风扇无极调速器原理

风扇无极调速器原理
风扇无极调速器原理

风扇调速器工作原理-电子调速器工作原理

我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL和稳压二极管VS组成。可控振荡器由时基集成电路IC、电阻器RI、R2、电容器C3、电位器RP和二极管VD3、VD4组成。控制执行电路由风扇

我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。

该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。

电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL和稳压二极管VS组成。

可控振荡器由时基集成电路IC、电阻器RI、R2、电容器C3、电位器RP和二极管VD3、VD4组成。

控制执行电路由风扇电动机M、晶闸管VT、电阻器R3和IC第3脚内电路组成。

交流220V电压经Cl降压、VDl和VD2整流、VL和VS稳压及C2滤波后,为IC提供约8V的直流电压。

可控振荡器振荡工作后,从IC的3脚输出周期为105、占空比连续可调的振荡脉冲信号,

利用此脉冲信号去控制晶闸管VT的导通状态。

调节RP的阻值,即可改变脉冲信号的占空比(调节范围为1%-99%),控制风扇电动机M转速的高低,产生模拟自然风(周期为10s的阵风)。

改变C3的电容量,可以改变振荡器的振荡周朔,从而改变模拟自然风的周期。

元器件选择

R1-R3选用1/4W碳膜电阻器或金属膜电阻器。

RP选用合成膜电位器或有机实心电位器。

C1选用耐压值为450V的涤纶电容器或CBB电容器;C2和C3均选用耐压值为16V的铝电解电容器。

VDl和VD2均选用lN4007型硅整流二极管;VD3和VD4均选用1N4148型硅开关二极管。VS选用1/2W、6.2V的硅稳压二极管。

VL选用φ5mm的绿色发光二极管。

VT选用MACg4A4(lA、400V)型双向晶闸管。

IC选用NE555或CD7555型时基集成电路。

总的概括,一般风扇调速器的工作原理有三种种方法:

1.用微电路板控制电压高低,改变速度,例如:部分空调室内机;

2.改变电阻来控制电压,改变速度,例如:部分空调柜机;

3.切换线路,通过电机上的几组线圈来改变速度,例如:普通电风扇。

调速器的功能及工作原理

一、调速器功用及分类 调速器是一种自动调节装置,它根据柴油机负荷的变化,自动增减喷油泵的供油量,使柴油机能够以稳定的转速运行。 在柴油机上装设调速器是由柴油机的工作特性决定的。汽车柴油机的负荷经常变化,当负荷突然减小时,若不及时减少喷油泵的供油量,则柴油机的转速将迅速增高,甚至超出柴油机设计所允许的最高转速,这种现象称“超速”或“飞车”。相反,当负荷骤然增大时,若不及时增加喷油泵的供油量,则柴油机的转速将急速下降直至熄火。柴油机超速或怠速不稳,往往出自于偶然的原因,汽车驾驶员难于作出响应。这时,惟有借助调速器,及时调节喷油泵的供油量,才能 汽车柴油机调速器按其工作原理的不同,可分为机械式、气动式、液压式、机械气动复合式、机械液压复合式和电子式等多种形式。但目前应用最广的当属机械式调速器,其结构简单,工作可靠,性能良好。 按调速器起作用的转速范围不同,又可分为两极式调速器和全程式调速器。中、小型汽车柴油机多数采用两极式调速器,以起到防止超速和稳定怠速的作用。在重型汽车上则多采用全程式调速器,这种调速器除具有两极式调速器的功能外,还能对柴油机工作转速范围内的任何转速起 二、两极式调速器 两极式调速器只在柴油机的最高转速和怠速起自动调节作用,而在最高转速和怠速之间的其他任何转速,调速器不起调节作用。 (一)RQ 通常调速器由感应元件、传动元件和附加装置三部分构成。感应元件用来感知柴油机转速的变化,并发出相应的信号。传动元件则根据此信号进行供油量的调节。

(二)RQ型调速器基本工作原理 1)起动 将调速手柄从停车挡块移至最高速挡块上。在此过程中,调速手柄带动摇杆,摇杆带动滑块,使调速杠杆以其下端的铰接点为支点向右摆动,并推动喷油泵供油量调节齿杆克服供油量限制弹性挡块的阻力,向右移到起动油量的位置。起动油量多于全负荷油量,旨在加浓混合气,以利柴油机低温起动。 2)怠速 柴油机起动之后,将调速手柄置于怠速位置。这时调速手柄通过摇杆、滑块使调速杠杆仍以其下端的铰接点支点向左摆动,并拉动供油量调节齿杆7左移至怠速油量的位置。怠速时柴油机转速很低,飞锤的离心力较小,只能与怠速弹簧力相平衡,飞锤处于内弹簧座与安装飞锤的轴套

电风扇无级调速变速原理

电风扇无级调速变速原理 【学习目标】: 完成本课题的学习后,能够: 1. 1. 用万用表测试双向晶闸管的好坏。 2. 2. 掌握双向晶闸管工作原理。 3. 3. 分析电风扇无级调速器各部分电路的作用及调光原理。 4. 4. 了解交流开关、交流调功器、固态开关原理。 【描述】:电风扇无级调速器在日常生活中随处可见。图31(a )是常见的电风扇无级调速器。旋动旋钮便可以调节电风扇的速度。图3-1(b )为电路原理图。 (a ) (b) 图3-1电风扇无级调速器 (a) 电风扇无级调速器 (b) 电风扇无级调速器电路原理图 如图3—1(b)所示,调速器电路由主电路和触发电路两部分构成,在双向晶闸管的两端并接RC 元件,是利用电容两端电压瞬时不能突变,作为晶闸管关断过电压的保护措施。本课题通过对主电路及触发电路的分析使学生能够理解调速器电路的工作原理,进而掌握分析交流调压电路的方法。保护电路在课题五中详细介绍。 【相关知识点】: 一、双向晶闸管的工作原理 1. 1. 双向晶闸管的结构 双向晶闸管的外形与普通晶闸管类似,有塑封式、螺栓式、平板式。但其内部是是一种 NPNPN 五层结构的三端器件。有两个主电极T1、T2,一个门极G ,其外形如图3-2所示。 调速 旋钮

图3-2 双向晶闸管的外形 双向晶闸管的内部结构、等效电路及图形符号如图3-3所示。 图2-3 双向晶闸管内部结构、等效电路及图形符号 (a ) 内部结构 (b ) 等效电路 (c )图形符号 从图3-3可见,双向晶闸管相当于两个晶闸管反并联(P1N1P2N2和P2N1P1N4),不过它只有一个门极G ,由于N3区的存在,使得门极G 相对于T1端无论是正的或是负的,都能触发,而且T1相对于T2既可以是正,也可以是负。 常见的双向晶闸管引脚排列如图3-4所示。 螺栓式 平板式

自动电风扇控制

课程设计报告题目:自动风扇控制器 学生姓名:程俊学生学号: 0808220104 系别:电气信息工程学院专业:自动化届别: 2013 届 指导教师:廖晓纬电气信息工程学院制

课程设计题目:自动风扇控制器 学生:程俊 指导教师:廖晓纬 电气信息工程 1、课程设计的任务与要求 1.1课程设计的任务 本文设计了基于单片机的自动风扇控制,采用单片机作为控制器,利用温度传感器DS18B20作为温度采集元件,并根据采集到的温度,通过一个达林顿反向驱动器ULN2803驱动风扇电机。根据检测到的温度与系统设定的温度的比较实现风扇电机的自动启动和停止,并能根据温度的变化自动改变风扇电机转速,同时用LED数码管显示检测到的温度与设定的温度。 1.2课程设计的要求 系统采用单片机控制风扇转动,采用单片机,利用温度传感器根据温度的改变来自动控制电风扇转动,从而达到自动控制的效果。 1.3课程设计的研究基础 在现代社会中,风扇被广泛的应用,发挥着举足轻重的作用,如夏天人们用的散热风扇、工业生产中大型机械中的散热风扇以及现在笔记本电脑上广泛使用的智能CPU风扇等。而随着温度控制技术的发展,为了降低风扇运转时的噪音以及节省能源等,温控风扇越来越受到重视并被广泛的应用。在现阶段,温控风扇的设计已经有了一定的成效,可以使风扇根据环境温度的变化进行自动无级调速,当温度升高到一定时能自动启动风扇,当温度降到一定时能自动停止风扇的转动,实现智能控制。 随着单片机在各个领域的广泛应用,许多用单片机作控制的温度控制系统也应运而生,如基于单片机的温控风扇系统。它使风扇根据环境温度的变化实现自动启停,使风扇转速随着环境温度的变化而变化,实现了风扇的智能控制。它的设计为现代社会人们的生活以及生产带来了诸多便利,在提高人们的生活质量、生产效率的同时还能节省风扇运转所需的能量。 2、自动风扇控制系统方案制定 设计的整体思路是:利用温度传感器DS18B20检测环境温度并直接输出数字温度信号给单片机AT89C52进行处理,在LED数码管上显示当前环境温度值以及预设温度值。其中预设温度值只能为整数形式,检测到的当前环境温度可精确到小数点后一位。

调速器的工作原理

调速器的工作原理 液压调速器在感应元件和油量调节机构之间加入一个液压放大元件(液压伺服器),使感应元件的输出信号通过放大元件再传到油量调节机构上去,因此也叫间接作用式调速器。液压放大元件有放大兼执行作用,主要由控制和执行两个部分组成。一、无反馈的液压调速器其工作原理如下:当负荷减小时,由曲轴带动的驱动轴转速升高,飞球的离心力增加,推动速度杆右移。于是,摇杆以A点为中心逆时针转动,滑阀右移,压力油进入伺服器油缸的右部空间。与此同时,油缸的左部空间通过油孔与低压油路相通,其中的油被泄放。在压差的作用下,伺服活塞带动喷油泵齿条左移,以减少供油量。当转速恢复到原来数值时,滑阀也回到中央位置,调节过程结束。当负荷增加,转速降低时,调速过程按相反方向进行。从上述分析可知,调速器飞球所产生的离心力仅用来推动滑阀,因而飞球的重量尺寸就可以做得较小。而作为放大器的液压伺服器的作用力,则可根据需要,选择不同尺寸的伺服活塞和不同滑油压力予以放大。但是,在这种调速器中,因为感应元件直接驱动滑阀,无论它朝哪个方向往动,均难准确地回到原来位置而关闭油孔。这样就使柴油机转速不稳定,而产生严重的波动。为了使调速器能稳定调节,在调速器中还要加入一个装置,其作用是在伺服活塞移动的同时对滑阀产生一个反作用,使其向平衡的位置方向移动,减少柴油机转速波动的可能性。这种装置称为反馈机构。二、具有刚性反馈机构的液压调速器它的构造与上述无反馈液压调速器基本相同,只有杠杆义AC的上端A不是装在固定的铰链上,而是与伺服活塞的活塞杆相连。这一改变使感应元件、液压放大元件和油量调节机构之间的关系发生如下的变化。当负荷减小时,发动机转速升高,飞球向外张开带动速度杆向右移动。此时伺服活塞尚未动作,因此反馈杠杆AC的上端点A暂时作为固定点,杠杆AC绕A反时针转动,带动滑阀向右移动,把控制孔打开,高压油便进入动力缸的右腔,左腔与低压油路相通。这样高压油便推动伺服活塞带动喷油调节杆向左移动,并按照新的负荷而减少燃油供给量。在伺服活塞左移的同时,杠杆AC绕C点向左摆动与B点相连接的滑阀也向左移动,从而使滑阀向相反的方向运动。这样在伺服活塞移动时能对滑阀运动产生了相反作用的杠杆装置称为刚性反馈系统。当调节过程终了时,滑阀回到了起始位置,把控制油孔关闭,切断通往伺服油缸的油路。这时伺服活塞就停止运动,喷油泵调节杆随之移动到一个新的平衡位置,发动机就在相应的新负荷下工作。因此,相应于发动机不同的负荷,调速器就具有不同的稳定转速。因为发动机负荷变化时需要改变供油量,所以A点位置随负荷而变。与滑阀相连接的B点在任何稳定工况下均应处于原来的位置,与负荷无关。这样C点的位置必须配合A点作相应的变动,因而导致了转速的变化。假如当负荷减小时,调速过程结束后,滑阀回到中间原来位置时,伺服活塞处于减少了供油量位置,使A点偏左,C点偏右,因C 点偏右,弹簧进一步受压,只有在稍高的转速下运转才能使飞球的离心力与弹簧压力平衡。这说明负荷减小时稳定运转后,柴油机的转速比原来稍有升高。同理,当负荷增加时,稳定运转后,柴油机的转速比原来稍有降低。具有刚性反馈的液压调速器,可以保证调速过程具有稳定的工作特性,但负荷改变后,柴油机转速发生变化,稳定调速率d不能为零。如果要求负荷变化时即要调速过程稳定,又能保持发动机转速恒定不变(即入就必须采用另一种带有弹性反馈系统的液压调运器。三、具有弹性反馈的液压调速器它实际上是在"刚性反馈"装置中加入一个弹性环节--缓冲器和弹簧。弹簧的一端同固定的支点相连,而另一端则与缓冲器的活塞相连。缓冲器的油缸同伺服器的活塞成刚体联接。当发动机负荷减小时,转速增大,飞球的离心力增加。同样,滑阀右移,而伺服活塞则左移,减少喷油泵的供油量。当活塞的运动速度很高时,缓冲器和缓冲活塞就象一个刚体一样地运动。随着伺服活塞5的左移,缓冲器和AC杠杆上的A点也向左移动。这一过程和上述刚性反馈系统的调速器完全相同。但当调速过程接近终了时,滑阀已回到原来的位置,遮住了通往伺服油缸的

电风扇无级调速器模板

电风扇无级调速器 电风扇无级调速器在日常生活中的应用非常广泛,本课题通过对与电路相关的知识:双晶闸管、单相交流调压、交流开关等内容的介绍和分析。 一、本课题学习目标与要求 1.掌握用万用表测试双向晶闸管好坏的方法。 2.掌握双向晶闸管的外形及符号;双向晶闸管的触发方式。 3.分析单相交流调压电路 4.了解交流开关、交流调功器、固态开关原理。 二、主要概念提示及难点释疑 1.双向晶闸管的触发方式 双向晶闸管正反两个方向都能导通,门极加正负电压都能触发。主电压与触发电压相互配合,可以得到四种触发方式: 1)Ⅰ+触发方式 主极T1为正,T2为负;门极电压G 为正,T2为负。 2)Ⅰ-触发方式 主极T1为正,T2为负;门极电压G 为负,T2为正。 3)Ⅲ+触发方式 主极T1为负,T2为正;门极电压G 为正,T2为负。 4)Ⅲ-触发方式 主极T1为负,T2为正;门极电压G 为负,T2为正。 2.双向晶闸管的参数 1)双向晶闸管额定通态电流不同于普通晶闸管的额定通态电流。前者用交流有效值标定,后者用正弦半波平均值标定,选择晶闸管时不能混淆。例如双向晶闸管额定通态电流为100A ,若用两个反并联的普通晶闸管代替,按有效相等的原则,得 2100 57.1)(=AV T I ,所以,A I AV T 45257.1100 )(==。因此一个100A 的双向晶闸管与两 个45A 反并联的普通晶闸管等效。 2)在选择双向晶闸管的额定通态电流时,要考虑到电动机的启动电流的影响,在交流开关的主电流中串入空心电抗器,可抑制换向电压上网率,降低对双向晶闸管换向能力

的要求。 3.交流调压电路 (1)单相交流调压电路电感性负载时,要用宽脉冲触发晶闸管,否则在α<?(负载功率因数角)时,会使一个晶闸管不能导通,负载波形只有半周,出现很大的直流分量,电路不能正常工作。 (2)单相交流调压电路电阻性负载时,移相范围是α=0°~180°,而电感性负载时,移相范围是α=?~180° (3)交流功率调节容量较大时,应采用三相交流调压。三相交流调压电路接线方式及性能特点见教材。 (4)交流调压可以采用移相触发也可以采用过零触发来实现。过零触发就是在电压为零附近触发晶闸管导通,在设定的周期内改变晶闸管导通的频率树来实现交流调压或调功率。4.交流开关 交流开关的作用类似普通的接触器,用门极小电流控制阳极大电流的通断,实现开关的无触电化。 三、学习方法 1.对比法:双向晶闸管的学习与普通晶闸管对比,找出他们的异同;移相触发与过零触发比较,找出各自优缺点。 2.波形分析法:交流调压电路的工作原理结合波形来分析,更容易理解。 3.讨论分析法:读者要学习与他人讨论分析问题,并了解其他读者的学习方法和学习收获,提高学习效率。 四、典型题解析 例3-1 在交流调压电路或交流开关中,使用双向晶闸管有什么好处? 解:双向晶闸管不论是从结构上,还是从特性上,都可以把它看作是一对反并联晶闸管集成元件。它只有一个门极,可用交流或直流脉冲触发,使之能正、反向导通。在交流调压电路或交流开关中使用双向晶闸管可以简化电路、减小装置体积和质量、节省投

柴油机调速器的基本原理和类型

柴油机调速器的基本原理和类型 1、喷油泵的速度特性 喷油泵每个工作循环的供油量主要取决于调节拉杆的位置。此外,还受到发动机转速的影响。在调节拉杆位置不变时,随着发动机曲轴转速增大,柱塞有效行程略有增加,而供油量也略有增大;反之,供油量略有减少。这种供油量随转速变化的关系称为喷油泵的速度特性。 2、柴油机上为什么要安装调速器 喷油泵的速度特性对工况多变的柴油机是非常不利的。当发动机负荷稍有变化时,导致发动机转速变化很大。当负荷减小时,转速升高,转速升高导致柱塞泵循环供油量增加,循环供油量增加又导致转速进一步升高,这样不断地恶性循环,造成发动机转速越来越高,最后飞车;反之,当负荷增大时,转速降低,转速降低导致柱塞泵循环供油量减少,循环供油量减少又导致转速进一步降低,这样不断地恶性循环,造成发动机转速越来越低,最后熄火。 要改变这种恶性循环,就要求有一种能根据负荷的变化,自动调节供油量。使发动机在规定的转速范围内稳定运转的自动控制机构。移动供油拉杆,可以改变循环供油量,使发动机的转速基本不变。因此,柴油机要满足使用要求,就必须安装调速器。 3、调速器的功用、形式 调速器是根据发动机负荷变化而自动调节供油量,从而保证发动机的转速稳定在很小的范围内变化。 型式:按功能分有两速调速器、全速调速器、定速调速器和综合调速器;按转速传感分有气动式调速器、机械离心式调速器和复合式调速器。 4、机械离心式调速器的工作原理 机械离心式调速器是根据弹簧力和离心力相平衡进行调速的,工作中,弹簧力总是将供油拉杆向循环供油量增加的方向移动;而离心力总是将供油拉杆向循环供油量减少的方向移动。当负荷减小时,转速升高,离心力大于弹簧力,供油拉杆向循环供油量减少的方向移动,循环供油量减小,转速降低,离心力又小于弹簧力,供油拉杆又向循环供油量增加的方向移动,循环供油量增加,转速又升高,直到离心力和弹簧力平衡,供油拉杆才保持不变。这样转速基本稳定在很小的范围内变化。 反之当负荷增加时,转速降低,弹簧力大于离心力,供油拉杆向循环供油量增加的方向移动,循环供油量增加,转速升高,弹簧力又小于离心力,供油拉杆又向循环供油量减小的方向移动,循环供油量减小,转速又降低,直到离心力和弹簧力平衡。

09325324电子无级调速器设计

《家电原理与检测》课程设计报告 电子无级调速器设计 姓名: 涂国龙 专业: 电子信息工程 班级: 093253 学号: 24 指导老师: 王晓荣 2011年12月20日

摘要 近几年随着科学技术的发展,尤其是生产电机的成本的下降,小功率的减速电机,调速电机,微型减速电机,齿轮减速电机等大量普及,随之出现的交流电子无极调速器品种也大量出现在市场。尽管各种个样的交流电子无极调速器品种繁多,但其功能和工作原理基本相同。主要区分在外型的不同。如上海任重仪表电器有限公司,上海百乐神自动化科技有限公司,中外合作湖州雪峰微电机有限公司等厂家的产品:US-52系列,MS32B,FS32B,SC-A,SS-22,SS32,SKJ-2B,SKJ-1B,SKJ-C1,SKJ-C2,US540-02,US560-02,US590-02 DV1204 DV1104,SCA-B,LSC-C ,LSC-H,LSC-G等,在功能上大致相同,主要的是安装结构存在差异。一般在使用上只要对启动的电容做出选择,改变,不管功率大小基本都能使用。主要分2大类:6-180W功率和180-370W功率。前者选:US-52系列,MS32B,FS32B,SC-A,SS-22,SS32,SKJ-2B,SKJ-1B,SKJ-C1,SKJ-C2,US540-02,US560-02,US590-02 DV1204 DV1104等型号产品。前者选SCA-B,LSC-C ,LSC-H,LSC-G等型号产品。交流电子无极调速器在产品的命

名上也很多:交流电子无极调速器,电子无极调速器,电子无极调速器,交流调速器,数显速控制器等。 风扇调速器工作原理-电子调速器工作原理 我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL和稳压二极管VS组成。可控振荡器由时基集成电路IC、电阻器RI、R2、电容器C3、电位器RP和二极管VD3、VD4组成。控制执行电路由风扇 我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。 该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。 电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL和稳压二极管VS组成。

[中学]风扇无极调速器原理

[中学]风扇无极调速器原理 风扇调速器工作原理-电子调速器工作原理 我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL 和稳压二极管VS组成。可控振荡器由时基集成电路IC、电阻器RI、R2、电容器C3、电位器RP和二极管VD3、VD4组成。控制执行电路由风扇 我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。 该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。 电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL和稳压二极管VS组成。 可控振荡器由时基集成电路IC、电阻器RI、R2、电容器C3、电位器RP和二极管VD3、VD4组成。 控制执行电路由风扇电动机M、晶闸管VT、电阻器R3和IC第3脚内电路组成。交流220V电压经Cl降压、VDl和VD2整流、VL和VS稳压及C2滤波后,为IC提供约8V的直流电压。

可控振荡器振荡工作后,从IC的3脚输出周期为105、占空比连续可调的振荡脉冲信号,利用此脉冲信号去控制晶闸管VT的导通状态。 调节RP的阻值,即可改变脉冲信号的占空比(调节范围为1%-99%),控制风扇电动机M转速的高低,产生模拟自然风 (周期为10s的阵风)。 改变C3的电容量,可以改变振荡器的振荡周朔,从而改变模拟自然风的周期。元器件选择 R1-R3选用1/4W碳膜电阻器或金属膜电阻器。 RP选用合成膜电位器或有机实心电位器。 C1选用耐压值为450V的涤纶电容器或CBB电容器;C2和C3均选用耐压值为16V的铝电解电容器。 VDl和VD2均选用lN4007型硅整流二极管;VD3和VD4均选用1N4148型硅开关二极管。 VS选用1/2W、6.2V的硅稳压二极管。 VL选用φ5mm的绿色发光二极管。 VT选用MACg4A4(lA、400V)型双向晶闸管。 IC选用NE555或CD7555型时基集成电路。 总的概括,一般风扇调速器的工作原理有三种种方法: 1.用微电路板控制电压高低,改变速度,例如:部分空调室内机; 2.改变电阻来控制电压,改变速度,例如:部分空调柜机; 3.切换线路,通过电机上的几组线圈来改变速度,例如:普通电风扇。

基于单片机的电风扇温控调速系统设计

基于单片机的电风扇温控调速系统设计 摘要: 本设计为一种温控电风扇调速系统,具有灵敏的温度测试和显示功能,系统以STC89C52 单片机作为控制平台对风扇转速进行控制,可选择由用户选择手动调速或自动调速。在手动调速时自动调速系统不工作,在自动调速时由系统自动检测外界温度值并对电风扇转速做出相应调整,当温度低于温度设定的最低值时,控制电风扇自动关闭,当温度升到超过所设定的最大值时自动调速到最高挡,控制风速大小随外界温度而定。 关键词: 自动控制单片机 DS18B20 电风扇 引言: 随着人们生活水平及科技水平的不断提高,现在家用电器在款式、功能等方面日益求精,并朝着健康、安全、多功能、节能等方向发展。过去的电器不断的显露出其不足之处。电风扇作为家用电器的一种,同样存在类似的问题。 现在电风扇的现状:大部分只有手动调速,再加上一个定时器,功能单一。 夏秋交替时节,白天温度依旧很高,电风扇应高转速、大风量,使人感到清凉;到了晚上,气温降低,当人入睡后,应该逐步减小转速,以免使人感冒。虽然电风扇都有调节不同档位的功能,但必须要人手动换档,睡着了就无能为力了,而普遍采用的定时器关闭的做法,一方面是定时时间长短有限制,一般是一两个小时;另一方面可能在一两个小时后气温依旧没有降低很多,而风扇就关闭了,使人在睡梦中热醒而不得不起床重新打开风扇,增加定时器时间,非常麻烦,而且可能多次定时后最后一次定时时间太长,在温度降低以后风扇依旧继续吹风,使人感冒;第三方面是只有简单的到了定时时间就关闭风扇电源的单一功能,不能满足气温变化对风扇风速大小的不同要求。 之所以会产生这些隐患的根本原因是:缺乏对环境温度的检测。 为解决上述问题,我们设计了这套电风扇温控调速系统。本系统采用高精度集成温度传感器DS18B20,用单片机控制,能做到实时温度显示,根据外界环境的温度自动作出小风、大风、关闭动作,灵敏度度高,动作准确。 1.系统总体功能描述及系统结构介绍 本设计是以STC89C52单片机为控制中心,主要通过温度传感器DS18B20得到的温度以及内部定时器设定时间长短来控制电风扇的开关及转速的变化。 本系统电路小巧方便,实用性、通用性强。当要用手动调速时只需将执行设备从电风扇调速开关上取下即可由人工控制;在晚上需要选择自动调速时将调速

永磁调速器工作原理及特点

>>>永磁调速器(PMD)的工作原理及特点 2007年永磁耦合与调速驱动器从美国引进我国,在美国已大量应用于冶金、石化、采矿、发电、水泥、纸浆、海运、军舰等行业,国内现在应用案例主要有浙江嘉兴电厂,山东海化自备热电厂, 华电东华电厂, 华能南京电厂, 中石化北京燕山石化, 枣庄煤业集团蒋庄煤矿等大型企业集团。 永磁磁力驱动技术首先由美国MagnaDrive公司在1999年获得了突破性的发展。该驱动方式与传统的同步式永磁磁力驱动技术有很大的区别,其主要的贡献就是将永磁驱动技术的应用大大拓宽。它不解决密封的问题,但就是它解决了旋转负载系统的对中、软启动、减震、调速及过载保护等问题,并且使永磁磁力驱动的传动效率大大提高,可达到98、5%。该技术现已在各行各业获得了广泛的应用。该技术将对传统的传动技术带来了崭新的概念,必将为传动领域带来一场新的革命。 该产品已经通过美国海军最严格的9-G抗震试验。同时,该产品在美国获得17项专利技术,在全球共获得专利一百多项。目前,由MagnaDrive公司与美国西北能效协会组成专门小组对该技术设备进行商业化推广。由于该技术创新,使人们对节能概念有了全新的认识。在短短的几年中,MagnaDrive获得了很大的发展,现已经渗透到各行各业,在全球已超过6000套设备投入运行。 (一) 系统构成与工作原理

永磁磁力耦合调速驱动(PMD)就是通过铜导体与永磁体之间的气隙实现由电动机到负载的转矩传输。该技术实现了在驱动(电动机)与被驱动(负载)侧没有机械链接。其工作原理就是一端稀有金属氧化物硼铁钕永磁体与另一端感应磁场相互作用产生转矩,通过调节永磁体与导体之间的气隙就可以控制传递的转矩,从而实现负载速度调节。 由下图所示,PMD主要由导体转子、永磁转子与控制器三部分组成。导体转子固定在电动机轴上,永磁转子固定在负载转轴上,导体转子与永磁转子之间有间隙(称为气隙)。这样电动机与负载由原来的硬(机械)链接转变为软(磁)链接,通过调节永磁体与导体之间的气隙就可实现负载轴上的输出转矩变化,从而实现负载转速变化。由上面的分析可以知道,通过调整气隙可以获得可调整的、可控制的、可以重复的负载转速。 磁感应原理就是通过磁体与导体之间的相对运动产生。也就就是说,PMD的输出转速始终都比输入转速小,转速差称为滑差。典型情况

风扇无极调速器原理

风扇调速器工作原理-电子调速器工作原理 我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL和稳压二极管VS组成。可控振荡器由时基集成电路IC、电阻器RI、R2、电容器C3、电位器RP和二极管VD3、VD4组成。控制执行电路由风扇 我们通过电风扇电子调速器的电路来分析,以说明风扇调整器的工作原理,引电路能对风扇电动机进行无级调速,还能使电风扇产生模拟自然风。 该电风扇电子调速器电路由电源电路、可控振荡器和控制执行电路组成,如图所示。 电源电路由降压电容器Cl、整流二极管VDl、VD2、滤波电容器C2、电源指示发光二极管VL和稳压二极管VS组成。 可控振荡器由时基集成电路IC、电阻器RI、R2、电容器C3、电位器RP和二极管VD3、VD4组成。 控制执行电路由风扇电动机M、晶闸管VT、电阻器R3和IC第3脚内电路组成。 交流220V电压经Cl降压、VDl和VD2整流、VL和VS稳压及C2滤波后,为IC提供约8V的直流电压。 可控振荡器振荡工作后,从IC的3脚输出周期为105、占空比连续可调的振荡脉冲信号,

利用此脉冲信号去控制晶闸管VT的导通状态。 调节RP的阻值,即可改变脉冲信号的占空比(调节范围为1%-99%),控制风扇电动机M转速的高低,产生模拟自然风(周期为10s的阵风)。 改变C3的电容量,可以改变振荡器的振荡周朔,从而改变模拟自然风的周期。 元器件选择 R1-R3选用1/4W碳膜电阻器或金属膜电阻器。 RP选用合成膜电位器或有机实心电位器。 C1选用耐压值为450V的涤纶电容器或CBB电容器;C2和C3均选用耐压值为16V的铝电解电容器。 VDl和VD2均选用lN4007型硅整流二极管;VD3和VD4均选用1N4148型硅开关二极管。VS选用1/2W、6.2V的硅稳压二极管。 VL选用φ5mm的绿色发光二极管。 VT选用MACg4A4(lA、400V)型双向晶闸管。 IC选用NE555或CD7555型时基集成电路。 总的概括,一般风扇调速器的工作原理有三种种方法: 1.用微电路板控制电压高低,改变速度,例如:部分空调室内机; 2.改变电阻来控制电压,改变速度,例如:部分空调柜机; 3.切换线路,通过电机上的几组线圈来改变速度,例如:普通电风扇。

直流调速器工作原理

直流调速器工作原理 直流调速器就是调节直流电动机速度的设备,上端和交流电源连接, 下端和直流 电动机连接, 直流调速器 将交流电转 化成两路输 出直流电源, 一路输入给 直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。 调速方案一般有下列3种方式 1、改变电枢电压;(最长用的一种方案) 2、改变激磁绕组电压; 3、改变电枢回路电阻。 直流调速分为三种:转子串电阻调速,调压调速,弱磁

调速。 转子串电阻一般用于低精度调速场合,串入电阻后由于机械特性曲线变软,一般在倒拉反转型负载中使用调压调速,机械特性曲线很硬,能够在保证了输出转矩不变的情况下,调整转速,很容易实现高精度调速弱磁调速,由于弱磁后,电机转速升高,因此一般情况下配合调压调速,与之共同应用。缺点调速范围小且只能增速不能减速,控制不当易发生飞车问题。 直流调速器是一种电机调速装置,包括电机直流调速器,脉宽直流调速器,可控硅直流调速器等.一般为模块式直流电机调速器,集电源、控制、驱动电路于一体,采用立体结构布局,控制电路采用微功耗元件,用光电耦合器实现电流、电压的隔离变换,电路的比例常数、积分常数和微分常数用PID适配器调整。该调速器体积小、重量轻,可单独使用也可直接安装在直流电机上构成一体化直流调速电机,可具有调速器所应有的一切功能。 直流调速器使用条件 1.海拔高度不超过1000米。(超过1000米,额定输出电流值有所降低) 2.周围环境温度不高于40℃不低于-10℃。 3.周围环境相对湿度不大于85[%],无水凝滴。 4.没有显着震动和颠簸的场合。

调速器原理

调速器原理: 调速的方法不外乎通过3种途径:改变电压;电流;频率. 调速控制的方式也就是通过负反馈来调整.大的来说分为开环,半闭环控制和闭环控制.开环就是设定参数后不会有任何修正的. 半闭环: 比如你用调电压的方式来调速,那么通过传感器检测电压是否调整到位,并给以负反馈. 闭环则是无论你用什么方式改变转速,都通过传感器检测转速提供负反馈,作用于调速的要素.闭环控制最为精确. 目前有三种调速器,较老式的叫电抗器,实际上是带抽头的自耦变压器(一般自耦变压器不带抽头),可以改变不同的电压,风扇就有了不同的转速,另一种是电子调速器,是使用可控硅加电位器改变电压,属于无级调速,再有一种就是变频器,它不调整电压,而是改变交流电的频率,也达到了调速的目的,因为电风扇基本上采用交流异步电动机,因此改变频率即可调速。 一、变极对数调速方法这种调速方法是用改变定子绕组的接红方式来改变笼型电动机定子极对数达到调速目的,特点如下:l 具有较硬的机械特性,稳定性良好;l 无转差损耗,效率高;l 接线简单、控制方便、价格低;l 有级调速,级差较大,不能获得平滑调速;l 可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。l 本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。 二、变频调速方法变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。其特点:l 效率高,调速过程中没有附加损耗;l 应用范围广,可用于笼型异步电动机;l 调速范围大,特性硬,精度高;l 技术复杂,造价高,维护检修困难。l 本方法适用于要求精度高、调速性能较好场合。 三、串级调速方法串级调速是指绕线式电动机转子回路中串入可调节的附加电势来改变电动机的转差,达到调速的目的。大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为:l 可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高;l 装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70%-90%的生产机械上;l 调速装置故障时可以切换至全速运行,避免停产;l 晶闸管串级调速功率因数偏低,谐波影响较大。l 方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。

单相电风扇无级调速电路

辽宁工业大学电力电子技术课程设计(论文)题目:单相电风扇无级调速电路 院(系):电气工程学院 专业班级:电气094 学号:090303111 学生姓名:姜佩君 指导教师:(签字) 起止时间:2011-12-26至2011-01-06

课程设计(论文)任务及评语 院(系):电气工程学院 教研室: 电气 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 学 号 090303111 学生姓名 姜佩君 专业班级 电气094 课程设计 (论文) 题目 单相电风扇无级调速电路 课程设计(论文)任务 课题完成的设计任务及功能、要求、技术参数 实现功能 利用晶闸管构成交流调压电路,调节电风扇电动机电压,从而改变电风扇的转速,可实现无级变速,满足人们对电风扇风速的不同要求,且此调速装置寿命长。 设计任务与要求 1、方案的经济技术论证。 2、主电路设计。 3、通过计算选择整流器件的具体型号。 4、触发电路设计 5、绘制相关电路图 6、保护电路设计 7、电路调试或仿真 8、完成4000字左右说明书。 技术参数 1、交流电源:单相220V 。 2、输出电压在0~220V 连续可调。 3、输出电流最大值1A 。 4、负载为100W 电风扇。 5、根据实际工作情况,最小控制角取20~300左右。。 工作计划 第1天:集中学习;第2天:收集资料;第3天:方案论证;第4天:主电路设计;第5天:选择器件;第6天:触发电路设计;第7天:保护电路设计;第8天:电路调试或仿真;第9天:总结并撰写说明书;第10天:答辩 指导教师评语及成绩 平时: 论文质量: 答辩: 总成绩: 指导教师签字: 年 月 日

_电风扇无级调速原理

电风扇无级调速原理 【学习目标】: 完成本课题的学习后,能够: 1. 1. 用万用表测试双向晶闸管的好坏。 2. 2. 掌握双向晶闸管工作原理。 3. 3. 分析电风扇无级调速器各部分电路的作用及调光原理。 4. 4. 了解交流开关、交流调功器、固态开关原理。 【描述】:电风扇无级调速器在日常生活中随处可见。图31(a )是常见的电风扇无级调速器。旋动旋钮便可以调节电风扇的速度。图3-1(b )为电路原理图。 (a ) (b) 图3-1电风扇无级调速器 (a) 电风扇无级调速器 (b) 电风扇无级调速器电路原理图 如图3—1(b)所示,调速器电路由主电路和触发电路两部分构成,在双向晶闸管的两端并接RC 元件,是利用电容两端电压瞬时不能突变,作为晶闸管关断过电压的保护措施。本课题通过对主电路及触发电路的分析使学生能够理解调速器电路的工作原理,进而掌握分析交流调压电路的方法。保护电路在课题五中详细介绍。 【相关知识点】: 一、双向晶闸管的工作原理 1. 1. 双向晶闸管的结构 双向晶闸管的外形与普通晶闸管类似,有塑封式、螺栓式、平板式。但其内部是是一种 NPNPN 五层结构的三端器件。有两个主电极T1、T2,一个门极G ,其外形如图3-2所示。 调速 旋钮

图3-2 双向晶闸管的外形 双向晶闸管的内部结构、等效电路及图形符号如图3-3所示。 图2-3 双向晶闸管内部结构、等效电路及图形符号 (a ) 内部结构 (b ) 等效电路 (c )图形符号 从图3-3可见,双向晶闸管相当于两个晶闸管反并联(P1N1P2N2和P2N1P1N4),不过它只有一个门极G ,由于N3区的存在,使得门极G 相对于T1端无论是正的或是负的,都能触发,而且T1相对于T2既可以是正,也可以是负。 常见的双向晶闸管引脚排列如图3-4所示。 螺栓式 平板式

电风扇无级调速器

电风扇无级调速器实训报告 因本次实训老师要求做个与电力电子有关的产品,经过组员讨论,于是我们决定做电风扇无极调速器。 电风扇无级调速器在日常生活中随处可见。图1(a )是常见的电风扇无级调速器。旋动旋钮便可以调节电风扇的速度。图1(b )为电路原理图。 (a ) 图1电风扇无级调速器 (a) 电风扇无级调速器 (b) 电风扇无级调速器电路原理图 如图1(b)所示,调速器电路由主电路和触发电路两部分构成,在双向晶闸管的两端并接RC 元件,是利用电容两端电压瞬时不能突变,作为晶闸管关断过电压的保护措施。本课题通过对主电路及触发电路的分析使学生能够理解调速器电路的工作原理,进而掌握分析交流调压电路的方法。保护电路在课题五中详细介绍。 一、双向晶闸管的工作原理 1. 双向晶闸管的结构 双向晶闸管的内部结构、等效电路及图形符号如图2所示。 (a ) 内部结构 (b ) 等效电路 (c )图形符号 调速电位器

图2双向晶闸管内部结构、等效电路及图形符号 从图2可见,双向晶闸管相当于两个晶闸管反并联(P1N1P2N2和P2N1P1N4),不过它只有一个门极G,由于N3区的存在,使得门极G相对于T1端无论是正的或是负的,都能触发,而且T1相对于T2既可以是正,也可以是负。 表1 双向晶闸管的主要参数 2.双向晶闸管的触发方式 双向晶闸管正反两个方向都能导通,门极加正负电压都能触发。主电压与触发电压相互配合,可以得到四种触发方式: 1)Ⅰ+触发方式主极T1为正,T2为负;门极电压G为正,T2为负。特性曲线在第Ⅰ象限。 2)Ⅰ-触发方式主极T1为正,T2为负;门极电压G为负,T2为正。特性曲线在第Ⅰ象限。 3)Ⅲ+触发方式主极T1为负,T2为正;门极电压G为正,T2为负。特性曲线在第Ⅲ象限。 4)Ⅲ-触发方式主极T1为负,T2为正;门极电压G为负,T2为正。特性曲线在第Ⅲ象限。 由于双向晶闸管的内部结构原因,四种触发方式中灵敏度不相同,以Ⅲ+触发方式灵敏度最低,使用时要尽量避开,常采用的触发方式为Ⅰ+和Ⅲ-。 二、单相交流调压电路 电风扇无级调速器实际上就是负载为电感性的单相交流调压电路。交流调压是将一种幅值的交流电能转化为同频率的另一种幅值的交流电能。

电脑风扇的结构和调速原理祥解

风扇是目前电脑中最常用的一种强制冷却设备。风扇由电机、轴承、叶片和壳体几个部分构成。电机是风扇的动力来源,风扇的转速高低、劲头大小都取决于电机的性能。普通风扇一般只几元钱一只,而一些高档风扇却卖几百元一只。价格上的巨大差异,并不因为轴承类型和扇叶形状、气流方向等方面,而主要因为风扇电机性能上的差异,一台好的风扇关键是有一台好的电机。例如,Tt出品的金星12型风扇转速可在2000~5500rpm之间进行无级变速。序列号为A1745的散热风扇,连同散热片及调速器一起售价高达480元人民币(如图1)。 图1 金星12型风扇套件 高档风扇的控制功能很强(如图2),电机的结构也较为复杂。由于风扇电机的技术含量越来越高,如果对其细节不甚了解,就难以正确地安装和使用。因此,本文重点对风扇中所使用的电机进行剖析。 图2 金星12型风扇的外观 一、直流电机的基本工作原理 根据供电方式的不同,电机有直流电机和交流电机两种类型。电脑中使用的风扇电机为直流电机,供电电压为+12V,转速在1000~10000转/分之间。 直流电机是将直流电能转换为机械能的旋转机械。它由定子、转子和换向器三个部分组成,如图3。

图3 有刷直流电机的构造 定子(即主磁极)被固定在风扇支架上,是电机的非旋转部分。 转子中有两组以上的线圈,由漆包线绕制而成,称之为绕组。当绕组中有电流通过时产生磁场,该磁场与定子的磁场产生力的作用。由于定子是固定不动的,因此转子在力的作用下转动。 换向器是直流电动机的一种特殊装置,由许多换向片组成,每两个相邻的换向片中间是绝缘片。在换向器的表面用弹簧压着固定的电刷,使转动的电枢绕组得以同外电路联接。当转子转过一定角度后,换向器将供电电压接入另一对绕组,并在该绕组中继续产生磁场。可见,由于换向器的存在,使电枢线圈中受到的电磁转矩保持不变,在这个电磁转矩作用下使电枢得以旋转,如图4。 图7 无刷直流电机原理图 转子利用轴承与外壳之间实现动配合。风扇的扇叶固定在转子上,因此,当转子旋转时,扇叶将与转子一起转动起来。普通风扇一般采用滚珠轴承(如图5),而高档风扇为了提高运转的稳定性和增加使用寿命,通常采用更为先进的液态轴承(如图6)。

电风扇无级调速器在日常生活中的应用非常广泛

电风扇无级调速器在日常生活中的应用非常广泛,本课题通过对与电路相关的知识:双晶闸管、单相交流调压、交流开关等内容的介绍和分析。使学生能够理解电路的工作原理,掌握分析电路的方法。 一、本课题学习目标与要求 1.掌握用万用表测试双向晶闸管好坏的方法。 2.掌握双向晶闸管的外形及符号;双向晶闸管的触发方式。 3.分析单相交流调压电路 4.了解交流开关、交流调功器、固态开关原理。 二、主要概念提示及难点释疑 1.双向晶闸管的触发方式 双向晶闸管正反两个方向都能导通,门极加正负电压都能触发。主电压与触发电压相互配合,可以得到四种触发方式: 1)Ⅰ+触发方式主极T1为正,T2为负;门极电压G为正,T2为负。 2)Ⅰ-触发方式主极T1为正,T2为负;门极电压G为负,T2为正。 3)Ⅲ+触发方式主极T1为负,T2为正;门极电压G为正,T2为负。 4)Ⅲ-触发方式主极T1为负,T2为正;门极电压G为负,T2为正。 2.双向晶闸管的参数 1)双向晶闸管额定通态电流不同于普通晶闸管的额定通态电流。前者用交流有效值标定,后者用正弦半波平均值标定,选择晶闸管时不能混淆。例如双向晶闸管额定通态电流为100A,若用两个反并联的普通晶闸管代替,按有效相等的原则,得,所以,。因此一个100A的双向晶闸管与两个45A反并联的普通晶闸管等效。 2)在选择双向晶闸管的额定通态电流时,要考虑到电动机的启动电流的影响,在交流开关的主电流中串入空心电抗器,可抑制换向电压上网率,降低对双向晶闸管换向能力的要求。 3.交流调压电路 (1)单相交流调压电路电感性负载时,要用宽脉冲触发晶闸管,否则在<(负载功率因数角)时,会使一个晶闸管不能导通,负载波形只有半周,出现很大的直流分量,电路不能正常工作。 (2)单相交流调压电路电阻性负载时,移相范围是=0°~180°,而电感性负载时,移相范围是= ~180°(3)交流功率调节容量较大时,应采用三相交流调压。三相交流调压电路接线方式及性能特点见教材。(4)交流调压可以采用移相触发也可以采用过零触发来实现。过零触发就是在电压为零附近触发晶闸管导通,在设定的周期内改变晶闸管导通的频率树来实现交流调压或调功率。4.交流开关 交流开关的作用类似普通的接触器,用门极小电流控制阳极大电流的通断,实现开关的无触电化。 三、学习方法 1.对比法:双向晶闸管的学习与普通晶闸管对比,找出他们的异同;移相触发与过零触发比较,找出各自优缺点。 2.波形分析法:交流调压电路的工作原理结合波形来分析,更容易理解。 3.讨论分析法:读者要学习与他人讨论分析问题,并了解其他读者的学习方法和学习收获,提高学习效率。 四、典型题解析 例3-1 在交流调压电路或交流开关中,使用双向晶闸管有什么好处? 解:双向晶闸管不论是从结构上,还是从特性上,都可以把它看作是一对反并联晶闸管集成元件。它只有一个门极,可用交流或直流脉冲触发,使之能正、反向导通。在交流调压电路或交流开关中使用双向晶闸管可以简化电路、减小装置体积和质量、节省投资、方便维护。 例3-2 双向晶闸管额定电流的定义和普通晶闸管额定电流的定义有何不同?额定电流为100A的两只普通晶闸管反并联可以用额定电流为多少的双向晶闸管代替? 解:双向晶闸管的额定电流用有效值表示,而普通晶闸管的额定电流是用平均值表示的。 额定电流100A的普通晶闸管,其通过电流的峰值为100A×π=314A,则双向晶闸管的额定电流为314/

相关文档
最新文档