第19章《全等三角形》单元检测试题A
人教版数学八年级上册《全等三角形》单元综合检测题含答案

人教版数学八年级上学期《全等三角形》单元测试(考试时间:90分钟试卷满分:120分)一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°4.如图,△AEB≌△DFC,AE⊥BC,DF⊥BC,垂足分别为E、F,∠B=25°,则∠D等于()A.80°B.65°C.48°D.28°第3题第4题第5题5.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A.1cm B.2cm C.3cm6.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°第6题7.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC, 第7题A.①②B.①③④C.①②③④8.如图,若△ABC≌△DEF,四个点B、E、C、F在同一直线上,BC=7,EC=5,则CF的长是()A.2B.3C.5D.79.根据下列已知条件,能画出唯一△ABC的是()第8题A.AB=3,BC=4,AC=7B.AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45°D.∠C=90°,AB=410.如图,∠ADB=∠ACB=90°,AC与BD交于点O,且AC=BD.有下列结论:①AD=BC;②∠DBC=∠CAD;③AO=BO;④AB∥CD.其中正确的是()A.①②③④B.①②③C.①②④D.②③④第10题11.在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.则下列各组条件中,能证明这两个三角形全等的是()A.①②④B.④⑤⑥C.②④⑤D.②③⑤12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.6第12题二.填空题(共4小题)13.如图,AB=AC,小雨认为再增加一个条件,就能保证△ABD≌△ACD,小雨想增加的条件是.第13题第14题14.如图,C在线段AF上,BC⊥AF,AB=10,BC=6,若△ABC≌△FED,且△EDF面积为24,则△FED的周长是.15.如图,测量河两岸相对两点A、B的距离,在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,此时测得DE的长为12m,那么AB长m.第15题第16题16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB的距离为.三.解答题(共8小题)17.如图,已知△ABC≌△CDA,指出它们的对应顶点、对应边和对应角.第17题18.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.第18题19.已知△ABC≌△DEF,△ABC的周长是30,AB=8,AC=13,求EF的长.20.已知:如图,AN⊥OB,BM⊥OA,垂足分别为N,M,OM=ON,BM与AN相交于点P.求证:PM=PN.第20题20.如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求D到AB的距离.第21题22.如图,△ABE和△ACD中,给出以下四个论断:(1)AD=AE;(2)AB=AC;(3)AM=AN;(4)AD⊥DC,AE⊥BE.请你以其中三个论断为已知,剩下的一个作为要证明的结论,并写出证明过程.第22题23.如图,已知M是AB的中点,AC∥MD,AC=MD,试说明下面结论成立的理由:(1)△ACM≌△MDB;(2)CM=DB,CM∥DB.第23题24.如图,在△ABC中,AD⊥DE,BE⊥DE,AC,BC分别平分∠BAD,∠ABE,点C在线段DE上,求证:AB=AD+BE.第24题参考答案一.选择题(共12小题)1.下列各组的两个图形属于全等图形的是()A.B.C.D.【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、两只眼睛下面的嘴巴不能完全重合,故本选项错误;B、两个正方形的边长不相等,不能完全重合,故本选项错误;C、圆内两条相交的线段不能完全重合,故本选项错误;D、两个图形能够完全重合,故本选项正确.故选:D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.如图所示,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°【分析】根据全等三角形的性质得到∠DEB=∠DEC=90°,∠ABD=∠DBC=∠C,根据三角形内角和定理计算即可.【解答】解:∵△EDB≌△EDC,∴∠DEB=∠DEC=90°,∵△ADB≌△EDB≌△EDC,∴∠ABD=∠DBC=∠C,∠BAD=∠DEB=90°,∴∠C=30°,故选:D.4.如图,△AEB≌△DFC,AE⊥BC,DF⊥BC,垂足分别为E、F,∠B=25°,则∠D等于()A.80°B.65°C.48°D.28°【分析】依据直角三角形两锐角互余,即可得到∠A的度数,再根据全等三角形的对应角相等,即可得到结论.【解答】解:∵AE⊥BC,∠B=25°,∴Rt△ABE中,∠A=65°,又∵△AEB≌△DFC,∴∠D=∠A=65°,故选:B.5.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为()A.1cm B.2cm C.3cm D.4cm【分析】由△ABC≌△EBD,可得AB=BE=4cm,BC=BD=7cm,根据EC=BC﹣BE计算即可;【解答】解:∵△ABC≌△EBD,∴AB=BE=4cm,BC=BD=7cm,∴EC=BC﹣BE=7﹣4=3cm,故选:C.6.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°【分析】根据全等三角形的性质求出∠D和∠E,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△ADE,∠B=40°,∠C=75°,∴∠B=∠D=40°,∠E=∠C=75°,∴∠EAD=180°﹣∠D﹣∠E=65°,故选:A.7.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论:其中正确的是()①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,A.①②B.①③④C.①②③④D.①③【分析】根据全等三角形的对应边相等,全等三角形的对应角相等可得AC=AF,EF=CB,∠EAF=∠BAC,再利用等式的性质可得∠EAB=∠F AC.【解答】解:∵△ABC≌△AEF,∴AC=AF,EF=CB,∠EAF=∠BAC,∴∠EAF﹣∠BAF=∠BAC﹣∠BAF,∴∠EAB=∠F AC,正确的是①③④,故选:B.8.如图,若△ABC≌△DEF,四个点B、E、C、F在同一直线上,BC=7,EC=5,则CF的长是()A.2B.3C.5D.7【分析】根据全等三角形的对应边相等得到EF=BC=7,计算即可.【解答】解:∵△ABC≌△DEF,∴BC=EF,又BC=7,∴EF=7,∵EC=5,∵CF=EF﹣EC=7﹣5=2.故选:A.9.根据下列已知条件,能画出唯一△ABC的是()A.AB=3,BC=4,AC=7B.AB=4,BC=3,∠C=30°C.∠A=30°,AB=3,∠B=45°D.∠C=90°,AB=4【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【解答】解:A、3+4=7,不符合三角形三边关系定理,即不能画出三角形,故本选项错误;B、根据AB=4,BC=3,∠A=30°不能画出唯一三角形,故本选项错误;C、∠A=30°,AB=3,∠B=45°,能画出唯一△ABC,故此选项正确;D、∠C=90°,AB=4,不能画出唯一三角形,故本选项错误;故选:C.10.如图,∠ADB=∠ACB=90°,AC与BD交于点O,且AC=BD.有下列结论:①AD=BC;②∠DBC=∠CAD;③AO=BO;④AB∥CD.其中正确的是()A.①②③④B.①②③C.①②④D.②③④【分析】由已知条件,得到三角形全等,得到结论,对每一个式子进行验证从而确定正确的式子.【解答】解:∵在Rt△ADB和Rt△BCA中AB=ABAC=BD∴Rt△ADB≌Rt△BCA(HL)∴AD=BC,∴①正确;∠DAB=∠CBA,∠DBA=∠CAB∴∠DBC=∠CAD,∴②正确;在△AOD和△BOC中∠ADO=∠BCO∠DOA=∠COBAD=BC∴△AOD≌△BOC(AAS)∴AO=BO,∴③正确;∵∠CDO+∠DCO+∠COD=180°,∠CDO=∠DCO,∠OAB+∠OBA+∠AOB=180°,∠OAB=∠OBA∠COD=∠AOB∴∠DCO=∠OAB∴AB∥CD,∴④正确;所以以上结论都正确,故选:A.11.在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.则下列各组条件中,能证明这两个三角形全等的是()A.①②④B.④⑤⑥C.②④⑤D.②③⑤【分析】根据全等三角形的判定定理,选择合适组合条件即可.【解答】解:A、符合SSA,不能判定两三角形全等;B、符合AAA,不能判定两三角形全等;C、符合AAS,能判定两三角形全等;D、符合SSA,不能判定两三角形全等;故选:C.12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,CD=4,则点D到AB的距离是()A.4B.2C.3D.6【分析】根据角平分线的性质定理得出CD=DE,代入求出即可.【解答】解:如图,过D点作DE⊥AB于点E,则DE即为所求,∵∠C=90°,AD平分∠BAC交BC于点D,∴CD=DE(角的平分线上的点到角的两边的距离相等),∵CD=4,∴DE=4.故选:A.二.填空题(共4小题)13.如图,AB=AC,小雨认为再增加一个条件,就能保证△ABD≌△ACD,小雨想增加的条件是BD=CD.【分析】此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是:BD=CD,理由是:∵在△ABD和△ACD中AB=ACAD=ADAC=CD∴△ABD≌△ACD(SSS),故答案为:BD=CD14.如图,C在线段AF上,BC⊥AF,AB=10,BC=6,若△ABC≌△FED,且△EDF面积为24,则△FED的周长是24.【分析】直接利用全等三角形的性质得出对应边相等进而得出答案.【解答】解:∵△ABC≌△FED,BC⊥AF,∴∠EDF=∠ACB=90°,∵AB=10,BC=6,∴AC==8,∴DE=BC=6,AC=DF=8,EF=AB=10,∴△FED的周长是:6+8+10=24.故答案为:24.15.如图,测量河两岸相对两点A、B的距离,在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,此时测得DE的长为12m,那么AB长12m.【分析】直接利用全等三角形的判定方法得出△ABC≌△EDC(AAS),进而得出答案.【解答】解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,又∵直线BF与AE交于点C,∴∠ACB=∠ECD(对顶角相等),在△ABC和△EDC中∠ABC=∠EDC∠BCA=∠DCECB=CD∴△ABC≌△EDC(AAS),∴AB=ED=12m,故答案为:12.16.如图,△ABC中,∠C=90°,AD为角平分线.若BC=5,BD=2,则点D到边AB的距离为3.【分析】首先过D作DE⊥AB,再根据角的平分线上的点到角的两边的距离相等可得ED=DC,进而可得答案.【解答】解:过D作DE⊥AB,∵BC=5,BD=2,∴CD=5﹣2=3,∵AD为角平分线,∴CD=DE=3,故答案为:3三.解答题(共8小题)17.如图,已知△ABC≌△CDA,指出它们的对应顶点、对应边和对应角.【分析】根据全等三角形对应顶点的字母写在对应位置上即可写出它们的对应顶点、对应边和对应角.【解答】解:∵△ABC≌△CDA,∴点B和点D是对应点,点A和点C是对应点,AB与CD是对应边,BC与DA是对应边,AC与CA是对应边,∠B和∠D是对应角,∠BAC和∠DCA是对应角,∠BCA和∠DAC是对应角.18.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.【分析】根据全等三角形对应角相等可得∠AED=∠ACB,∠D=∠B,再根据邻补角的定义求出∠ACF,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵△ABC≌△ADE,∴∠AED=∠ACB=105°,∠D=∠B=30°,∴∠ACF=180°﹣∠ACB=180°﹣105°=75°,由三角形的内角和定理得,∠1+∠D=∠CAD+∠ACF,∴∠1+30°=15°+75°,解得∠1=60°.19.已知△ABC≌△DEF,△ABC的周长是30,AB=8,AC=13,求EF 的长.【分析】先求出BC的长,再根据全等三角形对应边相等可得EF=BC.【解答】解:∵△ABC的周长是30,AB=8,AC=13,∴BC=30﹣8﹣13=9,∵△ABC≌△DEF,∴EF=BC=9.20.已知:如图,AN⊥OB,BM⊥OA,垂足分别为N,M,OM=ON,BM与AN相交于点P.求证:PM=PN.【分析】连接OP,由“HL”可证Rt△ON≌Rt△OMP,可得PM=ON.【解答】证明:如图,连接OP,∵AN⊥OB,BM⊥OA,∴∠ANO=∠BMO=90°,∵OP=OP,OM=ON,∴Rt△ONP≌Rt△OMP(HL)∴PM=PN.21.如图,△ABC中,∠C=Rt∠,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,求D到AB的距离.【分析】过点D作DE⊥AB于点E,先根据比例求出CD的长度.再根据角平分线上的点到角的两边的距离相等可得DE =CD .【解答】解:如图,过点D 作DE ⊥AB 于点E ,∵BD :DC =2:1,BC =7.8cm ,∴CD =×7.8=2.6cm , ∵AD 平分∠BAC ,∴DE =CD =2.6cm ,即D 到AB 的距离2.6cm .22.如图,△ABE 和△ACD 中,给出以下四个论断:(1)AD =AE ;(2)AB =AC ;(3)AM =AN ;(4)AD ⊥DC ,AE ⊥BE .请你以其中三个论断为已知,剩下的一个作为要证明的结论,并写出证明过程.【分析】可以取AD =AE ,AB =AC ,AD ⊥DC ,AE ⊥BE 得到AM =AN :由AD ⊥DC ,AE ⊥BE 得到∠ADC =∠AEB =90°,则根据“HL ”可判断Rt △ADC ≌Rt △AEB ,得到∠C =∠B ,然后根据“ASA ”判断△AMC ≌△ANB ,所以AM =AN .【解答】解:若AD =AE ,AB =AC ,AD ⊥DC ,AE ⊥BE ,则AM =AN .理由如下:∵AD ⊥DC ,AE ⊥BE ,∴∠ADC =∠AEB =90°,在Rt △ADC 和Rt △AEB 中 AD=AEAC=AB,∴Rt △ADC ≌Rt △AEB (HL )∴∠C =∠B ,211在△AMC和△ANB中∠C=∠BAC=AB∠MAC=∠NAB,∴△AMC≌△ANB(ASA),∴AM=AN.23.如图,已知M是AB的中点,AC∥MD,AC=MD,试说明下面结论成立的理由:(1)△ACM≌△MDB;(2)CM=DB,CM∥DB.【分析】(1)由平行线的性质证得∠A=∠DMB,由线段中点的定义证得AM=MB,则结合已知条件,根据全等三角形的判定定理SAS证得结论;(2)由(1)中的全等三角形的对应边相等得到CM=DB,由对应角相等推知同位角∠CMA=∠DBM,则CM∥DB.【解答】(1)证明∵AC∥MD,∴∠A=∠DMB,∵M是AB的中点,∴AM=MB,∴在△AMC与△MBD中,AC=MD∠A=∠DMBAB=MB∴△AMC≌△MBD(SAS);(2)∵由(1)知,△AMC≌△MBD,∴CM=DB.∴∠CMA=∠DBM,∴CM∥DB.24.如图,在△ABC中,AD⊥DE,BE⊥DE,AC,BC分别平分∠BAD,∠ABE,点C在线段DE上,求证:AB=AD+BE.【分析】过点C作CF⊥AB于F,由“AAS”可证△ADC≌△AFC,△CBE≌△CBF,可得AD=AF,BE=BF,即可得结论.【解答】解:如图,过点C作CF⊥AB于F,∵AC,BC分别平分∠BAD,∠ABE,∴∠DAC=∠F AC,∠FBC=∠EBC,∵∠ADC=∠AFC=90°,∠DAC=∠F AC,AC=AC,∴△ADC≌△AFC(AAS),∴AD=AF,∵∠CFB=∠CEB=90°,∠FBC=∠EBC,BC=BC,∴△CBE≌△CBF(AAS),∴BE=BF,∴AB=AF+BF=AD+BE.。
数学八年级上学期《全等三角形》单元综合检测含答案

[答案]D
[解析]
[分析]
利用全等三角形对应边相等可知要想求得A B的长,只需求得其对应边C D的长,据此可以得到答案.
[详解]∵△C DO≌△B AO,∴A B=C D,要求得A B的长,只需求得线段D C的长,
[详解]∵∠B A D=∠B C D=90°,A B=C B,D B=D B,∴△B A D≌△B C D(HL).
故选A.
[点睛]解答本题需注意:当两个三角形有公共边时,公共边是常用的条件之一.
6.如图,在△A B C中,∠A B C=50°,∠A C B=60°,点E在B C的延长线上,∠A B C的平分线B D与∠A CE的平分线C D相交于点D,连接A D,下列结论中不正确的是( )
16.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是____________.
17.如图,已知A B=A D,∠B AE=∠D A C,要使△A B C≌△A DE,若以”SAS”为依据,补充的条件是.
三、解答题
18.如图,C A=C D,CE=C B,求证:A B=DE.
19.已知,如图,B D是∠A B C的平分线,A B=B C,点P在B D上,PM⊥A D,PN⊥C D,垂足分别是M、N.试说明:PM=PN.
参考答案
一、选择题(每小题只有一个正确答案)
1.小林同学一不小心将厨房里的一块三角形玻璃摔成了如图所示的三部分,他想到玻璃店配一块完全相同的玻璃,那么他应该选择带哪个部分去玻璃店才能最快配得需要的玻璃( )
A. B. C. D.选择哪块都行
[答案]C
[解析]
分析]
本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.
人教版八年级上学期数学《全等三角形》单元检测题(带答案)

故选C.
[点睛]本题考查了全等三角形的判定与性质的应用,能正确证明出两个三角形全等是解此题的关键.
4.如图,在 中, , 平分 , , ,
A.8B.4C.2D.1
[答案]A
[解析]
[分析]
过点D作DE⊥B C于E,根据角平分线上的点到角的两边距离相等可得A D=DE,再根据S△A B C=S△A B D+S△B C D列式计算即可得解.
又∵∠EOD=∠BOC=120°,
∴∠EOF=∠EOD﹣∠DOF=120°﹣∠DOF,
∴∠EOF=∠DOG,
A. B. C. D.
[答案]A
[解析]
[分析]
设其中一个三角形另外两边长为y和z,由全等图形周长相等,可知x+y+z= ,再由边长关系,可推出x的取值范围.
[详解]∵围成两个全等的三角形可得两个三角形的周长相等,
∴ ,∵ ,∴ ,解得
又∵ , ,∴ ,即 ,解得
综上可得
故选C.
[点睛]本题考查三角形三边关系,两边之和大于第三边,两边之差小于第三边.
9.如图, 的两条角平分线B D、CE交于O,且 ,则下列结论中不正确的是( )
A. B.
C. D.
10.如图,已知将 沿 所在直线翻折,点 恰好与 上的点 重合,对折边 ,折痕也经过点 ,则下列说法正确的是()
① ;
② ;
③ ;
④ ;
⑤若 ,则 是等边三角形.
A.只有①②正确B.①②③
C.①②③④D.①②③④⑤
A. B.
C. D.
[答案]D
[解析]
试题分析:根据三角形的内角和等于180°求出∠A B C+∠A C B=120°,再根据角平分线的性质求出∠OB C+∠OC B=60°,然后利用三角形的内角和等于180°列式计算即可求出∠BOC的度数;
初二数学全等三角形测试题

初二数学全等三角形测试题一、填空1、 (1)如右图,已知AB=DE,∠B=∠E,若要使△AB C≌△DEF,那么还要需要一个条件,这个条件可以是:_____________,理由是:_____________;这个条件也可以是:_____________,理由是:_____________;(2) 如右图,已知∠B=∠D=90°,,若要使△AB C≌△ABD,那么还要需要一个条件,这个条件可以是:_____________,理由是:_____________;这个条件也可以是:_____________,理由是:_____________;这个条件还可以是_____________,理由是:_____________;2.如图5,⊿ABC≌⊿ADE,若∠B=40°,∠EAB=80°,∠C=45°,则∠EAC= ,∠D= ,∠DAC= 。
3。
4_____________;AOC≌ΔBOC。
6.如图9,AE=BF,AD∥BC,AD=BC,则有ΔADF≌,且DF= 。
ABCDABCDEF7.如图10,在ΔABC 与ΔDEF 中,如果AB=DE ,BE=CF ,只要加上∠ =∠ 或 ∥ ,就可证明ΔABC ≌ΔDEF 。
8、已知如图,∠B=∠DEF ,AB=DE ,要说明△ABC ≌△DEF , (1)若以“ASA ”为依据,还缺条件 . (2)若以“AAS ”为依据,还缺条件 . (3)若以“SAS ”为依据,还缺条件 .9.如图12,在等腰Rt △ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于D ,DE ⊥AB 于D ,若AB =10,则△BDE 的周长等于____.10、如图13,直线l 过正方形ABCD 的顶点B ,点C A 、到直线l 的距离分别是1和2,则正方形的边长为 .图13二、选择题1.下列命题中正确的是( )①全等三角形对应边相等; ②三个角对应相等的两个三角形全等; ③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。
全等三角形单元测试题(含答案)

全等三角形单元测试题一、填空题(每小题4分,共32分).1.已知:///≌,/ABC A B C∆∆∠=∠,70B B∠=∠,/A A=,则AB cmC∠=︒,15 /∠=_________,//CA B=__________.∆中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角2.如图1,在ABC形_______对.图1 图2 图33.已知△AB C≌△A′B′C′,若△ABC的面积为10 cm2,则△A′B′C′的面积为______ cm2,若△A′B′C′的周长为16 cm,则△AB C的周长为________cm.4.如图2所示,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是________________(只添一个条件即可).5.如图3所示,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还需补充一个条件________,依据是________________.6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部.7.如图4,两平面镜α、β的夹角θ,入射光线AO平行于β,入射到α上,经两次反射后的出射光线CB平行于α,则角θ等于________.图4 图5 图68.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为______.二、选择题(每小题4分,共24分)9.如图6,AE =AF ,AB =AC ,EC 与B F 交于点O ,∠A =600,∠B =250,则∠EOB 的度数为( )A 、600B 、700C 、750D 、85010.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( )A .35 cmB .30 cmC .45 cmD .55 cm11.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( )A .A 、FB .C 、E C .C 、AD .E 、F12.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD =•BC ,再定出BF的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC ≌△ABC ,•得到ED =AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( )A .边角边公理B .角边角公理;C .边边边公理D .斜边直角边公理13.如图9,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( )A .1:2B .1:3C .2:3D .1:414.如图10,P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于CD ,则CD _____P 点到∠AOB N A M C B 图7 图8 图9 图10两边距离之和.( )A.小于B.大于C.等于D.不能确定三、解答题(共46分)中,∠ACB=90°,延长BC至B',使15.已知如图11,ABCC B'=BC,连结A B'.求证:△AB B'是等腰三角形.参考答案。
新人教版八年级数学上册《全等三角形》单元测试卷(含答案)

精心整理八 年 级 数 学单元质量检测 第Ⅰ卷(选择题 共30 分)一、选择题(每小题3分,共30分)4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后仍不一定能保证△ABC≌△A /B /C /,则补充的这个条件是( )第5题图DA .BC=B /C / B .∠A=∠A / C .AC=A /C /D .∠C=∠C /5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( )还需要条件( )A.AB=EDB.AB=FDC.AC=FDD.∠A=∠F 9.如图所示,在△ABC 中,AB=AC ,∠ABC、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于第9题图点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE,上述结论一定正确的是()A.①②③B.②③④C.①③⑤D.①③④D是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC的距离为.14.如图8,AB与CD交于点O,OA=OC,OD=OB,∠AOD=,根据可得△AOD≌△COB,从而可以得到AD=.15.如图9,∠A=∠D=90°,AC=DB,欲使OB=OC,可以先利用“HL”说明≌得到AB=DC,再利用“”证明△AO某同学把一块三角形的玻璃打碎成三片,∴△ABD≌△ACD()19.(8分)如图,已知△≌△第19题图是对应角.(1)写出相等的线段与相等的角;(2)若EF=2.1 cm,FH=1.1 cm,HM=3.3 cm,求MN和HG的长度. 20.(7分)如图,A、B两建筑物位于河的两岸,要测得它们之间的距离,可以BC12章·全等三角形(详细答案)一、选择题CBDCD BDCDC二、填空题11、△ABD SSS 12、∠ABC 13、3cm∠ACB=∠ECD∴△ABC≌△CDE(ASA)∴AB=DE。
《全等三角形》测试题A卷及答案

第十四章全等三角形测试题、选择题(每小题4分,共32 分)1 .下列命题中真命题的个数有()⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等,C、1个2.如图,已知△ ABC的六个元素,则下面甲、乙、丙三个三角形中和,厶=/ A',若证N ABC B" A'B'C'还要从下列条件中补选一个,错误的选法是(C. BC=B'C'D. AC=A C'4. P是/ AOB平分线上一点,CD丄OP于F,并分别交OA、OB于CD,贝U CD _____________ P点到/ AOB两边距离之和.()A.小于B.大于5.如图,从下列四个条件:①BC= B C,②AC= A 'C,③/ A 'CA=Z B CB,④AB= A B '中, 任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A. 1个B. 2个C. 3个D. 4个6.有以下条件:①一锐角与一边对应相等;②两边对应相等;③两锐角对应相等。
其中能判断两直角三角形全等的是()A.① B ② C ③ D ①②7 .如图,△ ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ ABC分A .甲和乙 E.乙和丙 C.只有乙 D.只有丙△ ABC全等的图形是(3 .在"ABC 和"A 'B'C'中,AB=A 'B'C.等于D.不能确定(5题)CF = 4,贝V S ABEF 为.三:解答题(共44 分)15、( 5分)已知:如图,AC 、BD 相交于点 O , Z A = Z D , AB=CD.求证:△ AOB ^A DOC ,。
为三个三角形,则 &ABO : S ^BCO : &CAO 等于( B . 1 : 2 : 3 C . 2 : 3 : 4 &如图所示,在 Rt △ ABC 中,AD 是斜边上的高,Z 交AD AC 于点F 、E, EG 丄BC 于 G 下列结论正确的是 A . Z C= / ABC B. BA=BG CC . AE=CE D. AF=FD 二、填空题(每小题4分,共24 分) 9 .如图,Rt △ ABC 中,直角边是 ,斜边是 10.如图,点D,E 分别在线段 AB, AC 上, BE, CD 相交于 /A点 O, AE AD , 要使△ ABE ACD ,需添加一个条件是(只要写一个(10 题) (11题)11.如图,把△ ABC 绕C 点顺时针旋转35。
华师大版八年级(下) 中考题单元试卷:第19章 全等三角形(08)

华师大版八年级(下)中考题单元试卷:第19章全等三角形(08)一、选择题(共5小题)1.已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是()A.1B.2C.3D.42.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S四边形DEOF中正确的有()A.4个B.3个C.2个D.1个3.如图,已知边长为4的正方形ABCD,P是BC边上一动点(与B、C不重合),连结AP,作PE⊥AP交∠BCD的外角平分线于E.设BP=x,△PCE面积为y,则y与x的函数关系式是()A.y=2x+1B.y=x﹣2x2C.y=2x﹣x2D.y=2x4.在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE 和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE;②BG⊥CE;③AM是△AEG的中线;④∠EAM=∠ABC,其中正确结论的个数是()A.4个B.3个C.2个D.1个5.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,等腰直角△ABC中,∠ACB=90°,三角形的三个顶点分别在这三条平行直线上,则sinα的值是()A.B.C.D.二、填空题(共3小题)6.如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC的大小为度.7.如图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组相等的线段.8.如图,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,则△AB′C的面积为.三、解答题(共22小题)9.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.10.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.(1)求证:△ACD≌△BCE;(2)若AC=3cm,则BE=cm.11.已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB 边上一点.求证:BD=AE.12.如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l交l于点D.求证:AC=OD.13.如图,已知AD是△ABC的中线,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD 的延长线于点F,求证:BE=CF.14.已知等腰三角形ABC中,∠ACB=90°,点E在AC边的延长线上,且∠DEC=45°,点M、N分别是DE、AE的中点,连接MN交直线BE于点F.当点D在CB边的延长线上时,如图1所示,易证MF+FN=BE(1)当点D在CB边上时,如图2所示,上述结论是否成立?若成立,请给与证明;若不成立,请写出你的猜想,并说明理由.(2)当点D在BC边的延长线上时,如图3所示,请直接写出你的结论.(不需要证明)15.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.16.如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.①当旋转角为度时,边AD′落在AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.17.如图,CD=CA,∠1=∠2,EC=BC,求证:DE=AB.18.如图:已知D、E分别在AB、AC上,AB=AC,∠B=∠C,求证:BE=CD.19.已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD+AB=CB,过程如下:过点C作CE⊥CB于点C,与MN交于点E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵四边形ACDB内角和为360°,∴∠BDC+∠CAB=180°.∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=CB.(1)当MN绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明.(2)MN在绕点A旋转过程中,当∠BCD=30°,BD=时,则CD=,CB =.20.在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP 绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.21.如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.22.如图,点D是△ABC的边AB上一点,点E为AC的中点,过点C作CF∥AB交DE延长线于点F.求证:AD=CF.23.(1)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC 边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.(2)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.24.探究:如图①,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于点E.若AE=10,求四边形ABCD的面积.应用:如图②,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E.若AE=19,BC=10,CD=6,则四边形ABCD的面积为.25.如图,△ABO与△CDO关于O点中心对称,点E、F在线段AC上,且AF=CE.求证:FD=BE.26.如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.27.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC.28.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.29.如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC于点E.(1)求证:∠CBP=∠ABP;(2)求证:AE=CP;(3)当,BP′=5时,求线段AB的长.30.正方形ABCD中,点E、F分别是边AD、AB的中点,连接EF.(1)如图1,若点G是边BC的中点,连接FG,则EF与FG关系为:;(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FQ,连接EQ,请猜想BF、EQ、BP三者之间的数量关系,并证明你的结论.(3)若点P为CB延长线上一动点,按照(2)中的作法,在图3中补全图形,并直接写出BF、EQ、BP三者之间的数量关系:.华师大版八年级(下)中考题单元试卷:第19章全等三角形(08)参考答案一、选择题(共5小题)1.C;2.B;3.C;4.A;5.D;二、填空题(共3小题)6.65;7.AC=BD(答案不唯一);8.8;三、解答题(共22小题)9.;10.6;11.;12.;13.;14.;15.;16.60;17.;18.;19.;;20.DE=BC;21.;22.;23.;24.152;25.;26.;27.;28.;29.;30.EF⊥FG,EF=FG;BF+BP=EQ;第11页(共11页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长泰县武安中学08-09学年八年级(下) 第19章《全等三角形》单元检测试题A一、填空题(每题2分,共20分)1,所谓尺规作图中的尺规是指:___.2,命题“垂直于同一条直线的两直线平行”的题设是_______,命题“平行于同一条直线的两直线平行”的结论是_________.3,定理“如果直角三角形两直角边分别是a 、b ,斜边是c ,那么a 2+b 2=c 2.即直角三角形的两直角平方和等于斜边的平方”的逆定理是___.4,如图1,根据SAS ,如果AB =AC , = ,即可判定ΔABD ≌ΔACE .5,如图2,BD 垂直平分线段AC ,AE ⊥BC ,垂足为E ,交BD 于P 点,PE =3cm ,则P 点到直线AB 的距离是___.6,如图3,在等腰Rt △ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于D ,DE ⊥AB 于D ,若AB =10,则△BDE 的周长等于____.7,如图4,△ABC ≌△DEB ,AB =DE ,∠E =∠ABC ,则∠C 的对应角为 ,BD 的对应边为 .8,如图5,AD =AE ABD ≌ ,理由是 ,△ABE ≌△,理由是图2E CDPA B图3EDCBA图5图1EDCB A图6A F (8)CE BD9,若△ABC ≌△DEF ,其中A 、B 分别与D 、E 分别是对应的顶点,AB <AC <BC ,则在△DEF 中,________<_______<________.10,如图6,AD ⊥BC ,DE ⊥AB ,DF ⊥AC ,D 、E 、F 是垂足,BD =CD ,那么图中的全等三角形有_______.二、选择题(每题2分,共20分)11,只用无刻度的直尺就能作出的图形是( )A.延长线段AB 至C ,使BC =ABB.过直线L 上一点A 作L 的垂线C.作已知角的平分线D.从点O 再经过点P 作射线OP 12,下列命题中,真命题是( )A.相等的角是直角B.不相交的两条线段平行C.两直线平行,同位角互补D.经过两点有具只有一条直线13,如图7所示,若△ABE ≌△A CF ,且AB =5,AE =2,则EC 的长为( ) A.2 B.3 C.5 D.2.514,已知△ABC ≌△DEF ,BC =EF =6cm ,△ABC 的面积为18平方厘米,则EF 边上的高是( )A.6cmB.7cmC.8cmD.9cm15,如图8所示,∠1=∠2,BC =EF ,欲证△ABC ≌△DEF ,则还须补充的一个条件是( )A.AB =DEB.∠ACE =∠DFBC.BF =ECD.∠ABC =∠DEF16,用尺规作已知角平分线,其根据是构造两个三角形全等,它所用到的识别方法是( ) A.SAS B.ASA C.AAS D.SSS图7FE CBA图817,如图9,△ABC 是不等边三角形,DE =BC ,以D 、E 为两个顶点画位置不同的三角形,使所画的三角形与△ABC 全等,这样的三角形最多可画出( )A.2个B.4个C.6个D.8个18,如图10,△ABC 中,AD ⊥BC ,D 为BC 中点,则以下结论不正确的是( ) A.△ABD ≌△ACDB.∠B =∠CC.AD 是 BAC 的平分线D.△ABC 是等边三角形19,如图11,∠1=∠2,∠C =∠D ,AC 、BD 交于E 点,下列结论中不正确的是( ) A.∠DAE =∠CBE B.CE =DE C.△DEA 不全等于△CBE D.△EAB 是等腰三角形20,如图12,在△ABC 中,AB >AC ,AC 的垂直平分线交AB 于点D ,交AC 于点E ,AB =10,△BCD 的周长为18,则BC 的长为( )△ABC ,使∠APBCABCD图10图9B图11 2(12)CBA1EDA图1222,判断下列命题是真命题还是假命题,若是假命题,请举出一个反例说明. (1)有一个角是60°的等腰三角形是等边三角形. (2)有两个角是锐角的三角形是锐角三角形.23,如图14,BP 、CP 是△ABC 的外角平分线,则点P 必在∠BAC 的平分线上,你能说出其中的道理吗?24,如图15,已知∠1=∠2,∠3=∠4,EC =AD ,求证:AB =BE .25,如图16,工人师傅制作了一个正方形窗架,把窗架立在墙上之前,在上面钉了两块等长的木条GF 与GE ,E 、F 分别是AD 、BC 的中点.(1)G 点一定是AB 的中点吗?说明理由;(2)钉这两块木条的作用是什么?26,如图17,已知点A 、E 、F 、D 在同一条直线上,AE =DF ,BF ⊥AD ,CE ⊥AD ,垂足分别为F 、E ,BF =CE ,试说明AB 与CD 的位置关系. 四、综合题(共20分)27,如图18,已知当物体AB 距凸透镜为2倍焦距,即AO =2f 时,成倒立的等大的像A ′B ′.求像距OA ′与f 的关系.28,阅读下题及其证明过程:已知:如图19,D 是△ABC 中BC 边上一点,EB =EC ,∠ABE =∠ACE ,试说明∠BAE 与∠CAE 相等的理由.理由:在△AEB 和△AEC 中,图19G F E DCBA图16AOBB 'A '图18图17A F CE B D⎪⎩⎪⎨⎧=∠=∠=AE AE ACE ABE EC EB 所以△AEB ≌△AEC (第一步) 所以∠BAE =∠CAE (第二步)问:上面证明过程是否正确?若正确,请写出每一步推理根据;若不正确,请指出错在哪一步?并写出你认为正确的推理过程.. 五、拓展题(共20分)30,已知:如图22,AB =AC ,DB =DC ,(1)若E 、F 、G 、H 分别是各边的中点,求证:EF =FG .(2)若连结AD 、BC 交于点P ,问AD 、BC 有何关系?证明你的结论.31,如图23,在△AFD 和△BEC 中,点A 、E 、F 、C 在同一条直线上,有下面四个论断:(A )AD =CB ,(B )AE =CF ,(C )∠B =∠D ,(D )AD ∥BC .请用其中三个作为条件,余下一个作为结论,遍一道数学题,并写出解答过程.32,我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等? (1)阅读与说理:对于这两个三角形均为直角三角形,显然它们全等. 对于这两个三角形均为钝角三角形,可证它们全等(证明略). 对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知:如图24,△ABC 、△A 1B 1C 1均为锐角三角形,AB =A 1B 1,BC =B 1C l ,∠C =∠C l .试说明△ABC ≌△A 1B 1C 1的理由.(请你将下列说理过程补充完整).理由:分别过点B ,B 1作BD ⊥CA 于D ,B 1 D 1⊥C 1 A 1于D 1.则∠BDC =∠B 1D 1C 1=90°, 因为BC =B 1C 1,∠C =∠C 1,△BCD ≌△B 1C 1D 1,BD =B 1D 1.(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.参考答案:一、1,没有刻度的直尺和圆规;2,两条直线垂直于同一条直线、两直线平行;3,如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形;4,AD =AE ;5,3cm ;6,10;7,∠DBE 、CA ;8,△ACE 、SAS 、△ACD 、ASA (或SAS );9,DE 、DF 、EF ;10,△ABD ≌△ACD ,△ADE ≌△ADF ,△BDE ≌△CDF .二、11,D ;12,D ;13,B ;14,A ;15,D ;16,D ;17,B ;18,D ;19,C ;20,A .三、21,略;22,(1)真命题,(2)假命题.例如:若在△ABC 中,∠A =20°,∠B =30°,∠C =130°,则△ABC 是钝角三角形;23,可过点P 向三角形的三边引垂线,利用角平分线的性质即得;24,用AAS 说明△ABD ≌△EBC ;25,(1)是.由HL 知,AG =GB ;(2)利用三角形的稳定性,使窗架稳定;26,AB ∥CD .因为∠DBC =∠ACB ,∠ABO =∠DCO ,所以∠DBC +∠ABO =∠ACB +∠DCO ,即∠ABC =∠DCB ,又∠ACB =∠DBC ,BC =CB ,所以△ACB ≌△DBC ,所以AB =DC .因为∠ABO =∠DCO ,∠AOB =∠DOC ,所以△ABO ≌△DCO ,所以OA =OD .四、27,在△AOB 和△A ′OB ′中,因为AB =A ′B ′,∠BAO =∠B ′A ′O ,∠BOA =∠B ′OA ′,所以△AOB ≌△A ′O B′,所以 OA ′=OA ,因为OA =2f ,所以OA ′=2f ;28,不正确,第一步就错.正确应该由EB =EC 得到∠EBC =∠ECB ,再由∠ABE =∠ACE ,得∠ABC =∠ACB ,即AB =AC ,最后在△ABE 和△ACE 中,利用SAS 得到△ABE ≌△ACE图24即可说明∠BAE与∠CAE相等;29,(1)利用SAS说明△ABF≌△DCE,(2)相等.说明方法同(1).五、30,(1)在△ABD和△ACD中,AB=AC,BD=CD,AD是公共边,所以△ABD≌△ACD(SSS),所以∠ABD=∠ACD,又BE=12AB,CF=12AC,所以BE=CF,同理BH=CG,所以△BEH≌△CFG(SAS),所以EH=FG,(2)因为△ABD≌△ACD,所以∠BAD=∠CAD,因为AB=AC,所以AB垂直平分BC,即AD垂直平分BC;31,答案不惟一.如:已知:AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.等等;32,(1)又因为AB=A1B1,∠ADB =∠A1D1B1=90°.所以△ADB≌△A1D1B1,所以∠A=∠A1,又∠C=∠C1,BC=B1C1,所以△ABC≌△A1B1C1.(2)由题设和(1)我们可以得到下列结论:若△ABC、△A1B1C1均为锐角三角形或均为直角三角形或均为钝角三角形,AB=A1B1,BC=B1C1,∠C=∠C1,则△ABC≌△A1B1C1.。