1对称、平移和旋转
平移旋转与对称

平移旋转与对称平移、旋转和对称是几何学中常见的变换形式,在数学中有着重要的应用和研究价值。
本文将介绍平移、旋转和对称的基本概念、性质以及它们之间的关系。
一、平移平移是指将一个图形在平面上沿着某个方向移动一定的距离,移动后的图形与原来的图形形状完全相同。
我们可以通过向量来描述平移。
设有平面上的一点A,平移的向量为v,则A点平移后得到的点A'可表示为A + v。
简单来说,平移是保持形状不变的移动。
平移的性质:1. 平移不改变图形的形状和大小,只改变图形的位置。
2. 平移保持图形上的任意两点之间的距离和夹角不变。
3. 平移具有可逆性,即可以通过反向平移将图形移回原来的位置。
二、旋转旋转是指将一个图形绕着某个点或某条线旋转一定的角度,使得旋转后的图形在形状上与原来的图形相似。
我们可以通过旋转矩阵来描述旋转变换。
设有平面上的一点A,绕O点逆时针旋转θ度后得到的点A'可表示为:[x' y'] = [cosθ -sinθ] [x - x0] + [x0][y - y0]其中(x0, y0)为旋转中心坐标。
旋转的性质:1. 旋转不改变图形的大小,只改变图形的位置和方向。
2. 绕同一个点旋转的图形之间的大小和形状相似。
3. 旋转保持图形上的任意两点之间的距离和夹角不变。
4. 旋转也具有可逆性,即可以通过逆时针旋转将图形旋转回原来的位置。
三、对称对称是指将一个图形中的点绕着一个轴进行翻转,使得翻转后的图形与原来的图形完全重合。
我们可以通过对称轴来描述对称变换。
设有平面上的一点A,关于对称轴l对称后得到的点A'可表示为A' = 2l - A。
简单来说,对称是保持形状不变的镜像变换。
对称的性质:1. 对称不改变图形的大小和方向,只改变图形的位置。
2. 关于直线对称的图形之间的大小和形状完全相同。
3. 对称保持图形上的任意两点关于对称轴的距离不变。
4. 对称具有可逆性,即可以通过再次对称将图形还原到原来的位置。
图形的平移、旋转与轴对称单元知识点总结

二、图形的平移、旋转与轴对称1.图形的平移●平移的定义:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定距离的图形运动。
●平移两要素:平移的方向、平移的距离●平移前的图形:画虚线;箭头:表示平移的方向;平移后的图形:画实线。
●注意:平移几格不是原图形与平移后图形之间的格数,而是指图形的对应点之间的格数。
●关键点:一般是图形的各顶点或线段的交点。
●注意:平移前后,图形的大小、形状、方向都不变,只是位置变了。
●画平移后图形的方法:①找关键点②定平移方向、距离③找对应点④依次连线。
2.图形的旋转●旋转的定义:旋转是指在平面内,将某个图形绕一个定点沿某个方向旋转一个角度的图形运动。
这个定点称为旋转中心,旋转的角度称为旋转角度。
●旋转三要素①旋转中心:点/轴②旋转方向:顺时针方向/逆时针方向③旋转角度●怎样描述图形的旋转:将某图形绕某点沿某时针方向旋转某度到某位置。
●画旋转后图形的方法:①找旋转中心②找准关键线段③旋转关键线段④画出旋转后的图形●旋转中心:一般是两个图形的公共点●关键线段:过旋转中心的线段。
为了保证旋转角度,一般选与方格纸重合的线段作为关键线段。
●注意:旋转前后,图形的大小、形状都不发生改变,但位置和方向一般会发生变化。
3.轴对称图形●定义:轴对称图形沿一条直线对折后,两部分能完全重合,折痕所在的直线叫做它的对称轴(对称轴画虚线,画超出图形)。
●轴对称图形至少有一条对称轴。
●轴对称图形中每一组对称点到对称轴的距离相等。
●轴对称图形中对称点的连线与对称轴互相垂直。
●轴对称图形和对称轴的数量:①正方形(4条对称轴)②长方形(2条对称轴)③等腰三角形(1条对称轴)④等边三角形也叫正三角形(3条对称轴)⑤菱形(2条对称轴)⑥圆形(无数条对称轴)⑦等腰梯形(1条对称轴)⑧五角星(5条对称轴)⑨正五边形(5条对称轴)●生活中的轴对称图形或轴对称现象:京剧脸谱、剪纸、国徽、天坛、北京故宫、凯旋门、蝴蝶、空调、人的五官和身体等●画对称轴的方法:①找一组对应点②画对应点间线段的中垂线③画虚线●画轴对称图形另一半的方法:①找关键点②定对称点③依次连线(一般画虚线)4.设计图案●利用平移设计图案的方法:①选好基本图形②确定平移的方向③确定平移的距离④进行多次平移●利用旋转设计图案的方法:①选和基本图形②确定旋转方向和角度③确定旋转中心④依次画出每次旋转后的图形●利用轴对称设计图案的方法:①选好基本图形②确定对称轴③画出基本图形的另一半5.探索规律●观察图形变化时,先确定变化方式(平移、旋转或轴对称),再确定位置变化的规律。
平移旋转和对称的基本概念

平移旋转和对称的基本概念平移、旋转和对称是数学中的基本概念,它们在几何学、代数学以及实际生活中具有重要的应用。
本文将通过解释这些概念的意义和原理,以及它们在不同领域的应用,来帮助读者更好地理解和运用这些数学概念。
1. 平移的概念与应用平移是指在平面上将一个图形移动到另一个位置,移动的距离和方向保持不变。
例如,我们可以将一个正方形从原来的位置移动到其他位置,而它的边长、面积和角度并不改变。
平移可以用向量来表示,通过将所有的点都按照相同的向量进行平移即可。
平移在几何学中有广泛的应用。
例如,在设计建筑物时,建筑师可以通过平移来确定各个房间的位置和相对位置,从而在平面上合理地布局。
另外,在计算机图形学中,平移也是实现图像移动和交互的重要手段,通过改变图像的位置实现动画效果。
2. 旋转的概念与应用旋转是指以某个中心点为基准,将图形按照一定角度旋转。
旋转使得图形的形状保持不变,只是在空间中发生了位置的改变。
旋转可以用角度来表示,通过将图形中的每个点绕着中心点旋转相同的角度即可。
旋转在几何学中也有很多应用。
在地理学中,地球的自转和公转使得我们能够感知到昼夜的变化和季节的交替。
在艺术作品和设计中,旋转被广泛地运用,例如一幅画中的旋转图案或者轮廓线。
3. 对称的概念与应用对称是指一个图形在某个中心点或者轴线的两侧是完全相同的。
简单来说,我们可以把一个图形沿着中心点或轴线对折,两边的形状是相同的,就可以说这个图形具有对称性。
对称可以分为平面对称和轴对称。
对称在几何学和物理学中有广泛的应用。
在几何学中,对称是图形重要特征之一,通过对称性质可以简化计算和分析。
在物理学中,许多物理现象都具有对称性,例如轨道运动、电磁场分布等,通过对称性原理可以简化实际问题的求解。
通过对平移、旋转和对称的解释和应用,我们不仅能够更好地理解和运用这些基本概念,还能够在实际生活中发现它们的应用。
几何学中的这些基本概念贯穿了数学的各个领域,并且具有广泛的实际应用,对我们的日常生活和学习有着重要的影响。
几何变换的特点认识平移旋转和对称的性质

几何变换的特点认识平移旋转和对称的性质几何变换的特点:认识平移、旋转和对称的性质几何变换是数学中对图形进行变换、移动或者改变形状的操作。
它是研究几何性质和图像的重要方法之一。
本文将重点讨论几何变换中的平移、旋转和对称三种基本变换,并阐述它们的特点和性质。
一、平移平移是指将图形在平面上沿着某个方向移动一定的距离,保持图形内部各点之间的相对位置不变。
平移的特点有:1. 平移是保形变换,即图形的形状不发生改变,只是位置发生了移动。
例如,一个正方形经过平移后仍然是一个正方形。
2. 平移是等距变换,即原图形和移动后的图形之间的距离保持不变。
例如,一个直角三角形经过平移后,各边之间的夹角大小不变。
3. 平移满足能够叠加的性质,即若干次平移变换的次序可以改变,但最终的结果是相同的。
例如,图形先向右平移再向上平移,与先向上平移再向右平移的结果是相同的。
二、旋转旋转是指将图形围绕某个点进行旋转,使得图形的各点相对于旋转中心点保持一定的角度不变。
旋转的特点有:1. 旋转同样是保形变换,即图形的形状不发生改变,只是位置和旋转方向发生变化。
例如,一个正三角形经过旋转后仍然是一个正三角形。
2. 旋转是等角变换,即旋转前后的角度大小保持不变。
例如,一个矩形经过旋转后,各个顶点之间的角度大小仍然相等。
3. 旋转也满足能够叠加的性质,即若干次旋转变换的次序可以改变,但最终的结果是相同的。
例如,图形先顺时针旋转90°再逆时针旋转90°,与先逆时针旋转90°再顺时针旋转90°的结果是相同的。
在旋转中,旋转中心点的选择对于结果有重要影响。
三、对称对称是指图形围绕某条直线或者点对称,使得图形在这条直线或者点上的两侧是完全相同的。
对称的特点有:1. 对称是保形变换,即图形的形状不发生改变,只是位置发生了变化。
例如,一个圆经过对称后仍然是一个圆。
2. 对称是等距变换,即对称前后图形内部各点之间的距离保持不变。
平移旋转与对称平移旋转与对称的定义与性质

平移旋转与对称平移旋转与对称的定义与性质平移、旋转和对称是几何学中重要的概念和操作。
它们是描述和变换图形位置和形状的基本工具。
本文将详细介绍平移、旋转和对称的定义及其性质。
一、平移的定义与性质平移是指将一个图形沿着一定方向移动一定距离,而不改变其形状和方向。
下面是平移的定义与性质:定义:平移是指将一个图形中的所有点,按照同样的方向和距离,同时保持相对位置的变换操作。
性质:1. 平移不改变图形的大小、形状和方向。
2. 平移后的图形与原图形之间的对应关系保持不变。
3. 平移是一个向量运算,可以用向量表示平移的方向和距离。
4. 任意两个平移可以合成为一个平移。
二、旋转的定义与性质旋转是指将一个图形绕着某个固定点旋转一定角度,使得旋转后的图形与原图形相似但方向和位置发生变化。
下面是旋转的定义与性质:定义:旋转是指将一个图形绕着固定点旋转一定角度,使得旋转前后图形中的对应点的距离保持不变。
性质:1. 旋转不改变图形的大小、形状和方向。
2. 旋转后的图形与原图形之间的对应关系保持不变。
3. 旋转可以按顺时针或逆时针方向进行。
4. 旋转是一个变换操作,可以用旋转中心和旋转角度来描述。
三、对称的定义与性质对称是指将一个图形分割成两个部分,使得两个部分关于某条直线、点或中心对称。
下面是对称的定义与性质:定义:对称是指将一个图形按照某个轴线或点进行折叠或旋转,使得折叠或旋转后的图形与原图形重合。
性质:1. 对称不改变图形的大小、形状和方向。
2. 对称后的图形与原图形之间的对应关系保持不变。
3. 图形关于对称轴对称时,对称轴上的点不动;图形关于对称中心对称时,对称中心不动。
4. 对称操作是可逆的,即对称两次会得到原来的图形。
综上所述,平移、旋转和对称是几何学中常用的图形变换操作。
它们各自有着特定的定义和性质,可以描述和变换图形的位置和形状。
理解和掌握平移、旋转和对称的定义与性质,将有助于我们在解决几何问题和应用几何知识时进行准确的操作和分析。
平移旋转与对称

平移旋转与对称平移、旋转与对称一、引言平移、旋转与对称是几何学中常见且重要的概念,它们在数学、物理学、计算机图形学等领域中具有广泛的应用。
本文将从数学的角度介绍平移、旋转与对称的基本概念、性质和应用。
二、平移1. 平移的定义平移是指在平面上将一个图形沿着某个方向移动一段距离,而不改变其形状、大小和方向。
形式化地说,平移是通过一个向量来描述的,该向量表示了平移的方向和距离。
2. 平移的性质- 平移不改变图形的面积和内角和。
- 平移保持图形的等边性,即等边图形在平移后仍然是等边图形。
- 平移保持图形的平行性,即平行线在平移后仍然是平行线。
3. 平移的应用- 平移在几何学中常用于构造等边多边形、拼图等问题。
- 平移在计算机图形学中广泛应用于图形的移动和动画效果的实现。
- 平移在物理学中用于描述质点在空间中的位移。
三、旋转1. 旋转的定义旋转是指在平面上围绕某个中心点将一个图形按照一定的角度转动,而不改变其形状、大小和面积。
旋转可以通过一个角度和一个旋转中心来完全描述。
2. 旋转的性质- 旋转不改变图形的面积和内角和。
- 旋转保持图形的对称性,即旋转图形的对称轴仍然是旋转后图形的对称轴。
- 旋转保持图形的相似性,即相似图形在旋转后仍然是相似图形。
3. 旋转的应用- 旋转在几何学中用于构造正多边形、旋转体等问题。
- 旋转在计算机图形学中广泛应用于图形的旋转变换和特效的实现。
- 旋转在物理学和力学中用于描述刚体的转动和角速度问题。
四、对称1. 对称的定义对称是指在平面上沿着某条线、点或面将一个图形折叠,使得折叠前后的图形完全重合,或者称为对称轴或对称中心。
根据对称的方式可以分为线对称和点对称。
2. 对称的性质- 对称不改变图形的面积和内角和。
- 线对称保持图形的形状和大小不变,点对称既保持形状和大小也保持方向不变。
- 对称保持图形的对称性,即对称图形的对称轴或对称中心仍然是对称后图形的对称轴或对称中心。
3. 对称的应用- 对称在几何学中用于构造对称多边形、折纸等问题。
《对称、平移和旋转》教学设计一等奖

《对称、平移和旋转》教学设计一等奖1、《对称、平移和旋转》教学设计一等奖教学目标:1、让学生经历长方形、正方形等轴对成图形各有几条对称轴的探索过程,会画简单的几何图形的对称轴,并借此加深对轴对称图形特征的认识。
2、让学生在学习过程中进一步增强动手实践能力,发展空间观念,培养审美情操,增加学习数学的兴趣。
教学重点:经历发现长方形、长方形对称轴条数的过程。
教学难点:画平面图形的对称轴。
教学准备:p.119的图,剪刀、尺等教学过程:一、认识四边形的对称轴:1、取一张长方形纸,请学生说说长方形的特点。
对折,画出它的对称轴。
交流:你是怎么画的?强调:对称轴要用点划线来画,长方形有2条对称轴。
问:这条对角线是不是它的对称轴?为什么?2、用一张正方形纸对折,并画出它的对成轴。
交流:你画了几条对称轴?3、长方形和正方形都是特殊的四边形。
四边形中还有哪几种你叫得出名的图形?它们也都是轴对称图形吗?各有几条对称轴?请你把剪下来的平行四边形、菱形、直角梯形、等腰梯形分别都折一折、画一画。
交流:平行四边形不是轴对称图形。
菱形可以理解为平行四边形,它有2条对称轴。
直角梯形不是轴对称图形。
等腰梯形有1条对称轴。
适当板书,并请学生看板书说一说。
4、认识三角形的对称情况:三角形是对称图形吗?请你用准备好的三角形,折一折、画一画。
交流:一般的三角形不是轴对称图形。
等腰三角形有1条对称轴。
等边三角形有3条对称轴。
问:你发现了什么?(要有同样的边长才有轴对称的可能。
)二、练习:1、下面的图形都是轴对称图形吗?是轴对称图形的各有几条对称轴?试着把它们画出来。
几点注意:(1)点划线是直线,要画出头;(2)要画全。
(3)第3张图转过来看,并不对称,所以要主要仔细观察。
第四张图,可先选一个叶片画出来,再画出它对称的另一半,通过观察,了解它是旋转后得到的.,并不是对称的。
2、画出下面每个图形的另一半,使它成为一个轴对称图形。
3、先画出下面每个图形的对称轴,再交流。
三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

第6讲平移、旋转及轴对称一、思维导图二、知识点梳理知识点一:平移在同一平面内,物体或图形沿着某一直线方向运动的现象叫做平移。
平移时物体或图形的形状、大小和方向没有变化,只是位置改变了。
知识点二:旋转物体或图形绕一个点或一个轴运动的现象叫做旋转。
旋转时物体或图形的形状和大小不变,其自身的运动方向发生了变化。
注意:旋转分为顺时针旋转和逆时针旋转。
知识点三:轴对称图形一个图形沿着一条直线对折后,折痕两边的部分能够完全重合的图形就是轴对称图形。
轴对称图形沿对称轴对折后,两边能够完全重合,即对称的点、对称的线段都能够完全重合,对称点到对称轴的距离相等。
三、例题精讲考点一:平移和旋转1.能够通过下图平移得到的图形是()。
A.B.C.D.2.在括号中填“平移”或“旋转”。
(1)小明进教室开门时,门的运动是()。
(2)小丽拧开纯净水瓶盖,瓶盖的运动是()。
(3)小红拉开窗帘,窗帘的运动是()。
(4)老师将课桌拖到最后一排,桌子的运动是()。
3.观察下面的图形,然后填空。
(1)小汽车向()平移了()格。
(2)小船向()平移了()格。
(3)飞机向()平移了()格。
4.如图所示。
(1)小狗先向左走4格,再向下走6格,它能吃到肉骨头吗?如果能,请你把小狗的行走过程在方格中画出来;如果不能,请你帮小狗设计一个正确的行走方案。
(2)小狗吃完肉骨头后接着想去吃大鸡腿,它应该怎么走?考点二:轴对称图形5.图形是从()对折的纸上剪下来的。
A.B.C.D.6.如图,一个大正方形被分成16个大小相同的小正方形,其中四个小正方形已涂成阴影,若再将一个小正方形涂成阴影,使所有阴影区域构成轴对称图形,则这个小正方形的编号为()。
7.拿一张长纸条,将它一反一正折叠起来,并画出字母E。
用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图。
观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?8.(1)下面五个图形中,是轴对称图形的有()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对称、平移和旋转(1)
主备人:居述明审查人:徐宏臻复备人
学习内容:四年级下册第62~63页
学习目标:
1、使学生进一步认识轴对称图形的对称轴,体会轴对称图形的特征,会画一些
简单轴对称图形的对称轴。
2、使学生初步学会利用对称轴把一个对称图形画完整,进一步把握对称图形的
特征,发展空间观念。
学习过程:
一、独立尝试
1、复习
下面图形中,轴对称图形是()非轴对称的图形是()
①②③④⑤
2、预习
(1)拿出一张长方形纸先对折,再用点划线画出它的对称轴。
(2)黑板的表面是一个长方形,它能够通过对折的方法找到对称轴吗?
如果要画出它的对称轴你有什么办法?
长方形有()条对称轴。
(3)请用一张正方形纸对折,并画出它的对称轴
正方形有()条对称轴。
质疑:你还有什么疑问
二、合作交流
1、交流复习题,说说找到了哪些轴对称图形?对称轴在哪里?
2、交流预习题中长方形和正方形对称轴的画法。
三、巩固提升
1、“想想做做”第1题
()是轴对称图形;等腰三角形有
()条对称轴,等腰梯形有()条对称轴,菱形有()条对称轴。
2、“想想做做”第2题
题中的图形都是轴对称图形吗? 第几个图形不是轴对称图形,为什么? 请画出每个轴对称图形的对称轴。
3、“想想做做”第3题
先在对称轴的另一边确定几个关键点的对应点,再连图。
讨论:怎样画出一个轴对称图形的另一半?
4、“想想做做”第4题
每个图形各画了几条对称轴?
你发现了什么?
⑷一个正八边形,它有()条对称轴,一个正12边形,它有()条对
称轴,一个正n边形,它有()条对称轴.
四、回顾反思
你有什么收获?有什么疑问?
五、课后作业
在方格纸纸上设计一个轴对称图形,并画出它的对称轴。