二项式定理.版块四.二项式定理的应用1证明整除或求余数.学生版

合集下载

第03讲 二项式定理 (精讲)(学生版)

第03讲 二项式定理 (精讲)(学生版)

0,1,2,
n ),(a n n a C b a 100+n n a C b 211+-
0,1,2,
n ),项的系数是指该项中除变量外的常数部分0,1,2,
n )叫做二项展开式的通项通项体现了二项展开式的项数、系数、次数的变化规律如含指定幂的项常数项、中间项、有理项、系数最大的项等①对称性:二项展开式中与首尾两端距离相等的两个二项式系数相等:2C n n n +
+=C n
n +
+=(的展开式中各项的二项式系数之和为.
展开式中,含__________.n
的展开式中第项的二项式系数相等,
(n n a x n +
+1
2n
n na -++
的值200200a x +
+200a ++的值.2022·重庆市永川北山中学校高二期中)已知
20222022a x +
+2022a ++;5
2021a +;
22022a a ++;展开式中二项式系数和以及偶数项的二项式系数和;332022a a ++88a x +
+
8a +
+;
2C n n n +
+=C n
n +
+=
D .16
29292830C 2C +除以10所得
D .8
1010
1010(1)8080k k k
C C +
+-+
+除
(n n a x ++255n a +
+=D .。

二项式定理.版块四.二项式定理的应用1证明整除或求余数.教师版 普通高中数学复习讲义Word版

二项式定理.版块四.二项式定理的应用1证明整除或求余数.教师版 普通高中数学复习讲义Word版

1.二项式定理⑴二项式定理()()011222...nn n n n n n n n n a b C a C a b C a b C b n --*+=++++∈N这个公式表示的定理叫做二项式定理. ⑵二项式系数、二项式的通项011222...n n n n nn n n n C a C a b C a b C b --++++叫做()na b +的二项展开式,其中的系数()0,1,2,...,r n C r n =叫做二项式系数,式中的r n r r n C a b -叫做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r rr nT C a b -+=. ⑶二项式展开式的各项幂指数二项式()na b +的展开式项数为1n +项,各项的幂指数状况是 ①各项的次数都等于二项式的幂指数n .②字母a 的按降幂排列,从第一项开始,次数由n 逐项减1直到零,字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . ⑷几点注意①通项1r n r rr nT C a b -+=是()na b +的展开式的第1r +项,这里0,1,2,...,r n =. ②二项式()n a b +的1r +项和()nb a +的展开式的第1r +项r n r rn C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换的.③注意二项式系数(r n C )与展开式中对应项的系数不一定相等,二项式系数一定为正,而项的系数有时可为负.知识内容证明整除或求余数④通项公式是()n a b +这个标准形式下而言的,如()na b -的二项展开式的通项公式是()11rr n r r r n T C a b -+=-(只须把b -看成b 代入二项式定理)这与1r n r rr n T C a b -+=是不同的,在这里对应项的二项式系数是相等的都是r n C ,但项的系数一个是()1rr n C -,一个是r n C ,可看出,二项式系数与项的系数是不同的概念.⑤设1,a b x ==,则得公式:()12211......nr rn nn n x C x C x C x x +=++++++. ⑥通项是1r T +=r n r rnC a b -()0,1,2,...,r n =中含有1,,,,r T a b n r +五个元素, 只要知道其中四个即可求第五个元素.⑦当n 不是很大,x 比较小时可以用展开式的前几项求(1)n x +的近似值.2.二项式系数的性质⑴杨辉三角形:对于n 是较小的正整数时,可以直接写出各项系数而不去套用二项式定理,二项式系数也可以直接用杨辉三角计算.杨辉三角有如下规律:“左、右两边斜行各数都是1.其余各数都等于它肩上两个数字的和.” ⑵二项式系数的性质:()na b +展开式的二项式系数是:012,,,...,nn n n n C C C C ,从函数的角度看r n C 可以看成是r 为自变量的函数()f r ,其定义域是:{}0,1,2,3,...,n . 当6n =时,()f r 的图象为下图:这样我们利用“杨辉三角”和6n =时()f r 的图象的直观来帮助我们研究二项式系数的性质. ①对称性:与首末两端“等距离”的两个二项式系数相等.事实上,这一性质可直接由公式m n m n n C C -=得到.②增减性与最大值如果二项式的幂指数是偶数,中间一项的二项式系数最大; 如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大. 由于展开式各项的二项式系数顺次是 ()01211,,112n n n n n n C C C -===⋅, ()()312123n n n n C --=⋅⋅,..., ()()()()112...2123....1k n n n n n k C k ----+=⋅⋅⋅⋅-,()()()()()12...21123...1knn n n n k n k C k k---+-+=⋅⋅⋅-,...,1nn C =.其中,后一个二项式系数的分子是前一个二项式系数的分子乘以逐次减小1的数(如,1,2,...n n n --),分母是乘以逐次增大的数(如1,2,3,…).因为,一个自然数乘以一个大于1的数则变大,而乘以一个小于1的数则变小,从而当k 依次取1,2,3,…等值时,r n C 的值转化为不递增而递减了.又因为与首末两端“等距离”的两项的式系数相等,所以二项式系数增大到某一项时就逐渐减小,且二项式系数最大的项必在中间. 当n 是偶数时,1n +是奇数,展开式共有1n +项,所以展开式有中间一项,并且这一项的二项式系数最大,最大为2n nC .当n 是奇数时,1n +是偶数,展开式共有1n +项,所以有中间两项. 这两项的二项式系数相等并且最大,最大为1122n n nnCC-+=.③二项式系数的和为2n ,即012......2r n n nn n n n C C C C C ++++++=. ④奇数项的二项式系数的和等于偶数项的二项式系数的和,即0241351......2n n n n n n n C C C C C C -+++=+++=.常见题型有:求展开式的某些特定项、项数、系数,二项式定理的逆用,赋值用,简单的组合数式问题.二项式定理的应用1证明整除或者求余数【例1】 利用二项式定理证明:22389n n +--是64的倍数.典例分析【考点】证明整除或求余数 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】64是8的平方,问题相当于证明22389n n +--是28的倍数,为了使问题向二项式定理贴近,变形221139(81)n n n +++==+,将其展开后各项含有8k ,与28的倍数联系起来.∵22389n n +--11989(81)89n n n n ++=--=+--11121118C 8C 8C 8189n nn nn n n n +-+++=+⋅++⋅+⋅+-- 1112118C 8C 88(1)189n n n n n n n +-++=+⋅++⋅+++--1112118C 8C 8n nn n n +-++=+⋅++⋅112111(8C 8C )64n n n n n +--++=+⋅++⋅是64的倍数.【例2】 若*n ∈N ,证明:2332437n n +-+能被64整除. 【考点】证明整除或求余数 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】考虑先将233n +拆成与8的倍数有关的和式,再用二项式定理展开.2332437n n +-+22332437n n +=⋅-+1392437n n +=⋅-+ 13(81)2437n n +=⋅+-+011211111113[8888]2437n n n n n n n n n n C C C C C n +-++++++=⋅⋅+⋅+⋅++⋅+-+1121113[888(1)81]2437n n n n n C C n n +-++=⋅+⋅+⋅+++⋅+-+1121121113[8888(89)]2437n n n n n n n C C C n n +--+++=⋅+⋅+⋅++⋅++-+211223111138[888]3(89)2437n n n n n n n C C C n n ----+++=⋅+⋅+⋅+++⋅+-+1122311364[888]64n n n n n C C ---++=⋅+⋅+⋅++,∵18n -,1218n n C -+⋅,2318n n C -+⋅,…均为自然数, ∴上式各项均为64的整数倍. ∴原式能被64整除.点评:用二项式定理证明整除问题,大体上就是这一模式,先将某项凑成与除数有关的和式,再展开证之.该类题也可用数学归纳法证明,但不如用二项式定理证明简捷.【例3】 证明:22(1(1(*)n n n +-∈N 能被12n +整除.【考点】证明整除或求余数 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】∵22(1(1(4(42[(2(2]n n n n n n n ++=++-=++,∴只需证(2(2n n ++能被2整除.而222444(2(22[222]C C n n n n n n n --+-=+⋅⋅+⋅⋅+能被2整除,因此22(1(1(*)n n n +-∈N 能被12n +整除.【例4】 证明:2121(1(1(*)n n n +++∈N 能被12n +整除.【考点】证明整除或求余数 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】21212222(1(1(1(1(1]n n n n n n ++++-=+-++--.22(1]n n +--也能被12n +整除. 一样的道理,该式子可化为:22(1]2(2]n n n n +-=-,所以也只需证(2]n n +-能被2整除即可.331234(2]]2[(3)(3)]C C C C n n n n n -=+=++综上可知原命题结论成立.【例5】 ⑴3023-除以7的余数________;⑵555515+除以8的余数是__________; ⑶20001991除以310的余数是 .【考点】证明整除或求余数 【难度】3星 【题型】解答 【关键字】无 【解析】略【答案】⑴将302分解成含7的因数,然后用二项式定理展开,不含7的项就是余数.3023-310(2)3=-10(8)3=-10(71)3=+-01019910101010107773C C C C =++++- 091891010107[77]2C C C =⨯+++-又∵余数不能为负数,需转化为正数 ∴3023-除以7的余数为5 ∴应填:5⑵将5555写成55(561)-,然后利用二项式定理展开. 555515+55(561)15=-+05515454555555555556565615C C C C =-++-+容易看出该式只有55551514C -+=不能被8整除,因此555515+除以8的余数,即14除以8的余数,故余数为6.∴应填:6.⑶200020001991(20009)=-,用二项式定理展开后,易知除了最后一项,其它都能被310整除.因此只需考虑20009除以310的余数.200020002000119991997319982199920002000200020009(101)10(10)(10)(10)(10)1-C C C C =-=+-+-+只需考虑最后3项,不难算出余数为1【例6】 100111-的末尾连续零的个数是( )A .7B .5C .3D .2【考点】证明整除或求余数 【难度】3星 【题型】解答 【关键字】无【解析】10010011(101)=+0100199973982991001001001001001001001010...101010C C C C C C =++++++上述展开式中,最后一项为1;倒数第二项为1000;倒数第三项为495000,末尾有三个0;倒数第四项为16170000,末尾有四个0;依次前面各项末尾至少有四个0.所以100111-的末尾连续零的个数是3.故选C .【答案】C。

例析二项式定理的应用技巧

例析二项式定理的应用技巧

乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒乒二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*)是高中数学中的重要内容,其反应了二项式展开式中项与系数之间的关系.该定理在解题中往往有着广泛的应用,同学们要熟练掌握二项式定理以及通项公式,并学会将其灵活地应用于解题中.下面谈一谈二项式定理的几种应用技巧.一、证明整除问题或求余数在进行习题训练时,往往会遇到一些整除问题以及求余数问题,而二项式定理是解答此类问题的有效工具.首先将某个数或式子用两项的和表示出来;然后运用二项式定理将该二项式展开,提取各项的倍数或公因式,即可求得其余数.若余数为0,则该式可被整除,否则不能被整除.例1.求199510除以8的余数.解:199510=(8×249+3)10=C010(8×249)10∙30+C110(8×249)9∙31+⋯+C1010(8×249)0·310,除最后一项为310以外,其他的每一项都含有因子8,而310=95=(8+1)5=C0585+C1584+C2583+C3582+C458+C5580,除了最后一项是1以外,其他的每一项都有因子8,所以310被8除的余数是1,所以199510除以8的余数是1.解答本题,需先将1995和310=95分别化为两项之和,并使其中一项为8的倍数;然后运用二项式定理将其展开,提取公因式8,求得多余的项,即可解题.运用二项式定理解答整除问题以及求余数问题,需将大数化为小数的倍数,通过求展开式中的公因式,求得问题的答案.二、求展开式的系数当遇到高次多项式问题时,采用常规的方法很难使问题获解,此时可将多项式看作两项的和,运用二项式定理将其展开,求出其通项后,根据题目所给的条件和要求进行求解,即可得到展开式或其中某一项的系数.例2.设(5x-x)n的展开式的各项系数之和为M,二项式系数之和为N,如果M-N=240,求展开式中二项式系数最大的项.解:令x=1,可得展开式的各项系数和M=4n=(2n)2,N=22,所以(2n)2-2n=240,()2n+15()2n-16=0,解得n=4,需要使二项式的系数C k4最大,需使k=2,所以展开式中二项式系数最大的项为T3=C24(5x)2∙(-x)2=150x3.值得注意的是,(5x-x)n展开式的系数和二项式系数的区别较大,一般来说,二项式系数为C0n,C1n,C2n,⋯;(5x-x)n展开式的系数是指展开后式子中每一项的系数.三、证明不等式当遇到有关正整数的高次不等式证明题时,也可以用二项式定理来求解.首先根据解题需要,构造出一个二项式;然后运用二项式定理将其展开,通过舍去或添加一些项,来将二项式进行放缩,从而达到证明不等式的目的.例3.证明:(23)n-1<2n-1(n∈N∗且n≥3).证明:要证明(32)n-1<2n-1,只需证明(32)n-1>n+12.因为(32)n-1=(1+12)n-1=C0n-1+C1n-1∙12+…+C n-1n-1∙(12)n-1=1+n-12+C2n-1∙(12)2+…+(12)n-1>n+12,所以(23)n-1<2n-1(n∈N∗且n≥3).所要证明的不等式中含有高次幂,为了证明结论,不妨将其(23)n-1拆成二项式,然后运用二项式定理将其展开,再将其进行适当的放缩,即可达到解题的目的.上述三种类型的问题都可以运用二项式定理来求解,可见二项式定理是一个很好的解题工具,但单单掌握二项式定理是不够的,还需要通过归纳以及总结,学会举一反三,才能在解题时灵活运用二项式定理快速求得问题的答案.(作者单位:江苏省海安市曲塘中学)徐远华备考指南58。

专题44 二项式定理(学生版)高中数学53个题型归纳与方法技巧总结篇

专题44 二项式定理(学生版)高中数学53个题型归纳与方法技巧总结篇

专题44二项式定理【题型归纳目录】题型一:求二项展开式中的参数题型二:求二项展开式中的常数项题型三:求二项展开式中的有理项题型四:求二项展开式中的特定项系数题型五:求三项展开式中的指定项题型六:求几个二(多)项式的和(积)的展开式中条件项系数题型七:求二项式系数最值题型八:求项的系数最值题型九:求二项展开式中的二项式系数和、各项系数和题型十:求奇数项或偶数项系数和题型十一:整数和余数问题题型十二:近似计算问题题型十三:证明组合恒等式题型十四:二项式定理与数列求和题型十五:杨辉三角【考点预测】知识点1、二项式展开式的特定项、特定项的系数问题(1)二项式定理一般地,对于任意正整数n ,都有:011()()n n n r n r r n n nn n n a b C a C a b C a b C b n N --*+=+++++∈ ,这个公式所表示的定理叫做二项式定理,等号右边的多项式叫做n b a )(+的二项展开式.式中的r n r rnC a b -做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r r r n T C a b -+=,其中的系数rn C (r =0,1,2,…,n )叫做二项式系数,(2)二项式()n a b +的展开式的特点:①项数:共有1n +项,比二项式的次数大1;②二项式系数:第1r +项的二项式系数为r n C ,最大二项式系数项居中;③次数:各项的次数都等于二项式的幂指数n .字母a 降幂排列,次数由n 到0;字母b 升幂排列,次数从0到n ,每一项中,a ,b 次数和均为n ;④项的系数:二项式系数依次是012r nn n n n nC C C C C ⋅⋅⋅⋅⋅⋅,,,,,,,项的系数是a 与b 的系数(包括二项式系数).(3)两个常用的二项展开式:高中数学53个题型归纳与方法技巧总结篇①011()(1)(1)n n n r r n r r n n nn n n n a b C a C a b C a b C b ---=-++-⋅++-⋅ (*N n ∈)②122(1)1n r r nn n n x C x C x C x x +=++++++ (4)二项展开式的通项公式二项展开式的通项:1r n r rr nT C a b -+=()0,1,2,3,,r n =⋯公式特点:①它表示二项展开式的第1r +项,该项的二项式系数是rn C ;②字母b 的次数和组合数的上标相同;③a 与b 的次数之和为n .注意:①二项式()n a b +的二项展开式的第r +1项r n r rnC a b -和()n b a +的二项展开式的第r +1项r n r r n C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换位置的.②通项是针对在()n a b +这个标准形式下而言的,如()n a b -的二项展开式的通项是1(1)r r n r rr n T C a b-+=-(只需把b -看成b 代入二项式定理).2、二项式展开式中的最值问题(1)二项式系数的性质①每一行两端都是1,即0n n n C C =;其余每个数都等于它“肩上”两个数的和,即11m m mn n n C C C -+=+.②对称性每一行中,与首末两端“等距离”的两个二项式系数相等,即mn m nn C C -=.③二项式系数和令1a b ==,则二项式系数的和为0122r nn nn n n n C C C C C ++++++= ,变形式1221rn n n n n n C C C C +++++=- .④奇数项的二项式系数和等于偶数项的二项式系数和在二项式定理中,令11a b ==-,,则0123(1)(11)0n n n nn n n n C C C C C -+-++-=-= ,从而得到:0242132111222r r nn n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⋅= .⑤最大值:如果二项式的幂指数n 是偶数,则中间一项12n T +的二项式系数2n nC 最大;如果二项式的幂指数n 是奇数,则中间两项12n T +,112n T ++的二项式系数12n nC-,12n nC+相等且最大.(2)系数的最大项求()n a bx +展开式中最大的项,一般采用待定系数法.设展开式中各项系数分别为121n A A A +⋅⋅⋅,,,,设第1r +项系数最大,应有112r rr r A A A A +++≥⎧⎨≥⎩,从而解出r 来.知识点3、二项式展开式中系数和有关问题常用赋值举例:(1)设()011222nn n n r n r r n n nn n n n a b C a C a b C a b C a b C b ---+=++++++ ,二项式定理是一个恒等式,即对a ,b 的一切值都成立,我们可以根据具体问题的需要灵活选取a ,b 的值.①令1a b ==,可得:012n nn n nC C C =+++ ②令11a b ==,,可得:()012301nnn n n n n C C C C C =-+-+- ,即:02131n n n n n n n n C C C C C C -+++=+++ (假设n 为偶数),再结合①可得:0213112n n n n n n n n n C C C C C C --+++=+++= .(2)若121210()n n n n n n f x a x a x a x a x a ----=+++++ ,则①常数项:令0x =,得0(0)a f =.②各项系数和:令1x =,得0121(1)n n f a a a a a -=+++++ .③奇数项的系数和与偶数项的系数和(i )当n 为偶数时,奇数项的系数和为024(1)(1)2f f a a a +-+++= ;偶数项的系数和为135(1)(1)2f f a a a --+++=.(可简记为:n 为偶数,奇数项的系数和用“中点公式”,奇偶交错搭配)(ii )当n 为奇数时,奇数项的系数和为024(1)(1)2f f a a a --+++= ;偶数项的系数和为135(1)(1)2f f a a a +-+++=.(可简记为:n 为奇数,偶数项的系数和用“中点公式”,奇偶交错搭配)若1210121()n n n n f x a a x a x a x a x --=+++++ ,同理可得.注意:常见的赋值为令0x =,1x =或1x =-,然后通过加减运算即可得到相应的结果.【典例例题】题型一:求二项展开式中的参数例1.(2022·湖南·模拟预测)已知6a x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为160-,则实数=a ()A .2B .-2C .8D .-8例2.(2022·全国·高三专题练习)62ax x ⎛⎫- ⎪⎝⎭展开式中的常数项为-160,则a =()A .-1B .1C .±1D .2例3.(2022·全国·高三专题练习)已知二项式52a x x ⎛⎫+ ⎪⎝⎭的展开式中,4x 项的系数为40,则=a ()A .2B .-2C .2或-2D .4例4.(2022·湖北·高三阶段练习)若(21)n x +的展开式中3x 项的系数为160,则正整数n 的值为()A .4B .5C .6D .7例5.(2022·四川·乐山市教育科学研究所三模(理))()5m x -展开式中3x 的系数为20-,则2m =()A .2B .1C .3D 【方法技巧与总结】在形如()m n N ax bx +的展开式中求t x 的系数,关键是利用通项求r ,则Nm tr m n-=-.题型二:求二项展开式中的常数项例6.(2022·全国·高三阶段练习(理))612x x ⎛⎫+ ⎪⎝⎭展开式中的常数项为()A .160B .120C .90D .60例7.(2022·浙江·慈溪中学高三开学考试)62x⎛⎝的展开式中的常数项为()A .60-B .60C .64D .120例8.(2022·全国·高三专题练习(理))二项式()5*nx n ⎛∈ ⎝⎭N 的展开式中含有常数项,则n 的最小值等于()A .2B .3C .4D .5例9.(2022·全国·模拟预测)二项式10的展开式中的常数项为()A .210B .-210C .252D .-252【方法技巧与总结】写出通项,令指数为零,确定r ,代入.题型三:求二项展开式中的有理项例10.(2022·全国·高三专题练习)在二项式)11x的展开式中,系数为有理数的项的个数是_____.例11.(2022·湖南·长郡中学模拟预测)已知)nx 展开式的二项式系数之和为64,则展开式中系数为有理数的项的个数是________.例12.(2022·湖南长沙·模拟预测)已知)()*,112nn N n ∈≤≤的展开式中有且仅有两项的系数为有理数,试写出符合题意的一个n 的值______.例13.(2022·全国·高三专题练习)100+的展开式中系数为有理数项的共有_______项.例14.(2022·上海·格致中学高三阶段练习)在50的展开式中有__项为有理数.【方法技巧与总结】先写出通项,再根据数的整除性确定有理项.题型四:求二项展开式中的特定项系数例15.(2022·北京海淀·一模)在4)x 的展开式中,2x 的系数为()A .1-B .1C .4-D .4例16.(2022·云南·高三阶段练习(理))在621x x ⎛⎫- ⎪⎝⎭的二项展开式中,第4项的二项式系数是()A .20B .20-C .15D .15-例17.(2022·全国·高三专题练习)若()2nx y -的展开式中第4项与第8项的二项式系数相等,则n =().A .9B .10C .11D .12例18.(2022·甘肃·武威第八中学高三阶段练习)在51x x ⎛⎫- ⎪⎝⎭的展开式中,x 的系数为()A .10-B .5-C .5D .10【方法技巧与总结】写出通项,确定r ,代入.题型五:求三项展开式中的指定项例19.(2022·广东·高三阶段练习)()102321x x ++的展开式中,2x 项的系数为___________.例20.(2022·广东·仲元中学高三阶段练习)25()x x y ++的展开式中,52x y 的系数为______.例21.(2022·山西大附中高三阶段练习(理))5212x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为_________.例22.(2022·广东·广州市庆丰实验学校一模)622(21)x x+-的展开式中的常数项为__________.(用数字填写正确答案)例23.(2022·全国·高三专题练习)151234()x x x x +++的展开式合并前的项数为()A .415C B .415A C .44154A A ⋅D .154例24.(2022·河北邢台·高三期末(理))411()x y x y+--的展开式的常数项为A .36B .36-C .48D .48-例25.(2022·四川绵阳·三模(理))在521x x ⎛⎫+- ⎪⎝⎭的展开式中,2x 项的系数为()A .50-B .30-C .30D .50例26.(2022·全国·高三专题练习)()52x y z +-的展开式中,22xy z 的系数是()A .120B .-120C .60D .30【方法技巧与总结】三项式()()n a b c n N ++∈的展开式:()[()]n n a b c a b c ++=++()n rrr n C a b c -=+++ ()rq n r q q r nn r C C a b c ---=++++ r q n r q q r n n r C C a b c ---=++若令n r q p --=,便得到三项式()()n a b c n N ++∈展开式通项公式:()r q p q r n n r C C a b c p q r N p q r n -∈++=,,,,其中!(r)!!!()!!()!!!!r q n n r n n n C C r n r q n r q p q r --==---叫三项式系数.题型六:求几个二(多)项式的和(积)的展开式中条件项系数例27.(2022·江苏江苏·高三阶段练习)()61y x y x ⎛⎫-+ ⎪⎝⎭的展开式中42x y 的系数为()A .6B .9-C .6-D .9例28.(2022·四川·高三开学考试(理))()632112x x x ⎛⎫+⋅- ⎪⎝⎭的展开式中的常数项为()A .240B .240-C .400D .80例29.(2022·云南师大附中高三阶段练习)6211(2)x x ⎛⎫-+ ⎪⎝⎭的展开式中3x 的系数为()A .160B .160-C .148D .148-例30.(2022·新疆克拉玛依·三模(理))已知51m x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中常数项为-40,则m =()A .3-B .3C .13D .13-例31.(2022·江苏南京·三模)(1+x )4(1+2y )a (a ∈N*)的展开式中,记xmyn 项的系数为f (m ,n ).若f (0,1)+f (1,0)=8,则a 的值为()A .0B .1C .2D .3例32.(2022·全国·高三专题练习)在5221y x x x x ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭的展开式中,含32x y 的项的系数是()A .10B .12C .15D .20【方法技巧与总结】分配系数法题型七:求二项式系数最值例33.(2022·全国·高三专题练习)在()1nx +(*n ∈N )的展开式中,若第5项为二项式系数最大的项,则n 的值不可能是()A .7B .8C .9D .10例34.(2022·全国·高三专题练习)7(12)x +展开式中二项式系数最大的项是()A .3280x B .4560x C .3280x 和4560x D .5672x 和4560x例35.(2022·湖南·高三阶段练习)设m 为正整数,2()m x y +的展开式中二项式系数的最大值为a ,21()m x y ++的展开式中的二项式系数的最大值为b .若158a b =,则m 的值为()A .5B .6C .7D .8例36.(2022·全国·高三专题练习)5a x ⎫⎪⎭的展开式中x 的系数等于其二项式系数的最大值,则a 的值为()A .2B .3C .4D .2-例37.(2022·安徽·高三阶段练习(理))在1)2nx -的展开式中,只有第五项的二项式系数最大,则展开式中6x 的系数为()A .454B .358-C .358D .7【方法技巧与总结】利用二项式系数性质中的最大值求解即可.题型八:求项的系数最值例38.(2022·全国·高三专题练习)已知(13)n x -的展开式中各项系数之和为64,则该展开式中系数最大的项为___________.例39.(2022·重庆巴蜀中学高三阶段练习)()91-x 的展开式中系数最小项为第______项.例40.(2022·全国·高三专题练习)若n 展开式中前三项的系数和为163,则展开式中系数最大的项为_______.例41.(2022·江苏·姜堰中学高三阶段练习)()2*nn N ∈展开式中只有第6项系数最大,则其常数项为______.例42.(2022·上海·高三开学考试)假如1n x x ⎛⎫- ⎪⎝⎭的二项展开式中3x 项的系数是84-,则1nx x ⎛⎫- ⎪⎝⎭二项展开式中系数最小的项是__________.【方法技巧与总结】有两种类型问题,一是找是否与二项式系数有关,如有关系,则转化为二项式系数最值问题;如无关系,则转化为解不等式组:11r r r r T T T T +-≥⎧⎨≥⎩,注意:系数比较大小.题型九:求二项展开式中的二项式系数和、各项系数和例43.(2022·全国·高三专题练习)若7270127(1)x a a x a x a x -=++++ ,则1237a a a a ++++= _________.(用数字作答)例44.(2022·广东·高三阶段练习)已知2012(2)+=++++ n n n x a a x a x a x ,若01281n a a a a ++++= ,则自然数n 等于_____.例45.(2022·广东·广州大学附属中学高三阶段练习(理))若35()(2)x y x y a +-+的展开式中各项系数的和为256,则该展开式中含字母x 且x 的次数为1的项的系数为___________.例46.(2022·全国·高三专题练习)设()20202202001220201ax a a x a x a x -=+++⋅⋅⋅+,若12320202320202020a a a a a +++⋅⋅⋅+=则非零实数a 的值为()A .2B .0C .1D .-1例47.(2022·全国·高三专题练习)已知202123202101232021(1)x a a x a x a x a x +=+++++ ,则20202019201820171023420202021a a a a a a ++++++= ()A .202120212⨯B .202020212⨯C .202120202⨯D .202020202⨯例48.(多选题)(2022·全国·高三专题练习)若()()()220222022012022111x x x a a x a x ++++++=+++ ,则()A .02022a =B .322023a C =C .20221(1)1ii i a =-=-∑D .202211(1)1i i i ia -=-=∑例49.(2022·全国·高三专题练习)设2002200012200(21)x a a x a x a x -=++++ ,求(1)展开式中各二项式系数的和;(2)12200a a a +++ 的值.例50.(2022·全国·高三专题练习)在①只有第5项的二项式系数最大;②第4项与第6项的二项式系数相等;③奇数项的二项式系数的和为128;这三个条件中任选一个,补充在下面(横线处)问题中,解决下面两个问题.已知2012(21)n nn x a a x a x a x -=+++(n ∈N*),___________(1)求122222n na a a +++ 的值:(2)求12323n a a a na +++ 的值.例51.(2022·全国·高三专题练习)()()202222022012202212R x a a x a x a x x -=++++∈ .求:(1)0122022a a a a ++++ ;(2)1352021a a a a +++ ;(3)0122022a a a a ++++ ;(4)展开式中二项式系数和以及偶数项的二项式系数和;(5)求展开式二项式系数最大的项是第几项?(6)1232022232022a a a a ++++ .例52.(2022·全国·高三专题练习)已知8280128(13)x a a x a x a x-=++++ (1)求128a a a +++ ;(2)求2468a a a a +++.【方法技巧与总结】二项展开式二项式系数和:2n ;奇数项与偶数项二项式系数和相等:12n -.系数和:赋值法,二项展开式的系数表示式:2012()...n n n ax b a a x a x a x +=++++(01...n a a a ,,,是系数),令1x =得系数和:01...()n n a a a a b +++=+.题型十:求奇数项或偶数项系数和例53.(2022·浙江·模拟预测)已知多项式()4228012832-+=++++ x x a a x a x a x ,则1357a a a a +++=_______,1a =________.例54.(2022·全国·模拟预测)若()()9911x ax x +-+的展开式中,所有x 的偶数次幂项的系数和为64,则正实数a 的值为______.例55.(2022·内蒙古·海拉尔第二中学模拟预测(理))已知2220122(2)1+)1+)...1+)nnn x a a x a x a x +=++++(((,若15246222...21n n a a a a a -+++++=-,则n =_____________.例56.(2022·湖北武汉·模拟预测)在5()(1)a x x ++展开式中,x 的所有奇数次幂项的系数之和为20,则=a _____________.例57.(2022·全国·高三专题练习)若9290129(2)(1)(1)(1)++=+++++⋅⋅⋅++x m a a x a x a x ,且()()22028139++⋅⋅⋅+-++⋅⋅⋅+a a a a a a 93=,则实数m 的值可以为()A .1或3-B .1-C .1-或3D .3-例58.(2022·江苏南通·高三开学考试)在61⎛ ⎝的二项展开式中,奇数项的系数之和为()A .365-B .364-C .364D .365例59.(2022·全国·高三专题练习)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=()A .40B .41C .40-D .41-【方法技巧与总结】2012()...n n n ax b a a x a x a x +=++++,令1x =得系数和:01...()n n a a a a b +++=+①;令1x =-得奇数项系数和减去偶数项系数和:01230213...()(...)(...)n n a a a a a a b a a a a -+-=-=++-++②,联立①②可求得奇数项系数和与偶数项系数和.题型十一:整数和余数问题例60.(2022·全国·高三专题练习)已知3029292828130303022C 2C 2C S =+++⋅⋅⋅+,则S 除以10所得的余数是()A .2B .3C .6D .8例61.(2022·河南·南阳中学高三阶段练习(理))已知202274a +能够被15整除,则a 的一个可能取值是()A .1B .2C .0D .1-例62.(2022·陕西·西安中学一模(理))设a Z ∈,且013a ≤<,若202251a +能被13整除,则=a ()A .0B .1C .11D .12例63.(2022·全国·高三专题练习)1223310101010101010180808080(1)8080k k k C C C C -+-++-++ 除以78的余数是()A .1-B .1C .87-D .87例64.(2022·全国·高三专题练习(文))中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究.设a ,b ,()0m m >为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为()mod a b m ≡.若0122202020C C 2C 2=+⋅+⋅++ a 202020C 2⋅,()mod10a b ≡,则b 的值可以是()A .2022B .2021C .2020D .2019题型十二:近似计算问题例65.(2022·山西·应县一中高三开学考试(理))6(1.05)的计算结果精确到0.01的近似值是_________.例66.(2022·山东·高三阶段练习)某同学在一个物理问题计算过程中遇到了对数据100.98的处理,经过思考,他决定采用精确到0.01的近似值,则这个近似值是________.例67.(2022·全国·高三专题练习)71.95的计算结果精确到个位的近似值为A .106B .107C .108D .109题型十三:证明组合恒等式例68.(2022·江苏·高三专题练习)(1)阅读以下案例,利用此案例的想法化简0112233434343434C C C C C C C C +++.案例:考查恒等式523(1)(1)(1)x x x +=++左右两边2x 的系数.因为右边2301220312232223333(1)(1)()()x x C C x C x C x C x C x C ++=+++++,所以,右边2x 的系数为011223232323C C C C C C ++,而左边2x 的系数为25C ,所以011223232323C C C C C C ++=25C .(2)求证:22212220(1)()(1)nr n nn n n r r C n C n C --=+-=+∑.例69.(多选题)(2022·江苏·海安市曲塘中学高三期末)下列关系式成立的是()A .0n C +21n C +222n C +233n C +…+2n nn C =3nB .202nC +12n C +222n C +32n C +…+212n n C -+222n n C =3·22n-1C .1n C ·12+2n C ·22+3n C ·32+…+nn C n 2=n ·2n -1D .(0n C )2+(1n C )2+(2n C )2+…+(nn C )2=2nnC 例70.(多选题)(2022·全国·高三专题练习)设*N n ∈,下列恒等式正确的为()A .1212n n n n n C C C -+++= B .121122n n n n n C C nC n -+++=⋅ C .()2122221212n n n n n C C n C n n -+++=+ D .()31323112432n n n n n C C n C n -+++=- 题型十四:二项式定理与数列求和例71.(2022·全国·高三专题练习(理))伟大的数学家欧拉28岁时解决了困扰数学界近一世纪的“巴赛尔级数”难题.当*n ∈N 时,sin x x =222222222111149x x x x n ππππ⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,又根据泰勒展开式可以得到35sin 3!5!x x x x =-+++()()121121!n n x n ---+- ,根据以上两式可求得22221111123n +++++= ()A .26πB .23πC .28πD .24π例72.(2022·全国·高三专题练习)已知数列{}n a 是等比数列,11a =,公比q 是4214x x ⎛⎫+ ⎪⎝⎭的展开式的第二项(按x 的降幂排列).(1)求数列{}n a 的通项n a 与前n 项和n S ;(2)若1212C C C nn n n n n A S S S =++⋅⋅⋅+,求n A .例73.(2022·全国·高三专题练习)已知数列{}n a 满足1a a =,*1(46)410()21n n n a n a n N n ++++=∈+.(1)试判断数列2{}21n a n ++是否为等比数列?若不是,请说明理由;若是,试求出通项n a .(2)如果1a =时,数列{}n a 的前n 项和为n S .试求出n S ,并证明341111(3)10nn S S S ++⋯+< .题型十五:杨辉三角例74.(2022·山东·高三开学考试)杨辉三角是二项式系数在三角形中的一种几何排列.某校数学兴趣小组模仿杨辉三角制作了如下数表.123456…35791113…81216202428…………………该数表的第一行是数列{}n ,从第二行起每一个数都等于它肩上的两个数之和,则这个数表中第4行的第5个数为______,各行的第一个数依次构成数列1,3,8,…,则该数列的前n 项和n S =______.例75.(2022·浙江省杭州学军中学模拟预测)“杨辉三角”是我国数学史上的一个伟大成就,是二项式系数在三角形中的一种几何排列.如图所示,第()N ,2n n n *∈≥行的数字之和为__________,去除所有1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前28项和为_____________.例76.(2022·安徽·合肥市第五中学模拟预测(理))杨辉是我国南宋末年的一位杰出的数学家.他在《详解九章算法》一书中,画了一个由二项式()()1,2,3,na b n +=⋅⋅⋅展开式的系数构成的三角形数阵,称作“开方作法本源”,这就是著名的“杨辉三角”.在“杨辉三角”中,从第2行开始,除1以外,其他每一个数值都是它上面的两个数值之和,每一行第()*,k k n k ≤∈N 个数组成的数列称为第k 斜列.该三角形数阵前5行如图所示,则该三角形数阵前2022行第k 斜列与第1k +斜列各项之和最大时,k 的值为()A .1009B .1010C .1011D .1012例77.(多选题)(2022·全国·高三专题练习)在1261年,我国南宋数学家杨辉所著的《详解九章算法》中提出了如图所示的三角形数表,这就是著名的“杨辉三角”,它是二项式系数在三角形中的一种几何排列.从第1行开始,第n 行从左至右的数字之和记为n a ,如:{}12112,1214,,n a a a =+==++=⋯的前n 项和记为n S ,依次去掉每一行中所有的1构成的新数列2,3,3,4,6,4,5,10,10,5,…,记为n b ,{}n b 的前n 项和记为n T ,则下列说法正确的有()A .91022S =B .14n n n a S S +⎧⎫⎨⎬⋅⎩⎭的前n 项和为1111n a +--C .5666b =D .564084T =【过关测试】一、单选题1.(2022·江苏·金陵中学高三阶段练习)()()8x y x y -+的展开式中36x y 的系数为()A .28B .28-C .56D .56-2.(2022·福建师大附中高三阶段练习)在()522x x +-的展开式中,含4x 的项的系数为()A .-120B .-40C .-30D .2003.(2022·福建泉州·模拟预测)101x ⎛⎫⎪⎝⎭的展开式中,2x 的系数等于()A .45-B .10-C .10D .454.(2022·湖南益阳·模拟预测)若()526012612(12)x x a a x a x a x +-=++++ ,x ∈R ,则2a 的值为()A .20-B .20C .40D .605.(2022·湖南·高三开学考试)已知()522x a x x ⎛⎫+- ⎪⎝⎭的展开式中各项系数的和为3-,则该展开式中x 的系数为()A .0B .120-C .120D .160-6.(2022·北京房山·高三开学考试)若443243210(21)x a x a x a x a x a -=++++,则2a =()A .6B .24C .6-D .24-7.(2022·江苏省泰兴中学高三阶段练习)设*n N ∈,0101(1)(1)(2)(2)n n n n n x a a x a x b b x b x =+-++-=+-++- ,则()A .001132n nn n b a b a b a -+-++-=- B .0101012()nn nb bb a a a a a a +++=+++ C .0101111()211n n a a a a a a n n +++=+++++ D .21201(1)4()4n n n n b b n b a a a ++++=+++ 8.(2022·河北·高三阶段练习)关于二项式()281(1)ax x x ++-,若展开式中含2x 的项的系数为21,则=a ()A .3B .2C .1D .-19.(2022·黑龙江·大庆实验中学模拟预测(理))已知()()()()727012723111x a a x a x a x -=+-+-++- ,则3a =()A .280B .35C .35-D .280-二、多选题10.(2022·湖北·黄冈中学高三阶段练习)已知660(2)ii i x a x =+=∑,则()A .123456666a a a a a a +++++=B .320a =C .135246a a a a a a ++>++D .1034562234a a a a a a +=+++11.(2022·浙江·高三开学考试)在二项式6⎛⎝的展开式中,正确的说法是()A .常数项是第3项B .各项的系数和是1C .偶数项的二项式系数和为32D .第4项的二项式系数最大12.(2022·江苏镇江·高三开学考试)已知函数()6260126()(12),0,1,2,3,,6i f x x a a x a x a x a i =-=+++⋅⋅⋅+∈=⋅⋅⋅R 的定义域为R .()A .01261a a a a +++⋅⋅⋅+=-B .135364a a a ++=-C .123623612a a a a +++⋅⋅⋅+=D .(5)f 被8整除余数为713.(2022·湖南师大附中高三阶段练习)已知2012(12)n n n x a a x a x a x +=++++ ,下列结论正确的是()A .0123n n a a a a +++=+ B.当5,==n x()(12),*+=+∈n x a a b N ,则a b=C .当12n =时,012,,,,n a a a a 中最大的是7a D .当12n =时,3124111223411121222222-+-++-= a a a a a a 14.(2022·全国·高三阶段练习)已知()610ax a x ⎛⎫+> ⎪⎝⎭的展开式中含2x -的系数为60,则下列说法正确的是()A .61ax x ⎛⎫+ ⎪⎝⎭的展开式的各项系数之和为1B .61ax x ⎛⎫+ ⎪⎝⎭的展开式中系数最大的项为2240x C .61ax x ⎛⎫- ⎪⎝⎭的展开式中的常数项为160-D .61ax x ⎛⎫- ⎪⎝⎭的展开式中所有二项式的系数和为32三、填空题15.(2022·浙江省苍南中学高三阶段练习)()()()357222x y y z z x ---的展开式中不含z 的各项系数之和______.16.(2022·广东广东·高三阶段练习)6(23)x y z ++的展开式中,32xy z 的系数为___________.17.(2022·河北邯郸·高三开学考试)已知()52345601234561(1)x x a a x a x a x a x a x a x +-=++++++,则03a a +的值为___________.18.(2022·浙江省淳安中学高三开学考试)已知51m x x x x ⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭的展开式中常数项为20,则m =___________.19.(2022·浙江·高三开学考试)多项式()287801781(1)(1)x x a a x a x a x +=+++++++ ,则3a =___________.20.(2022·江苏·南京市中华中学高三阶段练习)将(1+x )n (n ∈N *)的展开式中x 2的系数记为n a ,则232022111a a a +++= ________.。

二项式定理的应用与实例解析

二项式定理的应用与实例解析

二项式定理的应用与实例解析二项式定理是代数学中的重要概念之一,它在数学推理和实际问题求解中具有广泛的应用。

本文将介绍二项式定理的概念及其应用,并通过具体的实例进行解析,以帮助读者更好地理解和应用该定理。

一、二项式定理的概念二项式定理是指对于任意非负整数n和实数a、b,有以下的公式:(a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + C(n,2) * a^(n-2) * b^2 + ... + C(n,n) * a^0 * b^n其中,C(n, k)表示组合数,表示从n个元素中选取k个元素的组合数,计算公式为:C(n, k) = n! / (k! * (n-k)!)二、二项式定理的应用1. 概率计算二项式定理在概率计算中起到了重要作用。

例如,设有一枚正反面均匀的硬币,进行n次独立的抛掷,求正面出现k次的概率。

根据二项式定理,可以得到概率公式:P(X = k) = C(n, k) * p^k * (1-p)^(n-k)其中,p表示正面出现的概率。

2. 组合数学二项式定理在组合数学中应用广泛,可以用于求解组合数、排列数等问题。

例如,求集合中元素的子集个数,可以通过二项式定理计算:对于一个集合,它的子集个数为2^n个,其中n表示集合中元素的个数。

3. 计算多项式展开式系数二项式定理可以用于计算多项式展开式中各项的系数。

例如,对于多项式(a + b)^n,可以通过二项式定理的应用,直接得到展开式中各项的系数。

这对于计算多项式的展开式提供了效率和便利。

三、应用实例解析1. 概率计算实例假设有一枚硬币,进行10次独立抛掷,求正面出现2次的概率。

根据二项式定理的应用,可以得到:P(X = 2) = C(10, 2) * 0.5^2 * 0.5^8 = 45 * 0.25 * 0.00390625 = 0.04395因此,正面出现2次的概率约为0.044。

二项式定理及其应用

二项式定理及其应用

二项式定理及其应用二项式定理是数学中的一条重要定理,它揭示了如何展开和求解(x + y)ⁿ这种形式的表达式。

本文将介绍二项式定理的公式及其应用,并探讨其在数学和实际问题中的意义。

1. 二项式定理的公式二项式定理的公式如下所示:(x + y)ⁿ = C(n,0) · xⁿ · y⁰ + C(n,1) · xⁿ⁻¹ · y¹ + C(n,2) · xⁿ⁻² · y² + ... + C(n,n-1) · x · yⁿ⁻¹ + C(n,n) · x⁰ · yⁿ其中,C(n,k)表示从n个元素中选取k个元素的组合数,也可以表示为n! / (k! · (n-k)! )。

在展开(x + y)ⁿ时,每一项的系数就是组合数C(n,k),指数是x和y的幂次。

2. 二项式定理的应用2.1 二项式系数二项式定理中的组合数C(n,k)被称为二项式系数,它具有很多重要的性质。

其中最为著名的是杨辉三角形,每一行的数字都是由上一行相邻两个数字相加而来。

杨辉三角形也是计算二项式系数的一种常用方法。

2.2 展开式的应用二项式定理的展开式可以用于求解多项式的乘法、计算多项式在某一点的值等问题。

通过展开(x + y)ⁿ,可以直观地观察到每一项的系数和指数之间的关系,从而简化计算。

2.3 组合恒等式二项式定理可以通过一些代数推导得到一些有用的组合恒等式,如:- C(n,0) + C(n,1) + C(n,2) + ... + C(n,n) = 2ⁿ- C(n,0) - C(n,1) + C(n,2) - ... + (-1)ⁿ · C(n,n) = 0这些恒等式在组合数学、概率论等领域中有着重要的应用。

3. 二项式定理的意义二项式定理的意义不仅仅局限于数学领域,它在实际问题中也有广泛的应用。

二项式定理及其应用

二项式定理及其应用

二项式定理及其应用二项式定理是高中数学中的重要内容之一,在代数和组合数学中具有广泛的应用。

它可以帮助我们在求解各种数学问题时简化计算,提高效率。

本文将介绍二项式定理的基本概念、公式及其应用领域。

一、二项式定理的基本概念二项式定理是指对于任意实数a和b,以及任意正整数n,有以下公式成立:(a+b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + C(n,2) * a^(n-2) * b^2 + ... + C(n,n-1) * a^1 * b^(n-1) + C(n,n) * a^0 * b^n其中C(n,r)表示组合数,即从n个不同元素中取r个元素的组合数。

根据组合数的性质,可以得出C(n,r) = n! / (r! * (n-r)!)的计算公式。

二、二项式定理的公式1. 二项式展开式:根据二项式定理,可以将(a+b)^n展开为一系列单项式相加的形式。

每个单项式的系数即为组合数C(n,r),而a和b的幂分别为n-r和r。

例如,(a+b)^3 = C(3,0) * a^3 * b^0 + C(3,1) * a^2 *b^1 + C(3,2) * a^1 * b^2 + C(3,3) * a^0 * b^3。

2. 二项式系数:在二项式展开式中,各个单项式前的系数即为二项式系数。

二项式系数具有一些特殊性质,比如对称性和递推性。

例如,C(n,r) = C(n-1,r-1) + C(n-1,r)。

3. 常见的二项式定理公式:- (a+b)^2 = a^2 + 2ab + b^2- (a-b)^2 = a^2 - 2ab + b^2- (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3- (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3- ...三、二项式定理的应用领域二项式定理在代数和组合数学中有广泛的应用,以下列举其中几个常见的领域:1. 多项式的展开和化简:通过二项式定理,我们可以将高次多项式展开为各项系数的和,进而进行化简和计算。

二项式定理

二项式定理

二项式定理二项式定理是高中数学的重要内容之一、它是一个基本的公式,用来展开二项式的幂次。

在代数学中有广泛应用,并在组合数学、高等数学等领域中发挥了重要作用。

本文将介绍二项式定理的概念、基本公式以及一些常见的应用。

一、二项式定理的概念和基本公式二项式定理的概念:二项式定理是用来展开二项式的幂次的公式。

简而言之,就是把形如(a+b)^n的表达式展开成多项式的形式。

基本公式:根据二项式定理,我们可以得到二项式的展开式。

对于(a+b)^n,其中a和b为任意实数,n为非负整数,根据二项式定理,展开式为:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2+...+C(n,k)a^(n-k)b^k+...+C(n,n)b^n其中,C(n,k)表示组合数,即从n个元素中选择k个元素的组合数。

C(n,k)可以用组合数公式计算得到:C(n,k)=n!/(k!(n-k)!)C(n,k)即为"n choose k",读作"n中取k"。

二、二项式定理的应用1.二项式定理的应用于计算:二项式定理可以用于计算各种二项式的展开式,特别是高次幂的情况。

通过展开式,我们可以计算出结果,以及每一项的系数。

例如,我们可以用二项式定理来计算(a+b)^4的展开式为:(a+b)^4 = C(4,0)a^4 + C(4,1)a^3b + C(4,2)a^2b^2 + C(4,3)ab^3 + C(4,4)b^4= a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^42.二项式定理的应用于排列组合问题:二项式定理在排列组合问题中也有广泛的应用。

对于排列组合问题,可以使用组合数来解决。

而组合数又可以使用二项式定理来计算。

例如,我们要从n个元素中选取k个元素,所有可能的方案数可以用组合数C(n,k)表示。

由于组合数可以用二项式定理来计算,我们可以直接得到结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.二项式定理
⑴二项式定理
()
()011222...n
n n n n n n n n n a b C a C a b C a b C b n --*+=++++∈N
这个公式表示的定理叫做二项式定理. ⑵二项式系数、二项式的通项
011222...n n n n n
n n n n C a C a b C a b C b --++++叫做()n
a b +的二项展开式,其中的系数
()0,1,2,...,r n C r n =叫做二项式系数,式中的r n r r n C a b -叫做二项展开式的通项,用1r T +表示,
即通项为展开式的第1r +项:1r n r r r n T C a b -+=.
⑶二项式展开式的各项幂指数
二项式()n
a b +的展开式项数为1n +项,各项的幂指数状况是 ①各项的次数都等于二项式的幂指数n .
②字母a 的按降幂排列,从第一项开始,次数由n 逐项减1直到零,字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . ⑷几点注意
①通项1r n r r r n T C a b -+=是()n
a b +的展开式的第1r +项,这里0,1,2,...,r n =.
②二项式()n a b +的1r +项和()n
b a +的展开式的第1r +项r n r r
n C b a -是有区别的,应用二项式
定理时,其中的a 和b 是不能随便交换的.
③注意二项式系数(r
n C )与展开式中对应项的系数不一定相等,二项式系数一定为正,而
项的系数有时可为负.
知识内容
证明整除或求余数
④通项公式是()n a b +这个标准形式下而言的,如()n
a b -的二项展开式的通项公式是
()11r
r n r r
r n T C a b -+=-(只须把b -看成b 代入二项式定理)这与1r n r r r n
T C a b -+=是不同的,在这里对应项的二项式系数是相等的都是r n C ,但项的系数一个是()1r
r
n C -,一个是r n C ,可看出,
二项式系数与项的系数是不同的概念.
⑤设1,a b x ==,则得公式:()12211......n
r r n n n n x C x C x C x x +=++++++.
⑥通项是1r T +=r n r r n C a b -()0,1,2,...,r n =中含有1,,,,r T a b n r +五个元素,
只要知道其中四个即可求第五个元素.
⑦当n 不是很大,x 比较小时可以用展开式的前几项求(1)n x +的近似值.
2.二项式系数的性质
⑴杨辉三角形:
对于n 是较小的正整数时,可以直接写出各项系数而不去套用二项式定理,二项式系数也可以直接用杨辉三角计算.
杨辉三角有如下规律:“左、右两边斜行各数都是1.其余各数都等于它肩上两个数字的和.” ⑵二项式系数的性质:
()
n
a b +展开式的二项式系数是:012,,,...,n n n n n
C C C C ,从函数的角度看r
n C 可以看成是r 为自变量的函数()f r ,其定义域是:{}0,1,2,3,...,n . 当6n =时,()f r 的图象为下图:
这样我们利用“杨辉三角”和6n =时()f r 的图象的直观来帮助我们研究二项式系数的性质. ①对称性:与首末两端“等距离”的两个二项式系数相等.
事实上,这一性质可直接由公式m n m
n n
C C -=得到. ②增减性与最大值
如果二项式的幂指数是偶数,中间一项的二项式系数最大; 如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大. 由于展开式各项的二项式系数顺次是
()012
11,,112
n n n n n n C C C -==
=⋅, ()()3
12123
n n n n C --=
⋅⋅,...,
()()()
()
1
12...2123....1k n n n n n k C k ----+=
⋅⋅⋅⋅-,()()()()
()12...21123...1k
n n n n n k n k C k k
---+-+=
⋅⋅⋅-,...,
1n n C =.
其中,后一个二项式系数的分子是前一个二项式系数的分子乘以逐次减小1的数(如,1,2,...n n n --),分母是乘以逐次增大的数(如1,2,3,…).因为,一个自然数乘以
一个大于1的数则变大,而乘以一个小于1的数则变小,从而当k 依次取1,2,3,…等值
时,r n C 的值转化为不递增而递减了.又因为与首末两端“等距离”的两项的式系数相等,
所以二项式系数增大到某一项时就逐渐减小,且二项式系数最大的项必在中间. 当n 是偶数时,1n +是奇数,展开式共有1n +项,所以展开式有中间一项,并且这一项的二项式系数最大,最大为2n n
C .
当n 是奇数时,1n +是偶数,展开式共有1n +项,所以有中间两项. 这两项的二项式系数相等并且最大,最大为1
122n n n
n
C
C
-+=.
③二项式系数的和为2n ,即012......2r n
n n n n n n C C C C C ++++++=.
④奇数项的二项式系数的和等于偶数项的二项式系数的和,即
0241351......2n n n n n n n C C C C C C -+++=+++=.
常见题型有:
求展开式的某些特定项、项数、系数,二项式定理的逆用,赋值用,简单的组合数式问题.
二项式定理的应用1证明整除或者求余数
【例1】 利用二项式定理证明:22389n n +--是64的倍数.
典例分析
【例2】 若*n ∈N ,证明:2332437n n +-+能被64整除.
【例3】 证明:22(1(1(*)n n n +∈N 能被12n +整除.
【例4】 证明:2121(1(1(*)n n n +++∈N 能被12n +整除.
【例5】 ⑴3023-除以7的余数________;
⑵555515+除以8的余数是__________; ⑶2000
1991
除以310的余数是 .
【例6】100
的末尾连续零的个数是()
111
A.7 B.5 C.3 D.2。

相关文档
最新文档