函数的图像。

然后,让学生汇报自己的成果,互相交流和学习。

北师大版 八年级上册 课题:《一次函数》复习课教案

北师大版 八年级上册 课题:《一次函数》复习课教案

北师大版八年级上册课题:《一次函数》复习课教案一. 教材分析北师大版八年级上册《一次函数》复习课教案旨在帮助学生巩固已学的一次函数知识,提高解题能力和思维水平。

本节课的主要内容有一次函数的定义、性质、图像和应用等方面,通过本节课的学习,学生可以更好地理解和掌握一次函数的知识,并能够运用一次函数解决实际问题。

二. 学情分析学生在学习一次函数时,已经具备了一定的数学基础和思维能力,能够理解和掌握一次函数的基本概念和性质。

但学生在应用一次函数解决实际问题时,还存在着一些困难,如对一次函数图像的理解和运用不够灵活等。

因此,在复习课中,需要针对这些难点进行讲解和练习,帮助学生更好地掌握一次函数的知识。

三. 教学目标1.掌握一次函数的定义、性质和图像。

2.学会运用一次函数解决实际问题。

3.培养学生的逻辑思维和解题能力。

四. 教学重难点1.一次函数的定义和性质。

2.一次函数图像的理解和运用。

3.运用一次函数解决实际问题。

五. 教学方法采用讲授法、练习法、讨论法等教学方法,通过讲解、示例、练习和讨论等方式,帮助学生理解和掌握一次函数的知识,提高学生的解题能力和思维水平。

六. 教学准备1.教学课件或黑板。

2.练习题和答案。

3.教学参考书和资料。

七. 教学过程导入(5分钟)通过提问方式引导学生回顾一次函数的定义和性质,激发学生的学习兴趣和思维能力。

呈现(15分钟)讲解一次函数的图像和应用,通过示例和练习,让学生理解和掌握一次函数图像的特点和运用方法。

操练(15分钟)让学生独立完成练习题,教师进行个别辅导和指导,帮助学生巩固已学知识,提高解题能力。

巩固(10分钟)通过讨论和练习,让学生进一步理解和掌握一次函数的知识,培养学生的思维能力和解决问题的能力。

拓展(10分钟)讲解一次函数在实际问题中的应用,通过示例和练习,让学生学会运用一次函数解决实际问题。

小结(5分钟)总结一次函数的知识点,强调一次函数的定义、性质和图像的重要性,提醒学生注意运用一次函数解决实际问题。

北师大版八年级数学上册第四章一次函数4.4一次函数的应用(3)优秀教学案例

北师大版八年级数学上册第四章一次函数4.4一次函数的应用(3)优秀教学案例
2.利用多媒体课件、图片等资源,丰富教学手段,提高学生的学习积极性。
3.创设具有挑战性的问题情境,激发学生的思考,培养学生解决问题的能力。
(二)问题导向
1.引导学生提出问题,培养学生的问题意识。例如,在讲解商店促销活动时,引导学生思考:“购买不同数量的商品,费用如何变化?”
2.设计具有启发性的问题,引导学生进行思考、讨论,培养学生分析问题、解决问题பைடு நூலகம்能力。
(四)反思与评价
1.引导学生进行自我反思,总结一次函数在实际问题中的应用方法和规律。
2.组织学生进行互评、师评,评价学生在解决问题过程中的表现,给予鼓励和指导。
3.教师根据学生的表现,及时调整教学策略,提高教学质量。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示商店促销活动的图片,引导学生关注实际问题。
5.作业小结的个性化设计:本节课的作业小结具有个性化设计,让学生运用一次函数的知识解决实际问题,例如家庭用电费用计算、购物预算等。这种作业设计既能够巩固所学知识,提高学生的应用能力,还能够激发学生的创新意识。
3.引导学生掌握一次函数的解析式,学会用数学模型表示实际问题。
4.讲解一次函数的性质,例如斜率、截距等,让学生了解一次函数的变化规律。
(三)学生小组讨论
1.组织学生进行小组讨论,让学生分享各自对一次函数应用的理解。
2.讨论一次函数在实际问题中的变化规律,例如购买商品数量与费用的关系。
3.引导学生通过举例、绘制图像等方式,验证一次函数的性质。
北师大版八年级数学上册第四章一次函数4.4一次函数的应用(3)优秀教学案例
一、案例背景
北师大版八年级数学上册第四章一次函数4.4一次函数的应用(3)优秀教学案例,主要针对八年级学生进行设计。本节课的主要内容是让学生掌握一次函数在实际生活中的应用,通过具体案例的分析,让学生了解一次函数在解决实际问题中的重要性。

北师大版八年级数学上册4.3一次函数图象与面积问题优秀教学案例

北师大版八年级数学上册4.3一次函数图象与面积问题优秀教学案例
(四)反思与评价
1.引导学生对自己在学习过程中的思考、方法、结果进行反思,培养学生自我评价的能力。
2.组织学生进行小组内、小组间的评价,让学生在评价中相互学习、共同进步。
3.教师要关注学生的学习过程,从多维度、多角度评价学生的学习成果,给予肯定和鼓励。
4.引导学生将所学知识与实际生活相结合,进行拓展应用,提高学生的数学素养。
2.讲解一次函数图象与面积问题的解决方法,如利用图象交点、解析几何方法等。
3.通过例题演示,让学生跟随教师一起解决一次函数图象与面积问题,活中的应用价值。
(三)学生小组讨论
1.设计具有探究性、挑战性的问题,让学生在小组内进行讨论交流。
针对这一问题,我设计了本节课的教学案例,旨在通过引导学生观察、思考、探究,使他们在解决实际问题的过程中,体会一次函数图象与面积问题的联系,提高解决问题的能力。教学案例围绕一个实际问题展开,让学生在解决问题的过程中,自然而然地涉及到一次函数图象与面积问题的知识点。通过案例的引导,使学生能够将所学知识与实际问题紧密结合,提高他们的数学应用能力。
2.鼓励每个小组成员积极发表自己的观点,共同探讨问题的解法。
3.教师在讨论过程中,关注每个小组的学习进展,及时给予指导和鼓励。
(四)总结归纳
1.让学生用自己的语言总结一次函数图象与面积问题的解法及注意事项。
2.教师对学生的总结进行点评,纠正错误,完善归纳。
3.引导学生将所学知识进行整合,形成体系,提高学生的数学素养。
4.教师在问题导向过程中,要善于启发、点拨,引导学生发现规律,归纳总结。
(三)小组合作
1.合理划分学习小组,培养学生团队合作、互助学习的意识。
2.设计具有探究性、挑战性的学习任务,激发学生合作学习的动力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数定义:在某一变化过程中,可以取不同数值的量,叫做变量,例如x 和y ,对于x 的每一个值,y 都有惟一..的值与之对应,我们就说x 是自变量,y 是因变量,此时也称y 是x 的函数. 例1:求下列函数中自变量x 的取值范围: (1)21+=x y ; (2)2-=x y . 例2:圆柱底面半径为5cm ,则圆柱的体积V (cm 3)与圆柱的高h (cm )之间的函数关系式为 ,它是 函数.定义:一次函数:若两个变量x 、y 间的关系可以表示成 (k 、b 为常数,k ≠0)形式,则称y 是x 的一次函数(x 是自变量,y 是因变量).特别地,当b =0时,称y 是x 的____________.正比例函数是一次函数的特殊情况.例1:有下列函数:①y =-x -2;②y =-2x ;③y =-x 2+(x +1)(x -2);④y =-2,其中不是一次函数的是 .(填序号)例2:要使y =(m -2)x n -1+n 是关于x 的一次函数,则m 、n 应满足______________. 例3:已知y =(k -1)2k x 是正比例函数,则k = . 【变式练习】1、若函数y = (k +1)x +k 2-1是正比例函数,则k 的值为( )A .0B .1C .±1D .-12、若23y x b =+-是正比例函数,则b 的值是( ) A . 0 B .23 C . 23- D . 32- 3.下列关于x 的函数中,是一次函数的是( )22221A.3(1) B.y=x+x1C.y=-x D.y=(x+3)-x xy x例1 已知正比例函数y = kx ( k ≠0 ) 的图象过第二、四象限,则( )A .y 随x 的增大而减小B .y 随x 的增大而增大C .当x <0时,y 随x 的增大而增大,当x >0时,y 随x 的增大而减小D .不论x 如何变化,y 不变例2 已知32)12(--=m x m y 是正比例函数,且y 随x 的增大而减小,则m 的值为_______.【变式练习】1、正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大.2、函数y = (k -1)x ,y 随x 增大而减小,则k 的范围是 ( )A .0<kB .1>kC .1≤kD .1<k 考点:一次函数的图象和性质总结:一次函数的图象一次函数y =kx +b 的图象是经过点(0,b ),(-kb,0)的一条直线 正比例函数y =kx 的图象是经过原点(0,0)的一条直线,如下表所示.例1:已知函数y =(m -3)x -32,当m________时,y 随x 的增大而增大;当m _________时,y 随x 的增大而减小.例2:已知正比例函数y =(3k -1)x ,y 随着x 的增大而增大,则k 的取值范围是( ) A .k <0 B .k >0 C .k <13 D .k >13例3:如图,表示一次函数y mx n =+与正比例函数y mnx =(m n ,为常数,且mn 0≠)图象的是( )【变式练习】1、两个一次函数y1= mx+n,y2= nx+m,它们在同一坐标系中的图象可能是图中的()2、已知函数221+-=xy,当11≤<-x时,y的取值范围是()A.2325≤<-y B.2523<<y C.2523<≤y D.2523≤<y3、若关于x的函数1(1)my n x-=+是一次函数,则m= ,n .4、若m < 0,n > 0,则一次函数y= mx + n的图象不经过()A.第一象限B. 第二象限C.第三象限D.第四象限考点:直线的平移:例1:在同一平面直角坐标系中画出下列函数的图象.y=2x与y=2x+3观察y=2x与y=2x+3两条直线,它们有什么样的位置关系?请回答:两条直线11y bkx+=与22bkxy+=平行,那么1k____2k,1b____2b直线的平移:左“+”右“-”,上“+”下“-”点的平移同样按照“左‘+’右‘-’,上‘+’下‘-’”.平移几个单位就加上或者减去几.例2:直线y=-2x与直线y=-2x-4的位置关系是__________.函数y=-2x-4图象可以由函数y=-2x的图象向______平移_____个单位得到.【变式练习】1、下列说法是否正确,为什么?(1)直线y = 3x+1与y =-3x+1平行;bkxy+=向左(右)平移p个单位bpxky+±=)(bkxy+=pbkxy±+=向上(下)平移p个单位OxyxyOxyOxyOABC.D.(2)直线212+=x y 与212-=x y 重合; (3)直线y =-x -3与y =-x 平行; (4)直线121+=x y 与15.0+=x y 相交. 2、将直线y =3x 向下平移5个单位,得到直线 ;将直线y =-x -5向上平移5个单位,得到直线 .考点:用待定系数法确定一次函数表达式的一般步骤:一设,二代,三解,四代入:(1)设一次函数表达式为y =kx +b ;(2)将已知点的坐标代入函数表达式,解方程(组); (3)求出k 与b 的值;(4)将k 、b 的值带入y =kx +b ,得到函数表达式.例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式. 解:设一次函数的关系式为y =kx +b (k ≠0),由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y =3534-x .例1:已知正比例函数的图象如下图如示,则正比例函数的解析式为多少?例2:已知弹簧的长度y (厘米)在一定的限度内是所挂物质量x (千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米,求这个一次函数的关系式例3:一次函数y =3x +b 的图象与两坐标轴围成的三角形面积是24,求b .例4. 若一次函数y =kx +b 的图象经过(0,1)和(-1,3)两点,则此函数的解析式为_____________. 例5、若正比例函数y = kx 的图象经过点(1,2),则此函数的解析式为_____________. 例6. 直线y =2x +8与x 轴和y 轴的交点的坐标分别是_______、_______. 例7、已知一次函数的图象经过A (-2,-3),B (1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P (-1,1)是否在这个一次函数的图象上; (3)求此函数与x 轴、y 轴围成的三角形的面积. 【变式练习】1. 油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量 Q (升)与流出时间t (分钟)的函数关系是( )A .Q =0.2tB .Q =20-0.2tC .t =0.2QD .t =20—0.2Q2. 若正比例函数的图象经过(-l ,5)那么这个函数的表达式为__________,y 的值随x 的减小而____________3. 若一次函数y =kx -3经过点(3,0),则k = ,该图象还经过点( 0, )和( ,-2)4. 一某市市内出租车行程在 4km 以内(含 4km )收起步费 8元,行驶超过4km 时,每超过1 km ,加收1.80元,当行程超出4km 时收费y 元与所行里程x (km )之间的函数关系式 .5. 小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与卖瓜的千克数之间的关系如图l -6-3所示,那么小李赚了( ) A .32元 B .36元 C .38元 D .44元6. 直线 y =43 x +4与 x 轴交于 A ,与y 轴交于B , O 为原点,则△A O B 的面积为( )A .12B .24C .6D .107.一次函数的图象如图l -6-42所示,那么这个一次函数的表达式是( ) A .y =-2x +2 B .y =-2x -2 C .y = 2x +2 D .y =2x -2考点:一次函数的应用例1. 如果每盒圆珠笔有12支,售价6元,那么圆珠笔的售价y (元)与圆珠笔的支数x (支)之间的关系式是( )A .y = 12x B .y =2x C .y =6x D .y =12x例2. 幸福村办工厂,今年前五个月生产某种产品的总量C (件)关于时间t (月)的函数图象如图l -6-43所示,则该工厂对这种产品来说( )A .1月至3月每月生产总量逐月增加,4、5两月每月生产总量逐月减小B .l 月至3月生产总量逐月增加,4、5两月生产总量与3月持平C .l 月至3月每月生产总量逐月增加,4、5两月均停止生产D .l 月至3月每月生产总量不变,4、5两月均停止生产例3. 在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x (h )时,汽车与甲地的距离为y (km ),y 与x 的函数关系如图所示.根据图像信息,解答下列问题:(1)这辆汽车的往、返速度是否相同? 请说明理由; (2)求返程中y 与x 之间的函数表达式; (3)求这辆汽车从甲地出发4h 时与甲地的距离. 【变式练习】1、一天,小军和爸爸去登山,已知山脚到山顶的路程为300米.小军先走了一段路程,爸爸才开始出发.图l -6-44中两条线段分别表示小军和爸爸离开山脚登山的路程S(米)与登山所用的时间t (分)的关系(从爸爸开始登山时计时).根据图象,下列说法错误的是( ) A .爸爸登山时,小军已走了50米 B .爸爸走了5分钟,小军仍在爸爸的前面 C .小军比爸爸晚到山顶D .爸爸前10分钟登山的速度比小军慢,10分钟后登山的速度比小军快2. 某地区的电力资源丰富,并且得到了较好的开发. 该地区一家供电公司为了鼓励居民用电,采用分段计费的方法来计算电费. 月用电量x (度)与相应电费y (元)之间的函数图像如图所示. ⑴ 月用电量为100度时,应交电费 元; ⑵ 当x ≥100时,求y 与x 之间的函数关系式; ⑶ 月用电量为260度时,应交电费多少元? 基础练习1. 下列函数是一次函数的是 .①y =2x ;②y =3+4x ;③y =0.5;④y =ax (a ≠0的常数);⑤xy =3;⑥2x +3y -1=0; 2. 若函数y =(m -2)x +5是一次函数,则m 满足的条件是____________. 3.已知y 与x -1成正比例,且x =2时,y =7.(1)写出y 与x 之间的函数关系:_________;(2)y 与x 之间是_________函数关系4.已知一次函数y =kx +5的图象经过点(-1,2),则k =_______,图象不经过_______象限. 6.如果直线y =kx +b 经过一、二、四象限,那么有( )A .k >0,b >0B .k >0,b <0C .k < 0,b <0D .k <0,b >0 7. 已知函数:①y =-x ,②y =7-3x ,③y =3x -1,④y =3x 2,⑤y = x 3 ,⑥y = 3x中,正比例函数有( )A .①⑤B .①④C .①③D .③⑥8.(1)当m = 时,y =()()m x m x m +-+-1122是一次函数.(2)我国是一个水资源缺乏的国家,大家要节约用水.据统计,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.李丽同学在洗手时,没有把水龙头拧紧,当李丽同学离开x 小时后水龙头滴了y 毫升水.则y 与x 之间的函数关系式是 .(4)设圆的面积为s ,半径为R ,那么下列说法正确的是( ) A .S 是R 的一次函数 B .S 是R 的正比例函数C .S 是2R 的正比例函数 D .以上说法都不正确9.已知一次函数y =(m +2)x +m -m -4的图象经过点(0,2),则m 的值是( )A .2B .-2C .-2或3D .310.直线y =-x +2与x 轴的交点坐标是 ,与y 轴的交点坐标是 .直线y =-x -1与x 轴的交点坐标是 ,与y 轴的交点坐标是 . 直线y =4x -2与x 轴的交点坐标是 ,与y 轴的交点坐标是 .直线y =232-x 与x 轴的交点坐标是 ,与y 轴的交点坐标是 . 12. 在下列四个函数中,y 的值随x 值的增大而减小的是( )A.2y x =B.36y x =-C.25y x =-+D.37y x =+13、直线521,321--=+-=x y x y 和x y 21-=的位置关系是 ,直线132y x =-+可以看作是直线x y 21-=向 平移 个单位得到的.14. 将直线y =-2x +3向下平移5个单位,得到直线 .15. 直线y =kx -4平行于直线y =-2x ,则直线4y kx =-的解析式为 ;16.电话每台月租费28元,市区内电话(三分钟以内)每次0.20元,若某台电话每次通话均不超过3分钟,则每月应缴费y (元)与市内电话通话次数x 之间的函数关系式是( )A .y =28x +0.20B .y =0.20x +28xC .y =0.20x +28D .y =28-0.20x17.某人购进一批苹果到集市上零售,已知卖出的苹果x (千克)与销售的金额y 元的关系如下表:x (千克) 1 2 3 4 5 … y (元)2+0.14+0.26+0.38+0.410+0.5…(1)写出y 与x 的函数关系式:___________;(2)该商贩要想使销售的金额达到250元,至少需要卖出多少千克的苹果?18.如图2-4,某游客为爬上3千米的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶,游客爬山所用时间t (小时)与山高h (千米)间的函数关系用图象表示是( ) 19.一次函数321+-=x y 的图象与y 轴的交点坐标是_________,与x 轴的交点坐标是_________.一般的,一次函数y =kx +b 与y 轴的交点坐标是__________,与x 轴的交点坐标是__________. 20.依据给定的条件,求一次函数的解析式.(1)已知一次函数的图象如图4-5所示,求此一次函数的解析式,并判断点(6,5)是否在此函数图象上.图4-5 (2)已知一次函数y=2x+b的图象与y轴的交点到x轴的距离是4,求其函数解析式.21.依据给定的条件,求一次函数解析式:y=ax+7经过一次函数y=4-3x和y=2x-1的交点.=+的图象与轴交点的纵坐标为5-,且当x=1时,y=2,则此函数的解析式。

相关文档
最新文档