高中数学完整讲义——空间几何量的计算1.点到平面的距离问题
推导空间解析几何的位置关系与距离公式

推导空间解析几何的位置关系与距离公式在空间解析几何中,位置关系与距离公式是研究空间中点、直线、平面之间相互位置关系与距离的重要工具。
通过推导和研究,我们可以得到一系列的位置关系与距离公式,进一步拓宽我们对空间几何关系的认识。
一、点与点之间的位置关系与距离公式在三维空间中,我们首先考虑点与点之间的位置关系与距离公式。
假设点A(x1,y1,z1)和点B(x2,y2,z2)是空间中的两个点,我们可以得到它们之间的距离公式如下:d = √((x2-x1)² + (y2-y1)² + (z2-z1)²)这个公式可以通过勾股定理推导得出,其中d表示两点之间的距离。
根据该公式,我们可以计算出任意两点之间的距离,从而判断它们的位置关系。
二、点与直线之间的位置关系与距离公式在空间解析几何中,点与直线之间的位置关系是一个重要的研究对象。
给定一条直线L与一个点P(x0, y0, z0),根据点到直线的距离定义,我们可以推导出点P到直线L的距离公式。
设直线L的方程为:Ax + By + Cz + D = 0其中A、B、C分别为直线L的方向向量的分量。
点P到直线L的距离公式可以表示为:d = |Ax0 + By0 + Cz0 + D| / √(A² + B² + C²)通过这个公式,可以判断点和直线之间的位置关系,进一步研究空间中的几何性质。
三、点与平面之间的位置关系与距离公式接下来,让我们考虑点与平面之间的位置关系与距离公式。
给定一个平面的方程为:Ax + By + Cz + D = 0其中A、B、C分别为平面的法向量的分量。
对于空间中的一个点P(x0, y0, z0),点P到平面的距离可以表示为:d = |Ax0 + By0 + Cz0 + D| / √(A² + B² + C²)通过这个公式,我们可以判断点和平面之间的位置关系,从而进一步研究和解决空间几何问题。
解析几何中的点到平面的距离计算问题

解析几何中的点到平面的距离计算问题在解析几何中,点到平面的距离计算问题是一个重要的概念。
它涉及到从一个给定的点到一个平面的最短距离。
这个问题在实际应用中有广泛的应用,例如在计算机图形学、物理学和工程学等领域。
首先,我们来看一下点到平面的距离的定义。
对于给定的平面A和一个点P,点P到平面A的距离可以定义为从点P到平面A的最短距离。
换句话说,这个距离是垂直于平面A的线段的长度,该线段的起点是点P,终点是平面A上的一个点。
为了计算点到平面的距离,我们需要了解平面的一般方程。
一个平面可以用方程Ax + By + Cz + D = 0来表示。
其中,A、B和C是平面的法向量的分量,D是平面的常数项。
假设我们要计算点P(x0, y0, z0)到平面Ax + By + Cz + D = 0的距离。
我们可以通过以下步骤来解决这个问题:1. 计算平面的法向量:平面的法向量可以通过平面的系数A、B和C来计算。
法向量的分量为(A, B, C)。
2. 计算点P到平面的投影点:我们需要计算点P在平面上的投影点Q。
投影点Q可以通过点P沿着平面的法向量的方向移动一段距离来获得。
我们可以使用向量计算的方法来计算投影点Q。
首先,我们可以将向量PQ表示为PQ = (x0 - x, y0 - y, z0 - z),其中(x, y, z)是平面上的点。
然后,我们可以将向量PQ与平面的法向量进行点积运算,得到投影点Q在平面上的坐标。
3. 计算点P到平面的距离:点P到平面的距离就是点P到投影点Q的距离。
我们可以使用向量计算的方法来计算这个距离。
距离可以通过向量PQ的模长来计算,即distance = |PQ| = √((x0 - x)^2 + (y0 - y)^2 + (z0 - z)^2)。
这个算法可以应用于二维和三维空间中的平面。
对于二维空间中的平面,可以简化为计算点到直线的距离。
对于三维空间中的平面,需要考虑点到面的距离。
在实际应用中,点到平面的距离计算问题经常用于计算两个物体之间的距离。
空间几何量的计算板块一点到平面的距离问题学生版

空间几何量的计算板块一点到平面的距离问题学生版一、问题简要说明本篇文章主要讨论空间几何量的计算板块中的一点到平面的距离问题。
一点到平面的距离是几何中的常见问题,它可以用来计算平面上特定点到该平面的垂直距离,也可以用来计算线段或者线到平面的距离。
二、一点到平面的距离定义在空间中,设有平面P,过平面P上一点A引直线L,垂直于平面P的直线与线L的交点为B。
则点A到平面P的距离定义为线段AB的长度。
三、一点到平面的距离计算方法1.平面P的一般方程:Ax+By+Cz+D=0,其中A、B、C为平面的法向量的坐标,D为平面的常数项。
设点A的坐标为(x0,y0,z0)。
2.点A到平面P的距离计算公式:d=,Ax0+By0+Cz0+D,/√(A^2+B^2+C^2)这个公式的推导过程可以利用向量的性质来进行。
点A到平面P的距离可以看作是向量AB在平面法向量上的投影,再求向量AB的模长得到。
所以计算点A到平面P的距离可以通过以下步骤进行:a.计算平面法向量N=(A,B,C)的模长。
b.计算向量AB=(x0-x,y0-y,z0-z)。
c.根据内积的定义得到向量AB在平面法向量上的投影LENGTH=,N·AB。
d.最后通过LENGTH/N的模长得到点A到平面P的距离。
四、例题与解析例题一:已知平面2x-y+3z+6=0,点(1,-2,3)到该平面的距离是多少?解析:根据上述公式,先计算平面的法向量N的模长:N,=√(2^2+(-1)^2+3^2)=√(4+1+9)=√1然后计算点A到平面P的距离d:d=,(2)(1)+(-1)(-2)+(3)(3)+(6),/√14=,2+2+9+6,/√14=,19,/√14=19/√14所以点(1,-2,3)到平面2x-y+3z+6=0的距离是19/√14例题二:已知点A(1,-2,3)和点B(2,1,-1),求点A到线段AB所在直线的距离。
解析:点A到线段AB所在直线的距离可以利用点A到平面的距离计算公式来求解。
空间几何的计算方法

空间几何的计算方法空间几何是数学中的一个重要分支,研究的对象包括点、线、面以及它们之间的关系和性质。
在实际应用中,空间几何的计算方法被广泛用于建筑设计、机械工程、地理测量等领域,有助于解决各种实际问题。
本文将介绍几种常见的空间几何计算方法,包括点与线的距离计算、面积与体积的计算以及空间坐标的转换方法。
一、点与线的距离计算1. 点到直线的距离计算对于给定的一点P(x₀, y₀, z₀)和一条直线L:Ax + By + Cz + D = 0,点P到直线L的距离可以通过以下公式计算:d = |Ax₀ + By₀ + Cz₀ + D| / √(A² + B² + C²)其中,d表示点P到直线L的距离。
2. 点到线段的距离计算对于给定的一点P(x₀, y₀, z₀)和一条线段AB,点P到线段AB的距离可以通过以下步骤计算:首先,计算点P在直线AB所在直线上的投影点Q的坐标;然后,判断投影点Q是否在线段AB上;最后,若投影点Q在线段AB上,则点P到线段AB的距离等于点P到投影点Q的距离;若投影点Q不在线段AB上,则点P到线段AB的距离等于点P与线段两个端点A、B之间的最短距离。
二、面积与体积的计算1. 平面的面积计算对于给定的三个点A(x₁, y₁, z₁)、B(x₂, y₂, z₂)和C(x₃, y₃, z₃),构成的三角形ABC所在平面的面积可以通过以下公式计算:S = 0.5 * |(x₂ - x₁) * (y₃ - y₁) - (y₂ - y₁) * (x₃ - x₁)|其中,S表示三角形ABC所在平面的面积。
2. 空间图形的体积计算对于给定的平面图形或几何体,其体积的计算方法有所不同。
- 立方体的体积计算:立方体的体积等于边长的立方,即V = a³,其中V表示立方体的体积,a表示边长。
- 圆柱体的体积计算:圆柱体的体积等于底面积乘以高,即V = πr²h,其中V表示圆柱体的体积,r表示底面半径,h表示高。
空间距离高三数学知识点

空间距离高三数学知识点在高三数学中,空间距离是一个重要的知识点,它涉及到三维空间中点、直线、平面之间的距离计算。
掌握了空间距离的概念和计算方法,可以帮助我们解决实际问题,进一步理解几何关系。
一、点到点的距离计算在三维空间中,我们通过坐标来表示点的位置。
假设有点A(x₁, y₁, z₁)和点B(x₂, y₂, z₂),我们可以用勾股定理来计算点A到点B的距离。
距离公式如下:AB = √[(x₂ - x₁)² + (y₂ - y₁)² + (z₂ - z₁)²]通过这个公式,我们可以计算两个任意点之间的距离,进而帮助解决空间几何中的问题。
二、点到直线的距离计算在三维空间中,直线的方程可以以参数形式给出。
如果我们有一个点P(x₀, y₀, z₀)和直线L的参数方程为:x = x₁ + aty = y₁ + btz = z₁ + ct其中a、b、c为实数,t为参数。
我们可以通过点P到直线L 的距离公式来计算:d = |(x₀ - x₁, y₀ - y₁, z₀ - z₁) · (a, b, c)| / √(a² + b² + c²)这里的|·|表示向量的模,·表示向量的内积。
通过这个公式,我们可以计算出点到直线的距离。
三、点到平面的距离计算在三维空间中,平面的方程可以以一般式给出。
如果我们有一个点P(x₀, y₀, z₀)和平面的一般式方程为:Ax + By + Cz + D = 0其中A、B、C、D为常数。
我们可以通过点P到平面的距离公式计算:d = |Ax₀ + By₀ + Cz₀ + D| / √(A² + B² + C²)这里的|·|表示绝对值。
通过这个公式,我们可以计算出点到平面的距离。
四、直线与直线的距离计算在三维空间中,我们可以通过两直线的方向向量来计算它们之间的距离。
空间向量点到平面距离求法

空间向量点到平面距离求法在三维空间中,我们经常需要计算一个给定点到一个给定平面的距离。
这个问题可以被称为”空间向量点到平面的距离求法”。
本文将详细介绍该求解方法。
1. 定义首先,我们需要明确一些基本的几何概念。
一个平面可以由一个点和一个法向量来唯一确定。
记平面上的一点为P,平面的法向量为n。
对于空间中的任意一点Q,我们定义点Q到平面的距离为点Q到平面的垂直距离,记作d(Q,Pn)。
2. 求解方法为了求解点Q到平面的距离,我们需要以下步骤:2.1 平面的方程首先,我们需要确定平面的方程。
一个平面P可以表示为Ax + By + Cz + D = 0的形式,其中A、B、C为平面的法向量的分量,D为平面的常数项。
2.2 平面法向量的求解平面的法向量可以通过两个非平行的向量的叉乘来求解。
假设平面上的两个向量为v1和v2,则平面的法向量n可以通过n = v1 × v2来计算。
2.3 点到平面的距离公式根据点到平面的距离定义,点Q到平面P的距离可以表示为:d(Q,Pn) = |Ax + By + Cz + D| / √(A^2 + B^2 + C^2)其中|x|表示x的绝对值。
2.4 距离求解算法根据上述公式,我们可以编写一个求解点到平面距离的函数,输入为点Q的坐标,平面的法向量和常数项,输出为点Q到平面的距离。
function distance_to_plane(Q, n, D) {let [x, y, z] = Q;let [A, B, C] = n;let distance = Math.abs(A * x + B * y + C * z + D) / Math.sqrt(A**2 + B**2+ C**2);return distance;}3. 示例下面我们通过一个示例来演示如何使用上述方法计算点到平面的距离。
假设有一个平面P,其方程为2x + 3y - z + 4 = 0。
点Q的坐标为(1, -2, 3)。
点到平面距离的若干典型求法

点到平面距离的若干典型求法1.引言点到平面的距离是高考立体几何部分必考的热点题型之一,也是学生较难准确把握的难点问题之一。
本文将介绍七种较为典型的求解方法,包括几何方法(如体积法、二面角法)、代数方法(如向量法、公式法)以及常用数学思维方法(如转化法、最值法),以达到秒杀得分的效果。
2.预备知识1) 正射影的定义:从平面外一点P向平面α引垂线,垂足为P',则点P'叫做点P在平面α上的正射影,简称为射影。
同时,把线段PP'叫作点P与平面α的垂线段。
2) 点到平面距离定义:一点到它在一个平面上的正射影的距离叫作这点到这个平面的距离,也即点与平面间垂线段的长度。
3) 四面体的体积公式:V = Sh/3,其中V表示四面体体积,S、h分别表示四面体的一个底面的面积及该底面所对应的高。
4) 直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。
5) 三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它和这条斜线也垂直。
3.求点到平面距离的若干求法3.1 定义法求点到平面距离定义法是最基本的求解方法之一,根据点到平面距离的定义,可以通过求点在平面上的正射影来求解点到平面的距离。
3.2 转化法求点到平面距离转化法是一种常用的求解方法,通过将问题转化为等价的问题来求解。
在点到平面距离的求解中,可以通过将平面方程转化为标准式,然后代入点的坐标,求解点到平面的距离。
3.3 等体积法求点到平面距离等体积法是一种几何方法,通过构造等体积的四面体来求解点到平面的距离。
具体方法是在点与平面之间构造一个四面体,使其与另一四面体等体积,然后根据四面体的体积公式来求解点到平面的距离。
3.4 利用二面角求点到平面距离二面角法是一种几何方法,通过求解点与平面所夹二面角的正弦值来求解点到平面的距离。
具体方法是求解点到平面的垂线与平面法线的夹角,然后根据正弦定理求解点到平面的距离。
高考数学讲义空间几何量的计算.板块一.点到平面的距离问题

【例1】 已知线段AB 在平面α外,A 、B 两点到平面α的距离分别为1和3,则线段AB 的中点到平面α的距离为( ) A .1 B .2C .1或2D .0或1【难度】4【解析】C ;分线段AB 两端点在平面α同侧和异侧两种情况解决.【例2】 ABC ∆的三个顶点A B C ,,到平面α的距离分别为234,,,且它们在平面α的同一侧, 则ABC ∆的重心到平面α的距离为___________.【难度】6 【解析】3;【例3】 如图,正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点.求E 到平面11ABC D 的距离.OEA 1D C 1B 1DCA【难度】6【解析】 ∵11A B ∥11C D ,且11C D ⊂面11ABC D∴11A B ∥面11ABC D ,且点E 在11A B 上,∴点E 到平面11ABC D 的距离即为点1A 到平面11ABC D 的距离 连结1A D 交1AD 于Q ,则根据正方体性质可知,1A O ⊥面11ABC D ∴点1A 到平面11ABC D 的距离为1A O 的长,即12AO =典例分析板块一.点到平面的距离问题【例4】 如图,在梯形ABCD 中,AB ∥CD ,90DAB ∠=o ,AD a =,PD ⊥面ABCD ,PD a =,求点D 到平面PAB 的距离.HACBDP【难度】6【解析】 作DH ⊥PA 交PA 于H∵PD ⊥面ABCD ,且AB ⊂面ABCD ∴PD ⊥AB ,又AD ⊥AB ,且PD I AD D = ∴AB ⊥面PAD ∵DH ⊂面PAD∴DH ⊥AB ,又DH ⊥PA ,且AB PA A =I ∴DH ⊥面PAB ,∴点D 到平面PAB 的距离即为DH 长 在Rt PAD ∆中,AD PD a ==,∴DH = ∴点D 到平面PAB本题可用体积法,在此不在给出具体过程.【例5】 如图,在正三棱柱111ABC A B C -中,1AB =,若二面角1C AB C --的大小为60o ,求点C 到面1ABC 的距离.EDC 1B 1A 1CBA【难度】6 【解析】答案:34过C 作CD ⊥AB ,D 为垂足,连结1C D ,则1C D ⊥AB ,160C DC ∠=o∴CD =1C D =132CC =在1CC D ∆中,过C 作CE ⊥1C D则CE 为点C 到平面1ABC的距离,334CM ==∴点C 到平面1ABC 的距离为34【例6】 (2007湖北文5)在棱长为1的正方体12PD AB =中,E 、F 分别为棱1AA 、1BB 的中点,G 为棱11A B 上的一点,且()101AG λλ=≤≤,则点G 到平面1D EF 的距离为( ) ABCDAA 1【难度】6【解析】D ;因为11A B EF ∥,G 在11A B 上,所以G 到平面1D EF 的距离即是1A 到面1DEF 的距离,即是1A 到1D E的距离,1D E=11⨯=,故选D .【例7】 (2007湖北文5)在棱长为1的正方体1111ABCD A B C D -中,E 、F 分别为棱1AA 、1BB 的中点,G 为棱11A B 上的一点,且()101AG λλ=≤≤,则点G 到平面1DEF 的距离为( ) ABCD ABCDE【难度】6 【解析】 D因为11A B EF ∥,G 在11A B 上,所以G 到平面1D EF 的距离即是1A 到面1D EF 的距离,即是1A 到1D E的距离,1D E =11⨯=,故选D .【例8】 (2007江苏14)正三棱锥P ABC -高为2,侧棱与底面所成角为45︒,则点A 到侧面PBC 的距离是 .【难度】6【解析】 设P 在 底面ABC 上的射影为O ,则2PO =,且O 是三角形ABC 的中心,设底面边长为a,则223=,∴a =b则b ='h 面积法求A 到侧面PBC的距离2h ==【例9】 四棱锥P ABCD -的底面是边长为a 的菱形,且60BCD ∠=o ,PD ⊥平面ABCD ,PD a =,E 是PA 中点.求点E 到平面PCD 的距离.A【难度】6【解析】连结AC ,BD 交于点O ,连结EO ,则EO ∥PD又PD ⊂面PCD ,∴EO ∥面PCD ,点E 到面PCD 的距离可转化为点O 到面PCD 的距离 ∵PD ⊥平面ABCD , ∴面PCD ⊥平面ABCD过点O 作OG ⊥CD 交CD 于点G ,由面PCD I 平面ABCD CD =知OG ⊥面PCD , 则OG 的长为点E 到面PCD 的距离在正BCD ∆中,60BDC ∠=o ,122aDO BD ==,∴sin 60OG DO =⋅o 本题可将点E 到平面PCD 的距离转化为,点B 到平面PCD 的距离的一半,则BCD ∆的过点B 的中线为点B 到平面PCD 的距离.【例10】 如图,已知P 为ABC ∆外一点,PO ⊥平面ABC ,垂足为O ,⑴若PA 、PB 、PC 两两垂直,求证:O 为ABC ∆的垂心;⑵若PA PB PC ==,求证:O 为ABC ∆的外心.⑶若PA 、PB 、PC 两两垂直,且PA PB PC a ===,求P 点到平面ABC 的距离.OCBAP【难度】8【解析】 ⑴∵,PA PB PA PC ⊥⊥,∴PA ⊥平面PBC , ∴PA BC ⊥. 又∵PO ⊥平面ABC , ∴PO BC ⊥, ∴BC ⊥平面POA , ∴BC AO ⊥, 同理有AB CO ⊥, ∴O 为ABC ∆的垂心. ⑵∵PO ⊥平面ABC ,∴PO AO ⊥,PO BO ⊥,PO CO ⊥, ∵PA PB PC ==,∴PAO ∆≌PBO ∆≌PCO ∆, ∴OA OB OC ==, ∴O 为ABC ∆的外心. ⑶(法一)∵PA 、PB 、PC 两两垂直,且PA PB PC a ===,∴AB BC CA ===,ABC ∆为正三角形,∴AO AB ==,∴PO ==.因此点P 到平面ABC. (法二)∵,PA PB PA PC ⊥⊥,∴PA ⊥平面PBC ,∴1133P ABC ABC A PBC PBC V S PO V S AP --=⋅⋅==⋅⋅,又AB BC CA ===,ABC ∆为正三角形,∴221)2ABC S =,∴21a aPO ⋅⋅==,即为所求.【例11】 如右图,是一个边长为a 的正方体1111ABCD A B C D -,⑴求证:1AC ⊥平面1A BD ; ⑵求A 点到平面1A BD 的距离.AA 1【难度】8【解析】 ⑴连结AC ,∵1CC ⊥平面ABCD ,∴1CC BD ⊥. 又∵四边形ABCD 为正方形,∴AC BD ⊥. ∴BD ⊥平面11ACC A ,又1AC ⊂平面11ACC A , ∴1BD AC ⊥,同理有,1A D ⊥平面11ABC D ,∴11A D AC ⊥, ∴1AC ⊥平面1A BD ;⑵法一:要求点到平面的距离,可以用体积法, 记A 点到平面1A BD 的距离为d ,1D 1A A11111133A ABD ABD A A BD A BD V S AA V S d --=⋅==⋅,11A B A D BD ===,1221)2A BD S ==,∴21a ad ⋅==,即为所求. 法二:记1AC I 平面1A BD M =,连结1A M 交BD 于N ,连结11,AN AC , ∵1AC ⊥平面1A BD ,∴AM 的长即为所求的距离,且1AM A N ⊥, ∵平面//ABCD 平面1111A B C D ,∴11//AC AN,故有12AN AC ==, 在1Rt A AN ∆中,1AM A N ⊥,∴11a AA ANAM A N⋅===.【例12】 已知长方体1111ABCD A B C D -中,棱1AB AD ==,棱12AA =.⑴求点1A 到平面11AB D 的距离.⑵连结1A B ,过点A 作1A B 的垂线交1BB 于E ,交1A B 于F .HOABCDA 1B 1C 1D 1①求证:1BD ⊥平面EAC ;②求点D 到平面11A BD 的距离.【难度】8【解析】⑴(法一:等积法)设点1A 到平面11AB D 的距离为h∵111111A AB D A A B D V V --=,∴1111111133AB D A B D h S AA S ∆∆⋅=⋅⋅在11AB D ∆中,由已知条件有11AB AD ==,11B D =∴111322AB D S ∆== 而12AA =,111211122A B D S ∆=⨯=∴1111111222332A B D AB D AA S h S ∆∆⨯⋅=== (法二:直接法)连结11A C 交11B D 于点O ,则11A C ⊥11B D , ∵1AA ⊥上底面1111A B C D ,从而有1AA ⊥11B D ∵11AC I 11AA A =∴11B D ⊥面1AAO ,又11B D ⊂面11AB D , ∴面1AAO ⊥面11AB D ,且面1AAO I 面11AB D AO = 过1A 作1A H ⊥AO 交AO 于H ,则1A H ⊥面11AB D ∴点1A 到平面11AB D 的距离即为1A H 长, 在1Rt A AO ∆中,由已知可得AO =,1AO =,而12AA =∴1223A H == ⑵①∵长方体中棱1AB AD ==,∴BD ⊥AC 又1DD ⊥底面ABCD ,且AC ⊂底面ABCD , ∴AC ⊥1DD ,从而AC ⊥面1BDD∴AC ⊥1BD∵11A D ⊥面11A ABB ,且AE ⊂11A ABB , ∴AE ⊥11A D ,且AE ⊥1A B∴AE ⊥面11A BD ,且1BD ⊂面11A BD ,ABCD A 1B 11D 1EF∴AE ⊥1BD又∵AE AC A =I ,∴1BD ⊥面EAC ②∵AD ∥11A D ,且11A D ⊂面11A BD ∴AD ∥面11A BD∴点D 到平面11A BD 的距离可以转化为点A 到面11A BD 的距离 又∵AE ⊥面11A BD ∴AF即为所求距离AF ==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例1】 已知线段AB 在平面α外,A 、B 两点到平面α的距离分别为1和3,则线段AB 的中点到平
面α的距离为( ) A .1 B .2
C .1或2
D .0或1
【例2】 ABC ∆的三个顶点A B C ,,到平面α的距离分别为234,,,且它们在平面α的同一侧, 则
ABC ∆的重心到平面α的距离为___________.
【例3】 如图,正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点.求E 到平面11ABC D 的距离.
【例4】 如图,在梯形ABCD 中,AB ∥CD ,90DAB ∠=,AD a =,PD ∥面ABCD ,PD a =,求点
D 到平面PAB 的距离.
O
E
A 1
D 1
C 1
B 1
D
C
B
A
H
A
C
B
D
P 典例分析
板块一.点到平面的距离问题
【例5】 如图,在正三棱柱111ABC A B C -中,1AB =,若二面角1C AB C --的大小为60,求点C 到面
1ABC 的距离.
【例6】 (2007湖北文5)在棱长为1的正方体1
2
PD AB =
中,E 、F 分别为棱1AA 、1BB 的中点,G 为棱11A B 上的一点,且()101AG λλ=≤≤,则点G 到平面1D EF 的距离为( ) A 3
B 2
C 2λ
D 5
【例7】 (2007湖北文5)
在棱长为1的正方体1111ABCD A B C D -中,E 、F 分别为棱1AA 、1BB 的中点,G 为棱11A B 上
的一点,且()101AG λλ=≤≤,则点G 到平面1D EF 的距离为( ) A 3
B 2
C 2λ
D 5
【例8】 (2007江苏14)正三棱锥P ABC -高为2,侧棱与底面所成角为45︒,则点A 到侧面PBC 的
E
D
C 1
B 1A 1
C
B
A A
C
D F
G
A 1
B 11
1
A
B
C
E
距离是 .
【例9】 四棱锥P ABCD -的底面是边长为a 的菱形,且60BCD ∠=,PD ⊥平面ABCD ,PD a =,E
是PA 中点.求点E 到平面PCD 的距离.
【例10】 如图,已知P 为ABC ∆外一点,PO ⊥平面ABC ,垂足为O ,
∥若PA 、PB 、PC 两两垂直,求证:O 为ABC ∆的垂心; ∥若PA PB PC ==,求证:O 为ABC ∆的外心.
∥若PA 、PB 、PC 两两垂直,且PA PB PC a ===,求P 点到平面ABC 的距离.
【例11】 如右图,是一个边长为a 的正方体1111ABCD A B C D -,
∥求证:1AC ⊥平面1A BD ; ∥求A 点到平面1A BD 的距离.
【例12】 已知长方体1111ABCD A B C D -中,棱1AB AD ==,棱12AA =.
⊥求点1A 到平面11AB D 的距离.
⊥连结1A B ,过点A 作1A B 的垂线交1BB 于E ,交1A B 于F .
O
G
E A
C
D P
O
C
B
A
P
D
C
A
A 1
1
B 1
1
⊥求证:1BD ⊥平面EAC ;
⊥求点D 到平面11A BD 的距离.
H O
A
B
C
D
A 1
B 1
C 1
D 1。