八年级数学下册第十八章平行四边形18.2特殊的平行四边形18.2.3正方形作业无答案新版新人教版
魏县第九中学八年级数学下册 第十八章 平行四边形18.2 特殊的平行四边形18.2.2 菱形第1课

( 3) 30 m 5mn 24 n ( 4n2 )
请计算 : 25 36
类比分数的通分与约分你能联想 分式的通分与约分是怎样的吗 ?
∴菱形的周长=4×5=20(cm).
课堂小结
菱形的性质:
1.菱形的四条边都相等. 2.菱形的对角都相等. 3.菱形的两条对角线互相垂直平分,并 且每一条对角线平分一组对角. S菱形= 对角线乘积的一半F. 求证: ∠AEF=∠AFE.
证明:如图,连接AC, ∵四边形ABCD为菱形, ∴BC=CD,∠ECA=∠FCA. 又∵BE=DF,∴EC=FC. ∴△AEC≌△AFC, ∴AE=AF,∴∠AEF=∠AFE.
结束
语 八年级数学下册 第十八章 平行四边形18.2 特殊
的平行四边形18.2.2 菱形第1课时 菱形的性质课 件 (新版)新人教版-八年级数学下册第十八章平 行四边形18.2特殊的平行四边形18.2.2菱形第1课 时菱形的性质课件新版新人教版
八年级数学下册 第十八章 平行四边形 18.2 特殊的平行四边形18.2.2 菱形第1 课时 菱形的性质课件 (新版)新人教
版同-学八年们级,数下学课下休册息第十十分八钟章。平现行在四是边休形 18.2息特时殊的间平,行你四们边休形息1一8.2下.2眼菱睛形,第1课
时菱形的性质课件新版新人教版
看看远处,要保护好眼睛哦~站起来
知识点 2 菱形性质的应用
比较菱形的对角线和平行四边形的对角 线,我们发现,菱形的对角线把菱形分成4个 全等的直角三角形,而平行四边形通常只被 分成两对全等三角形.
由菱形两条对角线的长 ,你能求出它的面积吗?
1 S菱形ABCD=2 AC ·BD
例3 如图,菱形花坛ABCD的边长为20 m, ∠ABC=60°,沿着菱形的对角线修建了两条小路 AC和BD.求两条小路的长(结果保留小数点后两 位)和花坛的面积(结果保留小数点后一位).
18.2.3正方形(2)正方形的判定+课件-2023-2024学年人教版数学八年级下册

又AB=AD,∴AC⊥BD.∴∠COD=90°.
∴四边形OCED是正方形.
3.如图,在△ABC中,∠BAC=90°,中线AF与中位线DE相交于点O,则
四边形ADFE是(
A.平行四边形
B.矩形
C.菱形
D.正方形
B)
巩固提能
1.如图,已知四边形ABCD是平行四边形,下列结论正确的是( C )
A.当AB=BC时,四边形ABCD是矩形
且DE∥CA,DF∥BA.下列四个判断中,正确的有( D )
①四边形AEDF是平行四边形;
②如果∠BAC=90°,那么四边形AEDF是矩形;
③如果AD平分∠BAC,那么四边形AEDF是菱形;
④如果∠BAC=90°,AD⊥BC,且AB=AC,那么四边形AEDF是正方形.
A.1个
B.2个
C.3个
D.4个
基础训练
1.如图,在矩形ABCD中,对角线AC,BD交于点O,添加下列一个条件,
能使矩形ABCD成为正方形的是( B )
A.BD=AB
B.DC=AD
C.∠AOB=60°Fra bibliotekD.OD=CD
2.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)判断四边形OCED是什么特殊四边形?并证明.
别将△ABD,△ACD沿AB,AC对折,得到△ABE,△ACF,延长EB,FC相
交于点G.求证:四边形AEGF是正方形.
证明:∵AD⊥BC,∴∠ADB=∠ADC=90°.
由翻折的性质可知,∠E=∠ADB=90°,
∠F=∠ADC=90°,
AE=AD=AF,∠BAD=∠BAE,∠CAD=∠CAF.
∵∠BAC=45°,∴∠EAF=90°.
八年级数学下册第十八章平行四边形特殊的平行四边形正方形教案新人教

18.2.3 正方形一、教学目的1.掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算.2.理解正方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力.二、重点、难点1.教学重点:正方形的定义及正方形与平行四边形、矩形、菱形的联系.2.教学难点:正方形与矩形、菱形的关系及正方形性质与判定的灵活运用.三、例题的意图分析本节课安排了三个例题,例1是教材P111的例4,例2与例3都是补充的题目.其中例1与例2是正方形性质的应用,在讲解时,应注意引导学生能正确的运用其性质.例3是正方形判定的应用,它是先判定一个四边形是矩形,再证明一组邻边,从而可以判定这个四边形是正方形.随后可以再做一组判断题,进行练习巩固(参看随堂练习1),为了活跃学生的思维,也可以将判断题改为下列问题让学生思考:①对角线相等的菱形是正方形吗?为什么?②对角线互相垂直的矩形是正方形吗?为什么?③对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?④能说“四条边都相等的四边形是正方形”吗?为什么?⑤说“四个角相等的四边形是正方形”对吗?四、课堂引入1.做一做:用一张长方形的纸片(如图所示)折出一个正方形.学生在动手做中对正方形产生感性认识,并感知正方形与矩形的关系.问题:什么样的四边形是正方形?正方形定义:有一组邻边相等叫做正方形.............的平行四边形......并且有一个角是直角指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意:(1)有一组邻边相等的平行四边形(菱形)(2)有一个角是直角的平行四边形(矩形)2.【问题】正方形有什么性质?由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.所以,正方形具有矩形的性质,同时又具有菱形的性质.五、例习题分析例1(教材P111的例4)求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.已知:四边形ABCD是正方形,对角线AC、BD相交于点O(如图).求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形.证明:∵四边形ABCD是正方形,∴ AC=BD, AC⊥BD,AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分).∴△ABO、△BCO、△CDO、△DAO都是等腰直角三角形,并且△ABO ≌△BCO≌△CDO≌△DAO.例2 (补充)已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DG⊥AE于G,DG交OA于F.求证:OE=OF.分析:要证明OE=OF,只需证明△AEO≌△DFO,由于正方形的对角线垂直平分且相等,可以得到∠AOE=∠DOF=90°,AO=DO,再由同角或等角的余角相等可以得到∠EAO=∠FDO,根据ASA可以得到这两个三角形全等,故结论可得.证明:∵四边形ABCD是正方形,∴∠AOE=∠DOF=90°,AO=DO(正方形的对角线垂直平分且相等).又 DG⊥AE,∴∠EAO+∠AEO=∠EDG+∠AEO=90°.∴∠EAO=∠FDO.∴△AEO ≌△DFO.∴ OE=OF.例3 (补充)已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1∥l2,作BM⊥l1于M,DN ⊥l1于N,直线MB、DN分别交l2于Q、P点.求证:四边形PQMN是正方形.分析:由已知可以证出四边形PQMN是矩形,再证△ABM≌△DAN,证出AM=DN,用同样的方法证AN=DP.即可证出MN=NP.从而得出结论.证明:∵ PN⊥l1,QM⊥l1,∴ PN∥QM,∠PNM=90°.∵ PQ∥NM,∴四边形PQMN是矩形.∵四边形ABCD是正方形∴∠BAD=∠ADC=90°,AB=AD=DC(正方形的四条边都相等,四个角都是直角).∴∠1+∠2=90°.又∠3+∠2=90°,∴∠1=∠3.∴△ABM≌△DAN.∴ AM=DN.同理 AN=DP.∴ AM+AN=DN+DP即 MN=PN.∴四边形PQMN是正方形(有一组邻边相等的矩形是正方形).六、随堂练习1.正方形的四条边____ __,四个角___ ____,两条对角线____ ____.2.下列说法是否正确,并说明理由.①对角线相等的菱形是正方形;()②对角线互相垂直的矩形是正方形;()③对角线垂直且相等的四边形是正方形;()④四条边都相等的四边形是正方形;( )⑤四个角相等的四边形是正方形.( )1. 已知:如图,四边形ABCD 为正方形,E 、F 分别 为CD 、CB 延长线上的点,且DE =BF . 求证:∠AFE =∠AEF .4.如图,E 为正方形ABCD 内一点,且△EBC 是等边三角形, 求∠EAD 与∠ECD 的度数.七、课后练习1.已知:如图,点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且DE=BF . 求证:EA ⊥AF .2.已知:如图,△ABC 中,∠C=90°,CD 平分∠ACB ,DE ⊥BC 于E ,DF ⊥AC 于F .求证:四边形CFDE 是正方形.3.已知:如图,正方形ABCD 中,E 为BC 上一点,AF 平分∠DAE 交CD 于F ,求证:AE=BE+DF .A B CDEF2019-2020学年初二下学期期末数学模拟试卷一、选择题(每题只有一个答案正确)1.八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x 及方差S 2如下表所示:甲 乙 丙 丁 x85 93 93 86 S 2333.53.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选( ) A .赵研B .钱进C .孙兰D .李丁2.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC+BD=16,CD=6,则△ABO 的周长是( )A .10B .14C .20D .223.在平面直角坐标系中,平行四边形ABCO 的顶点A C ,的坐标分别是()8, 0,()3, 4 ,点, D E 把线段OB 三等分,延长, CD CE 分别交, OA AB 于点, F G ,连接FG , 则下列结论:OF AF =①;OFD②BEG ③四边形DEGF 的面积为203;④453OD =,其中正确的有( ).A .①②③④B .①②C .①③D .①③④4.若关于x 的一元二次方程ax 2+bx ﹣1=0(a≠0)有一根为x =2019,则一元二次方程a (x ﹣1)2+b (x ﹣1)=1必有一根为( ) A .12019B .2020C .2019D .20185.下列各式从左到右是分解因式的是( ) A .a(x+y)=ax+ay B .10x 2﹣5x =5x(2x ﹣1)C .8m 3n =2m 3•4nD .t 2﹣16+3t =(t+4)(t ﹣4)+3t 6.下列关系式中:y =﹣3x+1、3y x =、y =x 2+1、y =12x ,y 是x 的一次函数的有( ) A .1个B .2个C .3个D .4个7.如图,AD 是ABC ∆的角平分线,,DF AB ⊥,垂足分别为点,F DE DG =,若ADG ∆和ADE ∆的面积分别为50和39,则DEF ∆的面积为( )A .11B .7C .5.5D .3.58.二次根式3x ?+在实数范围内有意义, 则x 的取值范围是( ) A .x ≥-3B .x ≠3C .x ≥0D .x ≠-39.下列各式:15(1﹣x ),43x π-,222x y -,25x x,其中分式共有( )A .1个B .2个C .3个D .4个10.乒乓球是我国的国球,也是世界上流行的球类体育项目.我国乒乓球名将与其对应身高如下表所示: 乒乓球名将 刘诗雯 邓亚萍 白杨 丁宁 陈梦 孙颖莎 姚彦 身高()160155171173163160175这些乒乓球名将身高的中位数和众数是( ) A .160,163 B .173,175C .163,160D .172,160二、填空题11.在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是__________. 12.下表是某校女子羽毛球队队员的年龄分布: 年龄/岁 13 14 15 16 人数1121则该校女子排球队队员年龄的中位数为__________岁.13.已知3x =是分式方程2121mx m x x--=-的根,那么实数m 的值是__________. 14.如图,在Rt △ABC 中,∠BAC =90°,AB =8,AC =6,DE 是AB 边的垂直平分线,垂足为D ,交边BC 于点E ,连接AE ,则△ACE 的周长为________.15.《算法统宗》记载古人丈量田地的诗:“昨日丈量地回,记得长步整三十.广斜相并五十步,不知几亩及分厘.”其大意是:昨天丈量了田地回到家,记得长方形田的长为30步,宽和对角线之和为50步.不知该田有几亩?请我帮他算一算,该田有___亩(1亩=240平方步).16.如图,点O 是矩形ABCD 的对角线AC 的中点,//OM AB 交AD 于点M ,若2OM =,6BC =,则OB 的长为______.17.计算:a ba b a b+=++_________ 三、解答题18.已知:如图,在▱ABCD 中,AD =4,AB =8,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于点G . (1)求证:△ADE ≌△CBF ;(2)若四边形BEDF 是菱形,求四边形AGBD 的面积.19.(6分)已知正方形ABCD 与正方形(点C 、E 、F 、G 按顺时针排列),是的中点,连接,.(1)如图1,点E在上,点在的延长线上,求证:DM=ME,DM⊥.ME简析:由是的中点,AD∥EF,不妨延长EM交AD于点N,从而构造出一对全等的三角形,即≌.由全等三角形性质,易证△DNE是三角形,进而得出结论.(2)如图2,在DC的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB=5,CE=3时,正方形的顶点C、E、F、G按顺时针排列.若点E在直线CD上,则DM= ;若点E在直线BC上,则DM= .20.(6分)(1)如图1,平行四边形纸片ABCD中,AD=5,S甲行四边形纸片ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为A.平行四边形B.菱形C.矩形D.正方形(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.求证:四边形AFF′D是菱形.21.(6分)先化简22144111x xx x-+⎛⎫-÷⎪--⎝⎭,然后在0、±1、±2这5个数中选取一个作为x的值代入求值.22.(8分)如图,已知:在平行四边形ABCD中,AB=2,AD=4,∠ABC=60°,E为AD上一点,连接CE,AF∥CE且交BC于点F.(1)求证:四边形AECF为平行四边形.(2)证明:△AFB≌△CE D.(3)DE等于多少时,四边形AECF为菱形.(4)DE等于多少时,四边形AECF为矩形.23.(8分)某市篮球队到市一中选拔一名队员,教练对王亮和李刚两名同学进行5次3分投篮测试,一人每次投10个球,下图记录的是这两名同学5次投篮中所投中的个数.(1)请你根据图中的数据,填写下表;姓名平均数众数方差王亮7李刚77 2.8(2)你认为谁的成绩比较稳定,为什么?(3)若你是教练,你打算选谁?简要说明理由.24.(10分)如图,已知正方形ABCD的对角线AC、BD交于点O,CE⊥AC与AD边的延长线交于点E.(1)求证:四边形BCED是平行四边形;(2)延长DB至点F,联结CF,若CF=BD,求∠BCF的大小.25.(10分)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的九(1)班:88,91,92,93,93,93,94,98,98,100;九(2)班:89,93,93,93,95,96,96,98,98,1.通过整理,得到数据分析表如下:(1)直接写出表中m、n、p的值为:m=______,n=______,p=______;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好.”但也有人说(2)班的成绩要好.请给出两条支持九(2)班成绩更好的理由;(3)学校确定了一个标准成绩,等于或大于这个成绩的学生被评定为“优秀”等级,如果九(2)班有一半的学生能够达到“优秀”等级,你认为标准成绩应定为______分,请简要说明理由.参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】根据平均数和方差的意义解答.【详解】从平均数看,成绩最好的是钱进、孙兰同学,从方差看,钱进方差小,发挥最稳定,所以如果选出一名成绩较好且状态稳定的同学去参赛,那么应选钱进.故选:B.【点睛】本题考查了平均数和方差,熟悉它们的意义是解题的关键.2.B【解析】直接利用平行四边形的性质得出AO=CO ,BO=DO ,DC=AB=6,再利用已知求出AO+BO 的长,进而得出答案. 【详解】∵四边形ABCD 是平行四边形, ∴AO=CO ,BO=DO ,DC=AB=6, ∵AC+BD=16, ∴AO+BO=8,∴△ABO 的周长是:1. 故选B . 【点睛】平行四边形的性质掌握要熟练,找到等值代换即可求解. 3.C 【解析】 【分析】① 根据题意证明ODFBDC △△,得出对应边成比例,再根据, D E 把线段OB 三等分,证得1122OF BC OA ==,即可证得结论; ② 延长BC 交y 轴于H ,证明OA≠AB ,则∠AOB≠∠EBG ,所以△OFD ∽△BEG 不成立; ③ 利用面积差求得,根据相似三角形面积比等于相似比的平方进行计算并作出判断; ④ 根据勾股定理,计算出OB 的长,根据三等分线段OB 可得结论. 【详解】作AN ⊥OB 于点N ,BM ⊥x 轴于点M ,如图所示:在平行四边形OABC 中,点A C ,的坐标分别是()8, 0,()3, 4 , ∴(11,4),137B OB =又∵, D E 把线段OB 三等分, ∴12OD BD = 又∵CB OF ∥,∴ODF BDC △△ ∴12OF OD BC BD == ∴1122OF BC OA ==即OF AF =,①结论正确;∵()3,4C ,∴5OC OA =≠∴平行四边形OABC 不是菱形,∴,DOF COD EBG ODF COD EBG ≠=≠==∠∠∠∠∠∠∵()4,0F∴CF OC =∴CFO COF ∠>∠∴,DFO EBG ≠∠∠故△OFD 和△BEG 不相似,故②错误;由①得,点G 是AB 的中点,∴FG 是△OAB 的中位线,∴FG OB ∥,12FG OB ==又∵, D E 把线段OB 三等分,∴3DE = ∵1118416222OAB S OB AN OA BM ===⨯⨯=△ ∴1162AN OB =∵DF FG∴四边形DEGH 是梯形∴()551202121223DEGF DE FG hS OB h OB AN -====四边形,故③正确;13OD OB ==,故④错误;综上:①③正确,故答案为C.【点睛】此题主要考查勾股定理、平行四边形的性质、相似三角形的判定与性质、线段的中点,熟练运用,即可解题.4.B【解析】【分析】对于一元二次方程a(x-1)2+b(x-1)-1=0,设t=x-1得到at2+bt-1=0,利用at2+bt-1=0有一个根为t=2019得到x-1=2019,从而可判断一元二次方程a(x-1)2+b(x-1)=1必有一根为x=1.【详解】对于一元二次方程a(x-1)2+b(x-1)-1=0,设t=x-1,所以at2+bt-1=0,而关于x的一元二次方程ax2+bx-1=0(a≠0)有一根为x=2019,所以at2+bt-1=0有一个根为t=2019,则x-1=2019,解得x=1,所以一元二次方程a(x-1)2+b(x-1)=1必有一根为x=1.故选B.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.5.B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A错误;B、把一个多项式转化成几个整式积的形式,故B符合题意;C、是乘法交换律,故C不符合题意;D、没把一个多项式转化成几个整式积的形式,故D不符合题意;故选B.【点睛】本题考查了因式分解的意义,利用因式分解的意义是解题关键.6.B【解析】【分析】形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数,进而判断得出答案.【详解】解:函数y =﹣3x+1,3y x =,y =x 2+1,y =12x 中,y 是x 的一次函数的是:y =﹣3x+1、y =12x ,共2个. 故选:B .【点睛】本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.7.C【解析】【分析】作DM=DE 交AC 于M ,作DN ⊥AC ,利用角平分线的性质得到DN=DF ,将三角形EDF 的面积转化为三角形DNM 的面积来求.【详解】作DM=DE 交AC 于M ,作DN ⊥AC 于点N ,∵DE=DG ,∴DM=DG ,∵AD 是△ABC 的角平分线,DF ⊥AB∴DF=DN ,在Rt △DEF 和Rt △DMN 中,DN DF DM DE==⎧⎨⎩ , ∴Rt △DEF ≌Rt △DMN(HL),∵△ADG 和△AED 的面积分别为50和39,∴S △MDG=S △ADG−S △ADM=50−39=11,S△DNM=S△EDF=12S△MDG=12×11=5.5.故选C.【点睛】此题考查全等三角形的判定与性质,角平分线的性质,解题关键在于作辅助线8.A【解析】【分析】根据二次根式中被开方数大于等于0即可求解.【详解】解:由题意可知,3+0x≥,解得3x≥-,故选:A.【点睛】此题主要考查了二次根式有意义的条件,即被开方数要大于等于0,正确把握二次根式有意义的条件是解题关键.9.A【解析】【分析】分式即AB形式,且分母中要有字母,且分母不能为0.【详解】本题中只有第五个式子为分式,所以答案选择A项.【点睛】本题考查了分式的概念,熟悉理解定义是解决本题的关键.10.C【解析】【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;【详解】解:把数据从小到大的顺序排列为:155,1,1,2,171,173,175;在这一组数据中1是出现次数最多的,故众数是1.处于中间位置的数是2,那么由中位数的定义可知,这组数据的中位数是2.故选:C.【点睛】此题考查中位数与众数的意义,掌握基本概念是解决问题的关键.二、填空题11.2【解析】【分析】根据中位数和众数的定义分析可得答案.【详解】解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是1.所以这5个数据分别是x,y,2,1,1,且x<y<2,当这5个数的和最大时,整数x,y取最大值,此时x=0,y=1,所以这组数据可能的最大的和是0+1+2+1+1=2.故答案为:2.【点睛】主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.12.15.【解析】【分析】中位数有2种情况,共有2n+1个数据时,从小到大排列后,,中位数应为第n+1个数据,可见,大于中位数与小于中位数的数据都为n个;共有2n+2个数据时,从小到大排列后,中位数为中间两个数据平均值,大小介于这两个数据之间,可见大于中位数与小于中位数的数据都为n+1个,所以这组数据中大于或小于这个中位数的数据各占一半,中位数有一个.【详解】解:总数据有5个,中位数是从小到大排,第3个数据为中位数,即15为这组数据的中位数.故答案为:15【点睛】本题考查中位数的定义,解题关键是熟练掌握中位数的计算方法,即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).13.1【解析】【分析】将3x =代入到方程中即可求出m 的值.【详解】解:将3x =代入,得3212133m m --=- 解得:2m =故答案为:1.【点睛】此题考查的是根据分式方程的根求分式方程中的参数,掌握分式方程根的定义是解决此题的关键. 14.1【解析】【分析】由DE 是AB 边的垂直平分线,可得AE=BE ,又由在直角△ABC 中,∠BAC=90°,AB=8,AC=6,利用勾股定理即可求得BC 的长,继而由△ACE 的周长=AC+BC ,求得答案.【详解】解:∵DE 是AB 边的垂直平分线,∴AE=BE ,∵在直角△ABC 中,∠BAC=90°,AB=8,AC=6,∴,∴△ACE 的周长为:AC+AE+CE=AC+BE+CE=AC+BC=6+10=1.故答案为:1.【点睛】本题考查,线段垂直平分线的性质以及勾股定理.此题难度不大,注意掌握数形结合思想与转化思想的应用. 15.1.【解析】【分析】根据矩形的性质、勾股定理求得长方形的宽,然后由矩形的面积公式解答.【详解】设该矩形的宽为x 步,则对角线为(50﹣x )步,由勾股定理,得301+x 1=(50﹣x )1,解得x =16故该矩形的面积=30×16=480(平方步),480平方步=1亩.故答案是:1.【点睛】考查了勾股定理的应用,此题利用方程思想求得矩形的宽.16【解析】【分析】可知OM 是△ADC 的中位线,再结合已知条件则DC 的长可求出,所以利用勾股定理可求出AC 的长,由直角三角形斜边上中线的性质则BO 的长即可求出.【详解】解:∵四边形ABCD 是矩形,∴∠D=90°,∵O 是矩形ABCD 的对角线AC 的中点,OM ∥AB ,∴OM 是△ADC 的中位线,∵OM=2,∴DC=4,∵AD=BC=6,∴由于△ABC 为直角三角形,且O 为AC 中点∴BO=11=22AC因此OB .【点睛】本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC 的长.17.1【解析】【分析】根据同分母的分式相加减的法则计算即可.【详解】原式=1a b a b+=+. 故答案为:1.【点睛】本题考查了分式的加减运算,同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先把它们通分,变为同分母分式,再加减.分式运算的结果要化为最简分式或者整式.三、解答题18.(1)详见解析;(2)【解析】【分析】(1)根据SAS 证明△ADE ≌△CBF 即可.(2)证明四边形ADBG 是矩形,利用勾股定理求出BD 即可解决问题.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴DA =BC ,∠DAE =∠C ,CD =AB ,∵E 、F 分别为边AB 、CD 的中点,∴AE =12AB ,CF =12CD ,∴AE =CF ,∴△ADE ≌△CBF (SAS ).(2)解:∵四边形ABCD 是平行四边形,∴AD ∥BG ,∵BD ∥AG ,∴四边形ADBG 是平行四边形,∵四边形BEDF 是菱形,∴DE =BE ,∴AE =EB ,∴DE =AE =EB ,∴∠ADE =∠EAD ,∠EDB =∠EBD ,∵∠EAD+∠EDA+∠EDB+∠EBD =180°,∴∠EDA+∠EDB =90°,∴∠ADB =90°,∴四边形ADBG 是矩形,∵BD =2243AB AD -=,∴S 矩形ADBG =AD•DB =163.【点睛】本题考查平行四边形的性质,菱形的性质,矩形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识型.19.(1)等腰直角;(2)结论仍成立,见解析;(3)2或42,17.【解析】【分析】(1)结论:DM ⊥EM ,DM=EM .只要证明△AMH ≌△FME ,推出MH=ME ,AH=EF=EC ,推出DH=DE ,因为∠EDH=90°,可得DM ⊥EM ,DM=ME ;(2)结论不变,证明方法类似;(3)分两种情形画出图形,理由勾股定理以及等腰直角三角形的性质解决问题即可;【详解】解:(1) △AMN ≌ △FME ,等腰直角.如图1中,延长EM 交AD 于H .∵四边形ABCD 是正方形,四边形EFGC 是正方形,∴0ADE DEF 90∠=∠=,AD CD =,∴//AD EF ,∴MAH MFE ∠=∠,∵AM MF =,AMH FME ∠=∠,∴△AMH ≌△FME ,∴MH ME =,AH EF EC ==,∴DH DE =,∵0EDH 90∠=,∴DM ⊥EM ,DM=ME .(2)结论仍成立.如图,延长EM 交DA 的延长线于点H,∵四边形ABCD 与四边形CEFG 都是正方形,∴0ADE DEF 90∠=∠=,AD CD =,∴AD ∥EF,∴MAH MFE ∠=∠.∵AM FM =,AMH FME ∠=∠,∴△AMF ≌△FME(ASA), …∴MH ME =,AH FE=CE =,∴DH DE =.在△DHE 中,DH DE =,0EDH 90∠=,MH ME =,∴=DM EM ,DM ⊥EM.(3)①当E 点在CD 边上,如图1所示,由(1)的结论可得三角形DME 为等腰直角三角形,则DM 的长为2DE 2,此时DE EC DC 532=-=-=,所以2DM =; ②当E 点在CD 的延长线上时,如图2所示,由(2)的结论可得三角形DME 为等腰直角三角形,则DM 2DE ,此时DE DC CE 538=+=+= ,所以42DM = ; ③当E 点在BC 上是,如图三所示,同(1)、(2)理可得到三角形DME 为等腰直角三角形, 证明如下:∵四边形ABCD 与四边形CEFG 都是正方形, 且点E 在BC 上∴AB//EF ,∴HAM EFM ∠=∠,∵M 为AF 中点,∴AM=MF∵在三角形AHM 与三角形EFM 中:HAM EFM AM MFAMH EMF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMH ≌△FME(ASA),∴MH ME =,AH FE=CE =,∴DH DE =.∵在三角形AHD 与三角形DCE 中:090AD DC DAH DCE AH EF =⎧⎪∠=∠=⎨⎪=⎩, ∴△AHD ≌△DCE(SAS),∴ADH CDE ∠=∠,∵∠ADC=∠ADH+∠HDC=90°,∴∠HDE=∠CDE+∠HDC=90°,∵在△DHE 中,DH DE =,0EDH 90∠=,MH ME =,∴三角形DME 为等腰直角三角形,则DM 的长为2DE 2,此时在直角三角形DCE 中2222DE DC CE 5334=+=+= ,所以DM=17【点睛】本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质,灵活运用相关的定理、正确作出辅助线是解题的关键.20.(1)C ;(2)详见解析.【解析】【分析】(1)根据矩形的判定可得答案;(2)利用勾股定理求得AF=5,根据题意可得平行四边形AFF′D 四边都相等,即可得证.【详解】解:(1)由题意可知AD 与EE′平行且相等,∵AE ⊥BC ,∴四边形AEE′D 为矩形故选C ;(2) ∵AD =5,S □ABCD =15,∴AE =3,又∵在图2中,EF =4,∴在Rt △AEF 中,AF 5==,∴AF =AD =5,又∵AF ∥DF′,AF =DF′,∴四边形AFF′D 是平行四边形,又∵AF =AD ,∴四边形AFF′D 是菱形.21.12x x +-,-12【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:原式=22(1)(1)11(2)2x x x x x x x -+-+⋅=---, 当x=0时,原式=-12. 【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22. (1)见解析;(2)见解析;(3)DE=2;(4)DE=1.【解析】【分析】(1)根据两组对边分别平行的四边形是平行四边形进行证明即可得;(2)根据ABCD 为平行四边形,可得AB=CD , AD=BC ,再根据AECF 为平行四边形,可得AF=CE ,AE=FC ,继而可得DE=BF ,根据SSS 即可证明△AFB ≌△CED ;(3)当DE=2时,AECF 为菱形,理由:由AB=DC=2,∠ABC=∠EDC=60°可得△EDC 为等边三角形,继而可得到AE=EC ,根据邻边相等的平行四边形是菱形即可得;(4)当DE=1时,AECF 为矩形,理由:若AECF 为矩形则有∠DEC=90°,再根据DC=2,∠D=60°,则可得∠DCE=30°,继而可得DE=1.【详解】(1)∵ABCD 为平行四边形,∴AD BC ,即AE FC ,又∵AF CE (已知),∴AECF 为平行四边形;(2)∵ABCD 为平行四边形,∴AB CD =, AD BC =,∵AECF 为平行四边形,∴AF CE AE FC ==,,∴DE AD AE BC CF BF =-=-=,在AFB 与CED 中,AB CD AF CE BF DE =⎧⎪=⎨⎪=⎩,∴AFB CED ≌;(3)当DE 2=时,AECF 为菱形,理由如下:∵AB DC 2ABC EDC 60,∠∠====︒,∴EDC 为等边三角形,EC 2=,AE AD ED 2=-=,即:AE EC =,∴平行四边形AECF 为菱形;(4)当DE 1=时,AECF 为矩形,理由如下:若AECF 为矩形得:DEC 90∠=︒,∵DC 2=,D 60∠=︒,∴DCE 30∠=︒,∴DE 1=.【点睛】本题考查了平行四边形的判定与性质、菱形的判定、矩形的判定与性质等,熟练掌握相关的性质与定理是解题的关键.23.(1)王亮5次投篮的平均数为7,方差为0.4,(2)见解析,(3)见解析.【解析】【分析】(1)根据平均数的定义,计算5次投篮成绩之和与5的商即为王亮每次投篮平均数,再根据方差公式计算王亮的投篮次数的方差;根据众数定义,李刚投篮出现次数最多的成绩即为其众数; (2)方差越小,乘积越稳定. (3)从平均数、众数、方差等不同角度分析,可得不同结果,关键是看参赛的需要.【详解】解:(1)王亮5次投篮的平均数为:(6+7+8+7+7)÷5=7个, 王亮的方差为:2222221(67)(77)(87)(77)(77)0.4S ⎡⎤=-+-+-+-+-=⎣⎦.王亮770.4李刚77 2.8(2)两人的平均数、众数相同,从方差上看,王亮投篮成绩的方差小于李刚投篮成绩的方差.所以王亮的成绩较稳定.(3)选王亮的理由是成绩较稳定,选李刚的理由是他具有发展潜力,李刚越到后面投中数越多.【点睛】此题是一道实际问题,考查的是对平均数,众数,方差的理解与应用,将统计学知识与实际生活相联系,有利于培养学生学数学、用数学的意识,同时体现了数学来源于生活、应用于生活的本质.24.(1)见解析;(2)∠BCF=15°【解析】【分析】(1) 利用正方形的性质得出AC⊥DB,BC//AD,再利用平行线的判定与性质结合平行四边形的判定方法得出答案;(2)利用正方形的性质结合直角三角形的性质得出∠OFC=30°,即可得出答案.【详解】解:(1)证明:∵ABCD是正方形,∴AC⊥DB,BC∥AD∵CE⊥AC∴∠AOD=∠ACE=90°∴BD∥CE∴BCED是平行四边形(2)如图:连接AF,∵ABCD是正方形,∴BD⊥AC,BD=AC=2OB=2OC,即OB=OC∴∠OCB=45°∵ Rt △OCF 中, CF=BD=2OC ,∴∠OFC=30°∴∠BCF=60°-45°=15°【点睛】本题考查了正方形的性质以及平行四边形的判定和直角三角形的性质,掌握正方形的性质是解题关键. 25. (1) 94,92.2,93;(2)见解析;(3)92.2.【解析】【分析】(1)求出九(1)班的平均分确定出m 的值,求出九(2)班的中位数确定出n 的值,求出九(2)班的众数确定出p 的值即可;(2)分别从平均分,方差,以及中位数方面考虑,写出支持九(2)班成绩好的原因;(3)用中位数作为一个标准即可衡量是否有一半学生达到优秀等级.【详解】解:(1)九(1)班的平均分=88919293939394989810010+++++++++=94, 九(2)班的中位数为(96+92)÷2=92.2,九(2)班的众数为93,故答案为:94,92.2,93;(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩集中在中上游;③九(2)班的成绩比九(1)班稳定;故支持B 班成绩好;(3)如果九(2)班有一半的学生评定为“优秀”等级,标准成绩应定为92.2(中位数).因为从样本情况看,成绩在92.2以上的在九(2)班有一半的学生.可以估计,如果标准成绩定为92.2,九(2)班有一半的学生能够评定为“优秀”等级,故答案为92.2.【点睛】本题考查了平均数、中位数、众数以及方差的定义,属于统计中的基本题型,需重点掌握.。
赵县五中八年级数学下册 第18章 平行四边形18.2 平行四边形的判定第2课时由对角线判定平行四边形

2x-3y=5, 8.(2019·潍坊)已知关于 x,y 的二元一次方程组x-2y=k 的解 满足 x>y,求 k 的取值范围.
解:2xx--23y=y=k5②①,, ①-②,得 x-y=5-k, ∵x>y,∴x-y>0. ∴5-k>0.解得 k<5
9.(2019·天门)不等式组x5--12>x≥01, 的解集在数轴上表示正确的是( C)
13.如图,▱ ABCD 的对角线相交于点 O,直线 EF 经过点 O,分别与 AB、CD 的延 长线交于点 E、F,求证:四边形 AECF 是平行四边形.
解:证△BOE≌△DOF 或△AOE≌△COF 得 OE=OF,易知 OA=OC, ∴四边形 AECF 是平行四边形.
14.如图,四边形 ABCD 是平行四边形,AE⊥BD,CF⊥BD,垂足分别为 E、F,BG ⊥AC,DH⊥AC,垂足分别为 G、H.判断四边形 GEHF 的形状,并说明理由.
请用这种方法解决下面的问题: 如图,在△ABC 中,AB=AC,延长 AB 到点 D,使 DB=AB,E 是 AB 的中点.求证: CD=2CE.
解:延长 CE 到点 F,使 EF=CE,连结 AF、BF, ∵EF=CE,E 是 AB 的中点,∴四边形 ACBF 是平行四边形, ∴AF 平行且等于 BC,∴∠FAB=∠ABC. ∵AB=AC,∴∠ACB=∠ABC=∠FAB, ∴∠FAC=∠FAB+∠BAC=∠ACB+∠BAC=∠DBC. 又∵AC=AB=BD,AF=BC,∴△AFC≌△BCD(S.A.S.),∴CF=CD=2CE.
解:四边形 BECF 是平形四边形,理由如下:∵CF∥BE,∴∠FCD=∠EBD. ∵D 是 BC 的中点,∴CD=BD.∵∠FDC=∠EDB,∴△CDF≌△BDE(A.S.A.), ∴DF=DE.又∵DC=DB,∴四边形 BECF 是平形四边形.
初中数学八年级下册第十八章《平行四边形》简介

初中数学八年级下册第十八章《平行四边形》简介平行四边形是特殊的四边形。
本章我们在平行线、三角形和四边形的基础上进一步研究平行四边形;并通过平行四边形角、边的特殊化,研究矩形、菱形和正方形等特殊的平行四边形,认识这些概念之间的联系与区别,明确它们的内涵与外延;探索并证明平行四边形、矩形、菱形、正方形的有关性质定理和判定定理,进一步明确命题及其逆命题的关系,不断发展学生的合情推理和演绎推理能力。
本章教学时间约需14课时,具体分配如下(仅供参考):18.1 平行四边形6课时18.2 特殊的平行四边形6课时数学活动小结2课时一、教科书内容和本章学习目标(一)本章知识结构框图(二)教科书内容平行四边形是常见的几何图形,既有丰富的性质,又在现实生活中具有广泛的应用,尤其是矩形、菱形、正方形等特殊平行四边形的性质更加丰富、应用更加广泛。
学生在第一学段已经学习过平行四边形,本学段七年级下册“三角形”一章中研究了多边形及其内角和等内容,包括四边形及其内角和;八年级上册“全等三角形”一章又研究了三角形全等的判定及全等三角形的性质。
这些内容是学习本章的重要基础。
本章引言直接进入特殊的四边形——平行四边形:两组对边分别平行的四边形的学习,在平行四边形的基础上,学习矩形、菱形、正方形这些特殊平行四边形。
“18.1 平行四边形”主要研究平行四边形的概念、性质定理和判定定理;在平行四边形概念和性质的基础上,介绍两条平行线间距离的概念;作为性质定理和判定定理的一个应用,探究并证明三角形中位线定理。
“18.2 特殊的平行四边形”首先研究特殊的平行四边形:矩形和菱形,它们分别是有一个角是直角,或有一组邻边相等的特殊的平行四边形。
18.2.1和18.2.2分别研究矩形和菱形的概念、性质定理和判定定理,在矩形和菱形的基础上,再研究它们的特殊情况:同时具有两个特殊条件的平行四边形:正方形,它是有一个角是直角的特殊菱形,或者是有一组邻边相等的特殊矩形。
人教版数学八年级下册18.2.3《正方形的性质》(第1课时)教案

人教版数学八年级下册18.2.3《正方形的性质》(第1课时)教案一. 教材分析《正方形的性质》是人教版数学八年级下册第18章的一部分,主要让学生掌握正方形的性质,并能够运用这些性质解决实际问题。
本节课的内容包括正方形的四条边相等,四个角都是直角,对角线互相垂直平分且相等,以及正方形的判定方法。
这些内容是学生进一步学习矩形、菱形和正六边形等图形的基础。
二. 学情分析学生在八年级上学期已经学习了矩形的性质,对图形的性质有一定的了解。
但正方形作为一个特殊的矩形,其性质更为特殊,需要学生进一步理解和掌握。
在导入部分,可以利用学生已知的矩形性质,引导学生发现正方形的特殊性质。
三. 教学目标1.了解正方形的性质,能够运用正方形的性质解决实际问题。
2.培养学生的观察能力、推理能力和解决问题的能力。
3.激发学生对数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.正方形的性质的理解和运用。
2.正方形性质的证明和推导。
五. 教学方法采用问题驱动法、合作学习法和引导发现法进行教学。
通过提出问题,引导学生发现正方形的性质;通过合作学习,让学生共同探讨和解决问题;通过引导发现,让学生自主探究正方形的性质。
六. 教学准备1.正方形和矩形的模型或图片。
2.直尺、量角器等测量工具。
3.教学PPT或黑板。
七. 教学过程1.导入(5分钟)利用学生已知的矩形性质,提出问题:“矩形的四个角都是直角,那么正方形的四个角是什么角?”让学生回答,并引导学生发现正方形的特殊性质。
2.呈现(10分钟)展示正方形和矩形的模型或图片,让学生观察并比较它们的性质。
引导学生发现正方形的四条边相等,四个角都是直角,对角线互相垂直平分且相等。
3.操练(15分钟)让学生分组合作,利用直尺、量角器等测量工具,测量和记录正方形和矩形的边长、角度和对角线的长度。
通过实际操作,让学生加深对正方形性质的理解。
4.巩固(10分钟)给出一些实际问题,让学生运用正方形的性质解决。
初中数学人教版八年级下册第十八章 平行四边形18.2 特殊的平行四边形-章节测试习题

章节测试题1.【题文】如图,在△ABC中,AD⊥BC,垂足为D,AD=CD,点E在AD上,DE=BD,M、N分别是AB、CE的中点.(1)求证:△ADB≌△CDE;(2)求∠MDN的度数.【答案】见解析【分析】(1)由垂直的定义得到∠ADB=∠ADC=90°,根据已知条件即可得到结论;(2)根据全等三角形的性质得到∠BAD=∠DCE,根据直角三角形的性质得到AM=DM,DN=CN,由等腰三角形的性质得到∠MAD=∠MDA,∠NCD=∠NDC,等量代换得到∠ADM=∠CDN,即可得到结论.【解答】(1)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°,在△ABD与△CDE中,∵AD=CD,∠ADB=∠ADC,DB=DE,∴△ABD≌△CDE;(2)解:∵△ABD≌△CDE,∴∠BAD=∠DCE,∵M、N分别是AB、CE的中点,∴AM=DM,DN=CN,∴∠MAD=∠MDA,∠NCD=∠NDC,∴∠ADM=∠CDN,∵∠CDN+∠ADN=90°,∴∠ADM+∠ADN=90°,∴∠MDN=90°.2.【题文】已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG且EG⊥CG;(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?【答案】(1)证明见解析;(2)成立,证明见解析;(3)成立,即EG=CG且EG⊥CG.【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.还知道EG⊥CG;【解答】解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴,同理,在Rt△DEF中,,∴CG=EG;(2)(1)中结论仍然成立,即EG=CG;连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,如图所示:在△D AG与△DCG中,∵AD=CD,∠ADG=∠CDG,DC=DC,∴△DAG≌△DCG,∴AG=CG,在△DMG与△FNG中,∵∠DGM=∠FGN,DG=FG,∠MDG=∠NFG,∴△DMG≌△FNG,∴MG=NG,在矩形AENM中,AM=EN.,在Rt△AMG与Rt△ENG中,∵AM=EN,MG=NG,∴△AMG≌△ENG,∴AG=EG,∴EG=CG,(3)(1)中的结论仍然成立,即EG=CG且EG⊥CG。
18.2.3正方形的性质及判定

有一个角是直角的菱形叫做正方形 对角线垂直并且相等的平行四边形叫做正方形
2.备选题:
(1)如右图,正方 形ABCD中,∠DAF=25°, AF交对角线BD于F,求 ∠BEC的度数.
(2)如右图,正方 形ABCD中,AC交BD于O, 点M、N分别在AC、BD上, 且OM=ON.求证: BM=CN.
(3)如右图,E是正方 形ABCD内一点,并且 EC=AB=BE,求∠DEC的度 数. (4)如右图,正方形 纸片ABCD的BC边上有一点 E,AE=10cm,若把纸片沿 AE的中垂线折叠,使点E和 点A重合,你能求出纸片上 折痕MN的长吗?解释你的 方法.
1. 正方形的两条对角线把这个正方形分成四 个全等的等腰直角三角形.
已知:四边形ABCD是正方形, 对角线AC、BD相交于点O(如 图). 求证:△ABO、△BCO、△CDO、 △DAO是全等的等腰直角三角形.
A
D
O
B C
证明:∵四边形ABCD是正方形, ∴AC=BD, AC⊥BD, AO=CO=BO=DO, ∴△ABO、△BCO、△CDO、△DAO 都是等腰直角三角形, 并且 △ABO ≌△BCO≌△CDO≌△DAO.
3.已知:点E、F、G、 H分别是正方形ABCD四 条边上的中点,并且E、F、 G、H分别是AB、BC、 CD、AD的中点.求证:四 边形EFGH是正方形.
A E B
H
D G
F
C
四、小
结
正方形的性质: (1)对边平行 边 (2)四边相等 (3)四个角都是直角 正方形 (4)对角线相等 互相垂直 对角线 互相平分 平分一组对角 邻边相等的矩形叫做正方形 正方形的判定:
(三).正方形的判定: 猜想:根据正方形的定义和性质,你认为有几种方法可 以判定一个四边形是正方形。