2018-2019年天津市数学押题试卷训练试题(2套)附答案
2019年最新(统考)天津市高考押题金卷数学(文)试卷及答案解析

天津市高考押题金卷文科数学一、选择题(每小题5分,共40分)1. 已知集合A={0,2,4,6},B={x∈N|2x≤33},则集合A∩B的子集个数为()A.6 B.7 C.8 D.42. 如图,正方形ABCD中,M是BC的中点,若=λ+μ,则λ+μ=()A.B.C.D.23. 一个几何体的三视图如图所示,则该几何体的表面积为()A.B.C.D.+24. 设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若sinA=2 sinB ,,则△ABC 的面积为( )A .B .C .D .5. 双曲线()222210,0x y a b a b -=>>的一条渐近线与圆(()2211x y +-=相切,则此双曲线的离心率为( )(A)26. 某程序框图如图所示,若该程序运行后输出的值是,则( )A .a=3B .a=4C .a=5D .a=67. 将数字1,2,3,4,5,6书写在每一个骰子的六个表面上,做成6枚一样的骰子.分别取三枚同样的这种骰子叠放成如图A 和B 所示的两个柱体,则柱体A 和B 的表面(不含地面)数字之和分别是( )A .4748,B .4749,C .4950,D .5049,8. 定义在R 上的函数)(x f y =,对任意不等的实数21,x x 都有0))](()([2121<--x x x f x f 成立,又函数)1(-=x f y 的图象关于点(1,0)对称,若不等式0)2()2(22≤-+-y y f x x f 成立,则当41<≤x 时,xy 的取值范围是 A .]1,21(- B .]1,(-∞ C .]1,21[- D .),21[∞- 二、填空题:本大题共6小题,每小题5分,共30分.9. 设等比数列{a n }的公比q=,前n 项和为S n ,则= .10. 已知向量,,,且,则实数m= . 11已知抛物线C :y 2=4x ,直线l 与抛物线C 交于A ,B 两点,若线段AB 的中点坐标为(2,2),则直线l 的方程为 .A B 1243665552313612. 某市为了增强市民的消防意识,面向社会招募社区宣传志愿者.现从20岁至45岁的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.若用分层抽样的方法从这100名志愿者中抽取20名参加消防演习活动,则从第4组中抽取的人数为 .13. 已知数列{a n }满足a n =(n ∈N *),若{a n }是递减数列,则实数a 的取值范围是 .14. 设函数()()02>+=x x x x f ,观察: ()()21+==x x x f x f , ()()()4312+==x x x f f x f ,()()()8723+==x x x f f x f ,()()()161534+==x x x f f x f ,根据以上事实,由归纳推理可得: 当*N n ∈且2≥n 时,()()()x f f x f n n 1-==__________。
天津河西区2018-2019年初二下年末质量数学试卷及解析

天津河西区2018-2019年初二下年末质量数学试卷及解析八年级数学试卷【一】选择题〔本大题共10小题,每题3分,共30分〕1、如图,数轴上点P 表示旳数可能是〔〕﹣= =4 ÷=6 ×〔﹣〕=34、期中考试后,班里有两位同学议论他们小组旳数学成绩,小晖说:“我们组考分是82分旳人最多”,小聪说:“我们组旳7位同学成绩排在最中间旳恰好也是82分”、上面两位同学5、〔3分〕一次函数旳图象过点〔3,5〕与〔﹣4,﹣9〕,那么该函数旳图象与y 轴交点旳7、〔3分〕〔2017•天津〕下面是甲、乙两人10次射击成绩〔环数〕旳条形统计图,那么以下说法正确旳选项是〔〕c= c=9、〔3分〕如图,由六个全等旳正三角形拼成旳图,图中平行四边形旳个数是〔〕10、〔3分〕〔2018•乌鲁木齐〕为使我市冬季“天更蓝、房更暖”、政府决定实施“煤改气”供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长旳管道,所挖管道长度y 〔米〕与挖掘时刻x 〔天〕之间旳关系如下图,那么以下说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③当x=4时,甲、乙两队所挖管道长度相同;④甲队比乙队提早2天完成任务、正确旳个数有〔〕【二】填空题〔本大题共6小题,每题3分,共18分〕11、〔3分〕一个正方形旳面积是5,那么那个正方形旳对角线旳长度为﹏﹏﹏﹏﹏﹏﹏﹏﹏、12、〔3分〕一次函数旳图象通过点〔2,3〕,且满足y 随x 旳增大而增大,那么该一次函数旳【解析】式能够为﹏﹏﹏﹏﹏﹏﹏﹏﹏〔写出一个即可〕、13、〔3分〕假设以A 〔﹣0.5,0〕,B 〔2,O 〕,C 〔0,1〕三点为顶点要画平行四边形,那么第四个顶点不可能在第﹏﹏﹏﹏﹏﹏﹏﹏﹏象限、14、〔3分〕要组织一次排球邀请赛,参赛旳每两个各队之间都要竞赛一场,依照场地和时刻等条件,赛程打算安排7天,每天安排4场竞赛,竞赛组织者应邀请多少个队参赛?假设设应邀请x各队参赛,可列出旳方程为﹏﹏﹏﹏﹏﹏﹏﹏﹏、15、〔3分〕〔2018•荆州〕如图,△ACE是以▱ABCD旳对角线AC为边旳等边三角形,点C与点E关于x轴对称、假设E点旳坐标是〔7,﹣3〕,那么D点旳坐标是﹏﹏﹏﹏﹏﹏﹏﹏﹏、16、〔3分〕〔2018•宝坻区一模〕假如一条直线把一个平面图形旳面积分成相等旳两部分,我们把这条直线称为那个平面图形旳一条面积等分线、〔1〕平行四边形有﹏﹏﹏﹏﹏﹏﹏﹏﹏条面积等分线;〔2〕如图,四边形ABCD中,AB与CD不平行,AB≠CD,且S△ABC<S△ACD,过点A画出四边形ABCD旳面积等分线,并写出理由﹏﹏﹏﹏﹏﹏﹏﹏﹏、【三】解答题:〔本大题共7小题,共66分〕17、〔6分〕解方程:x2﹣4x=5、18、〔6分〕〔2018•盐城〕如图,在平行四边形ABCD中,E为BC边上旳一点,连结AE、BD 且AE=AB、〔1〕求证:∠ABE=∠EAD;〔2〕假设∠AEB=2∠ADB,求证:四边形ABCD是菱形、19、〔8分〕某校为了解九年级学生旳躯体状况,在九年级四个班旳160名学生中,按比例抽取部分学生进行“引体向上”测试、所有被测试者旳“引体向上”次数统计如表;各班被测试人数占所有被测试人数旳百分比如扇形图〔九年四班相关数据未标出〕、〔Ⅰ〕九年四班中参加本次测试旳学生旳人数是多少?〔Ⅱ〕求本次测试猎取旳样本数据旳平均数、众数和中位数;20、〔8分〕在正方形ABCD中,E是BC旳中点,F为CD上一点,且,试推断△AEF 是否是直角三角形?试说明理由、21、〔8分〕某商品现在旳售价为每件35元、每天可卖出50件、市场调查反映:假如调整价格、每降价1元,每天可多卖出2件、请你关心分析,当每件商品降价多少元时,可使每天旳销售额最大,最大销售额是多少?设每件商品降价x元、每天旳销售额为y元、〔Ⅱ〕〔由以上分析,用含x旳式子表示y,并求出问题旳解〕22、〔8分〕〔2017•河北〕如图,直线l1旳【解析】表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2通过点A,B,直线l1,l2交于点C、〔1〕求点D旳坐标;〔2〕求直线l2旳【解析】表达式;〔3〕求△ADC旳面积;〔4〕在直线l2上存在异于点C旳另一点P,使得△ADP与△ADC旳面积相等,请直截了当写出点P旳坐标、23、〔8分〕将矩形OABC置于平面直角坐标系中,点A旳坐标为〔0,4〕,点C旳坐标为〔m,0〕〔m>0〕,点D〔m,1〕在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B旳对应点为点E、〔1〕当m=3时,求点B旳坐标和点E旳坐标;〔自己重新画图〕〔2〕随着m旳变化,试探究:点E能否恰好落在x轴上?假设能,请求出m旳值;假设不能,请说明理由、。
{3套试卷汇总}2018-2019天津市中考三轮总复习数学能力测试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.把不等式组2010x x -⎧⎨+<⎩的解集表示在数轴上,正确的是( )A .B .C .D .【答案】B【解析】首先解出各个不等式的解集,然后求出这些解集的公共部分即可. 【详解】解:由x ﹣2≥0,得x≥2, 由x+1<0,得x <﹣1, 所以不等式组无解, 故选B . 【点睛】解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了. 2.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是( )A .8B .9C .10D .12【答案】A【解析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数. 解:设这个多边形的外角为x°,则内角为3x°, 由题意得:x+3x=180, 解得x=45,这个多边形的边数:360°÷45°=8, 故选A .考点:多边形内角与外角.3.如图,正比例函数11y k x =的图像与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >2【答案】D【解析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论. 【详解】解:∵反比例函数与正比例函数的图象均关于原点对称, ∴A 、B 两点关于原点对称,∵点A 的横坐标为1,∴点B 的横坐标为-1,∵由函数图象可知,当-1<x <0或x >1时函数y 1=k 1x 的图象在22k y x的上方, ∴当y 1>y 1时,x 的取值范围是-1<x <0或x >1. 故选:D . 【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y 1>y 1时x 的取值范围是解答此题的关键.4.下列叙述,错误的是( )A .对角线互相垂直且相等的平行四边形是正方形B .对角线互相垂直平分的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线相等的四边形是矩形 【答案】D【解析】根据正方形的判定、平行四边形的判定、菱形的判定和矩形的判定定理对选项逐一进行分析,即可判断出答案.【详解】A. 对角线互相垂直且相等的平行四边形是正方形,正确,不符合题意;B. 对角线互相垂直平分的四边形是菱形,正确,不符合题意;C. 对角线互相平分的四边形是平行四边形,正确,不符合题意;D. 对角线相等的平行四边形是矩形,故D 选项错误,符合题意, 故选D.【点睛】本题考查了正方形的判定、平行四边形的判定、菱形的判定和矩形的判定等,熟练掌握相关判定定理是解答此类问题的关键.5.-2的倒数是( ) A .-2 B .12-C .12D .2【答案】B【解析】根据倒数的定义求解. 【详解】-2的倒数是-12故选B 【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握6.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像CD 的长( )A .16cm B .13cmC .12cm D .1cm【答案】D【解析】过O 作直线OE ⊥AB ,交CD 于F ,由CD//AB 可得△OAB ∽△OCD ,根据相似三角形对应边的比等于对应高的比列方程求出CD 的值即可. 【详解】过O 作直线OE ⊥AB ,交CD 于F , ∵AB//CD ,∴OF ⊥CD ,OE=12,OF=2, ∴△OAB ∽△OCD ,∵OE 、OF 分别是△OAB 和△OCD 的高, ∴OF CD OE AB =,即2126CD=, 解得:CD=1.故选D. 【点睛】本题考查相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,熟记相似三角形对应边的比等于对应高的比是解题关键.7.如果1∠与2∠互补,2∠与3∠互余,则1∠与3∠的关系是( ) A .13∠=∠ B .11803∠=-∠ C .1903∠=+∠ D .以上都不对【答案】C【解析】根据∠1与∠2互补,∠2与∠1互余,先把∠1、∠1都用∠2来表示,再进行运算. 【详解】∵∠1+∠2=180° ∴∠1=180°-∠2 又∵∠2+∠1=90° ∴∠1=90°-∠2∴∠1-∠1=90°,即∠1=90°+∠1. 故选C . 【点睛】此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度.8.如图,AB 是⊙O 的直径,弦CD ⊥AB 于E ,∠CDB=30°,⊙O 的半径为3,则弦CD 的长为( )A .32cm B .3cmC .23cmD .9cm【答案】B【解析】解:∵∠CDB=30°, ∴∠COB=60°,又∵3,CD ⊥AB 于点E , ∴3sin 6023︒==, 解得CE=32cm ,CD=3cm . 故选B .考点:1.垂径定理;2.圆周角定理;3.特殊角的三角函数值.9.如图,点P 是∠AOB 内任意一点,OP=5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是( ).A.25︒B.30︒C.35︒D.40︒【答案】B【解析】试题分析:作点P关于OA对称的点P3,作点P关于OB对称的点P3,连接P3P3,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P3P3的长,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等边三角形, ∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.考点:3.线段垂直平分线性质;3.轴对称作图.10.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A.中位数B.众数C.平均数D.方差【答案】A【解析】7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.二、填空题(本题包括8个小题)11.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.【答案】【解析】根据概率的公式进行计算即可.【详解】从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.故答案为:.【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.12.某厂家以A 、B 两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A 原料、1.5千克B 原料;乙产品每袋含2千克A 原料、1千克B 原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A 原料和B 原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元. 【答案】5750【解析】根据题意设甲产品的成本价格为b 元,求出b ,可知A 原料与B 原料的成本和40元,然后设A 种原料成本价格x 元,B 种原料成本价格(40﹣x)元,生产甲产品m 袋,乙产品n 袋,列出方程组得到xn =20n ﹣250,最后设生产甲乙产品的实际成本为W 元,即可解答 【详解】∵甲产品每袋售价72元,则利润率为20%. 设甲产品的成本价格为b 元, ∴72-bb=20%, ∴b =60,∴甲产品的成本价格60元,∴1.5kgA 原料与1.5kgB 原料的成本和60元, ∴A 原料与B 原料的成本和40元,设A 种原料成本价格x 元,B 种原料成本价格(40﹣x)元,生产甲产品m 袋,乙产品n 袋, 根据题意得:10060(240)50060(802)m n m x x n m n x x +≤⎧⎨++-+=+-+⎩ , ∴xn =20n ﹣250,设生产甲乙产品的实际成本为W 元,则有 W =60m+40n+xn ,∴W =60m+40n+20n ﹣250=60(m+n)﹣250, ∵m+n≤100, ∴W≤6250;∴生产甲乙产品的实际成本最多为5750元, 故答案为5750; 【点睛】此题考查不等式和二元一次方程的解,解题关键在于求出甲产品的成本价格13.某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m1)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是_____m1.【答案】150【解析】设绿化面积与工作时间的函数解析式为,因为函数图象经过,两点,将两点坐标代入函数解析式得得,将其代入得,解得,∴一次函数解析式为,将代入得,故提高工作效率前每小时完成的绿化面积为.14.如图,矩形ABCD面积为40,点P在边CD上,PE⊥AC,PF⊥BD,足分别为E,F.若AC=10,则PE+PF =_____.【答案】4【解析】由矩形的性质可得AO=CO=5=BO=DO,由S△DCO=S△DPO+S△PCO,可得PE+PF的值.【详解】解:如图,设AC与BD的交点为O,连接PO,∵四边形ABCD是矩形∴AO=CO=5=BO=DO,∴S△DCO=14S矩形ABCD=10,∵S△DCO=S△DPO+S△PCO,∴10=12×DO×PF+12×OC×PE∴20=5PF+5PE ∴PE+PF=4故答案为4 【点睛】本题考查了矩形的性质,利用三角形的面积关系解决问题是本题的关键.15.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘米,则列出的方程组为_____.【答案】2753x y x y +=⎧⎨=⎩【解析】根据图示可得:长方形的长可以表示为x+2y ,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x ,或x+3y ,故2x=3y+x ,整理得x=3y ,联立两个方程即可.【详解】根据图示可得2753x y x y +=⎧⎨=⎩,故答案是:2753x y x y+=⎧⎨=⎩.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽. 16.已知A(x 1,y 1),B(x 2,y 2)都在反比例函数y =6x的图象上.若x 1x 2=﹣4,则y 1⋅y 2的值为______. 【答案】﹣1.【解析】根据反比例函数图象上点的坐标特征得到121266,y y x x ==, 再把它们相乘,然后把124x x =-代入计算即可.【详解】根据题意得121266,y y x x ==, 所以1212126636369.4y y x x x x =⋅===-- 故答案为:−1. 【点睛】考查反比例函数图象上点的坐标特征,把点,A B 的坐标代入反比例函数解析式得到121266,,y y x x ==是解题的关键.17.如图,在ABC 中A 60∠=︒,BM AC ⊥于点M ,CN AB ⊥于点N ,P 为BC 边的中点,连接PM,PN ,则下列结论:①PM PN =,②MN AB BC AC ⋅=⋅,③PMN 为等边三角形,④当ABC45∠=︒时,CN2PM=.请将正确结论的序号填在横线上__.【答案】①③④【解析】①根据直角三角形斜边上的中线等于斜边的一半可判断①;②先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②;③先根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断③;④当∠ABC=45°时,∠BCN=45°,进而判断④.【详解】①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=12BC,PN=12BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴AM ANAB AC=,错误;③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM=180°-60°-30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∵P为BC中点,可得22PC,故④正确.所以正确的选项有:①③④故答案为①③④【点睛】本题主要考查了直角三角形斜边的中线等于斜边的一半的性质,相似三角形、等边三角形、等腰直角三角形的判定与性质,等腰三角形三线合一的性质,仔细分析图形并熟练掌握性质是解题的关键.18.2(2)=__________【答案】2;【解析】试题解析:先求-2的平方4,再求它的算术平方根,即:2-2=4=2().三、解答题(本题包括8个小题)19.作图题:在∠ABC内找一点P,使它到∠ABC的两边的距离相等,并且到点A、C的距离也相等.(写出作法,保留作图痕迹)【答案】见解析【解析】先作出∠ABC的角平分线,再连接AC,作出AC的垂直平分线,两条平分线的交点即为所求点.【详解】①以B为圆心,以任意长为半径画弧,分别交BC、AB于D、E两点;②分别以D、E为圆心,以大于12DE为半径画圆,两圆相交于F点;③连接AF,则直线AF即为∠ABC的角平分线;⑤连接AC,分别以A、C为圆心,以大于12AC为半径画圆,两圆相交于F、H两点;⑥连接FH交BF于点M,则M点即为所求.【点睛】本题考查的是角平分线及线段垂直平分线的作法,熟练掌握是解题的关键.20.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【答案】(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】(1)设第一批饮料进货单价为x 元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为m 元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为x 元,则:1600600032x x ⨯=+ 解得:8x =经检验:8x =是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为m 元,则: ()()8200106001200m m -⋅+-⋅≥,化简得:()()2861012m m -+-≥,解得:11m ≥,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.21.李宁准备完成题目;解二元一次方程组48x y x y -=⎧⎨+=-⎩,发现系数“□”印刷不清楚.他把“□”猜成3,请你解二元一次方程组438x y x y -=⎧⎨+=-⎩;张老师说:“你猜错了”,我看到该题标准答案的结果x 、y 是一对相反数,通过计算说明原题中“□”是几?【答案】(1)15x y =-⎧⎨=-⎩;(2)-1 【解析】(1)②+①得出4x=-4,求出x ,把x 的值代入①求出y 即可;(2)把x=-y 代入x-y=4求出y ,再求出x ,最后把x 、y 代入②求出答案即可.【详解】解:(1)438x y x y -=⎧⎨+=-⎩①② ①+②得,1x =-.将1x =-时代入①得,5y =-,∴15x y =-⎧⎨=-⎩. (2)设“□”为a ,∵x 、y 是一对相反数,∴把x=-y 代入x-y=4得:-y-y=4,解得:y=-2,即x=2,所以方程组的解是22x y =⎧⎨=-⎩, 代入ax+y=-8得:2a-2=-8,解得:a=-1,即原题中“□”是-1.【点睛】本题考查了解二元一次方程组,也考查了二元一次方程组的解,能得出关于a 的方程是解(2)的关键. 22.列方程解应用题八年级学生去距学校10 km 的博物馆参观,一部分学生骑自行车先走,过了20 min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.【答案】15/km h【解析】试题分析:设骑车学生的速度为xkm /h ,利用时间关系列方程解应用题,一定要检验. 试题解析:解:设骑车学生的速度为xkm /h ,由题意得 1010123x x -= , 解得 x 15=.经检验x 15=是原方程的解.答: 骑车学生的速度为15km/h .23.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x/(元/千克)50 60 70 销售量y/千克 100 80 60(1)求y 与x 之间的函数表达式;设商品每天的总利润为W(元),求W 与x 之间的函数表达式(利润=收入-成本);试说明(2)中总利润W 随售价x 的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?【答案】 (1)y =-2x +200(4080)x ≤≤ (2)W =-2x 2+280x -8 000(3)售价为70元时,获得最大利润,这时最大利润为1 800元.【解析】(1)用待定系数法求一次函数的表达式;(2)利用利润的定义,求与之间的函数表达式;(3)利用二次函数的性质求极值.【详解】解:(1)设y kx b =+,由题意,得501006080k b k b +=⎧⎨+=⎩,解得2200k b =-⎧⎨=⎩,∴所求函数表达式为2200y x =-+.(2)2(40)(2200)22808000W x x x x =--+=-+-.(3)22228080002(70)1800W x x x =-+-=--+,其中4080x ≤≤,∵20-<,∴当时,随的增大而增大,当7080x <≤时,随的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.考点: 二次函数的实际应用.24.如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.【答案】(1),;(2)点的坐标为;(3)点的坐标为和【解析】(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;(2)先求F 的对称点,代入直线BE ,即可;(3)构造新的二次函数,利用其性质求极值.【详解】解:(1)轴,,抛物线对称轴为直线 点的坐标为 解得或(舍去),(2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.直线经过点利用待定系数法可得直线的表达式为.因为点在上,即点的坐标为(3)存在点满足题意.设点坐标为,则作垂足为①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为综上所述:满足题意得点的坐标为和考点:二次函数的综合运用.25.列方程解应用题:为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?【答案】甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.【解析】设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏,然后根据“甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天”列出方程求解即可.【详解】解:设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏.根据题意得:解得:x=1.经检验:x=1是原方程的解且符合实际问题的意义.∴1.2x=1.2×1=2.答:甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.【点睛】此题考查了分式方程的应用,找出等量关系为两广告公司的工作时间的差为10天是解题的关键.26.某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?【答案】每件衬衫应降价1元.【解析】利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可.【详解】解:设每件衬衫应降价x元.根据题意,得(40-x)(1+2x)=110,整理,得x2-30x+10=0,解得x1=10,x2=1.∵“扩大销售量,减少库存”,∴x1=10应舍去,∴x=1.答:每件衬衫应降价1元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,平面直角坐标系xOy中,四边形OABC的边OA在x轴正半轴上,BC∥x轴,∠OAB=90°,点C(3,2),连接OC.以OC为对称轴将OA翻折到OA′,反比例函数y=kx的图象恰好经过点A′、B,则k 的值是()A.9 B.133C.16915D.33【答案】C【解析】设B(2k,2),由翻折知OC垂直平分AA′,A′G=2EF,AG=2AF,由勾股定理得OC=13,根据相似三角形或锐角三角函数可求得A′(526,613),根据反比例函数性质k=xy建立方程求k.【详解】如图,过点C作CD⊥x轴于D,过点A′作A′G⊥x轴于G,连接AA′交射线OC于E,过E作EF⊥x 轴于F,设B(2k,2),在Rt△OCD中,OD=3,CD=2,∠ODC=90°,∴OC222232OD CD++13由翻折得,AA′⊥OC,A′E=AE,∴sin∠COD=AE CDOA OC=,∴AE=213213kCD OAOC⨯⋅==,∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,∴∠OAE=∠OCD,∴sin∠OAE=EF ODAE OC==sin∠OCD,∴EF=133131313OD AEkOC⋅==,∵cos ∠OAE =AF CD AE OC ==cos ∠OCD , ∴1321313CD AF AE k k OC =⋅=⨯=, ∵EF ⊥x 轴,A′G ⊥x 轴,∴EF ∥A′G ,∴12EF AF AE A G AG AA ==='', ∴6213A G EF k '==,4213AG AF k ==, ∴14521326OG OA AG k k k =-=-=, ∴A′(526k ,613k ), ∴562613k k k ⋅=, ∵k≠0,∴169=15k , 故选C .【点睛】本题是反比例函数综合题,常作为考试题中选择题压轴题,考查了反比例函数点的坐标特征、相似三角形、翻折等,解题关键是通过设点B 的坐标,表示出点A′的坐标.2. 如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )A .B .C .D .【答案】C 【解析】根据左视图是从左面看所得到的图形进行解答即可.【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C .【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A .BE=DFB .AE=CFC .AF//CED .∠BAE=∠DCF【答案】B【解析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.4.3的倒数是()A.3B.3-C.13D.13-【答案】C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.5.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b6【答案】D【解析】试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可.试题解析:(ab2)3=a3•(b2)3=a3b1.故选D.考点:幂的乘方与积的乘方.6.如图,反比例函数y=-的图象与直线y=-x的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则△ABC的面积为( )A.8 B.6 C.4 D.2【答案】A【解析】试题解析:由于点A、B在反比例函数图象上关于原点对称,则△ABC的面积=2|k|=2×4=1.故选A.考点:反比例函数系数k的几何意义.7.下列手机手势解锁图案中,是轴对称图形的是( )A.B.C.D.【答案】D【解析】根据轴对称图形与中心对称图形的定义进行判断.【详解】A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.8.已知(AC BC)ABC ∆<,用尺规作图的方法在BC 上确定一点P ,使PA PC BC +=,则符合要求的作图痕迹是( )A .B .C .D .【答案】D【解析】试题分析:D 选项中作的是AB 的中垂线,∴PA=PB ,∵PB+PC=BC ,∴PA+PC=BC .故选D .考点:作图—复杂作图.9.已知关于x 的方程x 2+3x+a=0有一个根为﹣2,则另一个根为( )A .5B .﹣1C .2D .﹣5 【答案】B【解析】根据关于x 的方程x 2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【详解】∵关于x 的方程x 2+3x+a=0有一个根为-2,设另一个根为m ,∴-2+m=−31, 解得,m=-1,故选B .10.将一副三角板(∠A =30°)按如图所示方式摆放,使得AB ∥EF ,则∠1等于( )A .75°B .90°C .105°D .115°【答案】C 【解析】分析:依据AB ∥EF ,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.详解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选C.点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.二、填空题(本题包括8个小题)11.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC= .【答案】1+【解析】试题分析:连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的长;过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.解:连接AB,则AB为⊙M的直径.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.过B作BD⊥OC于D.Rt△OBD中,∠COB=45°,则OD=BD=OB=.Rt△BCD中,∠OCB=60°,则CD=BD=1.∴OC=CD+OD=1+.故答案为1+.点评:此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.12.如图,在ABC 中A 60∠=︒,BM AC ⊥于点M ,CN AB ⊥于点N ,P 为BC 边的中点,连接PM,PN ,则下列结论:①PM PN =,②MN AB BC AC ⋅=⋅,③PMN 为等边三角形,④当ABC 45∠=︒时,CN 2PM =.请将正确结论的序号填在横线上__.【答案】①③④【解析】①根据直角三角形斜边上的中线等于斜边的一半可判断①;②先证明△ABM ∽△ACN ,再根据相似三角形的对应边成比例可判断②;③先根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN ,根据有一个角是60°的等腰三角形是等边三角形可判断③; ④当∠ABC=45°时,∠BCN=45°,进而判断④.【详解】①∵BM ⊥AC 于点M ,CN ⊥AB 于点N ,P 为BC 边的中点,∴PM=12BC ,PN=12BC , ∴PM=PN ,正确;②在△ABM 与△ACN 中,∵∠A=∠A ,∠AMB=∠ANC=90°,∴△ABM ∽△ACN ,∴AM AN AB AC=,错误; ③∵∠A=60°,BM ⊥AC 于点M ,CN ⊥AB 于点N ,∴∠ABM=∠ACN=30°,在△ABC 中,∠BCN+∠CBM=180°-60°-30°×2=60°,∵点P 是BC 的中点,BM ⊥AC ,CN ⊥AB ,。
天津市南开区2018-2019学年八年级数学上期末模拟试卷(有答案)【优质】

八年级数学上册期末模拟试卷一、选择题:1.下列运算正确的是( )A.(a3)2=a5B.a2•a3=a5C.a6÷a2=a3D.3a2﹣2a2=12.以下图形中对称轴的数量小于3的是()3.下列式子中,与分式的值相等的是( )A.B.C.D.4.如图,AE=AF,AB=AC,EC与BF交于点O,∠A=60°,∠B=25°,则∠EOB的度数为()A.60°B.70°C.75°D.85°5.计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2D.a2﹣2ab+b26.将一块直尺与一块三角板如图2放置,若∠1=45°,则∠2的度数为()A.145°B.135°C.120°D.115°7.如图,A,B,C表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在()A.AC,BC两边高线的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处8.如图,把一副三角尺叠放在一起,若AB∥CD,则∠1的度数是()A.75°B.60°C.45°D.30°9.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°10.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ 时,连PQ交AC边于D,则DE的长为()11.某市道路改造中,需要铺设一条长为1200米的管道,为了尽量减少施工对交通造成的影响,实际施工时,工作效率比原计划提高了25%,结果提前了8天完成任务.设原计划每天铺设管道x米,根据题意,则下列方程正确的是()12.已知a是方程x2+x﹣2015=0的一个根,则的值为()A.2014 B.2015 C.D.二、填空题13.点P(﹣1,3)关于y轴的对称点的坐标是.14.如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样大小的一块.为了方便起见,需带上块,其理由是.15.已知等腰三角形的顶角为40°,则它一腰上的高与底边的夹角为.16.若4x2+2(k-3)x+9是完全平方式,则k=______.17.某市为治理污水,需要铺设一段全长为300m的污水排放管道.铺设120m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务、求原计划每天铺设管道的长度,如果设原计划每天铺设xm管道,那么根据题意,可得方程.18.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于.三、解答题19.化简:(x+y)2﹣(x+y)(x﹣y) 20. (x2+y2)2﹣4x2y2.21.化简:22.解分式方程:23.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.24.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.25.我市某县为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作6天后,余下的工程由甲工程队单独来做还需3天完成.(1)问该县要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资3万元.现该工程由甲、乙两个工程队合作完成,该县准备了工程工资款65万元.请问该县准备的工程工资款是否够用?26.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是;(请选择正确的一个)A.a2-2ab+b2=(a-b)2B.a2-b2=(a+b)(a-b)C.a2+ab=a(a+b)(2)应用:利用你从(1)选出的等式,完成下列各题:①已知9x2-4y2=24,3x+2y=6,求3x-2y的值;②计算:27.如图,已知△ABC是等边三角形,D为AC边上的一点,DG∥AB,延长AB到E,使BE=GD,连接DE交BC于F.(1)求证:GF=BF;(2)若△ABC的边长为a,BE的长为b,且a,b满足(a﹣7)2+b2﹣6b+9=0,求BF的长.参考答案1.B.2.D3.A4.B5.C6.B7.C8.A.9.A10.B11.B.12.D13.答案为:(1,3).14.答案为:第1,利用SAS得出全等三角形,即可配成与原来同样大小的一块.15.答案为:20°.16.答案为:9或﹣3 .17.答案为:或.18.答案为:15.19.原式=x2+2xy+y2﹣x2+y2=2xy+2y2.20.(x2+y2)2﹣4x2y2=(x2+y2﹣2xy)(x2+y2+2xy)=(x﹣y)2(x+y)2.21.原式====.22.去分母得:1+2x﹣6=x﹣4,解得:x=1,经检验x=1是分式方程的解;23.(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.24.解:∵△ABC中BD、CD平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠6,∵EF∥BC,∴∠2=∠3,∠4=∠6,∴∠1=∠3,∠4=∠5,根据在同一三角形中等角对等边的原则可知,BE=ED,DF=FC,故EF=ED+DF=BE+CF.25.26. (1)B;(2)①,4;②;27.⑴证明:△DGF≌△EBF,GF=BF;⑵∵(a-7)2+b2-6b+9=0,∴a=7,b=3, BF=2.。
天津市2019年中考数学二模试卷(含答案解析)

2018年中考数学二模试卷(解析版)一、选择题1.-6÷的结果等于()A.1 B.﹣1 C.36 D.﹣36【分析】根据有理数的运算法则即可求出答案.【解答】解:原式=﹣6×6=﹣36故选:D.【点评】本题考查有理数的运算法则,解题的关键是熟练运用除法法则,本题属于基础题型.2.(3分)2sin60°的值等于()A.B.2 C.1 D.【分析】根据特殊角三角函数值,可得答案.【解答】解:2sin60°=2×=,故选:A.【点评】本题考查了特殊角三角函数值,解决此类题目的关键是熟记特殊角的三角函数值.3.(3分)观察下列图形,既是轴对称图形又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个图形不是轴对称图形,是中心对称图形,故本选项错误;第二个图形既是轴对称图形又是中心对称图形;第三个图形既是轴对称图形又是中心对称图形;第四个图形既是轴对称图形又是中心对称图形;所以,既是轴对称图形又是中心对称图形共有3个.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)某商城开设一种摸奖游戏,中一等奖的机会为20万分之一,将这个数用科学计数法表示为()A.2×10﹣5 B.2×10﹣6C.5×10﹣5D.5×10﹣6【分析】先把20万分之一转化成0.000 005,然后再用科学记数法记数记为5×10﹣6.小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:=0.000005=5×10﹣6.故选:D.【点评】考查了科学计数法﹣表示较小的数,将一个绝对值较小的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.5.(3分)用五块大小相同的小正方体搭成如图所示的几何体,这个几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看,是两层都有两个正方形的田字格形排列.【点评】本题考查了三视图的知识,左视图是从物体的正面看得到的视图.6.(3分)在实数﹣,﹣2,,中,最小的是()A.﹣B.﹣2 C.D.【分析】为正数,,﹣2为负数,根据正数大于负数,所以比较与﹣2的大小即可.【解答】解:正数有:;负数:,﹣2,∵,∴,∴最小的数是﹣2,故选:B.【点评】本题考查了实数比较大小,解决本题的关键是正数大于负数,两个负数,绝对值大的反而小.7.(3分)如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A.B.C.D.【分析】根据题意得出△ADE∽△ABC,进而利用已知得出对应边的比值.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵BD=2AD,∴===,则=,∴A,C,D选项错误,B选项正确,故选:B.【点评】此题主要考查了相似三角形的判定与性质,正确得出对应边的比是解题关键.8.(3分)一个正六边形的半径为R,边心距为r,那么R与r的关系是()A.r=R B.r=R C.r=R D.r=R【分析】求出正六边形的边心距(用R表示),根据“接近度”的定义即可解决问题.【解答】解:∵正六边形的半径为R,∴边心距r=R,故选:A.【点评】本题考查正多边形与圆的共线,等边三角形高的计算,记住等边三角形的高h=a(a是等边三角形的边长),理解题意是解题的关键,属于中考常考题型.9.(3分)设点A(x1,y1)和B(x2,y2)是反比例函数y=图象上的两个点,当x1<x2<0时,y1<y2,则一次函数y=﹣2x+k的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据反比例函数图象的性质得出k的取值范围,进而根据一次函数的性质得出一次函数y=﹣2x+k的图象不经过的象限.【解答】解:∵点A(x1,y1)和B(x2,y2)是反比例函数y=图象上的两个点,当x1<x2<0时,y1<y2,∴x1<x2<0时,y随x的增大而增大,∴k<0,∴一次函数y=﹣2x+k的图象不经过的象限是:第一象限.故选:A.【点评】此题主要考查了一次函数图象与系数的关系以及反比例函数的性质,根据反比例函数的性质得出k的取值范围是解题关键.10.(3分)如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为()A.50°B.55°C.60°D.65°【分析】首先连接AD,由A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,可求得∠ADO与∠ODC的度数,然后由圆的内接四边新的性质,求得答案.【解答】解:连接AD,∵OA=OD,∠AOD=50°,∴∠ADO==65°.∵AO∥DC,∴∠ODC=∠AOC=50°,∴∠ADC=∠ADO+∠ODC=115°,∴∠B=180°﹣∠ADC=65°.故选:D.【点评】此题考查了圆周角定理、圆的内接四边形的性质、平行线的性质以及等腰三角形的性质.此题比较适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.11.(3分)观察如图图形,它们是按一定规律排列的,依照此规律,第9个图形中的小点一共有()A.162个B.135个C.30个D.27个【分析】仔细观察图形,找到图形变化的规律的通项公式,然后代入9求解即可.【解答】解:第1个图形有3=3×1=3个点,第2个图形有3+6=3×(1+2)=9个点第3个图形有3+6+9=3×(1+2+3)=18个点;……第n个图形有3+6+9+…+3n=3×(1+2+3+…+n)=个点;当n=9时,==135,故选:B.【点评】本题考查了图形的变化类问题,解题的关键是能够找到图形的变化规律,然后求解.12.(3分)如图,抛物线y=ax2+bx+c(a≠0)的顶点和该抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上,它的对称轴是x=1,有下列四个结论:①abc<0,②a<﹣,③a=﹣k,④当0<x<1时,ax+b>k,其中正确结论的个数是()A.4 B.3 C.2 D.1【分析】由抛物线开口方向及对称轴位置、抛物线与y轴交点可判断①;由①知y=ax2﹣2ax+1,根据x=﹣1时y<0可判断②;由抛物线顶点在一次函数图象上知a+b+1=k+1,即a+b=k,结合b=﹣2a可判断③;根据0<x<1时二次函数图象在一次函数图象上方知ax2+bx+1>kx+1,即ax2+bx>kx,两边都除以x可判断④.【解答】解:由抛物线的开口向下,且对称轴为x=1可知a<0,﹣=1,即b=﹣2a>0,由抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上知c=1,则abc<0,故①正确;由①知y=ax2﹣2ax+1,∵x=﹣1时,y=a+2a+1=3a+1<0,∴a<﹣,故②正确;∵抛物线y=ax2+bx+c(a≠0)的顶点在一次函数y=kx+1(k≠0)的图象上,∴a+b+1=k+1,即a+b=k,∵b=﹣2a,∴﹣a=k,即a=﹣k,故③正确;由函数图象知,当0<x<1时,二次函数图象在一次函数图象上方,∴ax2+bx+1>kx+1,即ax2+bx>kx,∵x>0,∴ax+b>k,故④正确;故选:A.【点评】本题考查了抛物线与x轴的交点,二次函数的性质,主要利用了二次函数的开口方向,对称轴,最值问题,以及二次函数图象上点的坐标特征.二、填空题(3×6=18)13.(3分)分解因式:x2﹣5x=x(x﹣5).【分析】直接提取公因式x分解因式即可.【解答】解:x2﹣5x=x(x﹣5).故答案为:x(x﹣5).【点评】此题考查的是提取公因式分解因式,关键是找出公因式.14.(3分)计算×(﹣2)的结果等于2﹣2.【分析】利用二次根式的乘法法则运算.【解答】解:原式=﹣2=2﹣2.故答案为2﹣2.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.(3分)有四张卡片,分别写有数﹣2,0,1,5,将它们背面朝上(背面无差别)洗匀后放在桌上,从中任意抽出两张,则抽出卡片上的数的积是正数的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与数字积为正数的情况,再利用概率公式即可求得答案.【解答】解:画树状图如下:由树状图知,共有12种等可能结果,其中抽出卡片上的数字积为正数的结果为2种,所以抽出卡片上的数字积为正数的概率为=,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.16.(3分)如图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得到图2,则阴影部分的周长为2.【分析】根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2,即可得出答案.【解答】解:∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;故答案为:2.【点评】此题主要考查了平移的性质以及等边三角形的性质,根据题意得出A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′是解决问题的关键.17.(3分)如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y 轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为(﹣,).【分析】首先过D作DF⊥AF于F,根据折叠可以证明△CDE≌△AOE,然后利用全等三角形的性质得到OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,利用勾股定理即可求出OE的长度,而利用已知条件可以证明△AEO∽△ADF,而AD=AB=3,接着利用相似三角形的性质即可求出DF、AF的长度,也就求出了D 的坐标.【解答】解:如图,过D作DF⊥AO于F,∵点B的坐标为(1,3),∴BC=AO=1,AB=OC=3,根据折叠可知:CD=BC=OA=1,∠CDE=∠B=∠AOE=90°,AD=AB=3,在△CDE和△AOE中,,∴△CDE≌△AOE,∴OE=DE,OA=CD=1,AE=CE,设OE=x,那么CE=3﹣x,DE=x,∴在Rt△DCE中,CE2=DE2+CD2,∴(3﹣x)2=x2+12,∴x=,∴OE=,AE=CE=OC﹣OE=3﹣=,又∵DF⊥AF,∴DF∥EO,∴△AEO∽△ADF,∴AE:AD=EO:DF=AO:AF,即:3=:DF=1:AF,∴DF=,AF=,∴OF=﹣1=,∴D的坐标为:(﹣,).故答案为:(﹣,).【点评】此题主要考查了图形的折叠问题、相似三角形的判定与性质、全等三角形的判定与性质以及坐标与图形的性质.解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.18.(3分)如图,在每个小正方形的边长为1的网格中,A,B为格点(Ⅰ)AB的长等于(Ⅱ)请用无刻度的直尺,在如图所示的网格中求作一点C,使得CA=CB且△ABC的面积等于,并简要说明点C的位置是如何找到的取格点P、N(使得S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.【分析】(Ⅰ)利用勾股定理计算即可;(Ⅱ)取格点P、N(S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF 交PN于点C,点C即为所求.【解答】解:(Ⅰ)AB==,故答案为.=),作直线PN,再证=作线段AB的垂直(Ⅱ)如图取格点P、N(使得S△PAB平分线EF交PN于点C,点C即为所求.=),作直线PN,再证=作线段AB的垂直平分故答案为:取格点P、N(S△PAB线EF交PN于点C,点C即为所求.【点评】本题考查作图﹣应用与设计,线段的垂直平分线的性质、等高模型等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.三、解答题(66分)19.(8分)解不等式组请结合题填空,完成本题的解答(Ⅰ)解不等式①,得x≥﹣1(Ⅱ)解不等式②,得x<3(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式组的解集为﹣1≤x<3【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:(Ⅰ)解不等式①,得:x≥﹣1,(Ⅱ)解不等式②,得:x<3,(Ⅲ)把不等式①和②的解集在数轴上表示出来如下:(Ⅳ)原不等式组的解集为:﹣1≤x<3,故答案为:x≥﹣1、x<3、﹣1≤x<3.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.20.(8分)某校为了解学生每天参加户外活动的情况,随机抽查了一部分学生每天参加户外活动的时间情况,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题;(Ⅰ)在图①中,m的值为20,表示“2小时”的扇形的圆心角为54度;(Ⅱ)求统计的这组学生户外运动时间的平均数、众数和中位数.【分析】(Ⅰ)根据统计图中的数据可以求得m的值和表示“2小时”的扇形的圆心角的度数;(Ⅱ)根据条形统计图中的数据可以求得这组学生户外运动时间的平均数、众数和中位数.【解答】解:(Ⅰ)m%=1﹣40%﹣25%﹣15%=20%,即m的值是20,表示“2小时”的扇形的圆心角为:360°×15%=54°,故答案为:20、54;(Ⅱ)这组数据的平均数是:=,众数是:1,中位数是:1.【点评】本题考查条形统计图、扇形统计图、加权平均数、中位数、众数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.21.(10分)如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°,点D是圆上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.(Ⅰ)如图1,当∠ACD=45°时,请你判断DE与⊙O的位置关系并加以证明;(Ⅱ)如图2,当点F是CD的中点时,求△CDE的面积.【分析】(Ⅰ)连接OD,如图1,理由圆周角定理得到∠AOD=90°,则OD⊥AB,再理由平行线的性质得到OD⊥DE,然后根据直线与圆的位置关系的判定方法可判断DE为⊙O的切线;(Ⅱ)连接OC,如图1,利用垂径定理得到AB⊥CD,再利用圆周角定理得到∠COF=60°,则根据含30度的直角三角形三边的关系计算出OF=,CF=,所以CD=2CF=,AF=,接着证明AF为△CDE的中位线得到DE=2AF=3,然后根据三角形面积公式求解.【解答】解:(Ⅰ)DE与⊙O相切.、理由如下:连接OD,如图1,∵∠AOD=2∠ACD=2×45°=90°,∴OD⊥AB,∵DE∥AB,∴OD⊥DE,∴DE为⊙O的切线;(Ⅱ)连接OC,如图1,∵点F是CD的中点,∴AB⊥CD,CF=DF,∵∠COF=2∠CAB=60°,∴OF=OC=,CF=OF=,∴CD=2CF=,AF=OA+OF=,∵AF∥AD,F点为CD的中点,∴DE⊥CD,AF为△CDE的中位线,∴DE=2AF=3,∴△CDE的面积=×3×=.【点评】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l 的距离为d:则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O 相离⇔d>r.也考查了圆周角定理和垂径定理.22.(10分)某中学依山而建,校门A处有一斜坡AB,长度为13米,在坡顶B 处看教学楼CF的楼顶C的仰角∠CBF=53°,离B点4米运的E处有一花台,在E 处仰望C的仰角∠CEF=63.4°,CF的延长线交校门处的水平面于D点,FD=5米(Ⅰ)求∠BAD的正切值;(Ⅱ)求DC的长.(参考数据:tan53°≈,tan63.4°≈2)【分析】(Ⅰ)过B作BG⊥AD于G,则四边形BGDF是矩形,求得BG=DF=5米,然后根据勾股定理求得AG,即可求得斜坡AB的坡度i.(Ⅱ)在R t△BCF中,BF==,在R t△CEF中,EF==,得到方程BF﹣EF=﹣=4,解得CF=16,即可求得求DC=21.【解答】解:(Ⅰ)过B作BG⊥AD于G,则四边形BGDF是矩形,∴BG=DF=5米,∵AB=13米,∴AG==12米,∴tan∠BAD==1:2.4;(Ⅱ)在R t△BCF中,BF==,在R t△CEF中,EF==,∵BE=4米,∴BF﹣EF═﹣=4,解得:CF=16.∴DC=CF+DF=16+5=21米.【点评】本题考查了解直角三角形的应用﹣仰角和俯角问题,解直角三角形的应用﹣坡度和坡比问题,正确理解题意是解题的关键.23.(10分)某文物古迹遗址每周都吸引大量中外游客前来参观,如果游客过多,对文物古迹会产生不良影响,但同时考虑到文物的修缮和保存费用的问题,还要保证有一定的门票收入,因此遗址的管理部门采取了升、降门票价格的方法来控制参观人数.在实施过程中发现:每周参观人数y(人)与票价x(元)之间怡好构成一次函数关系.(Ⅰ)根据题意完成下列表格(Ⅱ)在这样的情况下,如果要确保每周有40000元的门票收入,那么每周应限定参观人数是多少?门票价格应定位多少元?(Ⅲ)门票价格应该是多少元时,门票收入最大?这样每周应有多少人参观? 【分析】(Ⅰ)由题意可知每周参观人数y (人)与票价x (元)之间怡好构成一次函数关系,把点(10,7000)(15,4500)分别代入y=kx +b ,求出k ,b 的值,即可把表格填写完整;(Ⅱ)根据参观人数×票价=40000元,即可求出每周应限定参观人数以及门票价格应定位;(Ⅲ)先得到二次函数,再配方法即可求解.【解答】解:(I )设每周参观人数与票价之间的一次函数关系式为y=kx +b , 把(10,7000)(15,4500)代入y=kx +b 中得,解得,∴y=﹣500x +12000, x=18时,y=3000,故答案为:﹣500x +12000,3000;(II )根据确保每周4万元的门票收入,得xy=40000 即x (﹣500x +12000)=40000 x 2﹣24x +80=0 解得x 1=20 x 2=4把x 1=20,x 2=4分别代入y=﹣500x +12000中 得y 1=2000,y 2=10000因为控制参观人数,所以取x=20,y=2000答:每周应限定参观人数是2000人,门票价格应是20元/人. (III )依题意有x(﹣500x+12000)=﹣500(x2﹣24)=﹣500(x﹣12)2+72000,y=﹣500×12+12000=6000.故门票价格应该是12元时门票收入最大,这样每周应有6000人参观.【点评】此题考查了二次函数以及一次函数的应用,解答此类题目的关键是要注意自变量的取值还必须使实际问题有意义.24.(10分)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A的坐标为(6,0),点B的坐标为(0,8),点C的坐标为(﹣2,4),点M,N分别为四边形OABC边上的动点,动点M从点O开始,以每秒1个单位长度的速度沿O→A→B路线向终点B匀速运动,动点N从O点开始,以每秒两个单位长度的速度沿O→C→B→A路线向终点A匀速运动,点M,N同时从O 点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间t 秒(t>0),△OMN的面积为S.(1)填空:AB的长是10,BC的长是6;(2)当t=3时,求S的值;(3)当3<t<6时,设点N的纵坐标为y,求y与t的函数关系式;(4)若S=,请直接写出此时t的值.【分析】(1)利用勾股定理即可解决问题;(2)如图1中,作CE⊥x轴于E.连接CM.当t=3时,点N与C重合,OM=3,易求△OMN的面积;(3)如图2中,当3<t<6时,点N在线段BC上,BN=12﹣2t,作NG⊥OB于G,CF⊥OB于F.则F(0,4).由GN∥CF,推出=,即=,可得BG=8﹣t,由此即可解决问题;(4)分三种情形①当点N在边长上,点M在OA上时.②如图3中,当M、N在线段AB上,相遇之前.作OE⊥AB于E,则OE==,列出方程即可解决问题.③同法当M、N在线段AB上,相遇之后,列出方程即可;【解答】解:(1)在Rt△AOB中,∵∠AOB=90°,OA=6,OB=8,∴AB===10.BC==6,故答案为10,6.(2)如图1中,作CE⊥x轴于E.连接CM.∵C(﹣2,4),∴CE=4OE=2,在Rt△COE中,OC===6,当t=3时,点N与C重合,OM=3,=•OM•CE=×3×4=6,∴S△ONM即S=6.(3)如图2中,当3<t<6时,点N在线段BC上,BN=12﹣2t,作NG⊥OB于G,CF⊥OB于F.则F(0,4).∵OF=4,OB=8,∴BF=8﹣4=4,∵GN∥CF,∴=,即=,∴BG=8﹣t,∴y=OB﹣BG=8﹣(8﹣t)=t.(4)①当点N在边长上,点M在OA上时,•t•t=,解得t=(负根已经舍弃).②如图3中,当M、N在线段AB上,相遇之前.作OE⊥AB于E,则OE==,由题意 [10﹣(2t﹣12)﹣(t﹣6)]•=,解得t=8,同法当M、N在线段AB上,相遇之后.由题意•[(2t﹣12)+(t﹣6)﹣10]•=,解得t=,综上所述,若S=,此时t的值8s或s或s.【点评】本题考查四边形综合题、平行线分线段成比例定理、勾股定理、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.25.(10分)已知抛物线l1与l2形状相同,开口方向不同,其中抛物线l1:y=ax2﹣8ax﹣交x轴于A,B两点(点A在点B的左侧),且AB=6;抛物线l2与l1交于点A和点C(5,n).(1)求抛物线l1,l2的表达式;(2)当x的取值范围是2≤x≤4时,抛物线l1与l2上的点的纵坐标同时随横坐标的增大而增大;(3)直线MN∥y轴,交x轴,l1,l2分别相交于点P(m,0),M,N,当1≤m≤7时,求线段MN的最大值.【分析】(1)首先确定A、B两点坐标,求出抛物线l1的解析式,再求出点C 坐标,利用待定系数法求出抛物线l2的解析式即可;(2)观察图象可知,中两个抛物线的顶点之间时,抛物线l1与l2上的点的纵坐标同时随横坐标的增大而增大,求出两个抛物线的顶点坐标即可解决问题;(3)分两种情形分别求解:①如图1中,当1≤m≤5时,MN=﹣m2+6m﹣5=﹣(m﹣3)2+4,②如图2中,当5<m≤7时,MN=m2﹣6m+5=(m﹣3)2﹣4,利用二次函数的性质即可解决问题;【解答】解:(1)由题意抛物线l1的对称轴x=﹣=4,∵抛物线l1交x轴于A,B两点(点A在点B的左侧),且AB=6,∴A(1,0),B(7,0),把A(1,0)代入y=ax2﹣8ax﹣,解得a=﹣,∴抛物线l1的解析式为y=﹣x2+4x﹣,把C(5,n)代入y=﹣x2+4x﹣,解得n=4,∴C(5,4),∵抛物线l1与l2形状相同,开口方向不同,∴可以假设抛物线l2的解析式为y=x2+bx+c,把A(1,0),C(5,4)代入y=x2+bx+c,得到,解得,∴抛物线l2的解析式为y=x2﹣2x+.(2)观察图象可知,中两个抛物线的顶点之间时,抛物线l1与l2上的点的纵坐标同时随横坐标的增大而增大,顶点E(2,﹣),顶点F(4,)所以2≤x≤4时,抛物线l1与l2上的点的纵坐标同时随横坐标的增大而增大,故答案为2≤x≤4.(3)∵直线MN∥y轴,交x轴,l1,l2分别相交于点P(m,0),M,N,∴M(m,﹣m2+4m﹣),N(m,m2﹣2m+),①如图1中,当1≤m≤5时,MN=﹣m2+6m﹣5=﹣(m﹣3)2+4,∴m=3时,MN的最大值为4.②如图2中,当5<m≤7时,MN=m2﹣6m+5=(m﹣3)2﹣4,5<m≤7时,在对称轴右侧,MN随m的增大而增大,∴m=7时,MN的值最大,最大值是12,综上所述,MN的最大值为12.【点评】本题考查二次函数综合题、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想思考问题,学会用分类讨论的思想解决问题,属于中考压轴题.。
天津市南开区2018-2019学年八年级数学上期末模拟试卷(有答案)-名校版

八年级数学上册期末模拟试卷一、选择题:1.下列运算正确的是( )A.(a3)2=a5B.a2•a3=a5C.a6÷a2=a3D.3a2﹣2a2=12.以下图形中对称轴的数量小于3的是()3.下列式子中,与分式的值相等的是( )A.B.C.D.4.如图,AE=AF,AB=AC,EC与BF交于点O,∠A=60°,∠B=25°,则∠EOB的度数为()A.60°B.70°C.75°D.85°5.计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2D.a2﹣2ab+b26.将一块直尺与一块三角板如图2放置,若∠1=45°,则∠2的度数为()A.145°B.135°C.120°D.115°7.如图,A,B,C表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在()A.AC,BC两边高线的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处8.如图,把一副三角尺叠放在一起,若AB∥CD,则∠1的度数是()A.75°B.60°C.45°D.30°9.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°10.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()11.某市道路改造中,需要铺设一条长为1200米的管道,为了尽量减少施工对交通造成的影响,实际施工时,工作效率比原计划提高了25%,结果提前了8天完成任务.设原计划每天铺设管道x米,根据题意,则下列方程正确的是()12.已知a是方程x2+x﹣2015=0的一个根,则的值为()A.2014 B.2015 C.D.二、填空题13.点P(﹣1,3)关于y轴的对称点的坐标是.14.如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样大小的一块.为了方便起见,需带上块,其理由是.15.已知等腰三角形的顶角为40°,则它一腰上的高与底边的夹角为.16.若4x2+2(k-3)x+9是完全平方式,则k=______.17.某市为治理污水,需要铺设一段全长为300m的污水排放管道.铺设120m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务、求原计划每天铺设管道的长度,如果设原计划每天铺设xm管道,那么根据题意,可得方程.18.如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于.19.化简:(x+y)2﹣(x+y)(x﹣y) 20. (x2+y2)2﹣4x2y2.21.化简:22.解分式方程:23.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.24.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.25.我市某县为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作6天后,余下的工程由甲工程队单独来做还需3天完成.(1)问该县要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资3万元.现该工程由甲、乙两个工程队合作完成,该县准备了工程工资款65万元.请问该县准备的工程工资款是否够用?26.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是;(请选择正确的一个)A.a2-2ab+b2=(a-b)2B.a2-b2=(a+b)(a-b)C.a2+ab=a(a+b)(2)应用:利用你从(1)选出的等式,完成下列各题:①已知9x2-4y2=24,3x+2y=6,求3x-2y的值;②计算:27.如图,已知△ABC是等边三角形,D为AC边上的一点,DG∥AB,延长AB到E,使BE=GD,连接DE交BC于F.(1)求证:GF=BF;(2)若△ABC的边长为a,BE的长为b,且a,b满足(a﹣7)2+b2﹣6b+9=0,求BF的长.参考答案1.B.2.D3.A4.B5.C6.B7.C8.A.9.A10.B11.B.12.D13.答案为:(1,3).14.答案为:第1,利用SAS得出全等三角形,即可配成与原来同样大小的一块.15.答案为:20°.16.答案为:9或﹣3 .17.答案为:或.18.答案为:15.19.原式=x2+2xy+y2﹣x2+y2=2xy+2y2.20.(x2+y2)2﹣4x2y2=(x2+y2﹣2xy)(x2+y2+2xy)=(x﹣y)2(x+y)2.21.原式====.22.去分母得:1+2x﹣6=x﹣4,解得:x=1,经检验x=1是分式方程的解;23.(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.24.解:∵△ABC中BD、CD平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠6,∵EF∥BC,∴∠2=∠3,∠4=∠6,∴∠1=∠3,∠4=∠5,根据在同一三角形中等角对等边的原则可知,BE=ED,DF=FC,故EF=ED+DF=BE+CF.25.26. (1)B;(2)①,4;②;27.⑴证明:△DGF≌△EBF,GF=BF;⑵∵(a-7)2+b2-6b+9=0,∴a=7,b=3, BF=2.。
2018-2019两年天津市中考数学试卷及答案解析

2018年天津市初中毕业生学业考试试卷数学第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算2(3)-的结果等于()A.5 B.5- C.9 D.9-2. cos30︒的值等于()A.22 B.32C.1 D.33. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A.50.77810⨯ B.47.7810⨯ C.377.810⨯D.277810⨯4.下列图形中,可以看作是中心对称图形的是()A. B. C. D.5.下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A .B . C.D .6.65 )A .5和6之间B .6和7之间C. 7和8之间 D .8和9之间7.计算23211x x x x +-++的结果为( ) A .1 B .3 C. 31x + D .31x x ++ 8.方程组10216x y x y +=⎧⎨+=⎩的解是( ) A .64x y =⎧⎨=⎩ B .56x y =⎧⎨=⎩ C. 36x y =⎧⎨=⎩ D .28x y =⎧⎨=⎩ 9.若点1(,6)A x -,2(,2)B x -,3(,2)C x 在反比例函数12y x =的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x << C. 231x x x <<D .321x x x <<10.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是( )A.AD BD== B.AE ACC.ED EB DB+=+= D.AE CB AB11.如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP EP+最小值的是()A.AB B.DE C.BD D.AF12.已知抛物线2=++(a,b,c为常数,0y ax bx c-,a≠)经过点(1,0) (0,3),其对称轴在y轴右侧,有下列结论:①抛物线经过点(1,0);②方程22ax bx c++=有两个不相等的实数根;③33-<+<.a b其中,正确结论的个数为()A.0 B.1 C.2 D.3第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.计算432x x⋅的结果等于.14.计算63)(63)的结果等于.15.不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.将直线y x=向上平移2个单位长度,平移后直线的解析式为.17.如图,在边长为4的等边ABC△中,D,E分别为AB,BC的中点,⊥于点F,G为EF的中点,连接DG,则DG的长为.EF AC18.如图,在每个小正方形的边长为1的网格中,ABC△的顶点A,B,C均在格点上.(1)ACB∠的大小为(度);(2)在如图所示的网格中,P是BC边上任意一点.A为中心,取旋转角等于BACCP最短∠,把点P逆时针旋转,点P的对应点为'P.当'时,请用无刻度...的直尺,画出点'P,并简要说明点'P的位置是如何找到的(不要求证明).三、解答题 (本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组31(1)413(2)x x x +≥⎧⎨≤+⎩请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得 .(Ⅱ)解不等式(2),得 .(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 .20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg ),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m 的值为 ;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为2.0kg 的约有多少只?21. 已知AB是O的直径,弦CD与AB相交,38∠=︒.BAC(Ⅰ)如图①,若D为AB的中点,求ABC∠和ABD∠的大小;(Ⅱ)如图②,过点D作O的切线,与AB的延长线交于点P,若∠的大小.//DP AC,求OCD22. 如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A处测得乙的顶部D处的俯角为48︒,测得底部C处的俯角为58︒,求甲、乙建筑物的高度AB和DC(结果取整数).参考数据:tan48 1.11︒≈.︒≈,tan58 1.6023.某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(Ⅰ)根据题意,填写下表:游泳次数10 15 20 (x)150 175 …方式一的总费用(元)90 135 …方式二的总费用(元)(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当20x 时,小明选择哪种付费方式更合算?并说明理由. 24.在平面直角坐标系中,四边形AOBC是矩形,点(0,0)A,O,点(5,0)点(0,3)B.以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(Ⅰ)如图①,当点D落在BC边上时,求点D的坐标;(Ⅱ)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证ADB AOB≌;△△②求点H的坐标.(Ⅲ)记K为矩形AOBC对角线的交点,S为KDE△的面积,求S的取值范围(直接写出结果即可).25.在平面直角坐标系中,点(0,0)O,点(1,0)A.已知抛物线22y x mx m=+-(m是常数),定点为P.(Ⅰ)当抛物线经过点A时,求定点P的坐标;(Ⅱ)若点P在x轴下方,当45AOP∠=︒时,求抛物线的解析式;(Ⅲ)无论m取何值,该抛物线都经过定点H.当45AHP∠=︒时,求抛物线的解析式.试卷答案一、选择题1-5:CBBAA 6-10:DCABD 11、12:DC二、填空题13.72x 14. 3 15.611 16.2y x=+17.218. (Ⅰ)90︒;(Ⅱ)如图,取格点D,E,连接DE交AB于点T;取格点M,N,连接MN交BC延长线于点G;取格点F,连接FG交TC延长线于点'P ,则点'P 即为所求.三、解答题19. 解:(Ⅰ)2x ≥-;(Ⅱ)1x ≤; (Ⅲ)(Ⅳ)21x -≤≤.20. 解:(Ⅰ)28.(Ⅱ)观察条形统计图, ∵ 1.05 1.211 1.514 1.816 2.04 1.5251114164x ⨯+⨯+⨯+⨯+⨯==++++, ∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5 1.5 1.52+=, ∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为2.0kg 的数量占8%.∴由样本数据,估计这2500只鸡中,质量为2.0kg 的数量约占8%. 有25008%200⨯=.∴这2500只鸡中,质量为2.0kg 的约有200只。
2018年天津市五区联考中考数学二模试卷(含答案解析)

2018年天津市五区联考中考数学二模试卷一、选择题(本大题共12小题,每小题3分,共36分)1.计算﹣2+3的结果是()A.1B.﹣1C.﹣5D.﹣62.计算tan30°的值等于()A.B.3C.D.3.如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.4.在国家“一带一路”战略下,我国与欧洲开通了互利互惠的中欧班列.行程最长,途经城市和国家最多的一趟专列全程长13000km,将13000用科学记数法表示应为()A.0.13×105B.1.3×104C.1.3×105D.13×103 5.如图,由四个正方体组成的几何体的左视图是()A.B.C.D.6.估计的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.计算的结果是()A.B.C.D.18.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是()A.﹣2B.2C.3D.﹣39.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD 的周长是()A.8B.10C.12D.1610.已知反比例函数y=﹣,当1<x<3时,y的取值范围是()A.0<y<1B.1<y<2C.﹣2<y<﹣1D.﹣6<y<﹣2 11.如图,等腰三角形ABC底边BC的长为4cm,面积为12cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF 上一点,则△BDM的周长最小值为()A.5cm B.6cm C.8cm D.10cm12.已知二次函数y=﹣x2﹣4x﹣5,左、右平移该抛物线,顶点恰好落在正比例函数y=﹣x的图象上,则平移后的抛物线解析式为()A.y=﹣x2﹣4x﹣1B.y=﹣x2﹣4x﹣2C.y=﹣x2+2x﹣1D.y=﹣x2+2x﹣2二、填空题(本大题共6小题,每小题3分,共18分)13.计算a3÷a2•a的结果等于.14.计算()()的结果等于.15.一个不透明的口袋中有5个红球,2个白球和1个黑球,它们除颜色外完全相同,从中任意摸出一个球,则摸出的是红球的概率是.16.若一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,则是k的值可以是.(写出一个即可).17.如图,在边长为3的正方形ABCD 中,点E 是BC 边上的点,EC=2,∠AEP=90°,且EP 交正方形外角的平分线CP 于点P ,则PC 的长为 .18.如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上. (1)AB 的长等于 ;(2)在△ABC 的内部有一点P ,满足,S △PAB :S △PBC :S △PCA =2:1:3,请在如图所示的网格中,用无刻度的直尺,画出点P ,并简要说明点P 的位置是如何找到的 (不要求证明)三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得 ;(Ⅱ)解不等式②,得 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为 .20.(8分)“六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对红星小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)该校有个班级,补全条形统计图;(Ⅱ)求该校各班留守儿童人数数据的平均数,众数与中位数;(Ⅲ)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.21.(10分)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为2,求线段EF的长.22.(10分)如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC 长为4米,求新传送带AC的长及新、原传送带触地点之间AB的长.(结果精确到0.1米)参考数据:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.41423.(10分)某商场计划购进A,B两种新型节能台灯共100盏,A型灯每盏进价为30元,售价为45元;B型台灯每盏进价为50元,售价为70元.(Ⅰ)若商场预计进货款为3500元,求A型、B型节能灯各购进多少盏?根据题意,先填写下表,再完成本问解答:(Ⅱ)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?24.(10分)在平面直角坐标系中,O为原点,点A(3,0),点B(0,4),把△ABO绕点A顺时针旋转,得△AB′O′,点B,O旋转后的对应点为B′,O.(Ⅰ)如图①,当旋转角为90°时,求BB′的长;(Ⅱ)如图②,当旋转角为120°时,求点O′的坐标;(Ⅲ)在(Ⅱ)的条件下,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标.(直接写出结果即可)25.(10分)已知抛物线y=x2+bx+c(b,c是常数)与x轴相交于A,B两点(A 在B的左侧),与y轴交于点C.(Ⅰ)当A(﹣1,0),C(0,﹣3)时,求抛物线的解析式和顶点坐标;(Ⅱ)P(m,t)为抛物线上的一个动点,①当点P关于原点的对称点P′落在直线BC上时,求m的值;②当点P关于原点的对称点P′落在第一象限内,P′A2取得最小值时,求m的值及这个最小值.参考答案与试题解析一、选择题1.【解答】解:因为﹣2,3异号,且|﹣2|<|3|,所以﹣2+3=1.故选:A.2.【解答】解:tan30°=,故选:C.3.【解答】解:根据轴对称图形的概念可知,A为轴对称图形.故选:A.4.【解答】解:将13000用科学记数法表示为:1.3×104.故选:B.5.【解答】解:图形的左视图为:,故选:B.6.【解答】解:∵<<,∴6<<7,∴的值在6和7之间;故选:C.7.【解答】解:===1,故选:D.8.【解答】解:把代入方程组得:,解得:,所以a﹣2b=﹣2×(﹣)=2,故选:B.9.【解答】解:根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选:B.10.【解答】解:∵反比例函数y=﹣,∴在每个象限内,y随x的增大而增大,∴当1<x<3时,y的取值范围是﹣6<x<﹣2,故选:D.11.【解答】解:如图,连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=12,∴S△ABC解得AD=6cm,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8cm.故选:C.12.【解答】解:∵y=﹣x2﹣4x﹣5=﹣(x+2)2﹣1,∴顶点坐标是(﹣2,﹣1).由题知:把这个二次函数的图象上、下平移,顶点恰好落在正比例函数y=﹣x 的图象上,即顶点的横纵坐标互为相反数,∵平移时,顶点的横坐标不变,即为(﹣2,2),∴函数解析式是:y=﹣(x+2)2+2=﹣x2+2x﹣2,即:y=﹣x2+2x﹣2;故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.【解答】解:原式=a3﹣2+1=a2,故答案为:a2.14.【解答】解:原式=7﹣5=2.故答案为2.15.【解答】解:由于共有8个球,其中红球有5个,则从袋子中随机摸出一个球,摸出红球的概率是,故答案为:.16.【解答】解:因为一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,所以k>0,﹣1<0,所以k可以取2,故答案为:217.【解答】解:在AB上取BN=BE,连接EH,作PM⊥BC于M.∵四边形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°,∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°,∵PC平分∠DCM,∴∠PCM=45°,∠ECP=135°,∵AB=BC,BN=BE,∴AN=EC,∵∠AEP=90°,∴∠AEB+∠PEC=90°,∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴AE=PE,∵∠B=∠PME=90°,∠BAE=∠PEM,∴△ABE≌△EMP(AAS),∴BE=PM=1,∴PC=PM=,故答案为18.【解答】解:(1)AB==.故答案为.(2)如图线段AB与网格相交,得到点D、E,取格点F,连接FC并且延长,与网格相交,得到M,N,G.连接EN,EM,DG,EN与DG相交于点P,点P 即为所求.理由:平行四边形AENC的面积:平行四边形DENG的面积:平行四边形DBCG 的面积=3:2;1,△PAC的面积=平行四边形AENC的面积,△PBC的面积=平行四边形CBDG的面积,△PAB 的面积=6×△PDE 的面积=平行四边形DEMG 的面积, ∴S △PAB :S △PBC :S △PCA =2:1:3.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.【解答】解:(Ⅰ)解不等式①,得x >1;(Ⅱ)解不等式②,得 x ≤2;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:1<x ≤2;故答案为:x >1;x ≤2;1<x ≤2.20.【解答】解:(Ⅰ)该校的班级数是:2÷12.5%=16(个).则人数是8名的班级数是:16﹣1﹣2﹣6﹣2=5(个).条形统计图补充如下图所示:故答案为16;(Ⅱ)每班的留守儿童的平均数是:(1×6+2×7+5×8+6×10+12×2)÷16=9, 将这组数据按照从小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,12,12,故这组数据的众数是10,中位数是(8+10)÷2=9,即统计的这组留守儿童人数数据的平均数是9,众数是10,中位数是9;(Ⅲ)该镇小学生中,共有留守儿童60×9=540(名).答:该镇小学生中共有留守儿童540名.21.【解答】解:(1)∵CD是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴AD∥OC,∴∠DAC=∠OCA,∵OC=OA,∴∠OCA=∠OAC,∴∠OAC=∠DAC,∴AC平分∠DAO;(2)①∵AD∥OC,∴∠EOC=∠DAO=105°,∵∠E=30°,∴∠OCE=45°;②作OG⊥CE于点G,则CG=FG=OG,∵OC=2,∠OCE=45°,∴CG=OG=2,∴FG=2,在Rt△OGE中,∠E=30°,∴GE=2,∴.22.【解答】解:如图,作CD⊥AB于点D,由题意可得:∠A=36°,∠CBD=45°,BC=4,在Rt△BCD中,sin∠CBD=,∴CD=BCsin∠CBD=2,∵∠CBD=45°,∴BD=CD=2,在Rt△ACD中,sinA=,tanA=,∴AC=≈≈4.8,AD==,∴AB=AD﹣BD=﹣2=﹣2×1.414≈3.87﹣2.83=1.04≈1.0,答:新传送带AC的长为4.8m,新、原传送带触地点之间AB的长约为1.0m.23.【解答】解:(Ⅰ)设商场应购进A型台灯x盏,则B型台灯为y盏,根据题意得,,解得,答:应购进A型台灯75盏,B型台灯25盏,故答案为:30x;y;50y;(Ⅱ)设商场销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,即y=﹣5x+2000,∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,y随x的增大而减小,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.24.【解答】解:(Ⅰ)∵A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,由旋转知,BA=B'A,∠BAB'=90°,∴△ABB'是等腰直角三角形,∴BB'=AB=5;(Ⅱ)如图2,过点O'作O'H⊥x轴于H,由旋转知,O'A=OA=3,∠OAO'=120°,∴∠HAO'=60°,在Rt△AHO'中,∠HAO'=30°,∴AH=AO'=,OH=AH=,∴OH=OA+AH=,∴O'(,);(Ⅲ)由旋转知,AP=AP',∴O'P+AP'=O'P+AP,如图3,作A关于y轴的对称点,连接O'C交y轴于P,∴O'P+AP=O'P+CP=O'C,此时,O'P+AP的值最小,∵点C与点A关于y轴对称,∴C(﹣3,0),∵O'(,),∴直线O'C的解析式为y=x+,令x=0,∴y=,∴P(0,),∴O'P'=OP=,作P'D⊥O'H于D,∵∠B'O'A=∠BOA=90°,∠AO'H=30°,∴∠DP'O'=30°,∴O'D=O'P'=,P'D=O'D=,∴DH=O'H﹣O'D=,O'H+P'D=,∴P'(,),25.【解答】解:(Ⅰ)∵抛物线y=x2+bx+c(b,c是常数)与x轴相交于A,B 两点,与y轴交于点C,A(﹣1,0),C(0,﹣3),∴,解得,,∴该抛物线的解析式为y=x2﹣2x﹣3,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4);(Ⅱ)①由P(m,t)在抛物线上可得,t=m2﹣2m﹣3,∵点P和P′关于原点对称,∴P′(﹣m,﹣t),当y=0时,0=x2﹣2x﹣3,解得,x1=﹣1,x2=3,由已知可得,点B(3,0),∵点B(3,0),点C(0,﹣3),设直线BC对应的函数解析式为:y=kx+d,,解得,,∴直线BC的直线解析式为y=x﹣3,∵点P′落在直线BC上,∴﹣t=﹣m﹣3,即t=m+3,∴m2﹣2m﹣3=m+3,解得,m=;②由题意可知,点P′(﹣m,﹣t)在第一象限,∴﹣m>0,﹣t>0,∴m<0,t<0,∵二次函数的最小值是﹣4,∴﹣4≤t<0,∵点P(m,t)在抛物线上,∴t=m2﹣2m﹣3,∴t+3=m2﹣2m,过点P′作P′H⊥x轴,H为垂足,有H(﹣m,0),又∵A(﹣1,0),则P′H2=t2,AH2=(﹣m+1)2,在Rt△P′AH中,P′A2=AH2+P′H2,∴P′A2=(﹣m+1)2+t2=m2﹣2m+1+t2=t2+t+4=(t+)2+,∴当t=﹣时,P′A2有最小值,此时P′A2=,∴=m2﹣2m﹣3,解得,m=,∵m<0,∴m=,即P′A2取得最小值时,m的值是,这个最小值是.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中考数学考前押题试卷1一、选择题(本大题共12小题,共36.0分)1.下列各数中,最小的数是A. B. C. 0 D. 12.如图所示的几何体是由五个小正方体组合而成的,箭头所指示的为主视方向,则它的俯视图是A. B. C. D.3.下列图形既是轴对称图形,又是中心对称图形的是A. B. C. D.4.地球绕太阳公转的速度约为,则110000用科学记数法可表示为A. B. C. D.5.如图,已知,则的度数是A. B. C. D.6.下列运算正确的是A. B.C. D.7.十九大以来,中央把扶贫开发工作纳入“四个全面”战略并着力持续推进,据统计2015年的某省贫困人口约484万,截止2017年底,全省贫困人口约210万,设过两年全省贫困人口的年平均下降率为x,则下列方程正确的是A. B.C. D.8.如图,在平面直角坐标系中,点P是反比例函数图象上一点,过点P作垂线,与x轴交于点Q,直线PQ交反比例函数于点M,若,则k的值为A.B.C.D.9.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有个黑子.A. 37B. 42C. 73D. 12110.二次函数的部分图象如图,图象过点,对称轴为直线,下列结论;;;当时,y的值随x值的增大而增大,其中正确的结论有A. 1个B. 2个C. 3个D. 4个11.如图,河流的两岸互相平行,河岸PQ上有一排小树,已知相邻两树CD之间的距离为50米,某人在河岸MN的A处测得,然后沿河岸走了130米到达B处,测得则河流的宽度CE为A. 80B.C.D.12.若a使关于x的不等式组至少有三个整数解,且关于x的分式方程有正整数解,a可能是A. B. 3 C. 5 D. 8二、填空题(本大题共4小题,共12.0分)13.因式分解:______.14.一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,则摸到的不是红球的概率为______15.定义新运算:对于任意有理数a、b都有,等式右边是通常的加法、减法及乘法运算比如:则,则______.16.正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分时,,则______.三、解答题(共52分)17.先化简,再求值:,其中.18.19.“共享单车,绿色出行”,现如今骑共享单车出行不但成为一种时尚,也称为共享经济的一种新形态,某校九班同学在街头随机调查了一些骑共享单车出行的市民,并将他们对各种品牌单车的选择情况绘制成如下两个不完整的统计图:摩拜单车;B:ofo单车;C:请根据图中提供的信息,解答下列问题:求出本次参与调查的市民人数;将上面的条形图补充完整;若某区有10000名市民骑共享单车出行,根据调查数据估计该区有多少名市民选择骑摩托单车出行?20.随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.设定价减少x元,预订量为y台,写出y与x的函数关系式;若每台手机的成本是1200元,求所获的利润元与元的函数关系式,并说明当定价为多少时所获利润最大;若手机加工成每天最多加工50000台,且每批手机会有的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?21.如图,在中,,以AB为直径的分别交于点D、的延长线与的切线AF交于点F.求证:;已知,求的直径22.如图1,在等腰中,,点E在AC上且不与点A、C重合,在的外部作等腰,使,连接AD,分别以为邻边作平行四边形ABFD,连接AF.求证:是等腰直角三角形;如图2,将绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:;如图3,将绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且在的下方时,若,求线段AE的长.23.如图1,二次函数的图象过点,顶点B的横坐标为1.求这个二次函数的表达式;点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;如图3,一次函数的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线,垂足为点M,且M在线段OC上不与O、C重合,过点T作直线轴交OC于点若在点T运动的过程中,为常数,试确定k的值.答案和解析【答案】1. A2. C3. D4. B5. D6. D7. C8. D9. C10. A11. C12. C13.14.15. 116. 417. 解:,当时,原式.18. 解:原式.19. 解:本次参与调查的市民人数人;品牌人数为人品牌人数为人,补全图形如下:人,答:估计该区有3000名市民选择骑摩拜单车出行.20. 解:根据题意:;设所获的利润元,则;所以当降价400元,即定价为元时,所获利润最大;根据题意每天最多接受台,此时,解得:.所以最大量接受预订时,每台定价元.21. 证明:如图,连接BD.为的直径,,.是的切线,,即..,..如图,连接AE,,设,::4,,在中,,即,..22. 解:如图四边形ABFD是平行四边形,,,,,,,是等腰直角三角形;如图2,连接交BC于K.四边形ABFD是平行四边形,,,,,,,,,,在和中,,≌,,,是等腰直角三角形,.如图3,当时,四边形ABFD是菱形,设AE交CD于H,依据,可得AE垂直平分CD,而,,中,,.23. 解:二次函数的图象过点,顶点B的横坐标为1,则有解得二次函数,由得,,,直线AB解析式为,设点以A、B、P、Q为顶点的四边形是平行四边形,当AB为对角线时,根据中点坐标公式得,则有,解得或和当AB为边时,根据中点坐标公式得解得或或.故答案为或或或.设,可以设直线TM为,则,由解得,,,时,.当时,点T运动的过程中,为常数.【解析】1. 解:,最小的数为,故选:A.根据正实数大于一切负实数,0大于负实数,两个负数绝对值大的反而小解答即可本题考查的是实数的大小比较,任意两个实数都可以比较大小正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2. 解:从上边看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:C.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3. 解:A、不是轴对称图形,是中心对称图形,不合题意;B、不是轴对称图形,不是中心对称图形,不合题意;C、是轴对称图形,不是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4. 解:将110000用科学记数法表示为:.故选:B.科学记数法的表示形式为的形式,其中为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中为整数,表示时关键要正确确定a的值以及n的值.5. 解:如图,延长的边与直线b相交,,,由三角形的外角性质,可得,故选:D.延长的边与直线b相交,然后根据两直线平行,同旁内角互补求出,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并作出辅助线是解题的关键.6. 解:,故此题错误;B.,故此题错误;C.,故此题错误;D.,正确.故选:D.按照整式的加法、整式的乘法、完全平方公式和平方差公式,分别计算,再判断.此题考查整式的运算,掌握各运算法则和运算公式是关键.7. 解:设过两年全省贫困人口的年平均下降率为x,根据题意得:,故选:C.等量关系为:2015年贫困人口下降率年贫困人口,把相关数值代入计算即可.本题考查由实际问题抽象出一元二次方程;得到2年内变化情况的等量关系是解决本题的关键8. 解:如图,连接.由题意;,,故选:D.根据反比例函数系数k的几何意义即可解决问题;本题考查反比例函数k的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.9. 解:第1、2图案中黑子有1个,第3、4图案中黑子有个,第5、6图案中黑子有个,第7、8图案中黑子有个,故选:C.观察图象得到第1、2图案中黑子有1个,第3、4图案中黑子有个,第5、6图案中黑子有个,,据此规律可得.本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.10. 解:由图象可得,,,,故错误;抛物线的对称轴为直线,,即,故本结论正确;当时,,,即,故本结论错误;对称轴为直线,当时,y的值随x值的增大而增大,当时,y随x的增大而减小,故本结论错误;故选:A.由图象可得,根据抛物线的对称轴为直线,则有;观察函数图象得到当时,函数值小于0,则,即;由于对称轴为直线,根据二次函数的性质得到当时,y随x的增大而减小;本题考查了二次函数图象与系数的关系:二次函数,二次项系数a决定抛物线的开口方向和大小,当时,抛物线向上开口;当时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时即,对称轴在y轴左;当a与b异号时即,对称轴在y轴右;常数项c决定抛物线与y轴交点抛物线与y轴交于;抛物线与x轴交点个数由决定,时,抛物线与x轴有2个交点;时,抛物线与x轴有1个交点;时,抛物线与x轴没有交点.11. 解:过点C作交AB于点F.,四边形AFCD是平行四边形.,,设,,,,,解得:,,故选:C.过点C作交AB于点F,易证四边形AFCD是平行四边形再在直角中,利用三角函数求解.本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、构造合适的直角三角形是解题的关键.12. 解:,不等式组整理得:,由不等式组至少有三个整数解,得到,,分式方程去分母得:,解得:,分式方程有正整数解,且,,只有选项C符合.故选:C.将不等式组整理后,由不等式组至少有三个整数解确定出a的范围,再由分式方程有正整数解确定出满足条件a的值,进而求出之积.此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.13. 解:,,.先提取公因式y,再对余下的多项式利用平方差公式继续分解.本题考查了提公因式法与公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14. 解:根据题意,摸到的不是红球的概率为,故答案为:.将黄球和绿球的个数除以球的总个数即可得.本题考查了概率公式:随机事件A的概率事件A可能出现的结果数除以所有可能出现的结果数.15. 解:根据题意得:,去括号得:,移项合并得:,解得:.故答案为:1.利用题中的新定义列出所求式子,解一元一次方程即可得到结果.本题考查了解一元一次方程,解决本题的关键是根据新定义得到方程.16. 解:如图,过B作于P,连接BE,交FH于N,则,四边形ABCD是正方形,,,平分,又,≌,,,,≌,,,由折叠得:,垂直平分BE,是等腰直角三角形,,,,,中,,,,故答案为:4.作辅助线,构建全等三角形,先证明,利用是等腰直角三角形,即可求得的长,中,依据勾股定理可得,根据,即可得到.本题考查翻折变换、正方形的性质、全等三角形的判定和性质、角平分线的定义、勾股定理、线段垂直平分线的性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题.17. 根据分式的除法和加法可以化简题目中的式子,然后将代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18. 直接利用负指数幂的性质和零指数幂的性质以及特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19. 根据B品牌人数及其所占百分比可得总人数;总人数分别乘以A、D所占百分比求出其人数即可补全图形;总人数乘以样本中A的百分比即可得.本题考查的是条形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据.20. 根据题意列代数式即可;根据利润单台利润预订量,列出函数表达式,根据二次函数性质解决定价为多少时所获利润最大;根据题意列式计算每天最多接受的预订量,根据每天最多接受的预订量列方程求出最大量接受预订时每台售价即可.本题主要考查了函数实际应用问题,涉及到列代数式、求函数关系式、二次函数的性质、一元一次方程应用等知识,弄清题意,找出数量关系是解决问题的关键.21. 首先连接BD,由AB为直径,可得,又由AF是的切线,易证得然后由,证得:;首先连接AE,设,由勾股定理可得方程:求得答案.本题主要考查了切线的性质、三角函数以及勾股定理,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用是解答此题关键.22. 依据,即可证明是等腰直角三角形;连接交BC于K,先证明≌,再证明是等腰直角三角形即可得出结论;当时,四边形ABFD是菱形,先求得中,,即可得到.本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.23. 利用待定系数法即可解决问题.当AB为对角线时,根据中点坐标公式,列出方程组解决问题当AB为边时,根据中点坐标公式列出方程组解决问题.设,由,可以设直线TM 为,则,求出点M、N坐标,求出OM、ON,根据列出等式,即可解决问题.本题考查二次函数综合题,平行四边形的判定和性质,中点坐标公式等知识,解题的关键是利用参数,方程组解决问题,学会转化的思想,属于中考压轴题.第21页,共21页。