飞机的稳定性和操纵性74页PPT

合集下载

飞机的机动性、稳定性、操纵性

飞机的机动性、稳定性、操纵性

飞机的操纵性
一、飞机的纵向(俯仰)操纵
飞机的纵向(俯仰)操纵是指飞行员前后推拉 驾驶盘偏转升降舵后,飞机绕横轴转动而改变其迎 角等飞行状态。 横轴
下俯
全动式高低平尾升降舵
平尾大致分为普通平尾和全动平尾两大类: 1.普通平尾:升降舵可偏转,安定面不可偏转; 2.全动平尾:整个水平尾翼均可偏转。
2.机翼后掠角: 飞机受干扰右倾斜 → 升力随其倾斜 → 而后 掠角→流过右翼的垂直分速大于左翼→V右>V左 → Y右> Y左 → 产生向左的反力矩 → 恢复横向
稳定。 (见图2—46)
3.垂 直 尾 翼:
飞机受干扰右倾斜 →垂尾右侧受空气动力 →产生左滚力矩→恢复横向稳定。 (见图2—47)
§2-8
平衡,而在扰动消失后又自 动恢复原平衡状态的特性。
附加升力对重心形成力矩
1.△Y: 迎角变化时,机 翼、平尾上附加 升力的和。 2.△M: △Y对飞机的重 心形成稳定与不 稳定力矩。
△Y
飞机纵向静稳定性的条件:焦点在重心之后
只有焦点的位置在飞机的重心之后飞机才具有俯 仰稳定性,焦点距离重心越远,俯仰稳定性越强。
低平尾升降舵
全动式平尾 高平尾升降舵
二、飞机的横侧操纵
飞机的横侧操纵是指飞行员左右压驾驶盘操纵副翼 以后,飞机绕纵轴横滚的飞行状态。
三 、 飞机的方向操纵
飞机的方向操纵是指飞行员前后蹬脚蹬操纵方向舵 以后,飞机绕立轴偏转而改变其侧滑角等飞行状态的 特性。
§2-6、7、8作业
1.什么是飞机的盘旋、筋斗和横滚? 2. 飞机的稳定性包括哪三方面? 3.飞机的纵向稳定中,为什么焦点要在重心之后? 4.什么是侧滑?飞机是如何恢复方向平衡的? 5.飞机通过什么装置恢复其横侧平衡? 6.飞行员如何操纵飞机的俯仰、方向、横侧平衡?

飞机的稳定性和操纵性

飞机的稳定性和操纵性

第三章飞机的稳定性和操纵性飞机的稳定性在飞行中,飞机会经常受到各种各样的扰动,如气流的波动、发动机工作不稳定、飞行员偶然触动驾驶杆等。

这些扰动会使飞机偏离原来的平衡状态,而在偏离以后,飞机能否自动恢复原状,这就是有关飞机的稳定或不稳定的问题。

飞机的稳定性是飞机本身的一种特性,与飞机的操纵性有密切的关系。

例如,飞行员操纵杆、舵,需要用力的大小,飞机对杆、舵操纵的反应等,都与飞机的稳定性有关。

因此,研究飞机的稳定性是研究飞机操纵性的基础。

所谓飞机的稳定性,就是在飞行中,当飞机受微小扰动而偏离原来的平衡状态,并在扰动消失以后,不经驾驶员操纵,飞机能自动恢复原来平衡状态的特性。

纵向稳定性飞机的纵向稳定性是指飞机绕横轴的稳定性。

当飞机处于平衡飞行状态时,如果有一个小的外力干扰,使它的攻角变大或变小,飞机抬头或低头,绕横轴上下摇摆(也称为俯仰运动)。

当外力消除后,驾驶员如果不操纵飞机,而靠飞机本身产生一个力矩,使它恢复到原来的平衡飞行状态,我们就说这架飞机是纵向稳定的。

如果飞机不能靠自身恢复到原来的状态,就称为纵向不稳定的。

如果它既不恢复,也不远离,总是上下摇摆,就称为纵向中立稳定的。

飞机的纵向稳定性也称为俯仰稳定性。

飞机的纵向稳定性由飞机重心在焦点之前来保证。

影响飞机纵向稳定性的主要因素有飞机的水平尾翼和飞机的重心位置。

下面,我们首先来看一下水平尾翼是如何影响飞机的纵向稳定性的。

当飞机以一定的攻角作稳定的飞行时,如果一阵风从下吹向机头,使飞机机翼的攻角增大,飞机抬头。

阵风消失后,由于惯性的作用,飞机仍要沿原来的方向向前冲一段路程。

这时由于水平尾翼的攻角也跟着增大,从而产生了一个低头力矩。

飞机在这个低头力矩作用下,使机头下沉。

经过短时间的上下摇摆,飞机就可恢复到原来的飞行状态。

同样,如果阵风从上吹向机头,使机头下沉,飞机攻角减小,水平尾翼的攻角也跟着减小。

这时水平尾翼上产生一个抬头力矩,使飞机抬头,经过短时间的上下摇摆,也可使飞机恢复到原来的飞行状态。

航空概论飞机的平衡安定性和操纵性

航空概论飞机的平衡安定性和操纵性

航空概论:飞机的平衡安定性和操纵性概述飞机的平衡安定性和操纵性是飞行器设计中最重要的问题之一。

正确的平衡和稳定性是确保飞机能够稳定飞行的关键,同时也保证了正确的操纵性,使飞机能够按照飞行员的意愿进行操作。

在本文中,我们将讨论什么是平衡和稳定性、如何设计一个平衡和稳定的飞机,以及如何操纵一个飞机。

飞机的平衡和稳定性飞机的重心和机翼的重心平衡是一架飞机在空中稳定飞行所需的基本条件之一。

为了保持平衡,飞机必须有一个正确的重心位置。

这个位置是在飞机中间的一个虚拟点,重力作用于这个点的位置使飞机保持平衡。

同时,飞机的机翼也有一个重心位置,这个重心位置是机翼所有部件的平均重心位置。

稳定性稳定性是指飞机在受到干扰之后能够自动回到原来的状态,从而保持飞行的状态。

稳定性是通过飞机的设计和材料选择来实现的。

飞机的稳定性可以分为静态稳定性和动态稳定性。

静态稳定性是指飞机在保持位置或姿态时的稳定性。

动态稳定性则指飞机对于干扰的快速反应能力。

设计一个平衡和稳定的飞机设计一个平衡和稳定的飞机需要考虑多个因素。

以下是一些参考:水平平衡设计者应该将水平平衡考虑在内,这样飞机才能在水平方向上保持平稳飞行。

水平平衡的几个主要元素包括下列部分:•重心:飞机的重心必须位于机翼重心的前方,这样才保证飞机保持稳定。

•机毂和发动机位置:机毂和发动机位置的不同会影响飞机的平衡。

•垂直尾翼:垂直尾翼能够帮助调整飞机的平衡。

垂直平衡设计者同样应该考虑垂直平衡的问题。

以下是设计者应该考虑的因素:•高度舵面:高度舵面能够帮助飞机在垂直方向上保持平稳飞行。

•垂直尾翼:与水平平衡类似,垂直尾翼也能够帮助调整飞机的平衡。

•重心:这里的重心是指沿着飞行器纵向的重量分布情况。

设计者必须考虑飞机的质心位置和操纵重心位置之间的关系。

机翼的大小和形状机翼的大小和形状会影响飞机的稳定性。

机翼面积越大,飞机的稳定性就越好,但是机翼越大,飞机的重量也会增加,从而影响飞机的性能。

第四章飞机的稳定性和操纵性空气动力学

第四章飞机的稳定性和操纵性空气动力学

空速向量相对机体的方位-方位角
迎角α 空速向量在飞机对称面Oxtyt上的投影与机体坐标系纵 轴Oxt之间的夹角。规定投影线在Oxt轴下方时为正。
侧滑角β 空速向量与飞机对称面Oxtyt之间的夹角。规定空速向 量偏向右侧时为正(向右侧滑为正)。
飞行中,空速向量一般都在飞机对称面内,侧滑角 = 0,防止阻力增加。
水平尾翼上的气动升力向下作用,对飞机产生使机头向上的 俯仰力矩(+ Mz)
当两个力矩互相抵消时,飞机保持纵向平衡。 为使水平尾翼的气动升力能产生抬头力矩,水平尾翼的安装
角一般采取负值
平衡迎角
飞机定常直线飞行时,不同的飞行速度要求不同的迎角。 迎角不同,机翼升力的大小及压力中心的位置也不同, 对飞机重心会产生大小不同的低头力矩,就必须通过改 变升降舵的偏转角(或者改变水平安定面的配平角), 使水平尾翼产生与之相平衡的抬头力矩,来维持飞机的 纵向平衡, 为飞机的纵向配平。
各处迎角增加,升力增量向上; 飞机全身分布的升力增量对飞机形成低头力矩,阻止飞机
抬头转动。
飞机水平尾翼距离飞机中心最远,气动面积最大,所以阻 尼俯仰力矩主要由水平尾翼产生。
纵向扰动运动的模态及其特征
短周期模态: 周期短、衰减很快; 飞机的扰动运动主要是飞机绕重心的摆动
过程,表现为迎角和俯仰角速度周期性迅 速变化,而飞行速度则基本上保持不变。 一般情况下,飞机的这种短期振荡运动在 开始的头几秒内就基本结束了。
水平尾翼的第二个作用:提供飞机纵向静 稳定性。
影响飞机纵向静稳定性的因素
握杆和松杆对飞机纵向静稳定性的响
握杆:假设受扰动后,飞机的速度不变, 只有迎角变化,并且升降舵面不能自由偏转, 此稳定性称握杆定速静稳定性。

3第三章飞机的稳定性和操纵性

3第三章飞机的稳定性和操纵性

第三章飞机的稳定性和操纵性飞机的稳定性在飞行中,飞机会经常受到各种各样的扰动,如气流的波动、发动机工作不稳定、飞行员偶然触动驾驶杆等。

这些扰动会使飞机偏离原来的平衡状态,而在偏离以后,飞机能否自动恢复原状,这就是有关飞机的稳定或不稳定的问题。

飞机的稳定性是飞机本身的一种特性,与飞机的操纵性有密切的关系。

例如,飞行员操纵杆、舵,需要用力的大小,飞机对杆、舵操纵的反应等,都与飞机的稳定性有关。

因此,研究飞机的稳定性是研究飞机操纵性的基础。

所谓飞机的稳定性,就是在飞行中,当飞机受微小扰动而偏离原来的平衡状态,并在扰动消失以后,不经驾驶员操纵,飞机能自动恢复原来平衡状态的特性。

纵向稳定性飞机的纵向稳定性是指飞机绕横轴的稳定性。

当飞机处于平衡飞行状态时,如果有一个小的外力干扰,使它的攻角变大或变小,飞机抬头或低头,绕横轴上下摇摆(也称为俯仰运动)。

当外力消除后,驾驶员如果不操纵飞机,而靠飞机本身产生一个力矩,使它恢复到原来的平衡飞行状态,我们就说这架飞机是纵向稳定的。

如果飞机不能靠自身恢复到原来的状态,就称为纵向不稳定的。

如果它既不恢复,也不远离,总是上下摇摆,就称为纵向中立稳定的。

飞机的纵向稳定性也称为俯仰稳定性。

飞机的纵向稳定性由飞机重心在焦点之前来保证。

影响飞机纵向稳定性的主要因素有飞机的水平尾翼和飞机的重心位置。

下面,我们首先来看一下水平尾翼是如何影响飞机的纵向稳定性的。

当飞机以一定的攻角作稳定的飞行时,如果一阵风从下吹向机头,使飞机机翼的攻角增大,飞机抬头。

阵风消失后,由于惯性的作用,飞机仍要沿原来的方向向前冲一段路程。

这时由于水平尾翼的攻角也跟着增大,从而产生了一个低头力矩。

飞机在这个低头力矩作用下,使机头下沉。

经过短时间的上下摇摆,飞机就可恢复到原来的飞行状态。

同样,如果阵风从上吹向机头,使机头下沉,飞机攻角减小,水平尾翼的攻角也跟着减小。

这时水平尾翼上产生一个抬头力矩,使飞机抬头,经过短时间的上下摇摆,也可使飞机恢复到原来的飞行状态。

第四章飞机的稳定性和操纵性空气动力学

第四章飞机的稳定性和操纵性空气动力学
不稳定或中立的飞机是不适合飞行的。执行飞行任务的飞机 必须具有一定的稳定性。
飞机操纵性

飞机在驾驶员操纵下,从一种飞行状态过渡 到另一种飞行状态的特性。对于驾驶员的操 纵反应过于灵敏或过于迟钝的飞机都会给飞 机的飞行操纵带来困难。
飞机的操纵性分类


纵向操纵性:飞机按照驾驶员的操纵指令, 绕横轴转动,增大或减少迎角,改变原飞 行姿态的能力。 侧向操纵性:飞机按照驾驶员的操纵指令, 绕纵轴滚转,改变原飞行姿态的能力。 方向操纵性:飞机按照驾驶员的操纵指令, 绕立轴转动,向左或向右偏转,改变原飞 行姿态的能力。
4.2 飞机稳定性和操纵性的基本概念

飞机的稳定性

处于平衡状态的物体,受到外界扰动,偏离了 平衡位置,当扰动消失后,物体能否自动恢复 到原始的平衡位置,取决于物体的平衡状态是 否具有稳定性。
稳定性分类
飞机的稳定(安定)性分为 ◘静稳定性&&动稳定性 飞机的静稳定性:


飞机具有自动恢复到原平衡位置的趋势
平衡迎角



飞机定常直线飞行时,不同的飞行速度要求不同的迎角。 迎角不同,机翼升力的大小及压力中心的位置也不同, 对飞机重心会产生大小不同的低头力矩,就必须通过改 变升降舵的偏转角(或者改变水平安定面的配平角), 使水平尾翼产生与之相平衡的抬头力矩,来维持飞机的 纵向平衡, 为飞机的纵向配平。 每一个迎角下的定常直线飞行,都有一个升降舵的偏转 角与之对应。这个迎角就叫做该升降舵偏转角对应的平 衡迎角。 飞机水平尾翼的一个重要作用就是保证飞机在不同速度 下进行定常直线飞行的纵向平衡
纵向扰动运动的模态及其特征


短周期模态: 周期短、衰减很快; 飞机的扰动运动主要是飞机绕重心的摆动 过程,表现为迎角和俯仰角速度周期性迅 速变化,而飞行速度则基本上保持不变。 一般情况下,飞机的这种短期振荡运动在 开始的头几秒内就基本结束了。

空气动力学基础04飞机的稳定性和操纵性

空气动力学基础04飞机的稳定性和操纵性
握杆:假设受扰动后,飞机的速度不变,只有迎角变化,并 且升降舵面不能自由偏转,此稳定性称握杆定速静稳定性。
松杆:受扰动后,迎角发生改变,升降舵面也随风发生偏转 ,使平尾产生附加的纵向力矩,大小与迎角成正比则此稳定 性与握杆状态下不同。
升降舵随风偏转对飞机静稳定性的影响:
当扰动使飞机抬头增加迎角时,升降舵会顺气流方向向上偏 转,在平尾上产生的附加纵向力矩是正值,使飞机抬头进一 步偏离原飞行姿态的趋势,所以飞机的纵向静稳性减少。
飞机具有纵向动稳定性的条件:有足够的纵向静稳定力 矩(必要条件)和足够的俯仰阻尼力矩(充分条件)。
1.俯仰阻尼力矩
俯仰摆动,飞机上的升力增量产生俯仰力矩:
飞机抬头,重心前各处相对气流向上运动,实际气流=迎面气 流速度+相对向下运动速度,因此当地迎角减小;
飞机抬头,重心后各处相对气流向下运动,实际气流=迎面气 流速度+相对向上运动速度,因此当地迎角增加;
飞机水平尾翼的一个重要作用就是保证飞机在不同速度下进 行定常直线飞行的纵向平衡
2.全机焦点
全机焦点
由于迎角的改变而引起的飞机气动升力增量的作用点。
影响因素
机翼、机身和水平尾翼。
在低速飞行时,全机焦点的位置保持不变。
3. 飞机纵向静稳定性的条件
在小迎角下飞机纵向静稳定性只取决于全机焦点和重 心之间的相对位置。
飞机的操纵性分类
纵向操纵性
飞机按照驾驶员的操纵指令,绕横轴转动,增大或减少迎角 ,改变原飞行姿态的能力。
侧向操纵性
飞机按照驾驶员的操纵指令,绕纵轴滚转,改变原飞行姿态 的能力。
方向操纵性
飞机按照驾驶员的操纵指令,绕立轴转动,向左或向右偏转 ,改变原飞行姿态的能力。

飞机的稳定性和操纵性

飞机的稳定性和操纵性
飞机的重心前限
重心前移,飞机的纵向静稳定性提高,操纵性 能变坏,纵向平衡变差。
从飞机纵向平衡和纵向操纵性能的要求对飞机 重心最靠前的位置进行了限制。
飞机重心后限
重心后移,飞机的纵向稳定性减小,飞机对操 纵的反应变灵敏。
从飞机的纵向静稳定性和操纵灵敏度的要求对 飞机重心最靠后的位置进行了限制。
长周期运动模态
飞机的扰动运动主要是飞机重心运动的振 荡过程,表现为飞行速度和航迹倾斜角周 期性的缓慢变化,飞机的迎角基本恢复到 原来的迎角并保持不变。
这一振荡过程衰减很慢,形成长周期运动 模态。
纵向扰动运动的模态及其特征
CCAR-25部规定:在主操纵处于松浮状 态或固定状态时,在相应于飞机形态的失 速速度与最大允许速度之间产生的任何短 周期振荡,必须受到重阻尼。
涡流发生器
飞机的方向操纵
方向舵
安装在垂直尾翼上的操纵面。 规定当方向舵后缘向右偏转时(右偏航),δy为正值。 蹬右舵——方向舵后缘右偏——向左的侧向力——机
头向右偏
蹬舵反倾斜现象
扰流板的优缺点
扰流板工作时,不会使机翼的压力中心向 后移动很多,所以机翼上产生的扭转变形 很小。这样就带来了两个好处:
改善飞机高速飞行时的横侧操纵性能 有效地防止副翼反效。
扰流板虽有不少好处,但也有比较严重的 缺点。
在它打开的一瞬间,气流绕过扰流板时,不能 立即产生旋涡。这时升力反而略有增加,因而 在低速飞行时效果很差,不宜单独使用。
影响飞机侧向静稳定性的其他因素
垂尾
机体纵轴上方的垂尾增加侧向静稳定性,下方 的垂尾减少侧向静稳定性。
机翼和机身的相对位置
上单翼起侧向静稳定作件
飞机具有方向静稳定性的条件,飞机受到 扰动绕OY轴偏转,产生侧滑角β时,如果 由于侧滑角引起的偏航力矩力图使飞机对 准来流,消除侧滑角,飞机就具有方向静 稳定性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档