2016年初三一模试卷-数学及标准答案

合集下载

2016届九年级中考一模数学试题(扫描版)

2016届九年级中考一模数学试题(扫描版)

学校:班级:教师: 科目:得分:2015-2016年初三数学一模参考答案题号 1 2 3 4 5 6 7 8 9 10 答案B D C C D C A A B B题号11 12 13答案2)1(-ab 5 33712132=+++xxxx题号14 15 16答案所填写的理由需支持你填写的结论. 如:③,理由是:只有③的自变量取值范围不是全体实数预估理由需包含统计图提供的信息,且支撑预估的数据. 如:6.53 ,理由是:最近三年下降趋势平稳四条边都相等的四边形是菱形;菱形的对边平行(本题答案不唯一)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式316431=-⨯++-……………………4分43=-.………………………5分解不等式①,得10≤x.………………………2分解不等式②,得7>x.………………………3分∴原不等式组的解集为107≤<x.………………………4分∴原不等式组的所有整数解为8,9,10.………………………5分19.解:原式4312222-++-+-=xxxxx………………………3分32-+=xx.………………………4分∵250x x+-=,∴52=+xx.∴原式=532-=..………………………5分20.证明:∵ 90BAC ∠=︒,∴ 90BAD DAC ∠+∠=︒. ∵ AD BC ⊥, ∴ 90ADC ∠=︒.∴ 90DAC C ∠+∠=︒.∴ BAD C ∠=∠. ………………………2分 ∵ DE 为AC 边上的中线, ∴ DE EC =.∴ EDC C ∠=∠. .………………………4分 ∴ BAD EDC ∠=∠. ………………………5分21.解:设小博每消耗1千卡能量需要行走x 步.………………………1分由题意,得xx 90001012000=+ . ………………………3分 解得 30=x . ………………………4分 经检验,30=x 是原方程的解,且符合题意.答:小博每消耗1千卡能量需要步行30步. ………………………5分22.(1) 证明:∵ 四边形ABCD 为矩形,∴ AC BD =,AB ∥DC .∵ AC ∥BE ,∴ 四边形ABEC 为平行四边形. ………………………2分 ∴ AC BE =.∴ BD BE =. ………………………3分 (2) 解:过点O 作OF ⊥CD 于点F .∵ 四边形ABCD 为矩形, ∴ 90BCD ∠=︒. ∵ 10BE BD ==, ∴ 6CD CE ==. 同理,可得132CF DF CD ===. ∴9EF =. ………………………4分 在Rt △BCE 中,由勾股定理可得8BC =. ∵ OB=OD ,∴ OF 为△BCD 的中位线. ∴ 142OF BC ==. ∴在Rt △OEF 中,4tan 9OF OED EF ∠==. ………………………5分A23. 解:(1)∵(6,)P m 在直线y x =-上,∴6m =-. ………………………1分∵(6,6)P -在双曲线k y x =上, ∴6(6)6k =⨯-=-. ………………………2分图1 图2(2) ∵y x =-向上平移b (0b >)个单位长度后,与x 轴,y 轴分别交于A ,B ,∴(,0),(0,)A b B b . ………………………3分作QH ⊥x 轴于H ,可得△HAQ ∽△OAB .如图1,当点Q 在AB 的延长线上时,∵2BQ AB =,∴3===ABAQ OA HA OB HQ . ∵OA OB b ==, ∴3HQ b =,2HO b =.∴Q 的坐标为(2,3)b b -.由点Q 在双曲线6y x=-上, 可得1b =. ………………………4分 如图2,当点Q 在AB 的反向延长线上时,同理可得,Q 的坐标为(2,)b b -.由点Q 在双曲线6y x=-上,可得3b =综上所述,1b =或b = ………………………5分24. (1) 证明:如图,连接OD . ………………………1分∵BC 为⊙O 的切线,∴90CBO ∠=︒.∵AO 平分BAD ∠,∴12∠=∠.∵OA OB OD ==,∴1=4=2=5∠∠∠∠.∴BOC DOC ∠=∠.∴△BOC ≌△DOC .∴90CBO CDO ∠=∠=︒.∴CD 为⊙O 的切线. ……………2分(2) ∵AE DE =,∴AE DE =.∴34∠=∠. ………………………3分∵124∠=∠=∠,∴123∠=∠=∠.∵BE 为⊙O 的直径,∴90BAE ∠=︒.∴123430∠=∠=∠=∠=︒.………………………4分∴90AFE ∠=︒ .在Rt △AFE 中,∵3AE =,︒=∠303,∴AF = ………………………5分25. (1) 45;………………………2分(2) 21;………………………3分(3) 2.4(120%) 2.88⨯+=.2015年中国内地动画电影市场票房收入前5名的票房成绩统计表………………………5分或2015年中国内地动画电影市场票房收入前5名的票房成绩统计图………………………5分m=-;………………………1分26. (2) ①60n=;………………………2分②11(3)正确标出点B的位置,画出函数图象. …………………5分27. 解:(1)224=-+-y mx mx m2(21)4=-+-m x x2=--.m x(1)4-.………………………2分∴点A的坐标为(1,4)(2)①由(1)得,抛物线的对称轴为x=1.∵抛物线与x轴交于B,C两点(点B在点C左侧),BC=4,∴ 点B 的坐标为 (1,0)-,点C 的坐标为 (3,0).………………………3分∴ 240m m m ++-=.∴ 1m =.∴ 抛物线的解析式为223y x x =--.……4分② 由①可得点D 的坐标为 (0,3)-.当直线过点A ,D 时,解得1k =-.………5分当直线过点A ,C 时,解得2k =. ………6分结合函数的图象可知,k 的取值范围为10k -≤<或02k <≤. …………7分28. 解:(1) ①补全图形,如图1所示. ………………………1分图1②BC 和CG 的数量关系:BC CG =,位置关系:BC CG ⊥.…………………2分证明: 如图1.∵︒=∠=90,BAC AC AB ,∴︒=∠=∠45ACB B ,︒=∠+∠9021.∵射线BA 、CF 的延长线相交于点G ,∴︒=∠=∠90BAC CAG .∵四边形ADEF 为正方形,∴︒=∠+∠=∠9032DAF ,AF AD =.∴31∠=∠.∴△ABD ≌△ACF .…………………3分∴︒=∠=∠45ACF B .∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥.…………………4分(2) 10GE =.…………………5分思路如下: a . 由G 为CF 中点画出图形,如图2所示. b . 与②同理,可得BD=CF ,BC CG =,BC CG ⊥;c . 由2=AB ,G 为CF 中点,可得2====CD FG CG BC ;d . 过点A 作AM BD ⊥于M ,过点E 作EN FG ⊥于N ,可证△AMD ≌△FNE ,可得1AM FN ==,NE 为FG 的垂直平分线,FE EG =;e . 在Rt △AMD 中,1AM =,3MD =,可得10AD =,即10GE FE AD ===. ……7分29.解:(1)①点M ,点T 关于⊙O 的限距点不存在;点N 关于⊙O 的限距点存在,坐标为(1,0).………………………2分②∵点D 的坐标为(2,0),⊙O 半径为1,DE ,DF 分别切⊙O 于点E ,点F ,∴切点坐标为13()22,,13()22,-.……………3分 如图所示,不妨设点E 的坐标为13()2,,点F 的坐标为13()2,-,EO ,FO 的延长线分别交⊙O 于点'E ,'F ,则13'()2E --,,13'()2F -,. 设点P 关于⊙O 的限距点的横坐标为x .Ⅰ.当点P 在线段EF 上时,直线PO 与''E F 的交点'P 满足2'1≤≤PP ,故点P 关于⊙O 的限距点存在,其横坐标x 满足112x -≤≤-.………5分 Ⅱ.当点P 在线段DE ,DF (不包括端点)上时,直线PO 与⊙O 的交点'P 满足1'0<<PP 或2'3PP <<,故点P 关于⊙O 的限距点不存在.Ⅲ.当点P 与点D 重合时,直线PO 与⊙O 的交点'(1,0)P 满足1'=PP ,故点P 关于⊙O的限距点存在,其横坐标x =1.综上所述,点P关于⊙O的限距点的横坐标x的范围为112x-≤≤-或x=1.……………………6分(2)问题1:9.………………8分问题2:0 < r < 16.………………7分节日热闹:盛况空前普天同庆欢聚一堂人声鼎沸人山人海欢呼雀跃欢声雷动熙熙攘攘载歌载舞成语中的反义词:藕断丝连转危为安左顾右盼阴差阳错争先恐后冬暖夏凉大同小异轻重缓急天南地北舍本逐末红旗招展火树银花灯火辉煌张灯结彩锣鼓喧天金鼓齐鸣看:盯瞧瞅瞟瞥望睹观赏窥顾盼端详注视鸟瞰浏览张望阅览欣赏观赏月光:皎洁的月光明亮的月光清冽的月光清幽的月光朦胧的月光柔和的月光惨淡的月光凄冷的月光月光如水月光如雪月光如银希望:期望盼望渴望奢望指望中国:中华华夏九州四海神州大地长城内外大江南北读书和学习:如饥似渴学而不厌学无止境学以致用博览群书博学多才学海无涯得表扬:得意扬扬洋洋得意神采飞扬心花怒放乐不可支喜上眉梢春风得意眉开眼笑受批评:心灰意冷垂头丧气郁郁寡欢心灰意懒一蹶不振建筑:金碧辉煌玲珑剔透古色古香庄严肃穆庭院幽深巍然耸立绿瓦红墙描龙绣凤气势磅礴栩俯瞰窥视探望远眺审视环顾扫视瞻仰左顾右盼瞻前顾后袖手旁观先睹为快望眼欲穿东张西望屏息凝视目不转睛比喻手法成语:星罗棋布鳞次栉比玉洁冰清蚕食鲸吞狐朋狗友狼吞虎咽锦衣玉食打比方成语:如醉如梦如泣如诉如火如荼如饥似渴如兄似弟如胶似漆如花似锦如狼似虎死:去世逝世长眠安息千古永别永诀与世长辞遇难牺牲捐躯殉职夭折圆寂羽化驾崩朋友:伙伴同伴旅伴伴侣战友密友故友好友挚友新朋好友良师益友梅花:腊梅墨梅素梅冰肌玉骨疏影横斜暗香浮动清香远溢幽香沁人小溪:波纹粼粼清澈见底终年潺潺柳树:垂柳青青婀娜多姿依依多情万千气象:晚霞朝晖红霞满天霞光万道闲云迷雾云雾缭绕星光灿烂晓风残月月凉如水月色朦胧花儿好看:绚丽烂漫妖艳素雅争奇斗艳鲜艳夺目花蕾满枝琼花玉叶色彩斑斓花团锦簇灿如云锦花儿好闻:芬芳幽香芳香浓郁清香四溢香气袭人沁人心脾清香袅袅香气扑鼻香飘十里日子:丰衣足食太平昌盛日出而作日入而息守望相助走兽:四肢轻快互相追逐连蹦带跳小巧玲珑乖巧驯良扬蹄飞奔腾空跃起庞然大物生龙活虎威风凛凛月淡风清月明星稀皓月当空栩如生造型逼真琼楼玉宇布局合理亭台楼阁历史悠久中西合璧龙腾虎跃。

2016中考数学一模调研试卷(附答案)

2016中考数学一模调研试卷(附答案)

2016中考数学一模调研试卷(附答案)1.(2013年广西柳州)下列四个图中,x是圆周角的是()A50B70C120D902.(2013年福建三明)如图514,A,B,C是⊙O上的三点,已知AOC=110,则ABC的度数是()A.50B.55C.60D.703.(2013年浙江绍兴)绍兴是著名的桥乡,如图515,圆拱桥的拱顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4mB.5mC.6mD.8m4.(2012年山东泰安)如图516,AB是⊙O的直径,弦CDAB,垂足为M,下列结论不成立的是()A.CM=DMB.=C.ACD=ADCD.OM=MD5.(2013年云南红河州)如图517,AB是⊙O的直径,点C在⊙O上,弦BD平分ABC,则下列结论错误的是()A.AD=DCB.ADB=DABC.ADB=ACBD.DAB=CBA6.(2013年海南)如图518,在⊙O中,弦BC=1,点A是圆上一点,且BAC=30,则⊙O的半径是()A.1B.2C.3D.57.(2013年贵州遵义)如图519,OC是⊙O的半径,AB是弦,且OCAB,点P在⊙O上,APC=26,则BOC=____________.8.(2013年青海西宁)如图520,AB为⊙O的直径,弦CDAB于点E,若CD=6,且AE∶BE=1∶3,则AB=__________.9.如图521,点A,B,C,D在⊙O上,点O在D的内部,四边形OABC为平行四边形,则OAD+OCD=________.10.如图522,在⊙O中,直径ABCD于点E,连接CO并延长交AD于点F,且CFAD,求D的度数.11.(2012年湖南长沙)如图523,A,P,B,C是半径为8的⊙O 上的四点,且满足BAC=APC=60.(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.B级中等题12.如图524,A,B是⊙O上两点.若四边形ACBO是菱形,⊙O 的半径为r,则点A与点B之间的距离为()图524A.2rB.3rC.rD.2r13.(2012年贵州黔西南州)如图525,△ABC内接于⊙O,AB=8,AC=4,D是AB边上一点,P是优弧的中点,连接PA,PB,PC,PD.当BD的长度为多少时,△PAD是以AD为底边的等腰三角形?并加以证明.C级拔尖题14.(2013年辽宁盘锦)如图526,在平面直角坐标系中,直线l 经过原点O,且与x轴正半轴的夹角为30,点M在x轴上,⊙M半径为2,⊙M与直线l相交于A,B两点,若△ABM为等腰直角三角形,则点M的坐标为______________.1.C2.B3.D4.D5.D6.A7.528.439.6010.解:如图23,连接BD.∵AB是⊙O的直径,BDAD.又∵CFAD,BD∥CF.BDC=C.又∵BDC=12BOC,C=12BOC.∵ABCD,C=30,ADC=60.图23图2411.解:(1)∵BAC=APC=60,又∵APC=ABC,ABC=60.∵ACB=180BAC-ABC=60.△ABC是等边三角形.(2)如图24,连接OB.∵△ABC为等边三角形,⊙O为其外接圆,O为△ABC的外心.BO平分ABC.OBD=30,OD=12OB=128=4.12.B13.解:当BD=4时,△PAD是以AD为底边的等腰三角形.理由如下:∵P是优弧的中点,=,即PB=PC.又∵BD=AC=4,PBD=PCA,△PBD≌△PCA(SAS),PA=PD.△PAD是以AD为底边的等腰三角形.14.(22,0)或(-22,0)解析:如图25,过点M作MCl,垂足为C,图25∵△MAB是等腰直角三角形,MA=MB.BAM=ABM=45.∵MC直线l,BAM=CMA=45.AC=CM.Rt△ACM中,即AC2+CM2=AM2,∵2CM2=4,CM=2.Rt△OCM中,COM=30,CM=12OM.OM=2CM=22.M(22,0).根据对称性,在负半轴的点M(-22,0)也满足条件.故M(22,0)或(-22,0).精心整理,仅供学习参考。

2016年辽宁省中考数学一模试卷【含解析】

2016年辽宁省中考数学一模试卷【含解析】

2016年辽宁省中考数学模拟试卷一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分)1.(3分)(2015•丹东)﹣2015的绝对值是()A.﹣2015 B.2015 C.D.﹣2.(3分)(2015•丹东)据统计,2015年在“情系桃源,好运丹东”的鸭绿江桃花观赏活动中,6天内参与人次达27.8万.用科学记数法将27.8万表示为()A.2.78×106B.27.8×106C.2.78×105D.27.8×1053.(3分)(2015•丹东)如图,是某几何体的俯视图,该几何体可能是()A.圆柱 B.圆锥 C.球D.正方体4.(3分)(2015•丹东)如果一组数据2,4,x,3,5的众数是4,那么该组数据的平均数是()A.5.2 B.4.6 C.4 D.3.65.(3分)(2015•丹东)下列计算正确的是()A.2a+a=3a2B.4﹣2=﹣C.=±3 D.(a3)2=a66.(3分)(2015•丹东)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5° C.20°D.22.5°7.(3分)(2015•丹东)过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.若AB=,∠DCF=30°,则EF的长为()A.2 B.3 C.D.9.(3分)(2015•丹东)一次函数y=﹣x+a﹣3(a为常数)与反比例函数y=﹣的图象交于A、B两点,当A、B两点关于原点对称时a的值是()A.0 B.﹣3 C.3 D.4二、填空题(每小题3分,共24分)10.(3分)(2015•丹东)如图,正六边形卡片被分成六个全等的正三角形.若向该六边形内投掷飞镖,则飞镖落在阴影区域的概率为.11.(3分)(2015•丹东)如图,∠1=∠2=40°,MN平分∠EMB,则∠3=°.12.(3分)(2015•丹东)分解因式:3x2﹣12x+12=.13.(3分)(2015•丹东)若a<<b,且a、b是两个连续的整数,则a b=.14.(3分)(2015•丹东)不等式组的解集为.15.(3分)(2015•丹东)在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是.16.(3分)(2015•丹东)若x=1是一元二次方程x2+2x+a=0的一个根,那么a=.17.(3分)(2015•丹东)如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3…△A n A n+1B n均为等边三角形,点A1、A2、A3…A n+1在x轴的正半轴上依次排列,点B1、B2、B3…B n在直线OD上依次排列,那么点B n的坐标为.三、解答题(每小题8分,共16分)18.(8分)(2015•丹东)先化简,再求值:(1﹣)÷,其中a=3.19.(8分)(2015•丹东)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.四、(每小题10分,共20分)20.(10分)(2015•丹东)某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.21.(10分)(2015•丹东)从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?五、(每小题10分,共20分)22.(10分)(2015•丹东)一个不透明的口袋中装有4个分别标有数字﹣1,﹣2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.(1)小红摸出标有数字3的小球的概率是;(2)请用列表法或画树状图的方法表示出由x,y确定的点P(x,y)所有可能的结果;(3)若规定:点P(x,y)在第一象限或第三象限小红获胜;点P(x,y)在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.23.(10分)(2015•丹东)如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.六、(每小题10分,共20分)24.(10分)(2015•丹东)如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°(人的身高忽略不计),求乙楼的高度CD.(参考数据:sin37°≈,tan37°≈,sin48°≈,tan48°≈)25.(10分)(2015•丹东)某商店购进一种商品,每件商品进价30元.试销中发现这种商x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?七、(本题12分)26.(12分)(2015•丹东)在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN 中,∠MPN=90°.(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;②如图2,在旋转过程中,当∠DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP 时,猜想此时PE与PF的数量关系,并给出证明;当BD=m•BP时,请直接写出PE与PF 的数量关系.八、(本题14分)27.(14分)(2015•丹东)如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分)1.(3分)(2015•丹东)﹣2015的绝对值是()A.﹣2015 B.2015 C.D.﹣【解答】解:∵﹣2015的绝对值等于其相反数,∴﹣2015的绝对值是2015;故答案为:2015.2.(3分)(2015•丹东)据统计,2015年在“情系桃源,好运丹东”的鸭绿江桃花观赏活动中,6天内参与人次达27.8万.用科学记数法将27.8万表示为()A.2.78×106B.27.8×106C.2.78×105D.27.8×105【解答】解:将27.8万用科学记数法表示为2.78×105.故选:C.3.(3分)(2015•丹东)如图,是某几何体的俯视图,该几何体可能是()A.圆柱 B.圆锥 C.球D.正方体【解答】解:圆柱的俯视图是圆,A错误;圆锥的俯视图是圆,且中心由一个实点,B正确;球的俯视图是圆,C错误;正方体的俯视图是正方形,D错误.故选:B.4.(3分)(2015•丹东)如果一组数据2,4,x,3,5的众数是4,那么该组数据的平均数是()A.5.2 B.4.6 C.4 D.3.6【解答】解:∵这组数据的众数是4,∴x=4,=(2+4+4+3+5)=3.6.故选:D.5.(3分)(2015•丹东)下列计算正确的是()A.2a+a=3a2B.4﹣2=﹣C.=±3 D.(a3)2=a6【解答】解:A、2a+a=3a,故A错误;B、4﹣2==,故B错误;C、,故C错误;D、(a3)2=a3×2=a6,故D正确.故选:D.6.(3分)(2015•丹东)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5° C.20°D.22.5°【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.故选A.7.(3分)(2015•丹东)过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.若AB=,∠DCF=30°,则EF的长为()A.2 B.3 C.D.【解答】解:∵矩形对边AD∥BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO=CO,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴OE=OF,又∵EF⊥AC,∴四边形AECF是菱形,∵∠DCF=30°,∴∠ECF=90°﹣30°=60°,∴△CEF是等边三角形,∴EF=CF,∵AB=,∴CD=AB=,∵∠DCF=30°,∴CF=÷=2,∴EF=2.故选A.9.(3分)(2015•丹东)一次函数y=﹣x+a﹣3(a为常数)与反比例函数y=﹣的图象交于A、B两点,当A、B两点关于原点对称时a的值是()A.0 B.﹣3 C.3 D.4【解答】解:设A(t,﹣),∵A、B两点关于原点对称,∴B(﹣t,),把A(t,﹣),B(﹣t,)分别代入y=﹣x+a﹣3得﹣=﹣t+a﹣3,=t+a﹣3,两式相加得2a﹣6=0,∴a=3.故选C.二、填空题(每小题3分,共24分)10.(3分)(2015•丹东)如图,正六边形卡片被分成六个全等的正三角形.若向该六边形内投掷飞镖,则飞镖落在阴影区域的概率为.【解答】解:如图:转动转盘被均匀分成6部分,阴影部分占2份,飞镖落在阴影区域的概率是;故答案为:.11.(3分)(2015•丹东)如图,∠1=∠2=40°,MN平分∠EMB,则∠3=110°.【解答】解:∵∠2=∠MEN,∠1=∠2=40°,∴∠1=∠MEN,∴AB∥CD,∴∠3+∠BMN=180°,∵MN平分∠EMB,∴∠BMN=,∴∠3=180°﹣70°=110°.故答案为:110.12.(3分)(2015•丹东)分解因式:3x2﹣12x+12=3(x﹣2)2.【解答】解:原式=3(x2﹣4x+4)=3(x﹣2)2,故答案为:3(x﹣2)213.(3分)(2015•丹东)若a<<b,且a、b是两个连续的整数,则a b=8.【解答】解:∵2<<3,∴a=2,b=3,∴a b=8.故答案为:8.14.(3分)(2015•丹东)不等式组的解集为﹣1<x<1.【解答】解:,由①得,x>﹣1,由②得,x<1.所以,不等式组的解集为﹣1<x<1.故答案为﹣1<x<1.15.(3分)(2015•丹东)在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是20.【解答】解:AC与BD相交于点O,如图,∵四边形ABCD为菱形,∴AC⊥BD,OD=OB=BD=4,OA=OC=AC=3,AB=BC=CD=AD,在Rt△AOD中,∵OA=3,OB=4,∴AD==5,∴菱形ABCD的周长=4×5=20.故答案为20.16.(3分)(2015•丹东)若x=1是一元二次方程x2+2x+a=0的一个根,那么a=﹣3.【解答】解:将x=1代入得:1+2+a=0,解得:a=﹣3.故答案为:﹣3.17.(3分)(2015•丹东)如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3…△A n A n+1B n均为等边三角形,点A1、A2、A3…A n+1在x轴的正半轴上依次排列,点B1、B2、B3…B n在直线OD上依次排列,那么点B n的坐标为(3×2n﹣2,×2n﹣2).【解答】解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,∵∠B1OA2=30°,∴∠B1OA2=∠A1B1O=30°,可求得OA2=2OA1=2,同理可求得OA n=2n﹣1,∵∠B n OA n+1=30°,∠B n A n A n+1=60°,∴∠B n OA n+1=∠OB n A n=30°∴B n A n=OA n=2n﹣1,即△A n B n A n+1的边长为2n﹣1,则可求得其高为×2n﹣1=×2n﹣2,∴点B n的横坐标为×2n﹣1+2n﹣1=×2n﹣1=3×2n﹣2,∴点B n的坐标为(3×2n﹣2,×2n﹣2).故答案为(3×2n﹣2,×2n﹣2).三、解答题(每小题8分,共16分)18.(8分)(2015•丹东)先化简,再求值:(1﹣)÷,其中a=3.【解答】解:原式=×=,当a=3时,原式==.19.(8分)(2015•丹东)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.点B旋转到点B2所经过的路径长为:=π.故点B旋转到点B2所经过的路径长是π.四、(每小题10分,共20分)20.(10分)(2015•丹东)某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.【解答】解:(1)69÷23%=300(人)∴本次共调查300人;(2)∵喜欢娱乐节目的人数占总人数的20%,∴20%×300=60(人),补全如图;∵360°×12%=43.2°,∴新闻节目在扇形统计图中所占圆心角的度数为43.2°;(3)2000×23%=460(人),∴估计该校有460人喜爱电视剧节目.21.(10分)(2015•丹东)从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?【解答】解:设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意得,﹣=2,解得:x=90,经检验,x=90是所列方程的根,则3x=3×90=270.答:高速列车平均速度为每小时270千米.五、(每小题10分,共20分)22.(10分)(2015•丹东)一个不透明的口袋中装有4个分别标有数字﹣1,﹣2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.(1)小红摸出标有数字3的小球的概率是;(2)请用列表法或画树状图的方法表示出由x,y确定的点P(x,y)所有可能的结果;(3)若规定:点P(x,y)在第一象限或第三象限小红获胜;点P(x,y)在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.【解答】解:(1)小红摸出标有数字3的小球的概率是;故答案为;种,且每种结果出现的可能性相同,其中点(x,y)在第一象限或第三象限的结果有4种,第二象限或第四象限的结果有8种,所以小红获胜的概率==,小颖获胜的概率==.23.(10分)(2015•丹东)如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.【解答】(1)解:如图,连接OD,∵CD是⊙O切线,∴OD⊥CD,∵OA=CD=2,OA=OD,∴OD=CD=2,∴△OCD为等腰直角三角形,∴∠DOC=∠C=45°,∴S阴影=S△OCD﹣S扇OBD=﹣=4﹣π;(2)证明:如图,连接AD,∵AB是⊙O直径,∴∠ADB=∠ADM=90°,又∵=,∴ED=BD,∠MAD=∠BAD,在△AMD和△ABD中,,∴△AMD≌△ABD,∴DM=BD,∴DE=DM.六、(每小题10分,共20分)24.(10分)(2015•丹东)如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°(人的身高忽略不计),求乙楼的高度CD.(参考数据:sin37°≈,tan37°≈,sin48°≈,tan48°≈)【解答】解:过点C作CE⊥AB交AB于点E,则四边形EBDC为矩形,∴BE=CD CE=BD=60,如图,根据题意可得,∠ADB=48°,∠ACE=37°,∵,在Rt△ADB中,则AB=tan48°•BD≈(米),∵,在Rt△ACE中,则AE=tan37°•CE≈(米),∴CD=BE=AB﹣AE=66﹣45=21(米),∴乙楼的高度CD为21米.25.(10分)(2015•丹东)某商店购进一种商品,每件商品进价30元.试销中发现这种商(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?【解答】解:(1)设该函数的表达式为y=kx+b,根据题意,得,解得:.故该函数的表达式为y=﹣2x+100;(2)根据题意得,(﹣2x+100)(x﹣30)=150,解这个方程得,x1=35,x2=45,故每件商品的销售价定为35元或45元时日利润为150元;(3)根据题意,得w=(﹣2x+100)(x﹣30)=﹣2x2+160x﹣3000=﹣2(x﹣40)2+200,∵a=﹣2<0 则抛物线开口向下,函数有最大值,即当x=40时,w的值最大,∴当销售单价为40元时获得利润最大.七、(本题12分)26.(12分)(2015•丹东)在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN 中,∠MPN=90°.(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;②如图2,在旋转过程中,当∠DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP 时,猜想此时PE与PF的数量关系,并给出证明;当BD=m•BP时,请直接写出PE与PF 的数量关系.【解答】解:(1)PE=PF,理由:∵四边形ABCD为正方形,∴∠BAC=∠DAC,又PM⊥AD、PN⊥AB,∴PE=PF;(2)①成立,理由:∵AC、BD是正方形ABCD的对角线,∴OA=OD,∠FAO=∠EDO=45°,∠AOD=90°,∴∠DOE+∠AOE=90°,∵∠MPN=90°,∴∠FOA+∠AOE=90°,∴∠FOA=∠DOE,在△FOA和△EOD中,,∴△FOA≌△EOD,∴OE=OF,即PE=PF;②作OG⊥AB于G,∵∠DOM=15°,∴∠AOF=15°,则∠FOG=30°,∵cos∠FOG=,∴OF==,又OE=OF,∴EF=;③PE=2PF,证明:如图3,过点P作HP⊥BD交AB于点H,则△HPB为等腰直角三角形,∠HPD=90°,∴HP=BP,∵BD=3BP,∴PD=2BP,∴PD=2 HP,又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,∴∠HPF=∠DPE,又∵∠BHP=∠EDP=45°,∴△PHF∽△PDE,∴==,即PE=2PF,由此规律可知,当BD=m•BP时,PE=(m﹣1)•PF.八、(本题14分)27.(14分)(2015•丹东)如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【解答】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S△AMN=S△ABN﹣S△BMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,∴当△AMN面积最大时,N点坐标为(3,0).参与本试卷答题和审题的老师有:sdwdmahongye;1987483819;1286697702;梁宝华;星期八;gsls;sks;守拙;张其铎;HLing;fangcao;caicl(排名不分先后)菁优网2016年5月19日。

【精品】西城区2016届初三一模数学试题及答案(word版)

【精品】西城区2016届初三一模数学试题及答案(word版)
2015 年本市 PM 2.5 重污染天数占全年总天数的 11.5%,其中在 11— 12 月当中发生重污染 22 天, 占 11 月和 12 月天数的 36%,与去年同期相比增加 15 天. 根据以上材料解答下列问题 : (1) 2014 年本市空气质量达标天数为 ____________天;
PM 2.5 年平均浓度的国家标准限值是 ______________微克 /立方米;(结果保留整数) (2)选择统计表或统计图,将 2013— 2015 年 PM 2.5 一级优天数的情况表示出来; (3)小明从报道中发现“ 2015 年 11— 12 月当中发生重污染 22 天, 占 11 月和 12 月天数的 36%,与去年同 期相比增加 15 天”,他由此推断“ 2015 年全年的 PM 2.5 重污染天数比 2014 年要多”,你同意他的结论吗? 并说明你的理由.
2
9 D. k
4
1
6.老北京的老行当中有一行叫做“抓彩卖糖”: 商贩将高丽纸裁成许多小条, 用矾水在上面写上糖的块数, 最少一块,多的是三块或五块,再将纸条混合一起.游戏时叫儿童随意抽取一张,然后放入小水罐中浸湿, 即现出白道儿,按照上面的白道儿数给糖.
一个商贩准备了 10 张质地均匀的纸条,其中能得到一块糖的纸条有
D , B 在同一直线上,则雪道 AB 的长度为(

A .300 米
B. 1502 米
C. 900 米
D. ( 300 3 300 )米
10.如图,在等边三角形 ABC 中, AB 2 .动点 P 从点 A 出发,沿三角形边界按顺指针方向匀速运动一 周,点 Q 在线段 AB 上,且满足 AQ AP 2 .设点 P 运动的时间为 x , AQ 的长为 y ,则 y 与 x 的函数

2016年初三一模数学模拟试卷解析

2016年初三一模数学模拟试卷解析

A . 8 cmB . 12 cm 5 .如图,在五边形 ABCDE 中,AB / CD , 的外角,则/ 1+Z 2+ Z 3等于(▲) 30 cm / 1、 / 2、 D . 50 cm / 3 分另是 / BAE 、/ AED 、/ EDCD . 270(第5题) (第6题)16.如图,已知点 A , B 的坐标分别为(一4, 0 )和(2, 0),在直线y =—— x+2上取2一点C ,若△ABC 是直角三角形,则满足条件的点C 有(▲)A . 1个B . 2个C . 3个D . 4个二、填空题(本大题共 10小题,每小题2分,共20分)7 .计算:(3a 3) 2=& 十二五”期间,我国将新建保障性住房 36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求,把36 000 000用科学记数法表示应是▲29.分解因式: ab -a = ▲ . 10 .已知a , b 是一元二次方程 x 2 -X -2 =0的两根,则a b=▲ A . x -1B . x 24.如图是小刘做的一个风筝支架示意图,则CQ 的长是(▲)x :: -1 D . x ::: 2已知 BC // PQ , AB : AP = 2 : 5 , AQ = 20cm ,2016年初三一模数学模拟试卷一、选择题(本大题共 6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有 一项是符合题目要求的)1 .下列数中,与-2的和为0的数是(▲)11 A . 2B .— 2C . —D -222.下列调查中,适宜采用普查方式的是( ▲)A •了解一批圆珠笔的寿命B •了解全国九年级学生身高的现状C •检查一枚用于发射卫星的运载火箭的各零部件D •考察人们保护海洋的意识 3 •从下列不等式中选择一个与x 1> 2组成不等式组,使该不等式组的解集为x >1 ,那么这个不等式可以是(▲)(第4题)12. 已知扇形的圆心角为 45°半径长为12 cm ,则该扇形的弧长为 13. 如图,这是一个长方体的主视图和俯视图,由图示数据(单元: ▲ cm .cm )可以得出该长方体的体积是▲ cm 3.K- 3 -X3 1主视图14.如图,在平面直角坐标系中,菱形 ABCD 在第一象限内,边 BC 与x 轴平行,A,B 两点的纵坐标分别为 3,1,反比例函数y = 3的图像经过 A,B 两点,则菱形对 ABCD 的面积x第12题 第14题15. 如图,AB 是O O 的一条弦,点 C 是O O 上一动点,且/ ACB=30 °点E 、F 分别 是AC 、BC 的中点,直线 EF 与O O 交于G 、H 两点.若O O 的半径为7,则GE + FH 的最 大值为 ▲16•如图,在 ABC 中,CA =CB , ■ C =90,点D 是BC 的中点,将:ABC 沿着直线EF 折叠,使点A 与点D 重合,折痕交 AB 于点E ,交AC 于点F ,那么sin. BED 的值AEB(第15题)、解答17 .(本题满分6分)11小题,共88分,解答时应写出文字说明、证明过程或演算步骤)1 计算:(3)°+ 1 27 +1 - 3 |.18 .(本题满分6分)1 x2 x「2x ,再从1、0、. 2中选一个你所喜欢的数代入求值。

2016届九年级中考一模数学试题(扫描版)

2016届九年级中考一模数学试题(扫描版)

(2)问题 1: 3 . 9
………………8 分
问题 2:0 < r < 1 . ………………7 分 6
学校:
班级:
教师:
科目:
得分:
2015-2016 年初三数学一模参考答案
一、选择题(本题共 30 分,每小题 3 分)
题号 1
2
3
4
5
6
7
8
9
10
答案 B
D
C
C
D
C
A
A
B
B
二、填空题(本题共 18 分,每小题 3 分)
题号
11
12
答案
b(a 1)2
5
13
2 x 1 x 1 x x 33 327
22.(1) 证明:∵ 四边形 ABCD为矩形,
∴ AC BD , AB ∥ DC .
∵ AC ∥ BE ,
∴ 四边形 ABEC 为平行四边形. ………………………2 分
∴ AC BE .
∴ BD BE . ………………………3 分
A
D
(2) 解:过点 O 作 OF ⊥ CD 于点 F .
∵ 四边形 ABCD为矩形, ∴ BCD 90 .
在 Rt△ AFE 中,
∵ AE 3, 3 30,
∴ AF 3 3 . 2
………………………5 分
25. (1) 45;………………………2 分 (2) 21;………………………3 分 (3) 2.4 (1 20%) 2.88 .
2015 年中国内地动画电影市场票房收入前 5 名的票房成绩统计表
思路如下:
a. 由 G 为 CF 中点画出图形,如图 2 所示. b. 与②同理,可得 BD=CF, BC CG , BC CG ;

2016年北京中考通州区初三一模数学试卷及答案

2016年北京中考通州区初三一模数学试卷及答案

2016年北京中考通州区初三一模数学试卷及答案D初三数学一模试卷第2页(共8页)初三数学一模试卷第3页(共8页)初三数学一模试卷第4页(共8页)2.如图,数轴上有A 、B 、C 、D 四点,其中表示互为相反数的两个实数所对应的点是A .点A 与点DB .点A 与点C C .点B 与点D D .点B 与点C3.下列各式运算的结果为6a 的是A .33aa + B .33()a C .33aa ⋅D .122aa ÷4. 下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是A .B .C .D .5.在一定温度下向一定量的水中不断加入食盐(NaCl ),那么能表示食盐溶液的溶质质量分数y 与加入的食盐(NaCl )的量x 之间的变化关系的图象大致是 D C B A -3-2-110 D.C.B.A.xyxyx yyx OOO O初三数学一模试卷第5页(共8页)6.在一个不透明的盒子中装有m 个除颜色外完全相同的球,这m 个球中只有3个红球,从中随机摸出一个小球,恰好是红球的概率为15,那么m 的值是A .12B .15C .18D .217.如图,把含有45︒角的直角三角板的两个顶点放在一个矩形纸条的对边上.如果∠1=20︒,那么∠2的度数是 A. 30︒B.25︒C.20︒D. 15︒8.为了弘扬优秀传统文化,通州区30所中学参加了“名著·人生”戏剧展演比赛,最后有13所中学进入决赛,他们的决赛成绩各不相同.某中学已进入决赛且知道自己的成绩,但是否进入前7名,还必须知道这13所中学成21初三数学一模试卷第6页(共8页)绩的A .中位数B .平均数C .众数D .方差9.如图,为测量池塘边上两点A 、B 之间的距离,小明在池塘的一侧选取一点O ,测得OA 、OB 的中点分别是点D 、E ,且DE =14米,那么A 、B 间的距离是 A .18米 B .24米C .30米D .28米10. 如图,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点,已知点A 的坐标是(-2,3),点C 的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是A .(0,0)B .(-1,1)C .(-1,0)D .(-1,-1)CBA初三数学一模试卷第7页(共8页)二、填空题(本题共18分,每小题3分) 11. 已知3m n +=,2m n -=,那么22m n -的值是 .12. 写出图象经过点(-1,1)的一个函数的表达式是______________________________. 13.手机悦动圈是记录步行数和热量消耗数的工具,下表是孙老师用手机悦动圈连续记录的一周当中,每天的步行数和卡路里消耗数(热量消耗,单位:大卡)星期 一 二 三 四 五 六 日 步行数 5025 5000 4930 5208 5080 10085 10000 卡路里消耗201200198210204405400孙老师发现每天步行数和卡路里消耗数近似成正比例关系.孙老师想使自己的卡路里消耗数达到300大卡,预估他一天步行约为__________步.(直接写出结果,精确到个位) 14. 我们知道,无限循环小数都可以化成分数.例如:将0.3化成分数时,可设0.3x =,则有3.310x =,1030.3x =+,103x x =+,解得13x =,即0.3化成分数是13.仿此方法,将0.45化成分数是初三数学一模试卷第8页(共8页)____________.15.在学习“用直尺和圆规作射线OC ,使它平分∠AOB ”时,教科书介绍如下:*作法:(1)以O为圆心,任意长为半径作弧,交OA 于D ,交OB 于E ;(2)分别以D ,E 为圆心,以大于12DE的同样长为半径作弧,两弧交于点C ;(3)作射线OC .则OC 就是所求作的射线.小明同学想知道为什么这样做,所得到射线OC 就是∠AOB 的平分线.小华的思路是连接DC 、EC ,可证△ODC ≌△OEC ,就能得到∠AOC =∠BOC . 其中证明△ODC ≌△OEC 的理由是_______________________________________.16. D O BA CE初三数学一模试卷第9页(共8页)高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理. 如图1是由边长相等的小正方形和直角三角形构成的, 可以用其面积关系验证勾股定理. 图2 是由图1放入矩形内得到的,90BAC ∠=︒,AB =3,AC =4,则D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上, 那么矩形KLMJ 的面积为__________. 三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程. 17. 计算:0312(π2016)4cos60()2--+--︒+;18. 解不等式组⎪⎩⎪⎨⎧->--≥2215143x x x x ,并把它的解集在数轴上表示出来.初三数学一模试卷第10页(共8页)19.已知2210a a --=,求代数式()()()222a a b a b b -++-+的值.20.如图,在△ABC 中,AC =BC ,BD ⊥AC 于点D ,在△ABC 外作∠CAE =∠CBD ,过点C 作CE ⊥AE 于点E .如果∠BCE =140︒,求∠BAC 的度数.EDA初三数学一模试卷第11页(共8页)21.通州区运河两岸的“运河绿道”和步行道是健身的主要场地之一. 杨师傅分别体验了60公里的“运河绿道”骑行和16公里的健步走,已知骑行的平均速度是健步走平均速度的4倍,结果健步走比骑行多用了12分钟,求杨师傅健步走的平均速度是每小时多少公里?22. 如图,在平面直角坐标系中,一次函数y kx b=+与反比例函数(0)m y m x =≠的图象交于点A (3,1),且过点B (0,-2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且ABP△的面积是3,求点P的坐标.23.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)如果点E是AB的中点,AC=4,EC=2.5,求四边形ABCD的面积.E AyxBA-4-3-2-1-4-3-2-14321432O1初三数学一模试卷第12页(共8页)初三数学一模试卷第13页(共8页)24. 已知关于x 的一元二次方程22(21)0xk x k k -+++=.(1)求证:方程有两个不相等的实数根; (2)当方程有一个根为5时,求k 的值.25. 北京市初中开放性实践活动从2015年10月底进入正式实施阶段. 资源单位发布三种预约方式:自主选课、团体约课、送课到校,可供约25万人次学生学习. 截至2016年3月底,某区统计了初一学生参加自主选课人次的部分相关数据,绘制的统计图如下:截至2016年3月底,某区初一学生 自主选课人次分布统计图其他类 12%电子与控制 m %能源与材料 6%结构与机械 22%健康与安全 18%自然与环境 10%信息与数据 2%根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)据2016年3月底预约数据显示,该区初一学生有12000人次参加自主选课,而团体约课比自主选课多8000人次,送课到校是团体约课的2.5倍. 请在下图中用折线统计图将该区初一学生自主选课、团体约课、送课到校人次表示出来;(3)根据上面扇形统计图的信息,请你为资源单位提一条积极的建议.截至2016500004000020000初三数学一模试卷第14页(共8页)初三数学一模试卷第15页(共8页)26.如图,已知AB 是⊙O 的直径,点P 在BA的延长线上,PD 切⊙O 于点D ,过点B 作BE ⊥PD ,交PD 的延长线于点C ,连接AD 并延长,交BE 于点E . (1)求证:AB =BE ; (2)连结OC ,如果PD =3,∠ABC=60︒,求OC 的长.27.已知二次函数2y xmx n=++的图象经过点A (1,0)和D (4,3),与x 轴的另一个交点为B ,P CD OE A初三数学一模试卷第16页(共8页)与y 轴交于点C .(1)求二次函数的表达式及顶点坐标; (2)将二次函数2y xmx n=++的图象在点B ,C 之间的部分(包含点B ,C )记为图象G . 已知直线l :y kx b =+经过点M (2,3),且直线l 总位于图象G 的上方,请直接写出b 的取值范围; (3)如果点()1,P x c 和点()2,Q x c 在函数2y xmx n=++的图象上,且12x x <,2PQ a =. 求21261xax a -++的值;xy321-3-1-2-44321O-1-2-3初三数学一模试卷第17页(共8页)28.△ABC 中,45ABC ∠=︒,AB BC ≠,BE AC ⊥于点E ,AD BC⊥于点D .(1)如图1,作ADB ∠的角平分线DF 交BE 于点F ,连接AF . 求证:FAB FBA ∠=∠;(2)如图2,连接DE ,点G 与点D 关于直线AC 对称,连接DG 、EG .①依据题意补全图形;②用等式表示线段AE 、BE 、DG 之间的数量关系,并加以证明.图2图1FEA EA DD初三数学一模试卷第18页(共8页)29. 对于⊙P 及一个矩形给出如下定义:如果⊙P上存在到此矩形四个顶点距离都相等的点,那么称⊙P 是该矩形的“等距圆”.如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 32),顶点C 、D 在x 轴上,且OC =OD.(1)当⊙P 的半径为4时,①在P 1(0,3-),P 2(233),P 3(23-1)中可以成为矩形ABCD 的“等距圆”的圆心的是_________________________; ②如果点P 在直线313y x =-+上,且⊙P是矩形ABCD 的“等距圆”,求点P的坐标;(2)已知点P 在y 轴上,且⊙P 是矩形ABCD 的“等距圆”,如果⊙P 与直线AD 没有公共点,直接写出点P 的纵坐标m 的取值范围.初三数学一模试卷第19页(共8页)yxO ABC D202016届初三数学一模参考答案一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案CDCDCBBADB二、填空题(本题共18分,每小题3分)11. 6; 12. 1y x =-、y x =- (答案不唯一); 13.7500; 14. 511或4599; 15.SSS ; 16. 110;三、解答题(本题共72分,)17. 解:原式=121482+-⨯+;………………… 4分;=9. ………………… 5分.18.解不等式组:3415122, ①②x x x x .≥-⎧⎪⎨->-⎪⎩解:解不等式①,得1x ≤;………………… 2分; 解不等式②,得1x >-; ………………… 4分;………………… 5分.所以这个不等式组的解集是11x -<≤.-1119. 已知2210a a --=,求代数式()()()222a a b a b b -++-+的值.解:原式=222244a a a b b -++-+, ………………… 2分;=2244a a -+, ………………… 3分;∵2210a a --=,∴221a a -=, …………………4分;∴2242a a -=∴原式=246+=. ………………… 5分.20.解:∵BD⊥AC,CE⊥AE,∴90∠=∠=︒,BDC E∵∠CAE=∠CBD,∴△BDC∽△AEC,…………………2分;∴∠BCD=∠ACE,∵∠BCE =140︒,∴∠BCD=∠ACE=70︒,…………………4分;∵AC=BC,∴∠ABC=∠BAC=55︒. …………………5分.21.解:设杨师傅健步走的平均速度是每小时x公里. ………… 1分;根据题意得:166012-=. …………x x4603分;解得:x=,…5……… 4分;经检验:5x =是原方程的根且符合实际问题的意义,答:杨师傅健步走的平均速度是每小时5公里. ………… 5分.22. 解:(1)∵反比例函数(0)m y m x=≠的图象过点A (3,1),∴31m = ∴3m =.∴反比例函数的表达式为3y x=. ………………… 1分; ∵一次函数y kx b =+的图象过点A (3,1)和B (0,-2).∴312k b b +=⎧⎨=-⎩, 解得:12k b =⎧⎨=-⎩, ∴一次函数的表达式为2y x =-. …………………3分;(2)令0y =,∴20x -=,2x =,∴一次函数2y x =-的图象与x 轴的交点C 的坐标为(2,0). ∵S △ABP = 3, 1112322PC PC ⋅+⋅=. ∴2PC =,∴点P 的坐标为(0,0)、(4,0). ………………… 5分;23.(1)证明:∵AB ∥CD ,CE ∥AD , ∴四边形AECD 是平行四边形, (1)分;∵AC 平分∠BAD , ∴EAC DAC ∠=∠, ∵AB ∥CD ,∴EAC ACD ∠=∠,∴DAC ACD∠=∠,∴AD=CD,…………………2分;∴四边形AECD是菱形.(2)∵四边形AECD是菱形,∴AE=CE,∴EAC ACE∠=∠,∵点E是AB的中点,∴AE=BE,∴B ECB∠=∠,∴90ACE ECB∠+∠=︒,即90ACB∠=︒…………………3分;∵点E是AB的中点,EC=2.5,∴AB=2EC=5,∴BC=3.…………………4分;∴S△ABC =162BC AC⋅=.EA∵点E是AB的中点,四边形AECD是菱形,∴S△AEC =S△EBC=S△ACD=3.∴四边形ABCD的面积=S△AEC +S△EBC+S△ACD=9. …………………5分;24. (1)证明:△=()()22214k k k-+-+⎡⎤⎣⎦=2244144k k k k++--=10>∴方程有两个不相等的实数根;…………………2分;(2)∵方程有一个根为5,∴2255(21)0k k k-+++=,29200k k-+=∴14k=,25k=…………………5分.25.(1)30m=; (1)分;截至2016(2)画图正确…………………4分;(3)积极的建议…………………5分.26.如图,已知AB是⊙O的直径,点P在BA 的延长线上,PD切⊙O于点D,过点B作BE⊥PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)连结OC,如果PD=3ABC=60 ,求OC的长.(1)证明:连结OD.∵OA=OD,∴DAO ADO∠=∠,∵PD切⊙O于点D,∴PD⊥OD,∵BE⊥PD,∴OD∥BE,…………………1分;∴E ADO∠=∠,∴E DAO∠=∠,…………………2分;∴AB=BE.(2)解:∵OD∥BE,∠ABC=60︒,∴60DOP ABC∠=∠=︒,∵PD⊥OD,∴tan DPDOPOD∠=,233=PCDOEA∴2OD =, (3)分;∴4OP =, ∴6PB =, ∴sin PC ABC PB ∠=, ∴326PC=,∴33PC = ∴3DC = …………………4分;∴222DC OD OC +=, ∴222327OC =+=,∴7OC =(舍负). ………………… 5分; 27. 解:(1)根据题意得:1413m n m n +=-⎧⎨+=-⎩解得:43m n =-⎧⎨=⎩二次函数的表达式为243y x x =-+. …………………2分;顶点坐标为(2,-1) ………………… 3分; (2)39b <<.………………… 5分; (3)∵()1,P x c 和点()2,Q x c 在函数243y xx =-+的图象上,∴PQ ∥x 轴, ∵二次函数243y xx =-+的对称轴是直线2x =,又∵12x x <,2PQ a =. ∴12x a =-,22x a=+. ………………… 6分;∴()()2212612261xax a a a a a -++=--+++=5. ………………… 7分. 28.证明:(1)∵AD BC ⊥,45ABC ∠=︒ ∴45BAD ∠=︒∴AD BD =,………………… 1分; ∵DF 平分ADB ∠ ∴12∠=∠,在△ADF 和△BDF 中 ∵=,1=2,=,AD BD DF DF ⎧⎪∠∠⎨⎪⎩,∴△ADF ≌△BDF . ∴AF BF =.∴FAB FBA ∠=∠. (2)分;或用“三线合一”(2) 补全图形 ………………… 3分;21图1FEAD数量关系是:GD AE BE +=. ………………… 4分;过点D 作DH DE ⊥交BE 于点H ∴90ADE ADH ∠+∠=︒, ∵AD BC ⊥, ∴90BDH ADH ∠+∠=︒, ∴ADE BDH ∠=∠,∵AD BC ⊥,BE AC ⊥,AKE BKD ∠=∠, ∴DAE DBH ∠=∠, 在△ADE 和△BDH 中 ∵=,=,DAE DBHAD BD ADE BDH ∠=∠⎧⎪⎨⎪∠∠⎩,∴△ADE ≌△BDH . ∴DE DH =,AE BH=, ………………… 5分; ∵DH DE ⊥, ∴45DEH DHE ∠=∠=︒, ∵BE AC ⊥, ∴45DEC ∠=︒,H图2KE A D∵点G 与点D 关于直线AC 对称,∴AC 垂直平分GD ,∴GD ∥BE ,45GEC DEC ∠=∠=︒, ∴90GED EDH ∠=∠=︒,∴GE ∥DH , (6)分;∴四边形GEHD 是平行四边形∴GD EH =,………………… 7分. ∴GD AE BE +=.或过点D 作DH DE ⊥交AC 的延长线于点H.29. (1)当⊙P 的半径为4时,①P 1(0,3-),P 2(233); ………………… 2分;②如果点P 在直线31y x =+上,且⊙P 是矩形ABCD 的“等距圆”,求点P 的坐标;解:由题意可知:B (3-2)、D 3,0)图2LGEAD BC发现直线31y x =+经过点B 、D. ………………… 3分; ∴直线31y =+与y 轴的交点E 为(0,1),∵矩形ABCD 且OC =OD.∴点E 到矩形ABCD 四个顶点距离相等.∴PE =4,△BFE ≌△DOE ∴BF =OD 3,OE =EF =1,∴22222134ED EO OD =+=+=,∴2ED =,………………… 4分;∴EB =ED =2,当点P 在x 轴下方时,可证△DNP≌△DOE ,∴DN =OD 3OE =PN =1, ∴点P 的坐标为(3-1);………………… 5分;yxFMPPN E OABCD当点P在x轴上方时,可证△EPM ∽△EBF,∴PM=2BF=3ME=2EF=2,∴点P的坐标为(23-3). …………………6分;(2)1313-<<m≠m1. …………………8分.。

【初3】2016年北京市门头沟初三一模数学答案

【初3】2016年北京市门头沟初三一模数学答案

2016年门头沟区初三一模考试数学答案及评分参考2016.5一、选择题(本题共30分,每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案ABBCDADCCB二、填空题(本题共18分,每小题3分)题号 11 12 13 14 15 16 答案22()()33a m m +- ()12864x x -=略全球通略ECD三、解答题(本题共72分,第17-26题,每小题5分,第27、28题,每小题7分,第29题8分) 17.(本小题满分5分) 解:原式=2921122+--+⨯,………………………………………………………4分 =722+.………………………………………………………………………5分18.(本小题满分5分) 解:原式=()()22x yx y x y +⋅--,……………………………………………………………1分=2x yx y+-.………………………………………………………………………2分 ∵ x -3y =0,∴ x =3y .………………………………………………………………3分∴当x =3y 时,原式=2377322y y y y y y ⨯+==-.…………………………………………5分19.(本小题满分5分) 解:()121123x x +-≤. ()3146x x +-≤,……………………………………………………………………1分 3346x x +-≤,………………………………………………………………………2分 3463x x ---≤,9x --≤,……………………………………………………………………………3分 9x ≥.………………………………………………………………………………4分将它的解集表示在数轴上–3369121518∴ 它的最小整数解为9x =.……………………………………………………………5分20.(本小题满分5分)证明:∵△ABC 是等边三角形,∴∠A B C =∠A C B =60°.…………………………………………………………1分 ∵ BD 平分∠ABC ,∴∠DBC =12∠ABC =30°.…………… 2分∵CE =CD ,∴∠CDE =∠CED . 又∵∠ACB =60°,∠DCB =∠CDE +∠CED , ∴∠D E C =12∠A C B =30°.……………………………………………………3分 ∴∠B D C =∠D E C .………………………………………………………………4分 ∴B D =D E .…………………………………………………………………………5分21.(本小题满分5分)解:设小明乘坐城际直达动车到上海需要x 小时.……………………………………1分依题意,得216021601.66x x =⨯+.…………………………………………………………2分 解得 x =10.………………………………………………………………………………3分经检验:x =10是原方程的解,且满足实际意义.……………………………………4分 答:小明乘坐城际直达动车到上海需要10小时.……………………………………5分22.(本小题满分5分)解:(1)∵ 点A (-1,n )在反比例函数2y x=-的图象上,∴ n =2.………………………………………………………………………1分 ∴ 点A 的坐标为(-1,2).……………………………………………2分 ∵ 点A 在一次函数y kx k =-的图象上,∴2k k =--. ∴1k =-.∴ 一次函数的表达式为1y x =-+.………………………………………3分 (2)点P 的坐标为(-3,0)或(1,0).……………………………………5分23.(本小题满分5分)(1)证明: ∵四边形ABCD 是矩形,∴∠F AB =∠ABE =90°,AF ∥BE . 又∵EF ⊥AD ,∴∠F AB =∠ABE =∠AFE =90°.∴四边形A B E F 是矩形.…………………………………………………1分 又∵AE 平分∠BAD ,AF ∥BE , ∴∠F AE =∠BAE =∠AEB . ∴AB =BE .∴四边形A B E F 是正方形.………………………………………………2分EDC ABOE B D C A(2)解:如图,过点P 作PH ⊥AD 于H .∵四边形ABEF 是正方形,∴ BP =PF ,BA ⊥AD ,∠P AF =45°.∴ AB ∥PH . 又∵AB =4,∴A H =P H =2.…………………………………………………………………3分 又∵AD =7,∴D H =A D -A H =7-2=5.……………………………………………………4分 在Rt △PHD 中,∠PHD =90°.∴t a n ∠A D P =25PH HD =.………………………………………………………5分 24.(本小题满分5分) (1)证明:连接OD .∵DE 为⊙O 的切线,∴DE ⊥OD ,…………………………………………………………………1分∵AO =OB ,D 是AC 的中点, ∴OD ∥BC .∴D E ⊥B C .…………………………………………………………………2分(2)解:连接DB ,∵AB 为⊙O 的直径,∴∠ADB =90°, ∴DB ⊥AC ,∴∠CDB =90°. ∵D 为AC 中点,∴AB =BC ,在Rt △DEC 中,∠DEC =90°,∵DE =2,tan C =21, ∴4tan DEEC C==,……………………………………………………………3分 由勾股定理得:DC =25,在Rt △DCB 中,∠BDC =90°,∴BD =DC ·tan C =5,…………………………4分由勾股定理得:BC =5, ∴AB =BC =5,∴⊙O 的直径为5. (5)分 25.(本小题满分5分) 解:(1)4; (1)分 (2)略;..........................................................................................3分 (3)略. (5)分H PFE CD A B26.(本小题满分5分)解:(1)222a b c +=;…………………………………………………………………1分(2)略;…………………………………………………………………………3分 (3)∵矩形ABCD 折叠点C 与点A 重合,∴AE =CE .设AE =x ,则BE =8-x ,在Rt △ABE 中,由勾股定理得AB 2+BE 2=AE 2,即42+(8-x )2=x 2, 解得x =5.∴B E =8-5=3.………………………………………………………………5分 27.(本小题满分7分)(1)证明:∵ △= (3m +1)2-4×m ×3,=(3m -1)2. (1)分∵ (3m -1)2≥0, ∴ △≥0,∴ 原方程有两个实数根.………………………………………………2分 (2)解:令y =0,那么 mx 2+(3m +1)x +3=0.解得 13x =-,21x m=-. …………………………………………………3分∵抛物线与x 轴交于两个不同的整数点,且m 为正整数, ∴m =1.∴抛物线的表达式为243y x x =++.…………………………………………4分 (3)解:∵当x =0时,y =3,∴C (0,3).∵当y =0时,x 1=-3,x 2=-1. 又∵点A 在点B 左侧, ∴A (-3,0),B (-1,0).∵点D 与点B 关于y 轴对称,∴D (1,0). 设直线CD 的表达式为y =kx +b . ∴03k b b ⎧+=⎪⎨=⎪⎩,解得33.k b =-⎧⎨=⎩,∴直线C D 的表达式为y =-3x +3. …………………………………………5分又∵当12x =-时,211543224y ⎛⎫⎛⎫=-+⨯-+= ⎪ ⎪⎝⎭⎝⎭. ∴A (-3,0),E (12-,54),∴平移后,点A ,E 的对应点分别为A'(-3+n ,0),E'(12n -+,54).当直线y =-3x +3过点A'(-3+n ,0)时, ∴-3(-3+n )+3=0, ∴n =4.当直线y =-3x +3过点E'(12n -+,54)时,∴153324n ⎛⎫--++= ⎪⎝⎭, G E F HD CA B321F N M B'E'E DA CB ∴n =1312. ∴n 的取值范围是1312≤n ≤4. ......................................................7分 28.(本小题满分7分) 解:(1)∠B A E =45°. (1)分(2) ① 依题意补全图形(如图1); (2)分 ② B M 、D N 和M N 之间的数量关系是B M 2+N D 2=M N 2.………………3分证明:如图1,将△AND 绕点A 顺时针旋转90°,得△AFB .∴∠ADB =∠FBA ,∠1=∠3,DN =BF ,AF =AN . ∵正方形ABCD ,AE ⊥BD , ∴∠ADB =∠ABD =45°. ∴∠FBM =∠FBA +∠ABD=∠ADB +∠ABD =90°. ∴由勾股定理得FB 2+BM 2=FM 2.∵旋转△ABE 得到△AB'E', ∴∠E'AB'=45°, ∴∠2+∠3=90°-45°=45°, 又∵∠1=∠3,∴∠2+∠1=45°. 即∠F AM =45°.∴∠F AM =∠E'AB'=45°. 又∵AM =AM ,AF =AN , ∴△AFM ≌△ANM .∴FM =MN .又∵FB 2+BM 2=FM 2,∴D N 2+B M 2=M N 2. (5)分(3)判断线段BM 、DN 、MN 之间数量关系的思路如下:a .如图2,将△ADF 绕点A 瞬时针旋转90°得△ABG ,推出DF =GB ;b .由△CEF 的周长等于正方形ABCD 周长的一半,得EF =DF +BE ;c . 由DF =GB 和EF =DF +BE 推出EF =GE ,进而得△AEG ≌△AEF ;d .由△AEG ≌△AEF 推出∠EAF =∠EAG =45°;e .与②同理,可证M N 2=B M 2+D N 2. (7)分29.(本小题满分8分)图1 G N M E DA CB F图2解:(1)是.……………………………………………………………………………1分(2)① 如图,过点A 作AH ⊥OB 于点H .∵∠APB 是∠MON 的关联角,OP =2,∴OA ·OB =OP 2=4.在Rt △AOH 中,∠AOH =90°, ∴sin AH AOH OA∠=,∴sin AH OA AOH =⋅∠.∴S △AOB 111sin sin60222OB AH OB OA AOH OB OA =⋅⋅=⋅⋅∠=⋅⋅︒,22113sin 6023222OP =⋅⋅︒=⨯⨯=.…………………………3分 ∵∠APB 是∠MON 的关联角,∴OA ·OB =OP 2,即OA OPOP OB=. ∵点P 为∠MON 的平分线上一点, ∴ ∠AOP =∠BOP =160302⨯︒=︒.∴△AOP ∽△POB . ∴∠OAP =∠OPB .∴∠A P B =∠O P B +∠O PA =∠O A P +∠O PA =180°-30°=150°.……5分 ② S △A O B 21sin 2m α=⋅⋅.……………………………………………………6分 (3)P 点的坐标为323222⎛⎫ ⎪ ⎪⎝⎭,,2222⎛⎫- ⎪ ⎪⎝⎭,.…………………………………8分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x (千米)y (元)O387142016年门头沟区初三一模考试数 学 试 卷 2016.5一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是ABCDA .点A 与点DB .点A 与点C C .点B 与点D D .点B 与点C 2.2015年9月3日,纪念中国人民抗日战争暨世界反法西斯战争胜利70周年大会在北京隆重举行.在此次活动中,共有11个徒步方队,27个装备方队12 000名官兵通过天安门广场接受党和人民的检阅.将数字12 000用科学记数法表示为A .12×103B .1.2×104C .1.2×105D .0.12×105 3.右图是某几何体的三视图,这个几何体是A .圆柱B .三棱柱C .球D .圆锥4.有5张形状、大小、质地等均完全相同的卡片,正面分别印有等边三角形、平行四边形、正方形、菱形、圆,背面也完全相同.现将这5张卡片洗匀后正面向下放在桌上,从中随机抽出一张,抽出的卡片正面图案既是中心对称图形,又是轴对称图形的概率是A .15B .25C .35D .455.某市乘出租车需付车费y (元)与行车里程x (千米)之间函数关系的图象如图所示,那么该市乘出租车超过3千米后,每千米的费用是 A .0.71元 B .2.3元 C .1.75元 D .1.4元y xOM AB C NB B 1D B 2A 1A 2CC 1A水平线30°45°16时间(日)气温(℃)24681012141234567O6.如图,直线m ∥n ,点A 在直线m 上,点B ,C 在直线n 上, AB =BC ,∠1=70︒,CD ⊥AB 于D ,那么∠2等于 A .20° B .30° C .32° D .25°7.右图是某市 10 月 1 日至 7 日一周内“日平均气温变化 统计图”.在这组数据中,众数和中位数分别是 A .13,13 B .14,14 C .13,14 D .14,138.如图,⊙O 的半径为2,点A 为⊙O 上一点,半径OD ⊥弦BC 于D ,如果∠BAC =60°,那么OD 的长是A .2 B C .1D 9.如图,A ,B ,C 表示修建在一座山上的三个缆车站的位置,AB ,BC 表示连接缆车站的钢缆.已知A ,B ,C 所处位置的海拔AA 1,BB 1,CC 1分别为130米,400米,1000米.由点 A 测得点B 的仰角为30°,由点B 测得点C 的仰角为45°, 那么AB 和BC 的总长度是A.1200+B .800+ C.540+ D .800+10.如图,在平面直角坐标系xOy 中,四边形OABC 是矩形,点A (4,0),C (0,3).直线12y x =-由原点开始向上平移,所得的直线12y x b =-+与矩形两边分别交于M 、N 两点,设△OMN 面积为S , 那么能表示S 与b 函数关系的图象大致是A B C DBCmn A D12二、填空题(本题共18分,每小题3分)11.12.分解因式:29am a-= .13.《算学宝鉴》全称《新集通证古今算学宝鉴》,王文素著,完成于明嘉靖三年(1524年),全书12本42卷,近50万字,代表了我国明代数学的最高水平.《算学宝鉴》中记载的用导数解高次方程的方法堪与牛顿媲美,且早于牛顿140年.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长十二步,问长阔共几何?”译文:一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的和是多少步?如果设矩形田地的长为x步,可列方程为.14.在平面直角坐标系xOy中,A(1,2),B(3,2),连接AB.写出一个函数kyx=(k≠0),使它的图象与线段AB有公共点,那么这个函数的表达式为.15.某地中国移动“全球通”与“神州行”收费标准如下表:~70分钟之间,那么他选择较为省钱(填“全球通”或“神州行”).16.阅读下面材料:数学课上,老师提出如下问题:请回答:(1)小明的作图依据是;(2)他所画的痕迹弧MN是以点为圆心,为半径的弧.OA xy 三、解答题(本题共72分,第17-26题,每小题5分,第27、28题,每小题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:()201122cos453π-⎛⎫+--+︒ ⎪⎝⎭.18.已知x -3y =0,求()2222x yx y x xy y +⋅--+的值.19.解不等式()121123x x +-≤,并把它的解集表示在数轴上,再写出它的最小整数解.20.如图,△ABC 是等边三角形,BD 平分∠ABC ,延长BC 到E ,使得CE =CD . 求证:BD =DE .21.“上海迪士尼乐园”将于2016年6月16日开门迎客,小明准备利用暑假从距上海2160千米的某地去“上海迪士尼乐园”参观游览,下图是他在火车站咨询得到的信息:本地前往上海有城城际直达动车的平乘坐城际直达动车际直达动车和特快列车两种乘车方式可供选择!均时速是特快列车的1.6倍!要比乘坐特快列车少用6小时!根据上述信息,求小明乘坐城际直达动车到上海所需的时间.22.如图,在平面直角坐标系xOy 中,反比例函数2y x=-的图象与一次函数y kx k =-的图象的一个交点为A (-1,n ). (1)求这个一次函数的表达式;(2)如果P 是x 轴上一点,且满足∠APO =45°,直接写出点P 的坐标.EDC ABPFECDAB23.如图,在矩形ABCD 中,AE 平分∠BAD ,交BC 于E ,过E 做EF ⊥AD 于F ,连接BF交AE 于P ,连接PD .(1)求证:四边形ABEF 是正方形; (2)如果AB =4,AD =7,求tan ∠ADP 的值.24.如图,AB 为⊙O 的直径,⊙O 过AC 的中点D ,DE 为⊙O 的切线. (1)求证:DE ⊥BC ;(2)如果DE =2,tan C =21,求⊙O 的直径.25. 阅读下列材料:2015年秋冬之际,北京持续多天的雾霾让环保成为人们关注的焦点,为了身心健康,人们纷纷来京郊旅游.门头沟地处北京西南部,山青水秀,风景如画,静谧清幽.爨底下、潭柘寺、珍珠湖、百花山、灵山、妙峰山、龙门涧等众多景点受到广大旅游爱好者的青睐.据统计,2015年门头沟游客接待总量为22.1万人次.其中潭柘寺的玉兰花和戒台寺的祈福受到了游客的热捧,两地游客接待量分别达3.8万人次、2.175万人次;爨底下和百花山因其文化底蕴深厚和满园春色也成为游客的重要目的地,游客接待量分别为2.6万人次和1.76万人次;妙峰山樱桃园的游客密集度较高,达1.8万人次.2014年门头沟游客接待总量约为20万人次.其中,潭柘寺游客接待量比2013年增加了25%;百花山游客接待量为2.62万人次,比2013年增加了0.4万人次;妙峰山樱桃园的大樱桃采摘更是受到广大游客的喜爱,接待量为2.2万人次.2013年,潭柘寺、双龙峡、妙峰山樱桃园游客接待量分别为3.2万人次、1.3万人次和1.49万人次.根据以上材料回答下列问题:(1)2014年,潭柘寺的游客接待量为 万人次;(2)选择统计表或统计图,将2013-2015年潭柘寺、百花山和妙峰山樱桃园的游客接待量表示出来;(3)根据以上信息,预估2016年门头沟游客接待总量约为 万人次,你的预估理由是 .CAEDBacbMNPQ26.阅读材料,回答问题:(1)中国古代数学著作《周髀算经》有着这样的记载:“勾广三,股修四,经隅五.”.这句话的意思是:“如果直角三角形两直角边 为3和4时,那么斜边的长为5.”. 上述记载表明了:在Rt △ABC 中,如果∠C =90°,BC =a ,AC =b ,AB =c ,那么a ,b ,c 三者之间的数量关系是: .(2)对于这个数量关系,我国汉代数学家赵爽根据“赵爽弦图”(如下图,它是由八个全等直角三角形围成的一个正方形),利用面积法进行了证明. 参考赵爽的思路,将下面的证明过程补充完整:证明:∵S △ABC 12ab =,2ABDE S c =正方形,MNPQ S =正方形 .又∵ = ,∴()221=42a b ab c +⨯+,整理得2222=2a ab b ab c +++,∴ .(3)如图,把矩形ABCD 折叠,使点C 与点A 重合,折痕为EF ,如果AB =4,BC =8,求BE 的长.GFH DAxyO27.已知关于x 的一元二次方程mx 2+(3m +1)x +3=0. (1)求证该方程有两个实数根;(2)如果抛物线y =mx 2+(3m +1)x +3与x 轴交于A 、B两个整数点(点A 在点B 左侧),且m 为正整数, 求此抛物线的表达式;(3)在(2)的条件下,抛物线y =mx 2+(3m +1)x +3与y 轴交于点C ,点B 关于y 轴的对称点为D ,设此抛物线在-3≤x ≤12 之间的部分为图象G ,如果图象G 向右平移n (n >0)个单位长度后与直线CD 有公共点,求n 的取值范围.28.在正方形ABCD 中,连接BD .(1)如图1,AE ⊥BD 于E .直接写出∠BAE 的度数.(2)如图1,在(1)的条件下,将△AEB 以A 旋转中心,沿逆时针方向旋转30°后得到△AB'E',AB'与BD 交于M ,AE'的延长线与BD 交于N . ① 依题意补全图1;② 用等式表示线段BM 、DN 和MN 之间的数量关系,并证明.(3)如图2,E 、F 是边BC 、CD 上的点,△CEF 周长是正方形ABCD 周长的一半,AE 、AF 分别与BD 交于M 、N ,写出判断线段BM 、DN 、MN 之间数量关系的思路.(不必写出完整推理过程)EDACBNMEDAC BF图1 图229.如图1,P 为∠MON 平分线OC 上一点,以P 为顶点的∠APB 两边分别与射线OM 和ON 交于A 、B 两点,如果∠APB 在绕点P 旋转时始终满足OA ·OB =OP 2,我们就把∠APB 叫做∠MON 的关联角.A BO MNCPA N M O CPBAOM CNP B图1 图2 图3(1)如图2,P 为∠MON 平分线OC 上一点,过P 作PB ⊥ON 于B ,AP ⊥OC 于P ,那么∠APB ∠MON 的关联角(填“是”或“不是”).(2)① 如图3,如果∠MON =60°,OP =2,∠APB 是∠MON 的关联角,连接AB ,求△AOB 的面积和∠APB 的度数;② 如果∠MON =α°(0°<α°<90°),OP =m ,∠APB 是∠MON 的关联角,直接用含有α和m 的代数式表示△AOB 的面积.(3)如图4,点C 是函数2y x(x >0)图象上一个动点,过点C 的直线CD 分别交x轴和y 轴于A ,B 两点,且满足BC =2CA ,直接写出∠AOB 的关联角∠APB 的顶点P 的坐标.OxyC图42016年门头沟区初三一模考试数学答案及评分参考 2016.5一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共72分,第17-26题,每小题5分,第27、28题,每小题7分,第29题8分)17.(本小题满分5分)解:原式=9112+-+4分=7+.………………………………………………………………………5分18.(本小题满分5分) 解:原式=()()22x yx y x y +⋅--,……………………………………………………………1分=2x yx y+-.………………………………………………………………………2分 ∵ x -3y =0,∴x =3y .………………………………………………………………3分∴当x =3y 时,原式=2377322y y y y y y ⨯+==-.…………………………………………5分19.(本小题满分5分) 解:()121123x x +-≤. ()3146x x +-≤,……………………………………………………………………1分3346x x +-≤,………………………………………………………………………2分 3463x x ---≤,9x --≤,……………………………………………………………………………3分 9x ≥.………………………………………………………………………………4分将它的解集表示在数轴上∴ 它的最小整数解为9x =.……………………………………………………………5分 20.(本小题满分5分)证明:∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°.…………………………………………………………1分 ∵ BD 平分∠ABC , ∴∠DBC =12∠ABC =30°.…………… 2分 ∵CE =CD , ∴∠CDE =∠CED .又∵∠ACB =60°,∠DCB =∠CDE +∠CED , ∴∠DEC =12∠ACB =30°.……………………………………………………3分 ∴∠BDC =∠DEC .………………………………………………………………4分 ∴BD =DE .…………………………………………………………………………5分EDCAB21.(本小题满分5分)解:设小明乘坐城际直达动车到上海需要x小时.……………………………………1分依题意,得216021601.66x x=⨯+.…………………………………………………………2分解得x=10.………………………………………………………………………………3分经检验:x=10是原方程的解,且满足实际意义.……………………………………4分答:小明乘坐城际直达动车到上海需要10小时.……………………………………5分22.(本小题满分5分)解:(1)∵点A(-1,n)在反比例函数2yx=-的图象上,∴n=2.………………………………………………………………………1分∴点A的坐标为(-1,2).……………………………………………2分∵点A在一次函数y kx k=-的图象上,∴2k k=--.∴1k=-.∴一次函数的表达式为1y x=-+.………………………………………3分(2)点P的坐标为(-3,0)或(1,0).……………………………………5分23.(本小题满分5分)(1)证明:∵四边形ABCD是矩形,∴∠F AB =∠ABE =90°,AF∥BE.又∵EF⊥AD,∴∠F AB =∠ABE =∠AFE=90°.∴四边形ABEF是矩形. (1)分又∵AE平分∠BAD,AF∥BE,∴∠F AE =∠BAE =∠AEB . ∴AB =BE .∴四边形ABEF 是正方形. (2)分(2)解:如图,过点P 作PH ⊥AD 于H .∵四边形ABEF 是正方形, ∴ BP =PF ,BA ⊥AD ,∠P AF =45°. ∴ AB ∥PH . 又∵AB =4,∴AH =PH =2.…………………………………………………………………3分 又∵AD =7,∴DH =AD -AH =7-2=5.……………………………………………………4分 在Rt △PHD 中,∠PHD =90°. ∴tan ∠ADP =25PH HD .………………………………………………………5分24.(本小题满分5分) (1)证明:连接OD .∵DE 为⊙O 的切线, ∴DE⊥O D ,…………………………………………………………………1分∵AO =OB ,D 是AC 的中点, ∴OD ∥BC .∴DE ⊥BC .…………………………………………………………………2分(2)解:连接DB ,∵AB 为⊙O 的直径, ∴∠ADB =90°,HPFECDAB∴DB ⊥AC ,∴∠CDB =90°. ∵D 为AC 中点,∴AB =BC ,在Rt △DEC 中,∠DEC =90°,∵DE =2,tan C =21, ∴4tan DEEC C==,……………………………………………………………3分 由勾股定理得:DC=在Rt △DCB 中,∠BDC =90°,∴BD =DC ·tan C,…………………………4分 由勾股定理得:BC =5, ∴AB =BC =5,∴⊙O 的直径为5.………………………………………………………………5分25.(本小题满分5分)解:(1)4;………………………………………………………………………………1分(2)略;………………………………………………………………………………3分 (3)略.………………………………………………………………………………5分26.(本小题满分5分)解:(1)222a b c +=;…………………………………………………………………1分(2)略;…………………………………………………………………………3分 (3)∵矩形ABCD 折叠点C 与点A 重合,∴AE =CE .设AE =x ,则BE =8-x ,在Rt △ABE 中,由勾股定理得AB 2+BE 2=AE 2, 即42+(8-x )2=x 2, 解得x =5.∴BE =8-5=3.………………………………………………………………5分GFHDA27.(本小题满分7分)(1)证明:∵ △= (3m +1)2-4×m ×3, =(3m -1)2. ……………………………………………………………1分∵ (3m -1)2≥0, ∴ △≥0,∴ 原方程有两个实数根.………………………………………………2分(2)解:令y =0,那么 mx 2+(3m +1)x +3=0.解得 13x =-,21x m=-. …………………………………………………3分 ∵抛物线与x 轴交于两个不同的整数点,且m 为正整数, ∴m =1.∴抛物线的表达式为243y x x =++.…………………………………………4分 (3)解:∵当x =0时,y =3,∴C (0,3).∵当y =0时,x 1=-3,x 2=-1. 又∵点A 在点B 左侧, ∴A (-3,0),B (-1,0).∵点D 与点B 关于y 轴对称,∴D (1,0). 设直线CD 的表达式为y =kx +b .∴03k b b ⎧+=⎪⎨=⎪⎩,解得33.k b =-⎧⎨=⎩,∴直线CD 的表达式为y =-3x +3. …………………………………………5分 又∵当12x =-时,211543224y ⎛⎫⎛⎫=-+⨯-+= ⎪ ⎪⎝⎭⎝⎭. ∴A (-3,0),E (12-,54), ∴平移后,点A ,E 的对应点分别为A'(-3+n ,0),E'(12n -+,54).E'321FNMB'EDACB当直线y =-3x +3过点A'(-3+n ,0)时, ∴-3(-3+n )+3=0, ∴n =4.当直线y =-3x +3过点E'(12n -+,54)时, ∴153324n ⎛⎫--++= ⎪⎝⎭, ∴n =1312. ∴n 的取值范围是1312≤n ≤4. ………………………………………………7分28.(本小题满分7分)解:(1)∠BAE =45°.…………………………………………………………………1分(2) ① 依题意补全图形(如图1);………………………………………2分② BM 、DN 和MN 之间的数量关系是BM 2+ND 2=MN 2.………………3分 证明:如图1,将△AND 绕点A 顺时针旋转90°,得△AFB .∴∠ADB =∠FBA ,∠1=∠3,DN =BF ,AF =AN . ∵正方形ABCD ,AE ⊥BD , ∴∠ADB =∠ABD =45°. ∴∠FBM =∠FBA +∠ABD=∠ADB +∠ABD =90°. ∴由勾股定理得FB 2+BM 2=FM 2. ∵旋转△ABE 得到△AB'E', ∴∠E'AB'=45°,∴∠2+∠3=90°-45°=45°, 又∵∠1=∠3, ∴∠2+∠1=45°. 即∠F AM =45°.图1NMDAF∴∠F AM =∠E'AB'=45°.又∵AM=AM,AF=AN,∴△AFM≌△ANM.∴FM=MN.又∵FB2+BM2=FM2,∴DN2+BM2=MN2.………………………………………………5分(3)判断线段BM、DN、MN之间数量关系的思路如下:a.如图2,将△ADF绕点A瞬时针旋转90°得△ABG,推出DF=GB;b.由△CEF的周长等于正方形ABCD周长的一半,得EF=DF+BE;c.由DF=GB和EF=DF+BE推出EF=GE,进而得△AEG≌△AEF;d.由△AEG≌△AEF推出∠EAF=∠EAG=45°;e.与②同理,可证MN2=BM2+DN2.………………………………………7分29.(本小题满分8分)解:(1)是.……………………………………………………………………………1分(2)①如图,过点A作AH⊥OB于点H.∵∠APB是∠MON的关联角,OP=2,∴OA·OB=OP2=4.在Rt△AOH中,∠AOH=90°,∴sinAH AOHOA∠=,∴sinAH OA AOH=⋅∠.∴S△AOB111sin sin60222OB AH OB OA AOH OB OA=⋅⋅=⋅⋅∠=⋅⋅︒,2211sin60222OP=⋅⋅︒=⨯=3分∵∠APB是∠MON的关联角,∴OA·OB=OP2,即OA OPOP OB=.HAO MCNPB图2∵点P 为∠MON 的平分线上一点, ∴ ∠AOP =∠BOP =160302⨯︒=︒.∴△AOP ∽△POB . ∴∠OAP =∠OPB .∴∠APB =∠OPB +∠OPA =∠OAP +∠OPA =180°-30°=150°.……5分 ② S △AOB 21sin 2m α=⋅⋅.……………………………………………………6分(3)P 点的坐标为⎝⎭,⎝⎭.…………………………………8分 说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。

相关文档
最新文档