2019版高考数学(理)大一轮复习人教版第六章数列第1节数列的概念及简单表示法

合集下载

第六章数列与数学归纳法

第六章数列与数学归纳法

第六章⎪⎪⎪数列与数学归纳法第一节数列的概念与简单表示法1.数列的有关概念n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.4.数列的分类[小题体验]1.已知数列{a n }的前4项为12,34,78,1516,则数列{a n }的一个通项公式为________.答案:a n =2n -12n (n ∈N *)2.已知数列{a n }中,a 1=1,a n +1=a n2a n +3,则a 5等于________. 答案:11613.(教材改编题)已知数列{a n }的前n 项和为S n ,若S n =3n -1,则a n =________. 答案:2×3n -11.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.2.易混项与项数的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.3.在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.[小题纠偏]1.已知S n 是数列{a n }的前n 项和,且S n =n 2+1,则数列{a n }的通项公式是________.答案:a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥22.数列{a n }的通项公式为a n =-n 2+9n ,则该数列第________项最大. 答案:4或5考点一 由数列的前几项求数列的通项公式(基础送分型考点——自主练透)[题组练透]1.(2019·温岭模拟)将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为梯形数,根据图形的构成,此数列的第2 018项与5的差即a 2 018-5=( )A .2 017×2 024B .2 017×1 012C .2 018×2 024D .2 018×1 012解析:选B 结合图形可知,该数列的第n 项为a n =2+3+4+…+(n +2),所以a 2 018-5=4+5+6+…+2 020=2 017×(2 020+4)2=2 017×1 012.2.根据数列的前几项,写出各数列的一个通项公式: (1)4,6,8,10,…;(2)(易错题)-11×2,12×3,-13×4,14×5,…; (3)-1,7,-13,19, …; (4)9,99,999,9 999,….解:(1)各数都是偶数,且最小为4,所以它的一个通项公式a n =2(n +1),n ∈N *. (2)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式a n =(-1)n ×1n (n +1),n ∈N *.(3)这个数列,去掉负号,可发现是一个等差数列,其首项为1,公差为6,所以它的一个通项公式为a n =(-1)n (6n -5),n ∈N *.(4)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1,n ∈N *.[谨记通法]由数列的前几项求数列通项公式的策略(1)根据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征,并对此进行归纳、联想,具体如下:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项符号特征等.(2)根据数列的前几项写出数列的一个通项公式是利用不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n 或(-1)n+1来调整.考点二 由a n 与S n 的关系求通项a n (重点保分型考点——师生共研)[典例引领]已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式. (1)S n =n 2+1; (2)S n =2n -a n .解:(1)a 1=S 1=1+1=2,当n ≥2时,a n =S n -S n -1=n 2+1-(n -1)2-1=2n -1,而a 1=2,不满足此等式.所以a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.(2)当n =1时,S 1=a 1=2-a 1,所以a 1=1;当n ≥2时,a n =S n -S n -1=(2n -a n )-[2(n -1)-a n -1]=2-a n +a n -1, 即a n =12a n -1+1,即a n -2=12(a n -1-2).所以{a n -2}是首项为a 1-2=-1,公比为12的等比数列,所以a n -2=(-1)·⎝⎛⎭⎫12n -1, 即a n =2-⎝⎛⎭⎫12n -1.[由题悟法]已知S n 求a n 的 3个步骤 (1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.[即时应用]已知数列{a n }的前n 项和为S n . (1)若S n =(-1)n +1·n ,求a 5+a 6及a n ;(2)若a n >0,S n >1,且6S n =(a n +1)(a n +2),求a n . 解:(1)a 5+a 6=S 6-S 4=(-6)-(-4)=-2, 当n =1时,a 1=S 1=1; 当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1)=(-1)n +1·[n +(n -1)]=(-1)n +1·(2n -1),又a 1也适合此式, 所以a n =(-1)n +1·(2n -1).(2)当n =1时,a 1=S 1=16(a 1+1)(a 1+2),即a 21-3a 1+2=0.解得a 1=1或a 1=2.因为a 1=S 1>1,所以a 1=2.当n ≥2时,a n =S n -S n -1=16(a n +1)(a n +2)-16(a n -1+1)(a n -1+2),所以(a n -a n -1-3)(a n+a n -1)=0.因为a n >0,所以a n +a n -1>0, 所以a n -a n -1-3=0,所以数列{a n }是以2为首项,3为公差的等差数列. 所以a n =3n -1.考点三 由递推关系式求数列的通项公式(题点多变型考点——多角探明) [锁定考向]递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项,只是由递推公式确定数列中的项时,不如通项公式直接.常见的命题角度有: (1)形如a n +1=a n f (n ),求a n ; (2)形如a n +1=a n +f (n ),求a n ;(3)形如a n +1=Aa n +B (A ≠0且A ≠1),求a n .[题点全练]角度一:形如a n +1=a n f (n ),求a n 1.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),求数列{a n }的通项公式. 解:∵a n =n -1n a n -1(n ≥2), ∴a n -1=n -2n -1a n -2,a n -2=n -3n -2a n -3,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时,a 1=1,上式也成立. ∴a n =1n(n ∈N *).角度二:形如a n +1=a n +f (n ),求a n2.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),求数列{a n }的通项公式. 解:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2). 以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足此式, ∴a n =n 2+n 2(n ∈N *).角度三:形如a n +1=Aa n +B (A ≠0且A ≠1),求a n3.已知数列{a n }满足a 1=1,当n ≥2,n ∈N *时,有a n =2a n -1-2,求数列{a n }的通项公式.解:因为a n =2a n -1-2,所以a n-2=2(a n-1-2).所以数列{a n-2}是以a1-2=-1为首项,2为公比的等比数列.所以a n-2=(-1)×2n-1,即a n=2-2n-1.[通法在握]典型的递推数列及处理方法[演练冲关]根据下列条件,求数列{a n}的通项公式.(1)a1=1,a n+1=a n+2n(n∈N*);(2)a1=1,2na n+1=(n+1)a n(n∈N*);(3)a1=1,a n=3a n-1+4(n≥2).解:(1)由题意知a n+1-a n=2n,a n=(a n-a n-1)+(a n-1-a n-2)+…+(a2-a1)+a1=2n-1+2n-2+…+2+1=1-2n1-2=2n-1.(2)由2na n+1=(n+1)a n,得a n+1a n=n+12n.所以a n=a na n-1·a n-1a n-2·a n-2a n-3·…·a2a1·a1=n2(n-1)·n-12(n-2)·n-22(n-3)·…·22×1×1=n2n-1.(3)因为a n=3a n-1+4(n≥2),所以a n+2=3(a n-1+2).因为a1+2=3,所以{a n+2}是首项与公比都为3的等比数列.所以a n+2=3n,即a n=3n-2.一抓基础,多练小题做到眼疾手快1.(2018·嘉兴七校联考)已知数列{a n}的通项公式为a n=n2+n,则a5=() A.25B.30C .10D .12解析:选B 因为a n =n 2+n ,所以a 5=25+5=30.2.(2018·浙江三地联考)已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n (n ∈N *),则数列{a n }的通项公式a n =( )A .2nB .2n -1C .2n -1-1D.⎩⎪⎨⎪⎧1,n =1,2n ,n ≥2解析:选B 由log 2(S n +1)=n 可得S n =2n -1.当n ≥2时,a n =S n -S n -1=2n -1-(2n-1-1)=2n -1;当n =1时,a 1=S 1=21-1=1满足上式.所以数列{a n }的通项公式a n =2n -1.3.(2018·衢州模拟)已知数列{a n }满足:a 1=1,a n +1=2a na n +2,则数列{a n }的通项公式a n 为( )A.1n +1B.2n +1 C.1n D.2n解析:选B 由a n +1=2a n a n +2可得1a n +1=a n +22a n =1a n +12. 所以数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,公差为12的等差数列,所以1a n =n +12,即a n =2n +1.4.(2018·诸暨模拟)已知数列{a n }中,对任意的p ,q ∈N *都满足a p +q =a p a q ,若a 1=-1,则a 9=________.解析:由题可得,因为a 1=-1,令p =q =1,则a 2=a 21=1;令p =q =2,则a 4=a 22=1;令p =q =4,则a 8=a 24=1,所以a 9=a 8+1=a 1a 8=-1.答案:-15.(2019·杭州模拟)设数列{a n }的前n 项和S n =n 2,则a 8=________,a 2+a 3+a 4=________.解析:因为S n =n 2,所以a 8=S 8-S 7=82-72=15,a 2+a 3+a 4=S 4-S 1=42-1=15. 答案:15 15二保高考,全练题型做到高考达标1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( ) A.(-1)n +12B .cos n π2C .cos n +12πD .cos n +22π解析:选D 令n =1,2,3,…,逐一验证四个选项,易得D 正确.2.(2019·天台模拟)已知数列{a n }的前n 项和S n ,且满足S n =2a n -3(n ∈N *),则S 6=( ) A .192 B .189 C .96D .93解析:选B 因为S n =2a n -3,当n =1时,S 1=2a 1-3=a 1,解得a 1=3.当n ≥2时,a n =S n -S n -1=2a n -3-2a n -1+3=2a n -2a n -1,解得a na n -1=2.所以数列{a n }是首项为3,公比为2的等比数列,所以S 6=3(1-26)1-2=189.3.设数列{a n }的前n 项和为S n ,且S n +S n +1=a n +1(n ∈N *),则此数列是( ) A .递增数列 B .递减数列 C .常数列D .摆动数列解析:选C 因为S n +S n +1=a n +1,所以当n ≥2时,S n -1+S n =a n ,两式相减,得a n+a n +1=a n +1-a n ,所以有a n =0.当n =1时,a 1+a 1+a 2=a 2,所以a 1=0.所以a n =0.即数列是常数列.4.(2019·绍兴模拟)已知数列{a n }的通项公式a n =1n +n +1,若该数列的前n 项和为10,则项数n 的值为( )A .11B .99C .120D .121解析:选C 因为a n =1n +n +1=n +1-n ,所以该数列的前n 项和S n =n +1-1=10,解得n =120.5.(2018·丽水模拟)数列{a n }满足a n +1=⎩⎨⎧2a n,0≤a n<12,2a n-1,12≤a n<1,若a 1=35,则a 2 018=( )A.15B.25C.35D.45解析:选A 由a 1=35∈⎣⎡⎭⎫12,1,得a 2=2a 1-1=15∈⎣⎡⎭⎫0,12,所以a 3=2a 2=25∈⎣⎡⎭⎫0,12,所以a 4=2a 3=45∈⎣⎡⎭⎫12,1,所以a 5=2a 4-1=35=a 1.由此可知,该数列是一个周期为4的周期数列,所以a 2 018=a 504×4+2=a 2=15.6.(2019·镇海模拟)已知数列{a n }满足a 1=2,a n +1=a 2n (a n >0,n ∈N *),则数列{a n }的通项公式a n =________.解析:对a n +1=a 2n 两边取对数,得log 2a n +1=log 2a 2n =2log 2a n .所以数列{log 2a n }是以log 2a 1=1为首项,2为公比的等比数列,所以log 2a n =2n -1,所以a n =22n -1.答案:22n -17.(2018·海宁模拟)已知数列{a n }满足a n +1+a n =2n -1,则该数列的前8项和为________.解析:S 8=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=1+5+9+13=28. 答案:288.在一个数列中,如果对任意的n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析:依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.答案:289.已知数列{a n }满足a 1=1,a n =3n -1+a n -1(n ≥2,n ∈N *).(1)求a 2,a 3的值; (2)证明:a n =3n -12.解:(1)因为a 1=1,a n =3n -1+a n -1(n ≥2,n ∈N *),所以a 2=32-1+1=4,a 3=33-1+a 2=9+4=13.(2)证明:因为a n =3n -1+a n -1(n ≥2,n ∈N *),所以a n -a n -1=3n -1,所以a n =(a n -a n -1)+(a n -1-a n -2)+(a n -2-a n -3)+…+(a 2-a 1)+a 1 =3n -1+3n -2+…+3+1=3n -12(n ≥2,n ∈N *).当n =1时,a 1=3-12=1满足条件. 所以当n ∈N *时,a n =3n -12.10.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0, 解得1<n <4.因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实数k 的取值范围为(-3,+∞). 三上台阶,自主选做志在冲刺名校1.已知数列{a n }的通项公式为a n =(-1)n ·2n +1,该数列的项排成一个数阵(如图),则该数阵中的第10行第3个数为________.a 1 a 2 a 3 a 4 a 5 a 6 ……解析:由题意可得该数阵中的第10行、第3个数为数列{a n }的第1+2+3+…+9+3=9×102+3=48项,而a 48=(-1)48×96+1=97,故该数阵第10行、第3个数为97.答案:972.(2018·温州模拟)设函数f (x )=log 2x -log x 4(0<x <1),数列{a n }的通项公式a n 满足f (2a n )=2n (n ∈N *).(1)求数列{a n }的通项公式; (2)判定数列{a n }的单调性.解:(1)因为f (x )=log 2x -log x 4(0<x <1),f (2a n )=2n (n ∈N *) , 所以f (2a n )=log 22a n -log2a n 4=a n -2a n=2n ,且0<2a n <1, 解得a n <0.所以a n =n -n 2+2.(2)因为a n +1a n =(n +1)-(n +1)2+2n -n 2+2=n +n 2+2n +1+(n +1)2+2<1.因为a n <0,所以a n +1>a n . 故数列{a n }是递增数列.第二节等差数列及其前n 项和1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.[小题体验]1.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. 答案:102.(2018·温州模拟)已知等差数列{a n }的前n 项和为S n ,若a 3=5,a 5=3,则a n =________;S 7=________.答案:-n +8 283.(2018·温州十校联考)在等差数列{a n }中,若a 3+a 4+a 5=12,则S 7=______.答案:281.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件.[小题纠偏]1.首项为24的等差数列,从第10项开始为负数,则公差d 的取值范围是( ) A .(-3,+∞) B.⎝⎛⎭⎫-∞,-83 C.⎝⎛⎭⎫-3,-83 D.⎣⎡⎭⎫-3,-83 答案:D2.(2018·湖州模拟)设等差数列{a n }的前n 项和为S n ,已知a 3=16,a 6=10,则公差d =________;S n 取到最大时的n 的值为________.解析:因为数列{a n }是等差数列,且a 3=16,a 6=10,所以公差d =a 6-a 36-3=-2,所以a n =-2n +22,要使S n 能够取到最大值,则需a n =-2n +22≥0,所以解得n ≤11.所以可知使得S n 取到最大时的n 的值为10或11.答案:-2 10或11考点一 等差数列的基本运算(基础送分型考点——自主练透)[题组练透]1.(2017·嘉兴二模)设S n 为等差数列{a n }的前n 项和,若S 1S 4=110,则S 3S 5=( )A.25 B.35 C.37D.47解析:选A 设数列{a n }的公差为d ,因为S n 为等差数列{a n }的前n 项和,且S 1S 4=110,所以10a 1=4a 1+6d ,所以a 1=d .所以S 3S 5=3a 1+3d 5a 1+10d =6d 15d =25.2.设等差数列{a n }的公差d ≠0,且a 2=-d ,若a k 是a 6与a k +6的等比中项,则k =( ) A .5 B .6 C .9D .11解析:选C 因为a k 是a 6与a k +6的等比中项, 所以a 2k =a 6a k +6.又等差数列{a n }的公差d ≠0,且a 2=-d , 所以[a 2+(k -2)d ]2=(a 2+4d )[a 2+(k +4)d ], 所以(k -3)2=3(k +3),解得k =9或k =0(舍去),故选C.3.公差不为零的等差数列{a n }中,a 7=2a 5,则数列{a n }中第________项的值与4a 5的值相等.解析:设等差数列{a n }的公差为d ,∵a 7=2a 5,∴a 1+6d =2(a 1+4d ),则a 1=-2d ,∴a n =a 1+(n -1)d =(n -3)d ,而4a 5=4(a 1+4d )=4(-2d +4d )=8d =a 11,故数列{a n }中第11项的值与4a 5的值相等.答案:114.(2019·绍兴模拟)设S n 为等差数列{a n }的前n 项和,满足S 2=S 6,S 55-S 44=2,则a 1=______,公差d =________.解析:由S 2=S 6,得S 6-S 2=a 3+a 4+a 5+a 6=4a 1+14d =0,即2a 1+7d =0.由S 55-S 44=2,得52(a 1+a 5)5-42(a 1+a 4)4=12(a 5-a 4)=12d =2,解得d =4,所以a 1=-14.答案:-14 4[谨记通法]等差数列基本运算的方法策略(1)等差数列中包含a 1,d ,n ,a n ,S n 五个量,可“知三求二”.解决这些问题一般设基本量a 1,d ,利用等差数列的通项公式与求和公式列方程(组)求解,体现方程思想.(2)如果已知等差数列中有几项的和是常数的计算问题,一般是等差数列的性质和等差数列求和公式S n =n (a 1+a n )2结合使用,体现整体代入的思想. 考点二 等差数列的判断与证明(重点保分型考点——师生共研)[典例引领](2019·温州模拟)已知数列{a n }中,a 1=12,a n +1=1+a n a n +12(n ∈N *).(1)求证:⎩⎨⎧⎭⎬⎫1a n -1是等差数列;(2)求数列{a n }的通项公式.解:(1)证明:因为对于n ∈N *,a n +1=1+a n a n +12, 所以a n +1=12-a n, 所以1a n +1-1-1a n -1=112-a n-1-1a n -1=2-a n -1a n -1=-1.所以数列⎩⎨⎧⎭⎬⎫1a n -1是首项为1a 1-1=-2,公差为-1的等差数列.(2)由(1)知1a n -1=-2+(n -1)(-1)=-(n +1), 所以a n -1=-1n +1, 即a n =n n +1. [由题悟法]等差数列的判定与证明方法已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *).(1)求证:数列{b n }为等差数列; (2)求数列{a n }的通项公式. 解:(1)证明:∵b n =1a n ,且a n =a n -12a n -1+1,∴b n +1=1a n +1=1a n 2a n +1=2+1a n ,∴b n +1-b n =2+1a n -1a n =2.又b 1=1a 1=1,∴数列{b n }是首项为1,公差为2的等差数列. (2)由(1)知数列{b n }的通项公式为 b n =1+(n -1)×2=2n -1, 又b n =1a n,∴a n =1b n=12n -1. ∴数列{a n }的通项公式为a n =12n -1. 考点三 等差数列的性质及最值(重点保分型考点——师生共研)[典例引领]1.(2019·宁波模拟)在等差数列{a n }中,若a 9a 8<-1,且其前n 项和S n 有最小值,则当S n >0时,n 的最小值为( )A .14B .15C .16D .17解析:选C ∵数列{a n }是等差数列,它的前n 项和S n 有最小值,∴公差d >0,首项a 1<0,{a n } 为递增数列,∵a 9a 8<-1,∴a 8·a 9<0,a 8+a 9>0,由等差数列的性质知2a 8=a 1+a 15<0,a 8+a 9=a 1+a 16>0.∵S n =(a 1+a n )n2,∴当S n >0时,n 的最小值为16. 2.(2018·嘉兴一中模拟)设等差数列{a n }的前n 项和为S n ,若S 6>S 7>S 5,则满足a n >0的最大n 的值为______,满足S k S k +1<0的正整数k =______.解析:由题可得a 6=S 6-S 5>0,a 7=S 7-S 6<0,所以使得a n >0的最大n 的值为6.又a 6+a 7=S 7-S 5>0,则S 11=11(a 1+a 11)2=11a 6>0,S 12=12(a 1+a 12)2=6(a 6+a 7)>0,S 13=13(a 1+a 13)2=13a 7<0,因为{a n }是递减的等差数列,所以满足S k S k +1<0的正整数k =12. 答案:6 12[由题悟法]1.等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1);②S 2n -1=(2n -1)a n .2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[即时应用]1.(2018·浙江新高考联盟)已知等差数列{a n }的前n 项和为S n ,且S 4S 8=13,则S 8S 16=( )A.310 B.37 C.13D.12解析:选A 因为数列{a n }是等差数列,所以S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列,因为S 4S 8=13,所以不妨设S 4=1,则S 8=3,所以S 8-S 4=2,所以S 16=1+2+3+4=10,所以S 8S 16=310.2.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解析:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. 答案:18一抓基础,多练小题做到眼疾手快1.(2018·杭州模拟)已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4.则数列{a n }的通项公式为( )A .a n =2n -1B .a n =-2n +3C .a n =2n -1或-2n +3D .a n =2n解析:选A 设数列{a n }的公差为d ,由a 3=a 22-4可得1+2d =(1+d )2-4,解得d =±2.因为数列{a n }是递增数列,所以d >0,故d =2.所以a n =1+2(n -1)=2n -1.2.(2018·舟山期末)在等差数列{a n }中,若a 2=1,a 4=5,则{a n }的前5项和S 5=( ) A .7 B .15 C .20D .25解析:选B 因为a 2=1,a 4=5,所以S 5=5(a 1+a 5)2=5(a 2+a 4)2=15. 3.(2019·缙云模拟)已知{a n }为等差数列,其公差d 为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,则S 10的值为( )A .-110B .-90C .90D .110解析:选D 设数列{a n }的首项为a 1,因为a 7是a 3与a 9的等比中项,所以(a 1-12)2=(a 1-4)(a 1-16),解得a 1=20.所以S 10=10a 1+45d =200-90=110.4.(2019·腾远调研)我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:________日相逢?解析:由题意知,良马每日行的距离成等差数列,记为{a n },其中a 1=103,d 1=13;驽马每日行的距离成等差数列,记为{b n },其中b 1=97,d 2=-0.5.设第m 天相逢,则a 1+a 2+…+a m +b 1+b 2+…+b m =103m +m (m -1)×132+97m +m (m -1)×(-0.5)2=2×1 125,解得m =9(负值舍去).即二马需9日相逢.答案:95.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 5二保高考,全练题型做到高考达标1.(2018·金丽衢十二校联考)已知正项数列{a n }中,a 1=1,a 2=2,当n ≥2,n ∈N *时,a n =a 2n +1+a 2n -12,则a 6=( ) A .2 2 B .4 C .16D .45解析:选B 因为a n =a 2n +1+a 2n -12,所以2a 2n =a 2n +1+a 2n -1,即a 2n +1-a 2n =a 2n -a 2n -1,所以数列{a 2n }是等差数列,公差d =a 22-a 21=4-1=3,所以a 2n =1+3(n -1)=3n -2,所以a n =3n -2,所以a 6=18-2=4.2.(2018·浙江五校联考)等差数列{a n }中,a 1=0,等差d ≠0,若a k =a 1+a 2+…+a 7,则实数k =( )A .22B .23C .24D .25解析:选A 因为a 1=0,且a k =a 1+a 2+…+a 7, 即(k -1)d =21d ,又因为d ≠0,所以k =22.3.(2018·河南六市一联)已知正项数列{a n }的前n 项和为S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 6=( )A.114 B.32 C.72D .1解析:选A 设{a n }的公差为d ,由题意得,S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,又{a n }和{S n}都是等差数列,且公差相同,∴⎩⎨⎧d = d 2,a 1-d2=0,解得⎩⎨⎧d =12,a 1=14,a 6=a 1+5d =14+52=114.4.(2018·东阳模拟)已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A nB n=7n +45n +3,则使得a nb n 为整数的正整数的个数为( )A .2B .3C .4D .5解析:选D 由A n B n =7n +45n +3,可得a n b n =A 2n -1B 2n -1=7n +19n +1=7+12n +1,所以要使a n b n为整数,则需12n +1为整数,所以n =1,2,3,5,11,共5个. 5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,因为b 1=1,则n +12n (n -1)d =k ⎣⎡⎦⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d , 整理得(4k -1)dn +(2k -1)(2-d )=0. 因为对任意的正整数n 上式均成立, 所以(4k -1)d =0,(2k -1)(2-d )=0, 解得d =2,k =14.所以数列{b n }的通项公式为b n =2n -1.6.(2019·台州中学期中)已知等差数列{a n }的前n 项和为S n ,若a 2=18,S 18=54,则a 17=________,S n =__________.解析:设等差数列{a n }的首项为a 1,公差为d ,因为a 2=18,S 18=54,所以⎩⎪⎨⎪⎧a 1+d =18,18a 1+18×172d =54,解得a 1=20,d =-2.所以a 17=a 1+16d =20-32=-12,S n =na 1+n (n -1)2d =-n 2+21n .答案:-12 -n 2+21n7.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得 ⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 8.(2018·金华浦江适考)设数列{a n },{b n }的前n 项和分别为S n ,T n ,其中a n =-3n +20,b n =|a n |,则使T n =S n 成立的最大正整数n 为________,T 2 018+S 2 018=________.解析:根据题意,数列{a n }中,a n =-3n +20,则数列{a n }是首项为17,公差为-3的等差数列,且当n ≤6时,a n >0,当n ≥7时,a n <0,又由b n =|a n |,当n ≤6时,b n =a n ,当n ≥7时,b n =-a n ,则使T n =S n 成立的最大正整数为6,T 2 018+S 2 018=(a 1+a 2+…+a 6+a 7+a 8+…+a 2 018)+(b 1+b 2+…+b 6+b 7+b 8+…+b 2 018)=2(a 1+a 2+…+a 6)=(17+2)×6=114.答案:6 1149.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值;(2)设数列{b n }的通项b n =S nn ,证明:数列{b n }是等差数列,并求其前n 项和T n . 解:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a , 由已知有a +3a =8,得a 1=a =2,公差d =4-2=2, 所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k . 由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10. (2)证明:由(1)得S n =n (2+2n )2=n (n +1), 则b n =S nn=n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列, 所以T n =n (2+n +1)2=n (n +3)2. 10.(2018·南昌调研)设数列{a n }的前n 项和为S n,4S n =a 2n +2a n -3,且a 1,a 2,a 3,a 4,a 5成等比数列,当n ≥5时,a n >0.(1)求证:当n ≥5时,{a n }成等差数列; (2)求{a n }的前n 项和S n .解:(1)证明:由4S n =a 2n +2a n -3,4S n +1=a 2n +1+2a n +1-3, 得4a n +1=a 2n +1-a 2n +2a n +1-2a n ,即(a n +1+a n )(a n +1-a n -2)=0.当n ≥5时,a n >0,所以a n +1-a n =2, 所以当n ≥5时,{a n }成等差数列.(2)由4a 1=a 21+2a 1-3,得a 1=3或a 1=-1, 又a 1,a 2,a 3,a 4,a 5成等比数列, 所以由(1)得a n +1+a n =0(n ≤5),q =-1, 而a 5>0,所以a 1>0,从而a 1=3,所以a n =⎩⎪⎨⎪⎧3(-1)n -1,1≤n ≤4,2n -7,n ≥5,所以S n =⎩⎪⎨⎪⎧32[1-(-1)n ],1≤n ≤4,n 2-6n +8,n ≥5.三上台阶,自主选做志在冲刺名校1.(2018·浙江五校联考)已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 为数列{a n }的前n 项和,则2S n +16a n +3的最小值为________.解析:设公差为d .因为a 1,a 3,a 13成等比数列,所以(1+2d )2=1+12d ,解得d =2.所以a n =2n -1,S n =n 2.所以2S n +16a n +3=2n 2+162n +2=n 2+8n +1.令t =n +1,则原式=t 2+9-2t t =t +9t -2.因为t ≥2,t ∈N *,所以当t =3,即n =2时,⎝ ⎛⎭⎪⎫2S n +16a n +3min=4.答案:42.已知数列{a n }满足a n +1+a n =4n -3(n ∈N *). (1)若数列{a n }是等差数列,求a 1的值; (2)当a 1=2时,求数列{a n }的前n 项和S n . 解:(1)法一:∵数列{a n }是等差数列, ∴a n =a 1+(n -1)d ,a n +1=a 1+nd . 由a n +1+a n =4n -3,得(a 1+nd )+[a 1+(n -1)d ]=4n -3, ∴2dn +(2a 1-d )=4n -3, 即2d =4,2a 1-d =-3, 解得d =2,a 1=-12.法二:在等差数列{a n }中,由a n +1+a n =4n -3, 得a n +2+a n +1=4(n +1)-3=4n +1, ∴2d =a n +2-a n =(a n +2+a n +1)-(a n +1+a n ) =4n +1-(4n -3)=4, ∴d =2.又∵a 1+a 2=2a 1+d =2a 1+2=4×1-3=1, ∴a 1=-12.(2)由题意,①当n 为奇数时, S n =a 1+a 2+a 3+…+a n=a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n ) =2+4[2+4+…+(n -1)]-3×n -12=2n 2-3n +52.②当n 为偶数时,S n =a 1+a 2+a 3+…+a n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n ) =1+9+…+(4n -7) =2n 2-3n 2.第三节等比数列及其前n 项和1.等比数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q .(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *), 则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k . [小题体验]1.(教材习题改编)将公比为q 的等比数列a 1,a 2,a 3,a 4,…依次取相邻两项的乘积组成新的数列a 1a 2,a 2a 3,a 3a 4,….此数列是( )A .公比为q 的等比数列B .公比为q 2的等比数列C .公比为q 3的等比数列D .不一定是等比数列答案:B2.(2018·台州模拟)已知等比数列{a n }各项都是正数,且a 4-2a 2=4,a 3=4,则a n =________;S 10=________.解析:设公比为q ,因为a 4-2a 2=4,a 3=4, 所以有4q -8q =4,解得q =2或q =-1. 因为q >0,所以q =2.所以a 1=a 3q 2=1,a n =a 1q n -1=2n -1.所以S 10=1-2101-2=210-1=1 023.答案:2n -1 1 0233.在数列{a n }中,a 1=1,a n +1=3a n (n ∈N *),则a 3=______;S 5=_________. 答案:9 1211.特别注意q =1时,S n =na 1这一特殊情况.2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.4.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n -S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.[小题纠偏]1.在等比数列{a n }中,a 3=2,a 7=8,则a 5等于( ) A .5 B .±5 C .4D .±4解析:选C a 25=a 3a 7=2×8=16,∴a 5=±4,又∵a 5=a 3q 2>0,∴a 5=4. 2.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________. 答案:-12或1考点一 等比数列的基本运算(重点保分型考点——师生共研)[典例引领]1.(2018·绍兴模拟)等比数列{a n }的公比为2,前n 项和为S n .若1+2a 2=S 3,则a 1=( ) A .17 B.15 C.13D .1解析:选C 由题可得,1+4a 1=a 1+2a 1+4a 1,解得a 1=13.2.(2018·杭二中仿真)各项都是正数的等比数列{a n }中,若a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( ) A.5+12B.5-12C.1-52D.5+12或1-52解析:选B 设数列{a n }的公比为q (q >0,q ≠1),由a 2,12a 3,a 1成等差数列可得a 3=a 2+a 1,所以有q 2-q -1=0,解得q =5+12(负值舍去).所以a 3+a 4a 4+a 5=1q =5-12. [由题悟法]解决等比数列有关问题的2种常用思想1.(2019·浙北联考)设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2=( )A .2B .4 C.152D.172解析:选C 因为q =2,所以S 4a 2=a 1+a 2+a 3+a 4a 2=1+q +q 2+q 3q =1+2+4+82=152.2.(2018·宁波模拟)已知等比数列{a n }满足a 2=14,a 2a 8=4(a 5-1),则a 4+a 5+a 6+a 7+a 8的值为( )A .20B .31C .62D .63解析:选B 因为a 2a 8=a 25=4(a 5-1),解得a 5=2.所以q =2.所以a 4+a 5+a 6+a 7+a 8=1+2+4+8+16=31.3.(2018·杭州二检)设各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=80,S 2=8,则公比q =________,a 5=________.解析:由题可得,设数列{a n }的公比为q (q >0,q ≠1),根据题意可得a 1(1-q 4)1-q =80,a 1(1-q 2)1-q=8,解得a 1=2,q =3,所以a 5=a 1q 4=2×34=162. 答案:3 162考点二 等比数列的判定与证明(重点保分型考点——师生共研)[典例引领](2016·全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,故a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n=λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝⎛⎭⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎫λλ-1n .由S 5=3132得1-⎝⎛⎭⎫λλ-15=3132,即⎝⎛⎭⎫λλ-15=132.解得λ=-1.[由题悟法]等比数列的4种常用判定方法选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.[即时应用](2018·衢州模拟)已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),若数列{b n }满足b n =a n +1-2a n ,求证:{b n }是等比数列.证明:因为S n +1=4a n +2, 所以S 2=a 1+a 2=4a 1+2,又a 1=1,所以a 2=5,b 1=a 2-2a 1=3, 当n ≥2时,S n =4a n -1+2. 所以S n +1-S n =a n +1=4a n -4a n -1. 因为b n =a n +1-2a n , 所以当n ≥2时,b n b n -1=a n +1-2a n a n -2a n -1=4a n -4a n -1-2a n a n -2a n -1=2(a n -2a n -1)a n -2a n -1=2. 所以{b n }是以3为首项,2为公比的等比数列.考点三 等比数列的性质(重点保分型考点——师生共研)[典例引领]1.(2018·宁波模拟)已知各项不为0的等差数列{a n }满足a 6-a 27+a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11=( )A .1B .2C .4D .8解析:选D 由等差数列的性质,得a 6+a 8=2a 7. 由a 6-a 27+a 8=0,可得a 7=2,所以b 7=a 7=2.由等比数列的性质得b 2b 8b 11=b 2b 7b 12=b 37=23=8.2.若等比数列{a n }的前n 项和为S n ,且S 4S 2=5,则S 8S 4=________.解析:由题可得,S 2,S 4-S 2,S 6-S 4,S 8-S 6成等比数列,因为S 4S 2=5,不妨设S 2=1,则S 4=5,所以S 4-S 2=4, 所以S 8=1+4+16+64=85, 所以S 8S 4=855=17.答案:17[由题悟法]等比数列的性质可以分为3类1.(2018·诸暨模拟)已知等比数列{a n }中,a 1+a 2+a 3=40,a 4+a 5+a 6=20.则该数列的前9项和为( )A .50B .70C .80D .90解析:选B 由等比数列的性质得S 3,S 6-S 3,S 9-S 6也成等比数列,由S 3=40,S 6-S 3=20,知公比为12,故S 9-S 6=10,S 9=70.2.(2018·浙江联盟模拟)已知{a n }是等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5=________;a 4的最大值为________.解析:因为a n >0,a 2a 4+2a 3a 5+a 4a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=25,所以a 3+a 5=5,所以a 3+a 5=5≥2a 3a 5=2a 4,所以a 4≤52.即a 4的最大值为52.答案:552一抓基础,多练小题做到眼疾手快1.(2018·舟山模拟)已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为( )A .-3B .±3C .-3 3D .±3 3解析:选C 因为-1,x ,y ,z ,-3成等比数列,由等比数列的性质及等比中项可知,xz =3,y 2=3,且y 与-1,-3符号相同,所以y =-3,所以xyz =-3 3.2.(2019·湖州六校联考)已知等比数列的前n 项和为54,前2n 项和为60,则前3n 项和为( )A .66B .64C .6623D .6023解析:选D 因为等比数列中,S n ,S 2n -S n ,S 3n -S 2n 成等比数列,所以54(S 3n -60)=36,解得S 3n =6023.3.(2018·金华十校联考)在等比数列{a n }中,已知a 7a 12=5,则a 8a 9a 10a 11的值为( ) A .10 B .25C .50D .75解析:选B 因为a 7a 12=a 8a 11=a 9a 10=5,所以a 8a 9a 10a 11=52=25.4.(2018·浙江名校协作体测试)设等比数列{a n }的前n 项和为S n ,且对任意的正整数n ,均有S n +3=8S n +3,则a 1=_________,公比q =________.解析:因为S n +3=8S n +3,所以当n ≥2时,S n +2=8S n -1+3,两式相减,可得a n +3=8a n ,所以q 3=8,解得q =2;当n =1时,S 4=8S 1+3,即15a 1=8a 1+3,解得a 1=37.答案:3725.(2018·永康适应性测试)数列{a n }的前n 项和为S n ,S n =2a n +n ,则a 1=______,数列{a n }的通项公式a n =_______.解析:因为S n =2a n +n ,所以当n =1时,S 1=a 1=2a 1+1,所以a 1=-1.当n ≥2时,a n =S n -S n -1=2a n +n -2a n -1-n +1,即a n =2a n -1-1,即a n -1=2(a n -1-1),所以数列{a n -1}是以-2为首项,2为公比的等比数列,所以a n -1=-2n ,所以a n =1-2n .答案:-1 1-2n二保高考,全练题型做到高考达标1.(2019·浙大附中模拟)已知数列{a n }的前n 项和为S n ,且a n +1=pS n +q (n ∈N *,p ≠-1),则“a 1=q ”是“{a n }为等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 因为a n +1=pS n +q ,所以当n ≥2时,a n =pS n -1+q ,两式相减得a n +1-a n =pa n ,即当n ≥2时,a n +1a n =1+p .当n =1时,a 2=pa 1+q .所以当a 1=q 时,a 2a 1=1+p ,满足上式,故数列{a n }为等比数列,所以是充分条件;当{a n }为等比数列时,有a 2=pa 1+q =(1+p )a 1,解得a 1=q ,所以是必要条件,从而选C.2.(2019·乐清模拟)设数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则S 6=( )A .44B .45 C.46-13D.45-13解析:选B 因为a 1=1,a n +1=3S n =S n +1-S n ,所以S n +1=4S n ,所以数列{S n }是首项为S 1=a 1=1,公比为4的等比数列,所以S 6=45.3.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D.15解析:选A ∵log 3a n +1=log 3a n +1,∴a n +1=3a n . ∴数列{a n }是以公比q =3的等比数列. ∵a 5+a 7+a 9=q 3(a 2+a 4+a 6),∴log 13(a 5+a 7+a 9)=log 13(9×33)=log 1335=-5.4.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于30,该女子所需的天数至少为( )A .7B .8C .9D .10解析:选B 设该女子第一天织布x 尺,则x (1-25)1-2=5,得x =531,∴前n 天所织布的尺数为531(2n -1).由531(2n -1)≥30,得2n ≥187,则n 的最小值为8.5.(2019·金华模拟)设A n ,B n 分别为等比数列{a n },{b n }的前n 项和.若A n B n =12n +1,则a 7b 3=( )。

2019人教A版 高中数学知识点梳理 ---- 第六章 数列

2019人教A版   高中数学知识点梳理 ---- 第六章  数列

第六章数列【知识网络】【知识点梳理】1. 数列的概念概念含义数列按照确定的顺序排列的一列数称为数列数列的项数列中的每一个数叫做这个数列的项,其中第1项也叫首项通项公式如果数列{a n}的第n项a n与它的序号n之间的对应关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式前n项和数列{a n}从第1项起到第n项止的各项之和,称为数列{a n}的前n项和,记作S n 分类标准类型含义按项数有穷数列项数有限的数列无穷数列项数________的数列按项的变化趋势递增数列从第2项起,每一项都大于它的前一项的数列,即恒有__________ (n∈N*)递减数列从第2项起,每一项都小于它的前一项的数列,即恒有___________ (n∈N*)数列{a n }的通项a n 与前n 项和S n 之间的关系为a n =S n −S n−1(n ∈N *且n ≥2)),对吗?应为_________________ 5. 常见数列的通项(1)1,2,3,4,…的一个通项公式为a n =n. (2)2,4,6,8,…的一个通项公式为a n =2n. (3)3,5,7,9,…的一个通项公式为a n =_________. (4)2,4,8,16,…的一个通项公式为a n =_________.(5)-1,1,-1,1,…的一个通项公式为a n =_________ . (6)1,0,1,0,…的一个通项公式为a n =__________________. (7)a ,b ,a ,b ,…的一个通项公式为a n =(a +b )+(-1)n -1(a -b )2.(8)9,99,999,…的一个通项公式为a n =_______________________.6. 等差数列定义:{a n }是等差数列 a n −a n−1=d (d 是_________)或a n +1-a n =d(n ∈N +).⇔2a n =_______________________(n ≥2,n ∈N ∗)等差中项:由三个数a ,A ,b 组成的等差数列可以看成是最简单的等差数列. 这时,A 叫做a 与b 的等差中项. 根据等差数列的定义可以知道,2A =____________. 7. 等差数列的通项公式与前n 项和公式(1)通项公式:a n =a 1+(n -1)d. 该式又可以写成a n =_______________ ,这表明d ≠0时,a n 是关于n 的___________函数,且____________时是增函数,___________时是减函数.(2)前n 项和公式:S n =_______________=_____________________, 该式又可以写成S n =______________,这表明d ≠0时,S n 是关于n 的_____________函数,其中常数项__________,且___________时图象开口向上,_________时图象开口向下.8. 等差数列的性质 (1)与项有关的性质①等差数列{a n }中,若公差为d ,则a n =a m +________d ,当n ≠m 时,d =___________.②在等差数列{a n }中,若m +n =p +q(m ,n ,p ,q ∈N *),则________________. 特别地,若m +n =2p ,则__________________.③若数列{a n }是公差为d 的等差数列,则数列{λa n +b}(λ,b 为常数)是公差为_________的等差数列. ④若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{λ1a n +λ2b n }(λ1,λ2为常数)也是等差数列,且公差为______________.⑤数列{a n }是公差为d 的等差数列,则从数列中抽出项a k ,a k +m ,a k +2m ,…,组成的数列仍是等差数列,公差为_____________. (2)与和有关的性质①等差数列中依次k 项之和S k ,S 2k -S k ,S 3k -S 2k ,…组成公差为___________的等差数列. ②记S 偶为所有偶数项的和,S 奇为所有奇数项的和.若等差数列项数2n(n ∈N *),则S 2n =n(a n +a n +1),S 偶-S 奇=_______,S 偶S 奇=a n +1a n (S 奇≠0);若等差数列的项数为2n -1(n ∈N *),则S 2n -1=_______________(a n 是数列的中间项),S 奇-S 偶=a n ,S 偶S 奇=n -1n(S 奇≠0).③{a n }为等差数列⇒ ⎩⎨⎧⎭⎬⎫S n n 为___________数列.④两个等差数列{a n },{b n }前n 项和S n ,T n 之间关系为a nb n =_________ (b n ≠0,T 2n -1≠0).例1. 判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.(1)若数列{a n }满足a 3-a 2=a 2-a 1,则{a n }是等差数列. ( ) (2)已知数列{a n }为等差数列,且公差d>0,则{a n }是递增数列. ( ) (3)4是2和8的等差中项. ( )(4)若数列{a n }是等差数列,则数列{a n +2a n +1}也是等差数列. ( )(5)S n =An 2+Bn(A ,B 为常数,A 不为0,n ∈N *)是{a n }为等差数列的充要条件. ( ) 9. 等比数列的概念(1)等比数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(q ≠0),即a n +1a n=q (n ∈N *),或_____________(n ∈N *,n ≥2).(2)等比中项:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,此时,G 2=_______.10. 等比数列的通项公式与前n 项和公式(1)通项公式:a n =________. 又可写成a n =a 1q ·q n,这表明q ≠1时,a n 是常数与指数函数(关于n)的乘积.(2)前n 项和公式:S n =____________________ 当q ≠1时,该式又可以写成S n =a 11-q -a 11-q·q n ,这表明q ≠1时,S n 的图象是指数型函数y =-Aq x+A ⎝⎛⎭⎪⎫A =a 11-q 图象上一群孤立的点. 11. 等比数列的性质 (1)与项有关的性质①在等比数列{a n }中,a n =a m qn -m(n ,m ∈N *).②等比数列{a n },若m +n =p +q =2k ,m ,n ,p ,q ,k ∈N *,则a m a n =____________=____________③在公比为q 的等比数列{a n }中,取出项数成等差数列的项a k ,a k +d ,a k +2d ,…,仍可组成一个等比数列,公比是__________④m 个等比数列,由它们的各对应项之积组成一个新数列,仍然是等比数列,公比是原来每个等比数列对应的公比之积.⑤若{a n },{b n }均为等比数列,公比分别为q 1,q 2,则{ka n }(k ≠0)仍为等比数列,且公比为_______;{a n b n }仍为等比数列,且公比为____________;⎩⎨⎧⎭⎬⎫a nb n 仍为等比数列,且公比为_____________. ⑥若{a n }是公比为q(q>0)正项等比数列,数列{lga n }是_______数列,首项为________,公_____为_______. (2)与和有关的性质①等比数列{a n }的任意连续m 项的和且不为零时构成的数列,S m ,S 2m -S m ,-m S 3S 2m ,S 4m -S 3m ……仍为等比数列, 公比=____________注意:公比为___________时, S 4,S 8-S 4,-12S S 8,……不成等比数列 ②在等比数列中,若项数为2n(n ∈N *),则S 偶S 奇=_______.③在等比数列中,当q m≠1时,S n S m =1-q n1-qm ,n ,m ∈N *.④在等比数列中,S n +m =S n +q n S m ,n ,m ∈N *. 12. 等比数列的单调性(1)当a 1>0,q>1或a 1<0,__________时,等比数列{a n }是递增数列; (2)当a 1>0,___________或a 1<0,__________时,等比数列{a n }是递减数列; (3)当q =1时,它是一个________数列; (4)当q<0时,它是一个摆动数列.13. 若S n =Aq n+B(AB ≠0,q ≠0,1),则{a n }是等比数列⇔A +B =_________.例2.判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.(1)G 为a ,b 的等比中项⇔G 2=ab. ( )(2)一个等比数列的公比大于1,则该数列单调递增. ( ) (3)任何等比数列前n 项和都可以写成S n =a 1(1-q n)1-q . ( )(4)如果数列{a n }是等比数列,那么数列{a 2n }是等比数列. ( )(5)如果数列{a n }是等比数列,那么数列{a n +a n +1}一定是等比数列. ( ) 14.小结:等差(比)数列的判定方法15. 求等差数列前n 项和最值的主要方法:①利用等差数列的基本性质或单调性求出其正负转折项,便可求得和的最值;②将等差数列的前n 项和S n =An 2+Bn (A ,B 为常数)看作关于n 的二次函数,根据二次函数的性质求最值.无论用哪种方法,都要注意a n =0的情形.例3. (1)若{a n }是等比数列,且S n =3n+1+r ,则公比=______,r = (2)已知数列{a n }中前n 项和S n =3n ,则通项为________________已知数列{b n }中前n 项积T n =3n ,则通项为________________ (3)已知数列{a n }中,a 1=2 S n+1=2S n +1,求a n =____________。

高考数学培优复习:第6章 1 第1讲 数列的概念与简单表示法新题培优练

高考数学培优复习:第6章 1 第1讲 数列的概念与简单表示法新题培优练

[基础题组练]1.已知数列{a n }的通项公式为a n =n 2-8n +15,则( )A .3不是数列{a n }的项B .3只是数列{a n }的第2项C .3只是数列{a n }的第6项D .3是数列{a n }的第2项和第6项解析:选D.令a n =3,即n 2-8n +15=3.整理,得n 2-8n +12=0,解得n =2或n =6.故选D.2.已知数列{a n }的前n 项和S n 满足log 2(S n +1)=n ,则a n =( )A .⎩⎪⎨⎪⎧1,n =1,2n ,n ≥2B .2nC .2n -1D .2n -1-1解析:选C.log 2(S n +1)=n ⇒S n +1=2n .所以a n =S n -S n -1=2n -2n -1=2n -1(n ≥2),又a 1=S 1=2-1=1,适合a n (n ≥2),因此a n =2n -1.故选C.3.(2019·长沙市统一模拟考试)《九章算术》是我国古代第一部数学专著,全书收集了246个问题及其解法,其中一个问题为“现有一根九节的竹子,自上而下各节的容积成等差数列,上面四节容积之和为3升,下面三节的容积之和为4升,求中间两节的容积各为多少?”该问题中的第2节,第3节,第8节竹子的容积之和为( )A.176升 B.72升 C.11366升 D.10933升 解析:选A.自上而下依次设各节竹子的容积分别为a 1,a 2,…,a 9,依题意有⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3a 7+a 8+a 9=4,因为a 2+a 3=a 1+a 4,a 7+a 9=2a 8,故a 2+a 3+a 8=32+43=176.选A. 4.在数列{a n }中,“|a n +1|>a n ”是“数列{a n }为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选 B.“|a n +1|>a n ”⇔a n +1>a n 或-a n +1>a n ,充分性不成立,数列{a n }为递增数列⇔|a n +1|≥a n +1>a n 成立,必要性成立,所以“|a n +1|>a n ”是“数列{a n }为递增数列”的必要不充分条件.故选B.5.数列1,23,35,47,59,…的一个通项公式a n =________. 解析:由已知得,数列可写成11,23,35,…,故通项公式可以为n 2n -1.答案:n 2n -16.若数列{a n }满足a 1·a 2·a 3·…·a n =n 2+3n +2,则数列{a n }的通项公式为________.解析:a 1·a 2·a 3·…·a n =(n +1)(n +2),当n =1时,a 1=6;当n ≥2时,⎩⎪⎨⎪⎧a 1·a 2·a 3·…·a n -1·a n =(n +1)(n +2),a 1·a 2·a 3·…·a n -1=n (n +1),故当n ≥2时,a n =n +2n, 所以a n =⎩⎪⎨⎪⎧6,n =1,n +2n,n ≥2,n ∈N *. 答案:a n =⎩⎪⎨⎪⎧6,n =1,n +2n ,n ≥2,n ∈N* 7.已知数列{a n }的前n 项和为S n .(1)若S n =(-1)n +1·n ,求a 5+a 6及a n ;(2)若S n =3n +2n +1,求a n .解:(1)因为a 5+a 6=S 6-S 4=(-6)-(-4)=-2,当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1)=(-1)n +1·[n +(n -1)]=(-1)n +1·(2n -1),又a 1也适合此式,所以a n =(-1)n +1·(2n -1).(2)因为当n =1时,a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2×3n -1+2,由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2×3n -1+2,n ≥2. 8.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值;(2)求数列{a n }的通项公式.解:(1)由S n =12a 2n +12a n (n ∈N *),可得a 1=12a 21+12a 1,解得a 1=1; S 2=a 1+a 2=12a 22+12a 2,解得a 2=2; 同理a 3=3,a 4=4.(2)S n =12a 2n +12a n ,①当n ≥2时,S n -1=12a 2n -1+12a n -1,② ①-②得(a n -a n -1-1)(a n +a n -1)=0.由于a n +a n -1≠0,所以a n -a n -1=1,又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n .[综合题组练]1.(2019·广东惠州模拟)已知数列{a n }的前n 项和为S n ,且S n =2a n -1,则S 6a 6=( ) A.6332B.3116C.12364D.127128解析:选A.因为S n =2a n -1,所以n =1时,a 1=2a 1-1,解得a 1=1;n ≥2时,a n =S n -S n -1=2a n -1-(2a n -1-1),化为a n =2a n -1.所以数列{a n }是等比数列,公比为2.所以a 6=25=32,S 6=26-12-1=63,则S 6a 6=6332.故选A.2.(创新型)(2019·德阳诊断)若存在常数k (k ∈N *,k ≥2),q ,d ,使得无穷数列{a n }满足a n +1=⎩⎨⎧a n +d ,n k ∉N *,qa n ,n k ∈N *,则称数列{a n }为“段比差数列”,其中常数k ,q ,d 分别叫做段长、段比、段差.设数列{b n}为“段比差数列”,若{b n }的首项、段长、段比、段差分别为1,3,0,3,则b 2 016=( )A .3B .4C .5D .6解析:选D.因为{b n }的首项、段长、段比、段差分别为1,3,0,3,所以b 2 014=0×b 2 013=0,所以b 2 015=b 2 014+3=3,所以b 2 016=b 2 015+3=6.故选D.3.若数列{a n }满足a n =n +3n +2,则该数列落入区间(1312,54)内的项数为________. 解析:由1312<n +3n +2<54得,1312<1+1n +2<54,即112<1n +2<14,4<n +2<12,2<n <10,显然,落入区间(1312,54)内的项数为7.答案:74.(综合型)(2019·临汾期末)已知数列{x n }的各项均为正整数,且满足x n +1=⎩⎪⎨⎪⎧x n 2,x n 为偶数,x n +1,x n 为奇数,n ∈N *.若x 3+x 4=3,则x 1所有可能取值的集合为________.解析:由题意得x 3=1,x 4=2或x 3=2,x 4=1.当x 3=1时,x 2=2,从而x 1=1或4;当x 3=2时,x 2=1或4,因此当x 2=1时,x 1=2,当x 2=4时,x 1=8或3.综上,x 1所有可能取值的集合为{1,2,3,4,8}.答案:{1,2,3,4,8}5.(2019·山东青岛调研)已知S n 是数列{a n }的前n 项和,S n =3×2n -3,其中n ∈N *.(1)求数列{a n }的通项公式;(2)数列{b n }为等差数列,T n 为其前n 项和,b 2=a 5,b 11=S 3,求T n 的最值. 解:(1)由S n =3×2n -3,n ∈N *,得(ⅰ)当n =1时,a 1=S 1=3×21-3=3.(ⅱ)当n ≥2时,a n =S n -S n -1=(3×2n -3)-(3×2n -1-3)=3×(2n -2n -1)=3×2n -1(*).又当n =1时,a 1=3也满足(*)式.所以,对任意n ∈N *,都有a n =3×2n -1.(2)设等差数列{b n }的首项为b 1,公差为d ,由(1)得b 2=a 5=3×25-1=48,b 11=S 3=3×23-3=21.由等差数列的通项公式得⎩⎪⎨⎪⎧b 2=b 1+d =48,b 11=b 1+10d =21,解得⎩⎪⎨⎪⎧b 1=51,d =-3.所以b n =54-3n . 可以看出b n 随着n 的增大而减小,令b n ≥0,解得n ≤18,所以T n 有最大值,无最小值,且T 18(或T 17)为前n 项和T n 的最大值,T 18=18(b 1+b 18)2=9×(51+0)=459. 6.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *.(1)设b n =S n -3n ,求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围.解:(1)依题意得S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ),即b n +1=2b n ,又b 1=S 1-3=a -3,因此,所求通项公式为b n =(a -3)2n -1,n ∈N *.(2)由(1)可知S n =3n +(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2, a n +1-a n =4×3n -1+(a -3)2n -2=2n -2⎣⎡⎦⎤12·⎝⎛⎭⎫32n -2+a -3, 所以,当n ≥2时,a n +1≥a n ⇒12⎝⎛⎭⎫32n -2+a -3≥0⇒a ≥-9,又a2=a1+3>a1,a≠3.所以,所求的a的取值范围是[-9,3)∪(3,+∞).。

2019高考数学一轮复习-第六章 数列 6.1 数列的概念及其表示课件 文

2019高考数学一轮复习-第六章 数列 6.1 数列的概念及其表示课件 文

3.数列与函数的关系 从函数观点看,数列可以看成以N*(或它的有限子集)为定义域的函数an=f(n), 当自变量按照从小到大的顺序依次取值时,所对应的一列函数值.反之,对于函数 y=f(x),如果f(i)(i=1,2,3,…)有意义,那么我们可以得到一个数列f(1), f(2),f(3),…, f(n),…. 4.数列的通项公式 如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这
∵an+1- B =A 1 A

a, n

1
B
A

∴ an 是 1以B AA为 公比,a1- 为首1项B 的A 等比数列.
∴an- B = 1 A

a·1An-11. B
A

∴an=

a1
·A1n-B1+A .
B 1 A
解析 设数列{2n-1·an}的前n项和为Tn,
∵数列{an}满足a1+2a2+22a3+…+2n-1an= n (n∈N*),
2
∴Tn= n ,∴2n-1an=Tn-Tn-1=n n - 1 =1 (n≥2),
2
22 2
1
∴an= 2
2
n

1
= 1 (n≥2),
2n
经验证,当n=1时上式也成立,故an= 1 .
∴an-a1=f(1)+f(2)+…+f(n-1).
∴an=a1+f(1)+f(2)+…+f(n-1).
(2)由形如 a n 1=f(n)的递推公式求通项公式,只要f(n)可求积,便可利用累 an
乘的方法或迭代的方法.

新课标版2019年高考考点数学(理)分专题汇编精选 专题21 数列的概念与简单表示法

新课标版2019年高考考点数学(理)分专题汇编精选 专题21 数列的概念与简单表示法

考点21 数列的概念与简单表示法考纲原文(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式). (2)了解数列是自变量为正整数的一类函数.知识整合一、数列的相关概念 1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项,通常也叫做首项,排在第二位的数称为这个数列的第2项……排在第n 位的数称为这个数列的第n 项.所以,数列的一般形式可以写成123,,,,,,n a a a a L L 简记为{}n a . 2.数列与函数的关系数列可以看成定义域为正整数集*N (或它的有限子集1,2,{},n )的函数()n a f n =,当自变量按照由小到大的顺序依次取值时,所对应的一列函数值.由于数列是特殊的函数,因此可以用研究函数的思想方法来研究数列的相关性质,如单调性、最大值、最小值等,此时要注意数列的定义域为正整数集(或其有限子集1,2,{},n )这一条件.3.数列的分类二、数列的表示方法(1)列举法:将数列中的每一项按照项的序号逐一写出,一般用于“杂乱无章”且项数较少的情况.(2)解析法:主要有两种表示方法,①通项公式:如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式,即()n a f n =.②递推公式:如果已知数列{}n a 的第一项(或前几项),且任一项n a 与它的前一项1n a - (或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. (3)图象法:数列是特殊的函数,可以用图象直观地表示.数列用图象表示时,可以以序号为横坐标,相应的项为纵坐标描点画图.由此可知,数列的图象是无限个或有限个孤立的点. 三、数列的前n 项和与通项的关系数列的前n 项和通常用n S 表示,记作12n n S a a a =+++,则通项11,2n nn Sa S S n -⎧=⎨-≥⎩.若当2n ≥时求出的n a 也适合1n =时的情形,则用一个式子表示n a ,否则分段表示.重点考向考向一 已知数列的前几项求通项公式1.常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法. 具体策略:①分式中分子、分母的特征; ②相邻项的变化特征; ③拆项后的特征;④各项的符号特征和绝对值特征;⑤化异为同.对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;⑥对于符号交替出现的情况,可用()1k -或*11,()k k +∈-N 处理.根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.2.常见的数列的通项公式:(1)数列1,2,3,4,…的通项公式为n a n =; (2)数列2,4,6,8,…的通项公式为2n a n =; (3)数列1,4,9,16,…的通项公式为2n a n =; (4)数列1,2,4,8,…的通项公式为2n n a =; (5)数列1,12,13,14,…的通项公式为1n a n=; (6)数列12,16,112,120,…的通项公式为1(1)n a n n =+.3.根据图形特征求数列的通项公式,首先要观察图形,寻找相邻的两个图形之间的变化,其次要把这些变化同图形的序号联系起来,发现其中的规律,最后归纳猜想出通项公式.典例引领典例1 写出下面数列的一个通项公式.(1)8,98,998,9998, …;(2)12,14,58-,1316,…; (3)1,6,12,20,….(3)容易看出第2,3,4项满足规律:项的序号×(项的序号+1).而第1项却不满足,因此考虑分段表示,即数列的一个通项公式为()1,11,2n n a n n n =⎧=⎨+≥⎩.典例2 如图是用同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第n 个图案中需用黑色瓷砖_______块.(用含n 的代数式表示)【答案】4n+8变式拓展1.已知*n ∈N ,给出4个表达式:①0,1,n n a n ⎧=⎨⎩为奇数为偶数,②,③,④.其中能作为数列:0,1,0,1,0,1,0,1,…的通项公式的是A .①②③B .①②④C .②③④D .①③④考向二 利用n a 与n S 的关系求通项公式已知n S 求n a 的一般步骤: (1)先利用11a S =求出1a ;(2)用1n -替换n S 中的n 得到一个新的关系,利用1,2n n n S a S n --=≥便可求出当2n ≥时n a 的表达式;(3)对1n =时的结果进行检验,看是否符合2n ≥时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与2n ≥两段来写.利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求通项公式时,务必要注意2n ≥这一限制条件,所以在求出结果后,要看看这两种情况能否整合在一起.典例引领典例3 在数列中,,,数列的前项和(,为常数).(1)求实数,的值; (2)求数列的通项公式.典例4 已知数列{}n a 的前n 项和为n S ,且满足11a =,()()1112n n n n nS n S ++-+=,*n ∈N .(1)求2a 的值;(2)求数列{}n a 的通项公式.【解析】(1)∵11a =, ()()1112n n n n nS n S ++-+=,∴2112212S S ⨯-==.变式拓展2.设数列满足.(1)求及的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前项和. 考向三 由递推关系式求通项公式递推公式和通项公式是数列的两种表示方法,它们都可以确定数列中的任意一项.高考对递推公式的考查难度适中,一般是通过变换转化成特殊的数列求解. 已知数列的递推公式求通项公式的常见类型及解法如下: (1)1()n n a a f n +=+:常用累加法,即利用恒等式121321()()()n n n a a a a a a a a -=+---+++求通项公式.(2)1()n n a f n a +=⋅:常用累乘法,即利用恒等式321121nn n a a a a a a a a -=⋅⋅求通项公式. (3)1n n a pa q +=+(其中,p q 为常数,0,1p ≠):先用待定系数法把原递推公式转化为1()n n a k p a k +-=-,其中1qk p=-,进而转化为等比数列进行求解. (4)1nn n a pa q +=+:两边同时除以1n q +,然后可转化为类型3,利用待定系数法进行求解;两边同时除以1n p +,然后可转化为类型1,利用累加法进行求解.(5)1n n a pa qn t +=++:把原递推公式转化为1()n n a xn y p a xn y +--=--,解法同类型3. (6)1rn n a pa +=:把原递推公式两边同时取对数,然后可转化为类型3,利用待定系数法进行求解. (7)1nn n pa a qa r+=+:把原递推公式两边同时取倒数,然后可转化为类型3,利用待定系数法进行求解.(8)1()n n a a f n ++=:易得2(1)()n n a a f n f n +-=+-,然后分n 为奇数、偶数两种情况分类讨论即可.(9)1()n n a a f n +⋅=:易得2(1)()n n a f n a f n ++=,然后分n 为奇数、偶数两种情况分类讨论即可. 典例引领典例5 已知数列{a n }中,a 1=1,a n =n (a n+1-a n )(n ∈*N ).求数列{a n }的通项公式.典例6 在数列{}n a 中,11a =,()11112nn na a n n +⎛⎫=+++⋅ ⎪⎝⎭. (1)设nn a b n=,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n S .①-②得23122222n n n T n +-=+++⋅⋅⋅+-⋅()1212212n n n +-=-⋅-()1212n n +=-+-⋅.∴()1212n n T n +=+-⋅.∴()()112122n n n n S n ++=+-⋅-.变式拓展3.在数列中,,,,为常数,.(1)求的值;(2)设,求数列的通项公式.考向四 数列的性质数列可以看作是一类特殊的函数,所以数列具备函数应有的性质,在高考中常考查数列的单调性、周期性等. 1.数列的周期性先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. 2.数列的单调性(1)数列单调性的判断方法:①作差法:10n n a a +->⇔数列{}n a 是递增数列;10n n a a +-<⇔数列{}n a 是递减数列; 10n n a a +-=⇔数列{}n a 是常数列.②作商法:当0n a >时,11n na a +>⇔数列{}n a 是递增数列; 11n na a +<⇔数列{}n a 是递减数列; 11n na a +=⇔数列{}n a 是常数列. 当0n a <时,11n na a +>⇔数列{}n a 是递减数列; 11n na a +<⇔数列{}n a 是递增数列; 11n na a +=⇔数列{}n a 是常数列. (2)数列单调性的应用:①构造函数,确定出函数的单调性,进而可求得数列中的最大项或最小项.②根据11k k k k a a a a -+≥⎧⎨≥⎩可求数列中的最大项;根据11k k kk a a a a -+≤⎧⎨≤⎩可求数列中的最小项.当解不唯一时,比较各解对应的项的大小即可.(3)已知数列的单调性求解某个参数的取值范围,一般有两种方法:①利用数列的单调性构建不等式,然后将其转化为不等式的恒成立问题进行解决,也可通过分离参数将其转化为最值问题处理;②利用数列与函数之间的特殊关系,将数列的单调性转化为相应函数的单调性,利用函数的性质求解参数的取值范围,但要注意数列通项中n 的取值范围.典例引领典例7 已知数列{}n a ,其通项公式为2*3()n a n n n =-∈N ,判断数列{}n a 的单调性.典例8 已知正项数列的前项和为,且对任意恒成立. (1)证明:;(2)求数列的通项公式;(3)若,数列是递增数列,求的取值范围.【解析】(1)由,得,两式相减得.又,所以,即,当n=1时,,得,也满足,所以.变式拓展4.在数列中,,若,则的值为A .B .C .D .5.已知数列{}n a 的前n 项和n S 满足:11n n a a S S =+. (1)求数列{}n a 的通项公式; (2)若0n a >,数列2log 32n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,试问当n 为何值时,n T 最小?并求出最小值.考点冲关1.在数列1,2,,…中,是这个数列的第A.16项B.24项C.26项D.28项2.数列13,13-,527,781-,…的一个通项公式是A.a n=(-1)n+1213nn-B.a n=(-1)n213nn-C.a n=(-1)n+1213nn-D.a n=(-1)n213nn-3.若数列中,,则的值为A.B.C.D.4.若数列的前项和,则它的通项公式是A.B.C.D.5.如图,给出的3个三角形图案中圆的个数依次构成一个数列的前3项,则这个数列的一个通项公式是A.21n+ B.3nC.222n n+D.2322n n++6.在数列中==则=A.B.C .D .7.已知数列的通项为258n na n =+,则数列的最大值为AB .7107C .461D .不存在8.已知函数=()633,7,7x a x x ax -⎧--≤⎨>⎩,若数列{}满足=,且{}是递增数列,则实数a 的取值范围是 A .B .C .9,34⎡⎫⎪⎢⎣⎭D .9,34⎛⎫⎪⎝⎭9.传说古希腊毕达哥拉斯(Pythagoras,约公元前570年—公元前500年)学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数.根据下列四个图形及相应的正方形的个数的变化规律,第n 个图形中有_________个正方形.10.若数列{}n a 满足2,1181=-=+a a a nn ,则=1a ___________. 11.已知数列的前项和为,且=213n⎛⎫+ ⎪⎝⎭,则 .12.已知{a n }是递增数列,且对任意的自然数n (n ≥1),都有2n a n n λ=+恒成立,则实数λ的取值范围为__________.13.已知首项为2的数列的前项和为,且,若数列满足()*113212n n n n b a n --=+∈N ,则数列中最大项的值为__________.14.已知数列{a n }的通项公式为a n =3n 2-28n .(1)写出数列的第4项和第6项;(2)-49是否为该数列的一项?如果是,是哪一项?68是否为该数列的一项呢?15.已知数列{a n }的通项公式a n =n 2-7n-8.(1)数列中有多少项为负数?(2)数列{a n }是否有最小项?若有,求出其最小项.16.已知数列{}n a 的前n 项和n S 满足()*21n n S a n =-∈N .(1)求1a ,2a ,3a 的值;(2)已知数列{}n b 满足12b =,1n n n b a b +=+,求数列{}n b 的通项公式.17.已知数列{}n a 满足112a =,其前n 项和2n n S n a =,求其通项公式n a .18.设数列的前项和为,点均在函数的图象上.(1)求数列的通项公式;(2)设,求数列的前n 项和.直通高考1.(2018新课标全国Ⅰ理科)记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_________.2.(2015江苏)数列满足且,则数列1n a ⎧⎫⎨⎬⎩⎭的前10项和为 .3.(2015新课标全国Ⅰ理科)n S 为数列{n a }的前n 项和.已知a n >0,.(1)求{a n }的通项公式;(2)设11n n n b a a +=.求数列{b n }的前n 项和.参考答案变式拓展1.【答案】A【解析】①②③逐一写出为0,1,0,1,0,1,0,1,…,④逐一写出为1,0,1,0,1,0,1…不满足,故选A. 2.【解析】(1)令n=1,则.(2)由(1),知()()2112121212121n a n n n n n ==-+-+-+, 设数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和为n S , 则12111111211352133521212121n n a a a n S n n n n n ⎛⎫⎛⎫⎛⎫=+++=-+-++-=-= ⎪ ⎪ ⎪+-+++⎝⎭⎝⎭⎝⎭.3.【解析】(1)将n=1代入,得,4.【答案】B【解析】由题意得,,,,…,所以数列是周期为4的周期数列,所以.选B .5.【解析】(1)由已知11n n a a S S =+,可得当1n =时,2111a a a =+,可解得10a =或12a =, 当2n ≥时,由已知可得1111n n a a S S --=+,考点冲关1.【答案】C【解析】数列1,2,,…可化为,,…,则由,解得n=262.【答案】C【解析】对于选项A,当n=2时,a2=12,不满足题意,所以A不正确;对于选项B,当n =1时,a 1=13-,不满足题意,所以B 不正确; 对于选项D,当n =2时,a 2=13,不满足题意,所以D 不正确; 当n =1,2,3,4时,a n =(-1)n+1213n n -均满足题意,C 正确. 3.【答案】C【解析】因为,所以,所以,所以,即奇数项、偶数项构成的数列均为常数列,又,所以7.【答案】C 【解析】258n na n =+=158n n≤+,但,又727758a =+=7107,828858a =+=461,a 7<a 8,∴数列{a n }的最大项为a 8461=.故选C . 8.【答案】B【解析】因为{}是递增数列,所以函数f (x )单调递增.当时, f (x )=单调递增,可得,解得;当时, f (x )=单调递增,可得,所以.而{}是递增数列,所以f (7)=,解得,所以23a <<,即实数a 的取值范围是(2,3).故选B.9.【答案】()12n n + 【解析】设数列为,由图知,所以由此猜想:()11232n n n a n +=++++=,故填()12n n +. 10.【答案】1211.【答案】15,1312,233n n n -⎧=⎪⎪⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩ 【解析】n=1时,时,11233n -⎛⎫- ⎪⎝⎭,所以15,1312,233n n n -⎧=⎪⎪⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩. 12.【答案】(-3,+∞)【解析】由{a n}为递增数列,得a n+1-a n=(n+1)2+λ(n+1)-n2-λn=2n+1+λ>0恒成立,即N,则f(n)max=-3.λ>-2n-1在n≥1时恒成立,令f(n)=-2n-1,n∈*只需λ>f(n)max=-3即可.故实数λ的取值范围为(-3,+∞).13.【答案】43【解析】∵,∴当n=1时,,当时,,两式相减可得,n=1时也适合,∴当n=3时,最大,最大值为43,故答案为43.14.【解析】(1)a4=3×16-28×4=-64,a6=3×36-28×6=-60.(2)令3n2-28n=-49,解得n=7或n=(舍去),∴n=7,即-49是该数列的第7项.令3n 2-28n =68,解得n =或n =-2.∵∉N *,-2∉N *,∴68不是该数列的项.15.【解析】(1)令a n <0,即n 2-7n-8<0,得-1<n <8.又n ∈N *,所以n =1,2,3, (7)故数列从第1项至第7项均为负数,共7项.(2)函数y =x 2-7x-8图象的对称轴为x =72=3.5,所以当1≤x ≤3时,函数单调递减; 当x ≥4时,函数单调递增,所以当n =3或4时,数列{a n }有最小项,且最小项a 3=a 4=-20.16.【解析】(1)11a =,22a =,34a =.(2)因为()*21n n S a n =-∈N ,所以,当2n ≥时,有1121n n S a --=-,17.【解析】因为2n n S n a = ①,所以211(1)(1,)n n S n a n n --=->∈*N ②,-①②得221=(1)n n n a n a n a ---,即11(1,)1n n a n n n a n --=>∈+*N . 故21a a ⋅32a a ⋅43a a ⋅L 1n n a a -⋅12342134561n n n n --=⨯⨯⨯⨯⨯⨯+L ,即()121n a a n n =+, 又11,2a =所以n a =()11n n +(1,)n n >∈*N , 当n =1时,()1111112a ==⨯+成立,所以()1()1n a n n n =∈+*N .18.【解析】(1)∵点,n S n n ⎛⎫⎪⎝⎭在函数y=3x-2的图象上,直通高考1.【答案】63-【解析】根据21n n S a =+,可得1121n n S a ++=+, 两式相减得1122n n n a a a ++=-,即12n n a a +=, 当1n =时,11121S a a ==+,解得11a =-,所以数列{}n a 是以−1为首项,以2为公比的等比数列,所以()66126312S --==--,故答案是63-.【名师点睛】该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令1n =,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.2.【答案】2011【解析】因为且,所以,则11121n a n n ⎛⎫=- ⎪+⎝⎭,所以数列的前10项和为11111202122223101111⎛⎫⎛⎫⎛⎫-+-++-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n =()1111111[()()()]235572123323nn n n -+-++-=+++.。

推荐2019届高三数学(理 新课标)一轮复习课件第六章 数列6.1

推荐2019届高三数学(理 新课标)一轮复习课件第六章 数列6.1

=n(n+ 2 1)+1.
自查自纠
1.(1)项 首项 a1,a2,a3,…,an,…
(2)第 n 项 n (3)函数值 (4)an an-1 (5)通项公式法(解析式法) 列表法 图象法 递推公式法
2.(1)有穷数列 无穷数列
(2)递增数列 递减数列 摆动数列 常数列 > < =
3.S1 Sn-Sn-1
4.(1)n (2)2n (3)2n+1 (4)2n (5)(-1)n
6.1 数列的概念与简单表示法
1.数列的概念
(1)定义:按照一定顺序排列着的一列数称为数列,数列中的每一个数
叫做这个数列的
.数列中的每一项都和它的序号有关,排在第一
位的数称为这个数列的第 1 项(通常也叫做
),排在第 n 位的数称
为这个数列的第 n 项.所以,数列的一般形式可以写成
,其中
an 是数列的第 n 项,叫做数列的通项.常把一般形式的数列简记作{an}.
(2)通项公式:如果数列{an}的
与序号____________之间的关
系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.
(3)从函数的观点看,数列可以看作是一个定义域为正整数集 N*(或它
的有限子集{1,2,3,…,n})的函数(离散的),当自变量从小到大依次取
值时所对应的一列________.
集数合与常用列逻辑用语 章章
考纲链接 6.1 数列的概念与简单表示法
1.数列的概念和简单表示法 (1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式). (2)了解数列是自变量为正整数的一类特殊函数. 2.等差数列、等比数列 (1)理解等差数列、等比数列的概念. (2)掌握等差数列、等比数列的通项公式与前 n 项和公式. (3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用等 差数列、等比数列的有关知识解决相应的问题. (4)了解等差数列与一次函数的关系、等比数列与指数函数的关系.

精编2019年高考数学(理)大一轮复习人教版 第六章 数列 第1节 数列的概念及简单表示法

精编2019年高考数学(理)大一轮复习人教版 第六章 数列 第1节 数列的概念及简单表示法

第1节 数列的概念及简单表示法最新考纲 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式); 2.了解数列是自变量为正整数的一类特殊函数.知 识 梳 理1.数列的概念(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.(2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N *(或它的有限子集)为定义域的函数a n =f (n ),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是列表法、图象法和通项公式法. 2.数列的分类(1)通项公式:如果数列{a n }的第n 项a n 与序号n 之间的关系可以用一个式子a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{a n }的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. [常用结论与微点提醒]1.若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.2.在数列{a n }中,若a n 最大,则⎩⎨⎧a n ≥a n -1,a n ≥a n +1.若a n 最小,则⎩⎨⎧a n ≤a n -1,a n ≤a n +1.诊 断 自 测1.思考辨析(在括号内打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)一个数列中的数是不可以重复的.( ) (3)所有数列的第n 项都能使用公式表达.( )(4)根据数列的前几项归纳出的数列的通项公式可能不止一个.( ) 解析 (1)数列:1,2,3和数列:3,2,1是不同的数列. (2)数列中的数是可以重复的. (3)不是所有的数列都有通项公式. 答案 (1)× (2)× (3)× (4)√ 2.已知数列11×2,12×3,13×4,…,1n (n +1),…,下列各数中是此数列中的项的是( ) A.135B.142C.148D.154解析 n =6时,16×(6+1)=142为数列中的第6项.答案 B3.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A.15B.16C.49D.64解析 当n =8时,a 8=S 8-S 7=82-72=15. 答案 A4.(必修5P33A5改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.解析由a1=1=5×1-4,a2=6=5×2-4,a3=11=5×3-4,…,归纳a n=5n-4.答案5n-45.(2017·福州八中质检)已知数列{a n}满足a1=1,a n+1=a2n-2a n+1(n∈N*),则a2 018=________.解析∵a1=1,∴a2=(a1-1)2=0,a3=(a2-1)2=1,a4=(a3-1)2=0,…,可知数列{a n}是以2为周期的数列,∴a2 018=a2=0.答案0考点一由数列的前几项求数列的通项【例1】根据下面各数列前几项的值,写出数列的一个通项公式:(1)23,415,635,863,1099,…;(2)-1,7,-13,19,…;(3)12,2,92,8,252,…;(4)5,55,555,5 555,….解(1)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,每一项都是两个相邻奇数的乘积,分子依次为2,4,6,…,相邻的偶数.故所求数列的一个通项公式为a n=2n(2n-1)(2n+1).(2)偶数项为正,奇数项为负,故通项公式必含有因式(-1)n,观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为a n =(-1)n(6n-5).(3)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即12,42,92,162,252,…,分子为项数的平方,从而可得数列的一个通项公式为a n =n 22.(4)将原数列改写为59×9,59×99,59×999,…,易知数列9,99,999,…的通项为10n -1,故所求的数列的一个通项公式为a n =59(10n -1).规律方法 根据所给数列的前几项求其通项时,需仔细观察分析,抓住以下几方面的特征:(1)分式中分子、分母的各自特征; (2)相邻项的联系特征; (3)拆项后的各部分特征;(4)符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想. 【训练1】 (1)(2018·长沙模拟)已知数列的前4项为2,0,2,0,则依此归纳该数列的通项不可能是( ) A.a n =(-1)n -1+1B.a n =⎩⎨⎧2,n 为奇数,0,n 为偶数C.a n =2sin n π2D.a n =cos(n -1)π+1(2)(2018·青岛模拟)数列1,3,6,10,15,…的一个通项公式是( ) A.a n =n 2-(n -1) B.a n =n 2-1 C.a n =n (n +1)2D.a n =n (n -1)2解析 (1)对n =1,2,3,4进行验证,a n =2sin n π2不合题意. (2)设此数列为{a n },则由题意可得a 1=1,a 2=3,a 3=6, a 4=10,a 5=15,…仔细观察数列1,3,6,10,15,…可以发现: 1=1, 3=1+2, 6=1+2+3, 10=1+2+3+4,…所以第n 项为1+2+3+4+5+…+n =n (n +1)2, 所以数列1,3,6,10,15,…的通项公式为a n =n (n +1)2.答案 (1)C (2)C考点二 由S n 与a n 的关系求a n (易错警示)【例2】 (1)(必修5P45T2改编)已知数列{a n }的前n 项和为S n =14n 2+23n +3,则数列{a n }的通项公式a n =________.(2)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________. 解析 (1)当n =1时,a 1=S 1=4712, 当n ≥2时,a n =S n -S n -1=14n 2+23n +3-⎣⎢⎡⎦⎥⎤14(n -1)2+23(n -1)+3=12n +512,经检验a 1=4712不满足上式所以这个数列的通项公式为a n =⎩⎪⎨⎪⎧4712,n =1,12n +512,n ≥2.(2)由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13, 两式相减,得a n =23a n -23a n -1,∴当n ≥2时,a n =-2a n -1,即a na n -1=-2.又n =1时,S 1=a 1=23a 1+13,a 1=1, ∴a n =(-2)n -1.答案(1)⎩⎪⎨⎪⎧4712,n =1,12n +512,n ≥2(2)(-2)n -1规律方法 数列的通项a n 与前n 项和S n 的关系是a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.①当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;②当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.易错警示 在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形. 【训练2】 (1)已知数列{a n }的前n 项和S n =2n 2-3n ,则数列{a n }的通项公式a n =________.(2)已知数列{a n }的前n 项和S n =3n +1,则数列的通项公式a n =________. 解析 (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合上式,∴a n =4n -5. (2)当n =1时,a 1=S 1=3+1=4,当n ≥2时,a n =S n -S n -1=3n +1-3n -1-1=2·3n -1. 显然当n =1时,不满足上式. ∴a n =⎩⎨⎧4,n =1,2·3n -1,n ≥2.答案 (1)4n -5 (2)⎩⎨⎧4,n =1,2·3n -1,n ≥2 考点三 由数列的递推关系求通项公式 【例3】 在数列{a n }中,(1)若a 1=2,a n +1=a n +3n +2,则数列{a n }的通项公式a n =________. (2)若a 1=1,na n -1=(n +1)a n (n ≥2),则数列{a n }的通项公式a n =________. (3)若a 1=1,a n +1=2a n +3,则通项公式a n =________. 解析 (1)由题意,得a n +1-a n =3n +2,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =(3n -1)+(3n -4)+…+5+2=n (3n +1)2.即a n =32n 2+n2.(2)由na n -1=(n +1)a n (n ≥2),得a n a n -1=n n +1(n ≥2). 所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n n +1·n -1n ·n -2n -1·…·34·23·1 =2n +1,又a 1也满足上式. 所以a n =2n +1.(3)设递推公式a n +1=2a n +3可以转化为a n +1+t =2(a n +t ),即a n +1=2a n +t ,解得t =3.故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2.所以{b n }是以4为首项,2为公比的等比数列. ∴b n =4·2n -1=2n +1,∴a n =2n +1-3. 答案 (1)32n 2+n 2 (2)2n +1(3)2n +1-3规律方法 1.形如a n +1=a n +f (n )的递推关系式利用累加法求通项公式,特别注意能消去多少项,保留多少项.2.形如a n +1=a n ·f (n )的递推关系式可化为a n +1a n =f (n )的形式,可用累乘法,也可用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1代入求出通项.3.形如a n +1=pa n +q 的递推关系式可以化为(a n +1+x )=p (a n +x )的形式,构成新的等比数列,求出通项公式,求变量x 是关键. 【训练3】 在数列{a n }中,(1)若a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.(2)若a 1=1,a n +1=2n a n ,则通项公式a n =________.(3)若a 1=1,a n +1=2a na n +2,则数列{a n }的通项公式a n =________.解析 (1)原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+11-12,a 3=a 2+12-13,a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1,a n =a n -1+1n -1-1n ,以上(n -1)个式子的等号两端分别相加得,a n =a 1+1-1n ,故a n =4-1n .(2)由a n +1=2na n ,得a na n -1=2n -1(n ≥2),所以a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=2n (n -1)2.又a 1=1适合上式,故a n =2n (n -1)2.(3)因为a n +1=2a na n +2,a 1=1,所以a n ≠0,所以1a n +1=1a n +12,即1a n +1-1a n =12.又a 1=1,则1a 1=1,所以⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.所以1a n =1a 1+(n -1)×12=n 2+12.所以a n =2n +1(n ∈N *).答案 (1)4-1n (2)2n (n -1)2(3)2n +1基础巩固题组 (建议用时:40分钟)一、选择题1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n 等于( ) A.(-1)n +12B.cos n π2C.cosn +12πD.cosn +22π解析 令n =1,2,3,…,逐一验证四个选项,易得D 正确. 答案 D2.(2018·湘潭一中、长沙一中联考)已知数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=( ) A.132B.116C.14D.12解析 由题意,得a 2=a 1a 1=14,a 3=a 1·a 2=18,则a 5=a 3·a 2=132. 答案 A3.(2017·黄山二模)已知数列{a n }的前n 项和为S n ,且a 1=2,a n +1=S n +1(n ∈N *),则S 5=( ) A.31B.42C.37D.47解析 由题意,得S n +1-S n =S n +1(n ∈N *),∴S n +1+1=2(S n +1)(n ∈N *),故数列{S n +1}为等比数列,其首项为3,公比为2,则S 5+1=3×24,所以S 5=47. 答案 D4.数列{a n }的前n 项积为n 2,那么当n ≥2时,a n 等于( ) A.2n -1 B.n 2 C.(n +1)2n 2D.n 2(n -1)2解析 设数列{a n }的前n 项积为T n ,则T n =n 2, 当n ≥2时,a n =T n T n -1=n 2(n -1)2.答案 D5.数列{a n }满足a n +1+a n =2n -3,若a 1=2,则a 8-a 4=( ) A.7B.6C.5D.4解析 依题意得(a n +2+a n +1)-(a n +1+a n )=[2(n +1)-3]-(2n -3),即a n +2-a n =2,所以a 8-a 4=(a 8-a 6)+(a 6-a 4)=2+2=4. 答案 D 二、填空题6.若数列{a n }的前n 项和S n =3n 2-2n +1,则数列{a n }的通项公式a n =________. 解析 当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎨⎧2,n =1,6n -5,n ≥2.答案 ⎩⎨⎧2,n =1,6n -5,n ≥27.(2018·云南11校联合调研改编)已知数列{a n }中,a 1=1,a n +1=a n +2n +1,则a 5=________.解析 依题意得a n +1-a n =2n +1,a 5=a 1+(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+(a 5-a 4)=1+3+5+7+9=25. 答案 258.已知a n =n 2+λn ,且对于任意的n ∈N *,数列{a n }是递增数列,则实数λ的取值范围是________.解析 因为{a n }是递增数列,所以对任意的n ∈N *,都有a n +1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1).(*)因为n ≥1,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3. 答案 (-3,+∞) 三、解答题9.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式. 解 (1)由S n =12a 2n +12a n (n ∈N *)可得a 1=12a 21+12a 1,解得a 1=1,S 2=a 1+a 2=12a 22+12a 2,解得a 2=2,同理,a 3=3,a 4=4.(2)S n =a n 2+12a 2n ,①当n ≥2时,S n -1=a n -12+12a 2n -1,②①-②得(a n -a n -1-1)(a n +a n -1)=0.由于a n +a n -1≠0,所以a n -a n -1=1,又由(1)知a 1=1,故数列{a n }为首项为1,公差为1的等差数列,故a n =n .10.已知数列{a n }中,a 1=3,a n +1·a n =2n ,求a n .解 因为a n +1·a n =2n ,所以a n +2·a n +1=2n +1,a 2=23,故a n +2a n=2,所以数列{a n }的奇数项构成以3为首项,以2为公比的等比数列;偶数项构成以23为首项,以2为公比的等比数列.当n 为偶数时,a n =a 2·2n 2-1=23·2n 2-1,即a n =13·2n 2; 当n 为奇数时,a n =3·2n -12.综上所述,a n =⎩⎪⎨⎪⎧3·2n -12,n 为奇数,13·2n 2,n 为偶数(n ≥1,n ∈N *). 能力提升题组(建议用时:20分钟)11.数列{a n }的通项a n =n n 2+90,则数列{a n }中的最大项是( ) A.310 B.19 C.119 D.1060解析 令f (x )=x +90x (x >0),得f (x )≥290,当且仅当x =310时等号成立.因为a n =1n +90n ,所以1n +90n ≤1290,由于n ∈N *,不难发现当n =9或n =10时,a n =119最大.答案 C12.(2017·湘中名校联考)对于数列{a n },定义H n =a 1+2a 2+…+2n -1a n n为{a n }的“优值”,现在已知某数列{a n }的“优值”H n =2n +1,记数列{a n -kn }的前n 项和为S n ,若S n ≤S 5对任意的n ∈N *恒成立,则实数k 的取值范围为________. 解析 由H n =2n +1,得n ·2n +1=a 1+2a 2+…+2n -1a n ①,(n -1)·2n =a 1+2a 2+…+2n -2a n -1②,①-②,得2n -1a n =n ·2n +1-(n -1)·2n ,所以a n =2n +2,a n -kn=(2-k )n +2,又S n ≤S 5对任意的n ∈N *恒成立,所以⎩⎨⎧a 5≥0,a 6≤0,即⎩⎨⎧5(2-k )+2≥0,6(2-k )+2≤0,解得73≤k ≤125. 答案 ⎣⎢⎡⎦⎥⎤73,125 13.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0). (1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0), 又a =-7,∴a n =1+12n -9(n ∈N *). 结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2, 已知对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性,可知5<2-a 2<6,即-10<a <-8.即a 的取值范围是(-10,-8).。

2019届高考数学第一轮复习 第六章 数列 6.1 数列的概念与表示 文 新人教A版

2019届高考数学第一轮复习 第六章 数列 6.1 数列的概念与表示 文 新人教A版

思考如何根据数列的前几项的值写出数列的一个通项公式?
考点1
考点2
考点3
-17-
解 (1)偶数项为正,奇数项为负,故通项公式必含有因式(-1)n;观察各 项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的 一个通项公式an=(-1)n(6n-5). (2)这个数列的前4项的绝对值都等于序号与序号加1的乘积的倒数,
第六章 数 列
-2-
6.1 数列的概念与表示
-4-
知识梳理 双基自测 自测点评
123456
1.数列的定义 按照 一定顺序 排列的一列数称为数列,数列中的每一个数叫做 这个数列的 项 .
-5-
知识梳理 双基自测 自测点评
123456
2.数列的分类
分类原则 类 型 满足条件
按项数分 有穷数列 项数 有限
则 a4+1=22(a2+1)=12,解得 a4=11.故选 D. D
解析
关闭
关闭
答案
-14-
知识梳理 双基自测 自测点评
12345
5.设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则
Sn=
.
关闭
由 an+1=Sn+1-Sn=SnSn+1,得���1��������� − ������������1+1=1,即������������1+1 − ���1���������=-1,则
∴������������������+������+1+11=3.
∴数列{an+1}为等比数列,且公比q=3. 又a1+1=2,∴an+1=2·3n-1. ∴an=2·3n-1-1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1节 数列的概念及简单表示法最新考纲 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式); 2.了解数列是自变量为正整数的一类特殊函数.知 识 梳 理1.数列的概念(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. (2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N *(或它的有限子集)为定义域的函数a n =f (n ),当自变量按照从小到大的顺序依次取值时所对应的一列函数值. (3)数列有三种表示法,它们分别是列表法、图象法和通项公式法. 2.数列的分类3.数列的通项公式(1)通项公式:如果数列{a n }的第n 项a n 与序号n 之间的关系可以用一个式子a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{a n }的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. [常用结论与微点提醒]1.若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.2.在数列{a n }中,若a n 最大,则⎩⎨⎧a n ≥a n -1,a n ≥a n +1.若a n 最小,则⎩⎨⎧a n ≤a n -1,a n ≤a n +1.诊 断 自 测1.思考辨析(在括号内打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)一个数列中的数是不可以重复的.( ) (3)所有数列的第n 项都能使用公式表达.( )(4)根据数列的前几项归纳出的数列的通项公式可能不止一个.( ) 解析 (1)数列:1,2,3和数列:3,2,1是不同的数列. (2)数列中的数是可以重复的. (3)不是所有的数列都有通项公式. 答案 (1)× (2)× (3)× (4)√2.已知数列11×2,12×3,13×4,…,1n (n +1),…,下列各数中是此数列中的项的是( ) A.135 B.142 C.148 D.154解析 n =6时,16×(6+1)=142为数列中的第6项.答案 B3.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A.15B.16C.49D.64解析 当n =8时,a 8=S 8-S 7=82-72=15. 答案 A4.(必修5P33A5改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.解析 由a 1=1=5×1-4,a 2=6=5×2-4,a 3=11=5×3-4,…,归纳a n =5n -4. 答案 5n -45.(2017·福州八中质检)已知数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2 018=________.解析 ∵a 1=1,∴a 2=(a 1-1)2=0,a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的数列,∴a 2 018=a 2=0. 答案 0考点一 由数列的前几项求数列的通项【例1】 根据下面各数列前几项的值,写出数列的一个通项公式: (1)23,415,635,863,1099,…; (2)-1,7,-13,19,…; (3)12,2,92,8,252,…; (4)5,55,555,5 555,….解 (1)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,每一项都是两个相邻奇数的乘积,分子依次为2,4,6,…,相邻的偶数.故所求数列的一个通项公式为a n =2n (2n -1)(2n +1).(2)偶数项为正,奇数项为负,故通项公式必含有因式(-1)n ,观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为a n = (-1)n (6n -5).(3)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即12,42,92,162,252,…,分子为项数的平方,从而可得数列的一个通项公式为a n =n 22.(4)将原数列改写为59×9,59×99,59×999,…,易知数列9,99,999,…的通项为10n -1,故所求的数列的一个通项公式为a n =59(10n -1).规律方法 根据所给数列的前几项求其通项时,需仔细观察分析,抓住以下几方面的特征: (1)分式中分子、分母的各自特征; (2)相邻项的联系特征; (3)拆项后的各部分特征;(4)符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.【训练1】 (1)(2018·长沙模拟)已知数列的前4项为2,0,2,0,则依此归纳该数列的通项不可能是( ) A.a n =(-1)n -1+1B.a n =⎩⎨⎧2,n 为奇数,0,n 为偶数C.a n =2sin n π2D.a n =cos(n -1)π+1(2)(2018·青岛模拟)数列1,3,6,10,15,…的一个通项公式是( ) A.a n =n 2-(n -1) B.a n =n 2-1 C.a n =n (n +1)2D.a n =n (n -1)2 解析 (1)对n =1,2,3,4进行验证,a n =2sin n π2不合题意. (2)设此数列为{a n },则由题意可得a 1=1,a 2=3,a 3=6, a 4=10,a 5=15,…仔细观察数列1,3,6,10,15,…可以发现: 1=1, 3=1+2, 6=1+2+3, 10=1+2+3+4, …所以第n 项为1+2+3+4+5+…+n =n (n +1)2, 所以数列1,3,6,10,15,…的通项公式为a n =n (n +1)2.答案 (1)C (2)C考点二 由S n 与a n 的关系求a n (易错警示)【例2】 (1)(必修5P45T2改编)已知数列{a n }的前n 项和为S n =14n 2+23n +3,则数列{a n }的通项公式a n =________.(2)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________. 解析 (1)当n =1时,a 1=S 1=4712, 当n ≥2时,a n =S n -S n -1=14n 2+23n +3-⎣⎢⎡⎦⎥⎤14(n -1)2+23(n -1)+3=12n +512,经检验a 1=4712不满足上式所以这个数列的通项公式为a n =⎩⎪⎨⎪⎧4712,n =1,12n +512,n ≥2.(2)由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13, 两式相减,得a n =23a n -23a n -1,∴当n ≥2时,a n =-2a n -1,即a na n -1=-2.又n =1时,S 1=a 1=23a 1+13,a 1=1, ∴a n =(-2)n -1.答案(1)⎩⎪⎨⎪⎧4712,n =1,12n +512,n ≥2(2)(-2)n -1规律方法 数列的通项a n 与前n 项和S n 的关系是a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.①当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;②当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.易错警示 在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.【训练2】 (1)已知数列{a n }的前n 项和S n =2n 2-3n ,则数列{a n }的通项公式a n =________. (2)已知数列{a n }的前n 项和S n =3n +1,则数列的通项公式a n =________. 解析 (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合上式,∴a n =4n -5. (2)当n =1时,a 1=S 1=3+1=4,当n ≥2时,a n =S n -S n -1=3n +1-3n -1-1=2·3n -1. 显然当n =1时,不满足上式. ∴a n =⎩⎨⎧4,n =1,2·3n -1,n ≥2.答案 (1)4n -5 (2)⎩⎨⎧4,n =1,2·3n -1,n ≥2 考点三 由数列的递推关系求通项公式 【例3】 在数列{a n }中,(1)若a 1=2,a n +1=a n +3n +2,则数列{a n }的通项公式a n =________. (2)若a 1=1,na n -1=(n +1)a n (n ≥2),则数列{a n }的通项公式a n =________. (3)若a 1=1,a n +1=2a n +3,则通项公式a n =________. 解析 (1)由题意,得a n +1-a n =3n +2,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =(3n -1)+(3n -4)+…+5+2 =n (3n +1)2.即a n =32n 2+n2.(2)由na n -1=(n +1)a n (n ≥2),得a n a n -1=nn +1(n ≥2).所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n n +1·n -1n ·n -2n -1·…·34·23·1 =2n +1,又a 1也满足上式. 所以a n =2n +1.(3)设递推公式a n +1=2a n +3可以转化为a n +1+t =2(a n +t ),即a n +1=2a n +t ,解得t =3. 故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2.所以{b n }是以4为首项,2为公比的等比数列. ∴b n =4·2n -1=2n +1,∴a n =2n +1-3. 答案 (1)32n 2+n 2 (2)2n +1(3)2n +1-3规律方法 1.形如a n +1=a n +f (n )的递推关系式利用累加法求通项公式,特别注意能消去多少项,保留多少项.2.形如a n +1=a n ·f (n )的递推关系式可化为a n +1a n =f (n )的形式,可用累乘法,也可用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1代入求出通项. 3.形如a n +1=pa n +q 的递推关系式可以化为(a n +1+x )=p (a n +x )的形式,构成新的等比数列,求出通项公式,求变量x 是关键. 【训练3】 在数列{a n }中, (1)若a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.(2)若a 1=1,a n +1=2n a n ,则通项公式a n =________.(3)若a 1=1,a n +1=2a na n +2,则数列{a n }的通项公式a n =________.解析 (1)原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+11-12,a 3=a 2+12-13,a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1,a n =a n -1+1n -1-1n,以上(n -1)个式子的等号两端分别相加得,a n =a 1+1-1n ,故a n =4-1n .(2)由a n +1=2n a n ,得a na n -1=2n -1(n ≥2),所以a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=2n (n -1)2.又a 1=1适合上式,故a n =2n (n -1)2.(3)因为a n +1=2a na n +2,a 1=1,所以a n ≠0,所以1a n +1=1a n +12,即1a n +1-1a n=12.又a 1=1,则1a 1=1,所以⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.所以1a n =1a 1+(n -1)×12=n 2+12.所以a n =2n +1(n ∈N *).答案 (1)4-1n(2)2n (n -1)2(3)2n +1基础巩固题组 (建议用时:40分钟)一、选择题1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n 等于( ) A.(-1)n +12B.cos n π2C.cos n +12πD.cos n +22π解析 令n =1,2,3,…,逐一验证四个选项,易得D 正确. 答案 D2.(2018·湘潭一中、长沙一中联考)已知数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=( ) A.132B.116C.14D.12解析 由题意,得a 2=a 1a 1=14,a 3=a 1·a 2=18,则a 5=a 3·a 2=132.答案 A3.(2017·黄山二模)已知数列{a n }的前n 项和为S n ,且a 1=2,a n +1=S n +1(n ∈N *),则S 5=( ) A.31B.42C.37D.47解析 由题意,得S n +1-S n =S n +1(n ∈N *),∴S n +1+1=2(S n +1)(n ∈N *),故数列{S n +1}为等比数列,其首项为3,公比为2,则S 5+1=3×24,所以S 5=47. 答案 D4.数列{a n }的前n 项积为n 2,那么当n ≥2时,a n 等于( ) A.2n -1 B.n 2 C.(n +1)2n 2D.n 2(n -1)2解析 设数列{a n }的前n 项积为T n ,则T n =n 2, 当n ≥2时,a n =T n T n -1=n 2(n -1)2.答案 D5.数列{a n }满足a n +1+a n =2n -3,若a 1=2,则a 8-a 4=( ) A.7B.6C.5D.4解析 依题意得(a n +2+a n +1)-(a n +1+a n )=[2(n +1)-3]-(2n -3),即a n +2-a n =2,所以a 8-a 4=(a 8-a 6)+(a 6-a 4)=2+2=4. 答案 D 二、填空题6.若数列{a n }的前n 项和S n =3n 2-2n +1,则数列{a n }的通项公式a n =________. 解析 当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式. 故数列的通项公式为a n =⎩⎨⎧2,n =1,6n -5,n ≥2.答案 ⎩⎨⎧2,n =1,6n -5,n ≥27.(2018·云南11校联合调研改编)已知数列{a n }中,a 1=1,a n +1=a n +2n +1,则a 5=________. 解析 依题意得a n +1-a n =2n +1,a 5=a 1+(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+(a 5-a 4)=1+3+5+7+9=25. 答案 258.已知a n =n 2+λn ,且对于任意的n ∈N *,数列{a n }是递增数列,则实数λ的取值范围是________. 解析 因为{a n }是递增数列,所以对任意的n ∈N *,都有a n +1>a n ,即(n +1)2+λ(n +1)>n 2+λn , 整理,得2n +1+λ>0,即λ>-(2n +1).(*)因为n ≥1,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3. 答案 (-3,+∞) 三、解答题9.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式. 解 (1)由S n =12a 2n +12a n (n ∈N *)可得a 1=12a 21+12a 1,解得a 1=1,S 2=a 1+a 2=12a 22+12a 2,解得a 2=2, 同理,a 3=3,a 4=4. (2)S n =a n 2+12a 2n ,①当n ≥2时,S n -1=a n -12+12a 2n -1,② ①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }为首项为1,公差为1的等差数列,故a n =n . 10.已知数列{a n }中,a 1=3,a n +1·a n =2n ,求a n . 解 因为a n +1·a n =2n ,所以a n +2·a n +1=2n +1,a 2=23,故a n +2a n =2,所以数列{a n }的奇数项构成以3为首项,以2为公比的等比数列;偶数项构成以23为首项,以2为公比的等比数列. 当n 为偶数时,a n =a 2·2n2-1=23·2n 2-1,即a n =13·2n 2;当n 为奇数时,a n =3·2n -12.综上所述,a n =⎩⎪⎨⎪⎧3·2n -12,n 为奇数,13·2n2,n 为偶数(n ≥1,n ∈N *). 能力提升题组 (建议用时:20分钟)11.数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大项是( )A.310B.19C.119D.1060解析 令f (x )=x +90x (x >0),得f (x )≥290,当且仅当x =310时等号成立.因为a n =1n +90n ,所以1n +90n ≤1290,由于n ∈N *,不难发现当n =9或n =10时,a n =119最大. 答案 C12.(2017·湘中名校联考)对于数列{a n },定义H n =a 1+2a 2+…+2n -1a nn为{a n }的“优值”,现在已知某数列{a n }的“优值”H n =2n +1,记数列{a n -kn }的前n 项和为S n ,若S n ≤S 5对任意的n ∈N *恒成立,则实数k 的取值范围为________.解析 由H n =2n +1,得n ·2n +1=a 1+2a 2+…+2n -1a n ①,(n -1)·2n =a 1+2a 2+…+2n -2a n -1②,①-②,得2n -1a n =n ·2n +1-(n -1)·2n ,所以a n =2n +2,a n -kn =(2-k )n +2,又S n ≤S 5对任意的n ∈N *恒成立,所以⎩⎨⎧a 5≥0,a 6≤0,即⎩⎨⎧5(2-k )+2≥0,6(2-k )+2≤0,解得73≤k ≤125. 答案 ⎣⎢⎡⎦⎥⎤73,125 13.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0). (1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0), 又a =-7,∴a n =1+12n -9(n ∈N *). 结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *). ∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2, 已知对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 可知5<2-a 2<6,即-10<a <-8.即a 的取值范围是(-10,-8).。

相关文档
最新文档