飞机飞行性能-稳定和操纵

合集下载

91108-飞行力学-第10章:飞机的横航向动稳定性和操纵性

91108-飞行力学-第10章:飞机的横航向动稳定性和操纵性

第10章飞机的横航向动稳定性和动操纵性作业:10.1 10.2 10.4 10.5内容10.1 飞机横航向动稳定性10.1.2 典型的横航向运动模态10.1.3 滚转模态10.1.4 螺旋模态10.1.5 滚转--螺旋模态10.1.6 荷兰滚模态10.2 飞机横航向动操纵性10.2.1 副翼的操纵反应10.2.2 方向舵的操纵反应小结由组成的四阶方程,对于正常布局的飞机,它由一个负的大实根、一对实部为负的共轭复根和一个小的实根(可正可负)组成。

10.1.2 典型的横航向运动模态,,,p r βφ滚转模态荷兰滚模态螺旋模态负的大实根负的共轭复根小的实根对应于特征方程中的一个大的负实根; 其特征是衰减很快的非周期运动,其振幅衰减一半的时间仅为零点几秒;受横侧扰动后,飞机绕机体轴的单自由度滚转,收敛过程很快。

运动变量是滚转角速度和滚转角;飞机具有较大的横向阻尼(来源机翼),运动衰减快,一般均能满足品质要求。

1.滚转模态,p φlpC飞机横航向运动中最重要的模态; 对应特征方程中的一对共轭复根,滚转角、侧滑角和偏航角的量级相同; 偏航运动略超前滚转,即左偏航时右滚转。

飞机重心沿直线轨迹前进,颇似荷兰人的滑冰动作而得名;模态频率高,周期约为数秒至十几秒,介于纵向长、短周期之间。

品质规范对其特性有严格要求。

,,βφψ荷兰?3.螺旋模态对应特征方程中的一个小实根; 特征是衰减缓慢的非周期运动,运动变量为偏航角和滚转角;允许其特征根为一小的正根,由于运动不稳定时呈螺旋状而得名; 运动缓慢,半幅或倍幅时间长,约上百秒,易于纠正,对其模态特性要求不高。

,ψφ4.为什么飞机受到横航向扰动后,飞机首先表现出滚转运动,然后是荷兰滚运动,最后才是螺旋运动?内容10.1 飞机横航向动稳定性10.1.2 典型的横航向运动模态10.1.3 滚转模态10.1.4 螺旋模态10.1.5 滚转--螺旋模态10.1.6 荷兰滚模态10.2 飞机横航向动操纵性10.2.1 副翼的操纵反应10.2.2 方向舵的操纵反应小结表征为绕轴转动的单自由度运动。

飞机平衡控制—飞机的稳定性与操纵性

飞机平衡控制—飞机的稳定性与操纵性

稳定性
飞机的情况也是一样,也有 稳定、不稳定和中和稳定三 种情况。
稳定性
飞机纵向稳定性(俯仰稳定性)
ห้องสมุดไป่ตู้
稳定性
飞机方向稳定性
稳定性
飞机侧向稳定性 影响飞机侧向稳定性的因素主要是机翼的上反角和后掠角。
操纵性
飞机的操纵性是飞机跟随驾 驶员操纵驾驶杆、脚蹬动作 而改变其飞行状态的特征。 飞机通过主操纵面—升降舵、 方向舵和副翼对绕3个轴的 运动进行操纵。
操纵性
飞机重心位置的前后移动会影响飞机的纵向操纵性能。 重心前移,增大同样迎角,所需要的升降舵上偏角增大,重心前移越多, 上偏角越大,但升降舵上偏角是有一定限定的,重心前移过多,就可能 出现即使驾驶杆拉到底,飞机也不能增加到所需要的迎角,因此重心位 置应有个前限,称为重心前极限。
操纵性
俯仰稳定性强的飞机,俯仰操纵时比较迟钝;俯仰稳定性弱的飞机,俯 仰操纵时比较灵敏。

飞翼无人机的操纵性和稳定性分析及自动着陆控制律设计的开题报告

飞翼无人机的操纵性和稳定性分析及自动着陆控制律设计的开题报告

飞翼无人机的操纵性和稳定性分析及自动着陆控制律设计的开题报告一、论文研究背景及研究意义:飞翼无人机是一种新型无人机,相比于传统的固定翼无人机,其具有设计简单、飞行效率高等优点,已经被广泛应用于娱乐、农业、测绘等领域。

然而,由于其独特的飞行姿态和布局特点,飞翼无人机的操纵性和稳定性问题一直是研究的热点之一。

本论文旨在从飞翼无人机的操纵性和稳定性方面进行深入研究,并设计一种自动着陆控制律,以提高飞翼无人机的飞行安全性和飞行效率,具有重要的科研和实际应用价值。

二、研究内容和思路:1.分析飞翼无人机的飞行特点,建立数学模型。

2.研究飞翼无人机的操纵性和稳定性问题,分析影响其操纵性和稳定性的因素。

3.设计稳定控制律,改善飞行器的稳定性能。

4.设计飞行控制律,提高飞机的飞行性能。

5.设计自动着陆控制律,实现飞行器自主着陆。

6.进行仿真实验和实物测试,验证控制律的有效性和可行性。

三、预期研究成果:1.建立飞翼无人机的数学模型,深入分析其操纵性和稳定性问题。

2.设计一种稳定控制律和飞行控制律,提高飞翼无人机的稳定性和飞行性能。

3.设计一种自动着陆控制律,实现飞行器的自主着陆。

4.进行仿真实验和实物测试,验证控制律的有效性和可行性。

5.阐明飞翼无人机的操纵性、稳定性和自动着陆控制律的设计原理及方法,为飞翼无人机的应用和发展提供科学依据和参考。

四、拟采用的研究方法:本论文采用理论研究与仿真实验相结合的方法。

首先,根据飞翼无人机的实际工作环境和需求,建立其数学模型,分析其操纵性和稳定性问题,并设计相应的稳定控制律、飞行控制律和自动着陆控制律。

其次,采用Matlab/Simulink等软件进行仿真实验,验证所设计的控制律的有效性和可行性。

最后,通过实物测试,对所设计的飞行控制系统进行验证和优化。

五、论文研究进度安排:本论文的研究进度安排如下:第一年:1.分析飞翼无人机的飞行特点并建立数学模型。

2.分析影响飞翼无人机操纵性和稳定性的因素。

飞机飞行品质规范及评价准则研究

飞机飞行品质规范及评价准则研究

飞机飞行品质规范及评价准则研究
飞机飞行品质是指飞机在飞行过程中表现出的各项性能和特点,包括飞行稳定性、操纵性、横向和纵向稳定、航向控制等。

为了保证飞机的飞行安全和乘客的舒适度,必须制定一定的规范和评价准则,以确保飞机飞行品质的高标准。

飞机飞行品质规范主要包括以下方面的规定:
1. 飞行稳定性:要求飞机在各种工况下都能保持稳定飞行,不会出现任何异常震动或晃动。

还要求飞机在受到外界扰动时,能够迅速恢复到稳定状态,确保飞机的飞行安全。

2. 操纵性:要求飞机能够对操纵员的指令快速响应,并且操纵的力量合理、舒适。

操纵性的好坏直接影响到飞机的机动性和操作的便捷性,对于飞行安全非常重要。

3. 横向和纵向稳定:要求飞机在横向和纵向飞行过程中保持稳定,不会出现侧滑或偏航等异常情况。

横向和纵向稳定是飞机飞行品质的基础,也是飞行安全的保证。

4. 航向控制:要求飞机能够保持正确的航向,不会出现偏离航向或者频繁修正航向的情况。

航向控制的好坏直接影响到飞机的导航和航行精度,对于飞行安全和航行效率都非常重要。

1. 飞机的操纵性能评价:通过操纵实验和试飞,对飞机的操纵性能进行评估。

评价指标包括操纵力量和操作的便捷性等。

3. 飞机的机动性评价:通过控制飞行姿态和航向,对飞机进行机动试飞和评估。

评价指标包括加速度和迅速转弯等。

飞机飞行品质规范和评价准则的研究对于飞行安全和乘客舒适度具有重要意义。

在制定规范和准则时,需要综合考虑飞机的各项性能指标,并确保规范和准则的合理性和可行性,以确保飞机的飞行品质和安全性达到最高标准。

飞机的稳定性和操纵性汇总

飞机的稳定性和操纵性汇总

飞机重心范围的确定

飞机的重心前限

重心前移,飞机的纵向静稳定性提高,操纵性 能变坏,纵向平衡变差。 从飞机纵向平衡和纵向操纵性能的要求对飞机 重心最靠前的位置进行了限制。 重心后移,飞机的纵向稳定性减小,飞机对操 纵的反应变灵敏。 从飞机的纵向静稳定性和操纵灵敏度的要求对 飞机重心最靠后的位置进行了限制。
荷兰滚
飞机的横侧向扰动运动 及影响稳定性的因素


飞机的侧向静稳定性和方向静稳定性大小 比例搭配,对飞机横侧向动稳定性有着重 要的影响。 影响因素


侧向静稳定性——机翼上反角和后掠角。 方向静稳定性——垂尾面积及到飞机重心的力 臂。

偏航阻尼器——用在大型高速运输机上, 防止荷兰滚
4.7 飞机的横侧向操纵性
空气动力学基础(ME、AV)
第一章 第二章 第三章 第四章 大气物理学 空气动力学 飞行理论 飞机的稳定性和操纵性
第4章 飞机的稳定性和操纵性



4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8
飞机运动参数 飞机稳定性和操纵性的基本概念 飞机的纵向稳定性 飞机的纵向操纵性 飞机的横侧向静稳定性 飞机的横侧向动稳定性 飞机的横侧向操纵性 飞机主操纵面上的附设装置

滚转角γ

空速向量相对机体的方位

速度轴系或风轴系OVXVYVZV XV沿飞行速度方向,气动阻力沿XV负向。YV在飞 机对称面内且与飞行速度垂直。
迎角和侧滑角

迎角α

空速向量在飞机对称面Oxtyt上的投影与机体 坐标系纵轴Oxt之间的夹角。规定投影线在Oxt 轴下方时为正。 空速向量与飞机对称面Oxtyt之间的夹角。规 定空速向量偏向右侧时为正(向右侧滑为正)。

3第三章 飞机的稳定性和操纵性

3第三章 飞机的稳定性和操纵性

第三章飞机的稳定性和操纵性3.1 飞机的稳定性在飞行中,飞机会经常受到各种各样的扰动,如气流的波动、发动机工作不稳定、飞行员偶然触动驾驶杆等。

这些扰动会使飞机偏离原来的平衡状态,而在偏离以后,飞机能否自动恢复原状,这就是有关飞机的稳定或不稳定的问题。

飞机的稳定性是飞机本身的一种特性,与飞机的操纵性有密切的关系。

例如,飞行员操纵杆、舵,需要用力的大小,飞机对杆、舵操纵的反应等,都与飞机的稳定性有关。

因此,研究飞机的稳定性是研究飞机操纵性的基础。

所谓飞机的稳定性,就是在飞行中,当飞机受微小扰动而偏离原来的平衡状态,并在扰动消失以后,不经驾驶员操纵,飞机能自动恢复原来平衡状态的特性。

3.1.1 纵向稳定性飞机的纵向稳定性是指飞机绕横轴的稳定性。

当飞机处于平衡飞行状态时,如果有一个小的外力干扰,使它的攻角变大或变小,飞机抬头或低头,绕横轴上下摇摆(也称为俯仰运动)。

当外力消除后,驾驶员如果不操纵飞机,而靠飞机本身产生一个力矩,使它恢复到原来的平衡飞行状态,我们就说这架飞机是纵向稳定的。

如果飞机不能靠自身恢复到原来的状态,就称为纵向不稳定的。

如果它既不恢复,也不远离,总是上下摇摆,就称为纵向中立稳定的。

飞机的纵向稳定性也称为俯仰稳定性。

飞机的纵向稳定性由飞机重心在焦点之前来保证。

影响飞机纵向稳定性的主要因素有飞机的水平尾翼和飞机的重心位置。

下面,我们首先来看一下水平尾翼是如何影响飞机的纵向稳定性的。

当飞机以一定的攻角作稳定的飞行时,如果一阵风从下吹向机头,使飞机机翼的攻角增大,飞机抬头。

阵风消失后,由于惯性的作用,飞机仍要沿原来的方向向前冲一段路程。

这时由于水平尾翼的攻角也跟着增大,从而产生了一个低头力矩。

飞机在这个低头力矩作用下,使机头下沉。

经过短时间的上下摇摆,飞机就可恢复到原来的飞行状态。

同样,如果阵风从上吹向机头,使机头下沉,飞机攻角减小,水平尾翼的攻角也跟着减小。

这时水平尾翼上产生一个抬头力矩,使飞机抬头,经过短时间的上下摇摆,也可使飞机恢复到原来的飞行状态。

航空概论飞机的平衡安定性和操纵性

航空概论飞机的平衡安定性和操纵性

航空概论:飞机的平衡安定性和操纵性概述飞机的平衡安定性和操纵性是飞行器设计中最重要的问题之一。

正确的平衡和稳定性是确保飞机能够稳定飞行的关键,同时也保证了正确的操纵性,使飞机能够按照飞行员的意愿进行操作。

在本文中,我们将讨论什么是平衡和稳定性、如何设计一个平衡和稳定的飞机,以及如何操纵一个飞机。

飞机的平衡和稳定性飞机的重心和机翼的重心平衡是一架飞机在空中稳定飞行所需的基本条件之一。

为了保持平衡,飞机必须有一个正确的重心位置。

这个位置是在飞机中间的一个虚拟点,重力作用于这个点的位置使飞机保持平衡。

同时,飞机的机翼也有一个重心位置,这个重心位置是机翼所有部件的平均重心位置。

稳定性稳定性是指飞机在受到干扰之后能够自动回到原来的状态,从而保持飞行的状态。

稳定性是通过飞机的设计和材料选择来实现的。

飞机的稳定性可以分为静态稳定性和动态稳定性。

静态稳定性是指飞机在保持位置或姿态时的稳定性。

动态稳定性则指飞机对于干扰的快速反应能力。

设计一个平衡和稳定的飞机设计一个平衡和稳定的飞机需要考虑多个因素。

以下是一些参考:水平平衡设计者应该将水平平衡考虑在内,这样飞机才能在水平方向上保持平稳飞行。

水平平衡的几个主要元素包括下列部分:•重心:飞机的重心必须位于机翼重心的前方,这样才保证飞机保持稳定。

•机毂和发动机位置:机毂和发动机位置的不同会影响飞机的平衡。

•垂直尾翼:垂直尾翼能够帮助调整飞机的平衡。

垂直平衡设计者同样应该考虑垂直平衡的问题。

以下是设计者应该考虑的因素:•高度舵面:高度舵面能够帮助飞机在垂直方向上保持平稳飞行。

•垂直尾翼:与水平平衡类似,垂直尾翼也能够帮助调整飞机的平衡。

•重心:这里的重心是指沿着飞行器纵向的重量分布情况。

设计者必须考虑飞机的质心位置和操纵重心位置之间的关系。

机翼的大小和形状机翼的大小和形状会影响飞机的稳定性。

机翼面积越大,飞机的稳定性就越好,但是机翼越大,飞机的重量也会增加,从而影响飞机的性能。

3第三章飞机的稳定性和操纵性

3第三章飞机的稳定性和操纵性

第三章飞机的稳定性和操纵性飞机的稳定性在飞行中,飞机会经常受到各种各样的扰动,如气流的波动、发动机工作不稳定、飞行员偶然触动驾驶杆等。

这些扰动会使飞机偏离原来的平衡状态,而在偏离以后,飞机能否自动恢复原状,这就是有关飞机的稳定或不稳定的问题。

飞机的稳定性是飞机本身的一种特性,与飞机的操纵性有密切的关系。

例如,飞行员操纵杆、舵,需要用力的大小,飞机对杆、舵操纵的反应等,都与飞机的稳定性有关。

因此,研究飞机的稳定性是研究飞机操纵性的基础。

所谓飞机的稳定性,就是在飞行中,当飞机受微小扰动而偏离原来的平衡状态,并在扰动消失以后,不经驾驶员操纵,飞机能自动恢复原来平衡状态的特性。

纵向稳定性飞机的纵向稳定性是指飞机绕横轴的稳定性。

当飞机处于平衡飞行状态时,如果有一个小的外力干扰,使它的攻角变大或变小,飞机抬头或低头,绕横轴上下摇摆(也称为俯仰运动)。

当外力消除后,驾驶员如果不操纵飞机,而靠飞机本身产生一个力矩,使它恢复到原来的平衡飞行状态,我们就说这架飞机是纵向稳定的。

如果飞机不能靠自身恢复到原来的状态,就称为纵向不稳定的。

如果它既不恢复,也不远离,总是上下摇摆,就称为纵向中立稳定的。

飞机的纵向稳定性也称为俯仰稳定性。

飞机的纵向稳定性由飞机重心在焦点之前来保证。

影响飞机纵向稳定性的主要因素有飞机的水平尾翼和飞机的重心位置。

下面,我们首先来看一下水平尾翼是如何影响飞机的纵向稳定性的。

当飞机以一定的攻角作稳定的飞行时,如果一阵风从下吹向机头,使飞机机翼的攻角增大,飞机抬头。

阵风消失后,由于惯性的作用,飞机仍要沿原来的方向向前冲一段路程。

这时由于水平尾翼的攻角也跟着增大,从而产生了一个低头力矩。

飞机在这个低头力矩作用下,使机头下沉。

经过短时间的上下摇摆,飞机就可恢复到原来的飞行状态。

同样,如果阵风从上吹向机头,使机头下沉,飞机攻角减小,水平尾翼的攻角也跟着减小。

这时水平尾翼上产生一个抬头力矩,使飞机抬头,经过短时间的上下摇摆,也可使飞机恢复到原来的飞行状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.4 飞机的飞行性能、稳定与操纵
2.4.1 机体坐标轴系
研究飞机的飞行性能、稳定与操纵原理的时候,为了描述飞机的空间位置、速度、加速度、力和力矩等向量时,须采用相应的坐标系。

常用的坐标系有:地面坐标轴系、机体坐标轴系、气流坐标轴系、航迹坐标轴系、半机体坐标轴系、稳定坐标轴系等。

这些坐标系都是三维正交右手系。

为研究问题的方便,在讨论飞机的操稳特性时,我们选用机体坐标轴系作为参考坐标系。

图 2.4.1 机体
坐标轴系
机体坐标轴系(Oxyz)是固定在飞机上的坐标轴系,其原点O位于飞机的质心,纵轴x位于飞机参考面(对称面)内指向前方且平行于机身轴线(或翼根弦线),横轴y垂直于飞机参考面指向右方,竖轴z在飞机参考面内垂直于纵轴指向下方,如图2.4.1所示。

飞机绕机体横轴oy的转动(称为俯仰运动)以及沿纵轴ox和竖轴oz的移动,是发生在飞机对称面内的运动,通常称为纵向运动;而飞机绕机体纵轴ox 的转动(称为滚转运动)和沿横轴oy的移动,是发生在飞机横截面内的运动,称为横向运动;飞机绕竖轴oz的转动(称为偏航运动)称为方向运动。

2.4.2飞机的飞行性能和机动飞行
讨论飞机的飞行性能时,将飞机作为一个质点,其上所受到的力有:重力G、动力装置的推力T、升力L和阻力D,如图2.4.2所示。

在等速直线飞行时,这些力是平衡的。

图中为航迹速度与水平面的夹角,称为爬升角。

当航迹速度
位于过原点的水平面之上时,为正。

为发动安装角,为飞行迎角。

发动安装角通常很小,近似认为=0。

飞机等速直线飞行的轨迹不外有3种情况:等速直线爬升(>0)、等速直线平飞(=0)和等速直线下滑(<0)。

这3种典型等速直线运动的飞行性能分别称为爬升(或上升)性能、平飞性能和下滑性能。

图2.4.2 作用在飞机上的力图2.4.3 爬升率
飞机有各种飞行状态(如起飞/着陆、等速上升/下降、上升/下降转弯、巡航、机动飞行等),概括起来可将飞机的飞行性能分为类:(1) 等速直线飞行性能(基本飞行性能),(2) 续航性能,(3) 起飞着陆性能,(4) 机动飞行性能。

下面分别予以简要介绍。

等速直线飞行性能
在等速直线飞行时,飞行迎角较小,近似认为=0。

水平等速直线飞行性能保持飞机等速直线平飞的条件是:动力装置提供的推力等于飞机的迎面阻力,飞机的升力等于飞机的重量。

这其中认为发动机安装角及迎角α都很小。

在图2.4.2中令=0,则有
(2.4.1)
衡量飞机水平等速直线飞行性能的主要指标有:最大平飞速度、最小平飞速度、巡航速度等。

最大平飞速度是指飞机在水平直线飞行条件下,把发动机推力加到最大所能达到的最大速度,以v max或Ma max表示。

它是衡量飞机飞行性能的一项主要指标,代表飞机的“快飞”能力。

最大平飞速度一般由动力装置提供的推力等于飞机的阻力这一条件来决定。

由于不同的高度有不同的空气密度(ρ),即阻力不同;而每种飞机所装发动机的高度特性(推力和耗油率随高度而变化的特性)不同,所以每架飞机的最大平飞速度与飞行高度有密切关系。

一般喷气飞机的最大平平飞速度,都是在11000m以上的高空达到,因为此处空气稀薄,阻力小。

现代战斗机的高空最大平飞速度在Ma2.0~2.5之间,军民用运输机的高空最大平飞速度为Ma0.9左右。

对于军用作战飞机来说,低空飞行能力具有重要意义,低空最大平飞速度也是衡量战斗机和攻击机的重要性能指标。

一般高空最大平飞速度Ma2.0以上的飞机海平面最大平飞速度是Ma1.1(1349km/h)左右。

最小平飞速度,是指在一定高度上,飞机能做等速直线平飞的最小速度,以v min或Ma min表示。

最小平飞速度一般由升力等于重力这一条件来决定。

原则上讲,当C L=C Lmax时,飞机可获得最小平飞速度。

但为了保证安全,常取安全或者允许升力系数(大致是C Lmax的70~90%)作为计算v min的依据。

巡航速度是指飞机飞行每千米耗油最少的速度。

它主要取决于飞机的最大升阻比和所装发动机的高度特性和速度特性(推力和耗油率随高度和速度而变化的特性)。

飞机以巡航速度飞行,其航程最远。

民用飞机主要以巡航速度执行各种任务;超音速军用飞机的出航、返航等多数时间也都是以巡航速度飞行,即使在作战时刻,使用超音速飞行的时间也很短。

现代民用喷气运输机的巡航速度在700~800km/h;军用飞机在900km/h左右。

等速直线爬升飞行性能,飞机的升限在图2.4.2中假设发动机安装角及迎角α都很小,可得等速直线爬升时力的平衡关系。

相关文档
最新文档