[中学]风扇无极调速器原理

合集下载

电风扇无级调速器

电风扇无级调速器

电风扇无级调速器一、本课题学习目标与要求1.掌握用万用表测试双向晶闸管好坏的方法。

2.掌握双向晶闸管的外形及符号;双向晶闸管的触发方式。

3.分析单相交流调压电路4.了解交流开关、交流调功器、固态开关原理。

二、主要概念提示及难点释疑1.双向晶闸管的触发方式双向晶闸管正反两个方向都能导通,门极加正负电压都能触发。

主电压与触发电压相互配合,可以得到四种触发方式:1)Ⅰ+触发方式主极T1为正,T2为负;门极电压G为正,T2为负。

2)Ⅰ-触发方式主极T1为正,T2为负;门极电压G为负,T2为正。

3)Ⅲ+触发方式主极T1为负,T2为正;门极电压G为正,T2为负。

4)Ⅲ-触发方式主极T1为负,T2为正;门极电压G为负,T2为正。

2.双向晶闸管的参数1)双向晶闸管额定通态电流不同于普通晶闸管的额定通态电流。

前者用交流有效值标定,后者用正弦半波平均值标定,选择晶闸管时不能混淆。

例如双向晶闸管额定通态电流为100A,若用两个反并联的普通晶闸管代替,按有效相等的原则,得1.57IT(AV)?1002,所以,IT(AV)?1001.572?45A。

因此一个100A的双向晶闸管与两个45A反并联的普通晶闸管等效。

2)在选择双向晶闸管的额定通态电流时,要考虑到电动机的启动电流的影响,在交流开关的主电流中串入空心电抗器,可抑制换向电压上网率,降低对双向晶闸管换向能力35的要求。

3.交流调压电路(1)单相交流调压电路电感性负载时,要用宽脉冲触发晶闸管,否则在?<?(负载功率因数角)时,会使一个晶闸管不能导通,负载波形只有半周,出现很大的直流分量,电路不能正常工作。

(2)单相交流调压电路电阻性负载时,移相范围是?=0°~180°,而电感性负载时,移相范围是?=?~180°(3)交流功率调节容量较大时,应采用三相交流调压。

三相交流调压电路接线方式及性能特点见教材。

(4)交流调压可以采用移相触发也可以采用过零触发来实现。

电风扇调速开关原理

电风扇调速开关原理

电风扇调速开关原理电风扇是我们日常生活中常见的家电之一,而其中的调速开关更是其功能的重要组成部分。

在我们使用电风扇时,经常会通过调节开关来控制风速的大小,那么这个调速开关是如何实现的呢?本文将从电风扇调速开关的原理入手,为大家详细介绍其工作原理。

首先,我们需要了解电风扇调速开关的结构。

一般来说,调速开关由旋钮、电阻、接点等部分组成。

旋钮是我们手动旋转的部分,通过旋转来改变电阻的大小,从而控制电流的大小,进而改变风扇的转速。

而电阻则是根据旋钮的位置来改变电流的大小,进而控制风扇的速度。

接点则是连接电路的部分,通过接通或者断开电路来实现控制风扇的开关。

其次,我们来了解电风扇调速开关的工作原理。

当我们旋转调速开关的旋钮时,实际上是在改变电阻的大小。

电阻越大,电流就越小,风扇的转速也就越慢;电阻越小,电流就越大,风扇的转速也就越快。

这就是调速开关通过改变电阻来控制电流大小,从而控制风扇转速的原理。

同时,调速开关的接点也会根据旋钮的位置来接通或者断开电路,从而控制风扇的开关状态。

最后,我们需要注意电风扇调速开关的使用和维护。

在使用过程中,要注意轻拨旋钮,避免用力过大造成旋钮损坏;同时,定期清洁电风扇和调速开关,保持其良好的工作状态。

另外,如果发现调速开关失灵或者有异常情况,应及时更换或者维修,以免影响电风扇的正常使用。

总的来说,电风扇调速开关通过改变电阻来控制电流大小,从而控制风扇的转速,同时通过接点来实现开关控制。

在日常使用中,要注意轻拨旋钮,定期清洁和维护,以保证电风扇调速开关的正常使用。

希望本文的介绍能够帮助大家更好地了解电风扇调速开关的原理和工作方式。

风扇调速器调节电压的原理

风扇调速器调节电压的原理

风扇调速器调节电压的原理
风扇调速器调节电压的原理是通过改变供电电压来控制风扇的转速。

通常,风扇调速器会使用一个三极管或者场效应管,通过改变这些器件的导通状态来改变电压。

具体原理如下:
1. 三极管控制:风扇调速器中的三极管工作在放大模式。

通过改变三极管的基极电压,可以控制三极管的放大倍数,从而改变输出电压的大小。

这样就可以调节供给风扇的电压,从而改变其转速。

2. 场效应管控制:风扇调速器中的场效应管工作在放大模式。

通过改变场效应管的栅电压,可以控制场效应管的导通情况,进而改变输出电压的大小。

这样就可以调节供给风扇的电压,从而改变其转速。

无论是使用三极管还是场效应管,风扇调速器都可以通过改变这些管子的导通程度来调节输出电压,从而实现对风扇转速的控制。

需注意,输出电压的改变也会影响到风扇的电流,因此风扇调速器需要根据特定的风扇参数进行合理的设计,以确保风扇在不同转速下能够正常工作。

电风扇调速器的原理

电风扇调速器的原理

电风扇调速器的原理一、引言电风扇作为现代家庭必备的小家电之一,其调速器是控制电风扇转速的重要部件。

本文将从电风扇调速器的原理入手,详细介绍电风扇调速器的工作原理和组成。

二、电风扇调速器的组成1. 电源模块:用于为整个系统提供稳定的直流电源。

2. 滤波模块:用于对输入直流信号进行滤波处理,使其更加平滑稳定。

3. 控制芯片:负责控制整个系统的工作状态,并对输入信号进行处理和分析。

4. 驱动模块:根据控制芯片输出的信号,驱动电机转动,并实现调速功能。

三、电风扇调速器的工作原理1. 电源模块当插头插入插座时,交流电会经过变压器降压后变成低压交流信号。

接着通过整流桥将交流信号转换为直流信号,并经过滤波模块进行滤波处理,得到稳定平滑的直流信号,以供后续使用。

2. 控制芯片控制芯片是整个系统的核心部件。

它可以对输入信号进行处理和分析,并根据处理结果输出控制信号,实现对电机的驱动控制。

在电风扇调速器中,常用的控制芯片有NE555、AT89C51等。

3. 驱动模块驱动模块是将控制芯片输出的信号转换为能够驱动电机的信号,并实现调速功能。

在电风扇调速器中,常用的驱动模块有三极管、场效应管等。

4. 调速原理电风扇调速器的调速原理主要是通过改变电机供电电压或者改变电机供电频率来实现。

其中,改变电机供电电压的方式是通过PWM(脉冲宽度调制)技术实现,而改变电机供电频率的方式则是通过变频技术实现。

四、PWM技术PWM技术是一种将模拟信号转化为数字信号的技术。

在PWM技术中,将一个周期性方波信号与一个模拟信号进行比较,得到一个占空比(Duty Cycle),然后通过占空比来控制输出信号的平均值。

例如,在50%占空比下,输出信号平均值为输入信号的一半。

在电风扇调速器中,PWM技术可以通过改变电机供电电压的方式来实现调速。

具体来说,当控制芯片输出PWM信号时,驱动模块会将PWM信号转换为一定频率的方波信号,并通过三极管等器件控制电机的供电电压。

风扇无极调速器原理

风扇无极调速器原理

风扇无极调速器原理
风扇无极调速器是一种用来控制风扇转速的装置。

其原理基于电流的传导特性以及电动机的工作原理。

无极调速器采用了电子元件和电子线路,通过调节电流的大小来改变风扇电机的转速。

具体来说,无极调速器通过调节电流的大小来改变电机的输入电压和频率,进而改变电机的转速。

无极调速器利用了电流在线性区域内的特性,通过调节电流的大小来改变电机的负载情况,进而调节转速。

当电流增加时,电机的负载增加,转速减小;当电流减小时,电机的负载减小,转速增加。

无极调速器还可以根据风扇的实际需要进行动态调速。

通过检测风扇的工作状态和环境的变化,无极调速器可以自动调节电流的大小,使风扇的转速在最佳状态下工作。

总之,风扇无极调速器通过调节电流的大小来改变风扇电机的输入电压和频率,从而实现风扇转速的无级调节。

无极调速原理

无极调速原理

无极调速原理无极调速技术是一种通过改变传动比实现无级变速的技术,它可以使电机在额定转矩下以不同转速运行,从而实现无级调速。

无极调速技术在工业生产中得到了广泛应用,本文将就无极调速原理进行详细介绍。

首先,无极调速技术的原理是通过改变传动比来实现调速。

传统的变速传动系统需要通过换挡来改变传动比,而无极调速技术则可以实现连续无级调速。

这是通过采用特殊的传动装置,如变速皮带、液力变矩器或行星齿轮等,来实现的。

这些传动装置可以根据需要实时调整传动比,从而实现无级调速。

其次,无极调速技术的原理还包括电机控制系统。

电机控制系统通过对电机的电流、电压进行调节,可以实现对电机转速的精确控制。

在无极调速系统中,电机控制系统起着至关重要的作用,它可以根据需要实时调整电机的输出转矩和转速,从而实现无级调速。

另外,无极调速技术的原理还涉及到传感器和反馈控制系统。

传感器可以实时监测电机的转速、转矩、温度等参数,并将这些参数反馈给控制系统。

控制系统根据传感器反馈的信息,可以对电机进行精确控制,从而实现无级调速。

总的来说,无极调速技术的原理是通过改变传动比、电机控制系统和反馈控制系统的协同作用,实现对电机的无级调速。

这种技术可以使电机在不同负载下以最佳转速运行,从而提高了电机的效率和使用寿命。

无极调速技术在工业生产中具有重要意义,它可以满足不同工况下对电机转速的要求,提高了生产效率,降低了能耗,对于提高工业生产的自动化水平和节能减排具有重要意义。

综上所述,无极调速技术的原理是通过改变传动比、电机控制系统和反馈控制系统的协同作用,实现对电机的无级调速。

这种技术在工业生产中具有广泛的应用前景,将对工业生产的自动化水平和节能减排起到重要作用。

电风扇的调速方法及原理

电风扇的调速方法及原理

电风扇的调速方法及原理1 . 电抗器法
电容式电动机串联电抗器的调速原理图
2 . 抽头法
1)L型抽头法
2)T型抽头法
3. 无级调速法
无级调速一般采用双向晶闸管作为风扇电动机的开关.利用晶闸管的可控特性,通过改变晶闸管的控制角α,使晶闸管输出电压发生改变,达到调节电动机转速的目的。

在电源电压每个半周起始部分,双向晶闸管VS为阻断状态,电源电压通过电位器RP,电阻R 向电容C充电,当电容C上的充电电压达到双向触发二极管VD 的触发电压时,VD导通,C 通过VD向VS的控制极放电,使VS导通,有电流流过电机绕组。

通过调节电位器RP的阻值大小,可调节电容C的充电时间常数,也就调节了双向晶闸管VS的控制角α,RP越大,控制角α越大,负载电动机M上电压变小,转速变慢。

一、概述电容运转式家用电风扇的调速,一般采用两种方法,即电抗器调速和抽头调速。

抽头调速的特点是只需改变定子绕组的接线,不用电抗器,所以耗电较少,用料省,重量轻,因而得到广泛应用。

但是,这种电扇绕组一旦烧毁,往往难以判断其定子绕组内部的接线方式及抽头匝数的数值,从而给修理工作带来困难。

为方便修理,我们采用简易的绕组抽头匝数计算方法,实践证明是可行的。

电风扇无级调速器

电风扇无级调速器

电风扇无级调速器实训报告因本次实训老师要求做个与电力电子有关的产品,经过组员讨论,于是我们决定做电风扇无极调速器。

电风扇无级调速器在日常生活中随处可见。

图1(a )是常见的电风扇无级调速器。

旋动旋钮便可以调节电风扇的速度。

图1(b )为电路原理图。

(a )图1电风扇无级调速器 (a) 电风扇无级调速器 (b) 电风扇无级调速器电路原理图如图1(b)所示,调速器电路由主电路和触发电路两部分构成,在双向晶闸管的两端并接RC 元件,是利用电容两端电压瞬时不能突变,作为晶闸管关断过电压的保护措施。

本课题通过对主电路及触发电路的分析使学生能够理解调速器电路的工作原理,进而掌握分析交流调压电路的方法。

保护电路在课题五中详细介绍。

一、双向晶闸管的工作原理1. 双向晶闸管的结构双向晶闸管的内部结构、等效电路及图形符号如图2所示。

(a ) 内部结构 (b ) 等效电路 (c )图形符号图2双向晶闸管内部结构、等效电路及图形符号从图2可见,双向晶闸管相当于两个晶闸管反并联(P1N1P2N2和P2N1P1N4),不过它只有一个门极G ,由于N3区的存在,使得门极G 相对于T1端无论是正的或是负的,都能触发,而且T1相对于T2既可以是正,也可以是负。

表1 双向晶闸管的主要参数2. 双向晶闸管的触发方式双向晶闸管正反两个方向都能导通,门极加正负电压都能触发。

主电压与触发电压相互配合,可以得到四种触发方式:1)Ⅰ+触发方式 主极T1为正,T2为负;门极电压G 为正,T2为负。

特性曲线在第 Ⅰ象限。

2)Ⅰ-触发方式 主极T1为正,T2为负;门极电压G 为负,T2为正。

特性曲线在第 Ⅰ象限。

调速电位器3)Ⅲ+触发方式 主极T1为负,T2为正;门极电压G 为正,T2为负。

特性曲线在第 Ⅲ象限。

4)Ⅲ-触发方式 主极T1为负,T2为正;门极电压G 为负,T2为正。

特性曲线在第 Ⅲ象限。

由于双向晶闸管的内部结构原因,四种触发方式中灵敏度不相同,以Ⅲ+触发方式灵敏度最低,使用时要尽量避开,常采用的触发方式为Ⅰ+和Ⅲ-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[中学]风扇无极调速器原理
风扇调速器工作原理-电子调速器工作原理
我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。

该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。

电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL 和稳压二极管VS组成。

可控振荡器由时基集成电路IC、电阻器RI、R2、电容器C3、电位器RP和二极管VD3、VD4组成。

控制执行电路由风扇
我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。

该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。

电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL和稳压二极管VS组成。

可控振荡器由时基集成电路IC、电阻器RI、R2、电容器C3、电位器RP和二极管VD3、VD4组成。

控制执行电路由风扇电动机M、晶闸管VT、电阻器R3和IC第3脚内电路组成。

交流220V电压经Cl降压、VDl和VD2整流、VL和VS稳压及C2滤波后,为IC提供约8V的直流电压。

可控振荡器振荡工作后,从IC的3脚输出周期为105、占空比连续可调的振荡脉冲信号,利用此脉冲信号去控制晶闸管VT的导通状态。

调节RP的阻值,即可改变脉冲信号的占空比(调节范围为1%-99%),控制风扇电动机M转速的高低,产生模拟自然风 (周期为10s的阵风)。

改变C3的电容量,可以改变振荡器的振荡周朔,从而改变模拟自然风的周期。

元器件选择
R1-R3选用1/4W碳膜电阻器或金属膜电阻器。

RP选用合成膜电位器或有机实心电位器。

C1选用耐压值为450V的涤纶电容器或CBB电容器;C2和C3均选用耐压值为16V的铝电解电容器。

VDl和VD2均选用lN4007型硅整流二极管;VD3和VD4均选用1N4148型硅开关二极管。

VS选用1/2W、6.2V的硅稳压二极管。

VL选用φ5mm的绿色发光二极管。

VT选用MACg4A4(lA、400V)型双向晶闸管。

IC选用NE555或CD7555型时基集成电路。

总的概括,一般风扇调速器的工作原理有三种种方法:
1.用微电路板控制电压高低,改变速度,例如:部分空调室内机;
2.改变电阻来控制电压,改变速度,例如:部分空调柜机;
3.切换线路,通过电机上的几组线圈来改变速度,例如:普通电风扇。

相关文档
最新文档