高中数学选修2-3第一章复习题
高中数学选修2-3答案

高中数学选修2-3答案【篇一:高中数学选修2-3所有试卷含答案】每章分三个等级:[基础训练a组], [综合训练b组], [提高训练c 组] 建议分别适用于同步练习,单元自我检查和高考综合复习。
(数学选修2--3) 第一章计数原理[基础训练a组]一、选择题1.将3个不同的小球放入4个盒子中,则不同放法种数有()a.81 b.64c.12d.142.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有()a.140种 b.84种 c.70种 d.35种3.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有() a.a3 b.4a3 c.a5?a3a3 d.a2a3?a2a3a3 4.a,b,c,d,e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同的选法总数是()a.20 b.16 c.10 d.65.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是() a.男生2人,女生6人 b.男生3人,女生5人 c.男生5人,女生3人 d.男生6人,女生2人. ?x6.在??的展开式中的常数项是() ?283352323113a.7 b.?7 c.28 d.?287.(1?2x)(2?x)的展开式中x3的项的系数是() a.120 b.?120 c.100 d.?100 ?8.??2??2?展开式中只有第六项二项式系数最大,则展开式中的常数项是() x?n5a.180 b.90 c.45 d.360二、填空题1.从甲、乙,??,等6人中选出4名代表,那么(1)甲一定当选,共有种选法.(2)甲一定不入选,共有种选法.(3)甲、乙二人至少有一人当选,共有种选法.2.4名男生,4名女生排成一排,女生不排两端,则有. 3.由0,1,3,5,7,9这六个数字组成_____个没有重复数字的六位奇数.4.在(x?的展开式中,x的系数是1062205.在(1?x)展开式中,如果第4r项和第r?2项的二项式系数相等,则r?,t4r?6.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个?7.用1,4,5,x四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x. 8.从1,3,5,7,9中任取三个数字,从0,2,4,6,8中任取两个数字,组成没有重复数字的五位数,共有________________个?三、解答题1.判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?2.7个排成一排,在下列情况下,各有多少种不同排法?(1)甲排头,(2)甲不排头,也不排尾,(3)甲、乙、丙三人必须在一起,(4)甲、乙之间有且只有两人,(5)甲、乙、丙三人两两不相邻,(6)甲在乙的左边(不一定相邻),(7)甲、乙、丙三人按从高到矮,自左向右的顺序,(8)甲不排头,乙不排当中。
高中数学选修2-3第一章练习卷及答案

22. (1)若
的展开式中, 的系数是 的系数的 倍,求 ;
(2)已知 中项,求 ;
的展开式中, 的系数是 的系数与 的系数的等差
(3)已知
的展开式中,二项式系数最大的项的值等于 ,求 .
第一章 计算原理 答案
1.1 分类加法计算原理与分步乘法计算原理
考法突破 【考点训练题】
两个计数原理训练题
一、选择题
丙甲乙丁,丙甲丁乙,丙乙甲丁,丙乙丁甲,丙丁甲乙,丙丁乙甲;
丁甲乙丙,丁甲丙乙,丁乙甲丙,丁乙丙甲,丁丙甲乙,丁丙乙甲.
(2)从五名同学中选出两名同学任正、副班长,共有 是:
种选法,形成的排列
,,,,,, , ,,,,,, ,, ,,,, .
1.3 二项式定理
考法突破 【考点训练题】
二项式定理训练题
B 从 人中选 人组成篮球队
C 从 人中选 人抽样调查
D 从 , , , , 中选 个数组成集合
2. 体操男队共六人参加男团决赛,但在鞍马项目上,根据规定,只需五人出场, 那么在鞍马项目上不同的出场顺序共有()
A种
B种
C
种
D种
3.
件产品中有 件次品,任意抽取 件,其中至少有 件次品的抽法有()
A
B
掌握
能用计数原理证明二项式定理
掌握
3
二项式定理
会用二项式定理解决与二项展开式有 掌握
关的简单问题
1.1 分类加法计算原理与分步乘法计算原理
考法突破
1.分类加法计数原理 完成一件事有 类不同的方案,在第一类方案中有 种不同的方法,在第二类方案中有 种 不同的方法,……,在第 类方案中有 种不同的方法,则完成这件事情,共有
,则 的值为 ( )
(易错题)高中数学高中数学选修2-3第一章《计数原理》检测(答案解析)(2)

一、选择题1.在某次联考数学测试中,学生成绩ξ服从正态分布2(100,)(0)σσ>,若ξ在(80,120)内的概率为0.8,则任意选取一名学生,该生成绩不高于80的概率为( ) A .0.05 B .0.1C .0.15D .0.22.甲乙两人投篮,投中的概率分别为0.6,0.7.若两人各投2次,则两人投中次数相等的概率为( ) A .0.2484B .0.25C .0.90D .0.39243.西大附中为了增强学生对传统文化的继承和发扬,组织了一场类似《诗词大会》的PK 赛,A 、B 两队各由4名选手组成,每局两队各派一名选手PK ,除第三局胜者得2分外,其余各胜者均得1分,每局的负者得0分.假设每局比赛A 队选手获胜的概率均为23,且各局比赛结果相互独立,比赛结束时A 队的得分高于B 队的得分的概率为( ) A .2027B .5281C .1627D .794.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,则质点P 移动六次后位于点(2,4)的概率是( )A .612⎛⎫ ⎪⎝⎭B .44612C ⎛⎫ ⎪⎝⎭C .62612C ⎛⎫ ⎪⎝⎭D .6246612C C ⎛⎫ ⎪⎝⎭5.设1~(10,)B p ξ,2~(10,)B q ξ,且14pq >,则“()()12E E ξξ>”是“()()12D D ξξ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.下列命题中真命题是( )(1)在18的二项式展开式中,共有4项有理项;(2)若事件A 、B 满足()0.15P A =,()0.60P B =,()0.09P AB =,则事件A 、B 是相互独立事件;(3)根据最近10天某医院新增疑似病例数据,“总体均值为2,总体方差为3”,可以推测“最近10天,该医院每天新增疑似病例不超过7人”. A .(1)(2) B .(1)(3)C .(2)(3)D .(1)(2)(3)7.设102x <<,随机变量ξ的分布列如下:ξ0 1 2P0.50.5x -x则当x 在10,2⎛⎫ ⎪⎝⎭内增大时( )A .()E ξ减小,()D ξ减小B .()E ξ增大,()D ξ增大C .()E ξ增大,()D ξ减小D .()E ξ减小,()D ξ增大8.先后抛掷三次一枚质地均匀的硬币,落在水平桌面上, 设事件A 为“第一次正面向上”,事件B 为“后两次均反面向上”,则概率(|)P B A =( ) A .12B .13C .14D .389.有10件产品,其中3件是次品,从中任取两件,若X 表示取得次品的个数,则P (X <2)等于 A .715B .815C .1415D .110.随机变量X 的分布列如下表,且E (X )=2,则D (2X -3)=( )A .2B .3C .4D .511.某工厂生产的零件外直径(单位:cm )服从正态分布()10,0.04N ,今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为9.75cm 和9.35cm ,则可认为( )A .上午生产情况异常,下午生产情况正常B .上午生产情况正常,下午生产情况异常C .上、下午生产情况均正常D .上、下午生产情况均异常12.小明的妈妈为小明煮了 5 个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件‘‘"A 取到的两个为同一种馅,事件‘‘"B =取到的两个都是豆沙馅,则()P B A =∣ ( )A .14B .34C .110D .310二、填空题13.随着电商的兴起,物流快递的工作越来越重要了,早在周代,我国便已出现快递制度,据《周礼·秋官》记载,周王朝的官职中设置了主管邮驿,物流的官员“行夫”,其职责要求是“虽道有难,而不时必达”.现某机构对国内排名前五的5家快递公司的某项指标进行了3轮测试(每轮测试的客观条件视为相同),每轮测试结束后都要根据该轮测试的成绩对这5家快递公司进行排名,那么跟测试之前的排名比较,这3轮测试中恰好有2轮测试结果都出现2家公司排名不变的概率为_________.14.3月5日为“学雷锋纪念日”,某校将举行“弘扬雷锋精神做全面发展一代新人”知识竞赛,某班现从6名女生和3名男生中选出5名学生参赛,要求每人回答一个问题,答对得2分,答错得0分,已知6名女生中有2人不会答所有题目,只能得0分,其余4人可得2分,3名男生每人得2分的概率均为12,现选择2名女生和3名男生,每人答一题,则该班所选队员得分之和为6分的概率__________.15.某大厦的一部电梯从底层出发后只能在第18,19,20层停靠.若该电梯在底层有6个乘客,且每位乘客在这三层的每一层下电梯的概率均为13,用X表示这6位乘客在第20层下电梯的人数,则(4)P X==________.16.若随机变量3~34X B⎛⎫⎪⎝⎭,, 则方差()D x=____________.17.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球.现分别从甲、乙两袋中各随机抽取1个小球,记抽取到红球的个数为X,则随机变量X的均值EX=_____.18.小李练习射击,每次击中目标的概率均为13,若用ξ表示小李射击5次击中目标的次数,则ξ的均值E(ξ)与方差D(ξ)的值分别是____.19.运动员参加射击比赛,每人射击4次(每次射一发),比赛规定:全不中得0分,只中一弹得15分,中两弹得40分,中三弹得65分,中四弹得100分.已知某一运动员每一次射击的命中率为35,则他的得分期望为_____.20.投到某出版社的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则直接予以利用,若两位初审专家都未予通过,则不予录用,若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用,设稿件能通过各初审专家评审的概率均为12,复审的稿件能通过评审的概率为13,若甲、乙两人分别向该出版社投稿1篇,两人的稿件是否被录用相互独立,则两人中恰有1人的稿件被录用的概率为__________.三、解答题21.《中华人民共和国道路交通安全法》第47条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,即“行让行人”.下表是某十字路口监控设备所抓拍的6个月内驾驶员不“礼让行人”行为的统计数据:月份x1 2 3 4 5 6 不“礼让斑马线"驾驶员人数y120105100859080(1)请根据表中所给前5个月的数据,求不“礼让行人”的驾驶员人数y 与月份x 之间的回归直线方程ˆˆˆy bx a =+;(2)若该十字路口某月不“礼让行人”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让行人”情况达到“理想状态”.试判断6月份该十字路口“礼让行人”情况是否达到“理想状态”?(3)自罚单日起15天内需完成罚款缴纳,记录5月不“礼让行人”驾驶员缴纳罚款的情况,缴纳日距罚单日天数记为X ,若X 服从正态分布()~8,9X N ,求该月没能在 14天内缴纳人数. 参考公式:()()()112211ˆˆˆ,nni i i ii i nniii i x x y yx y nxybay bx x x xnx====---===---∑∑∑∑()()()0.6826,220.9544,330.9974P Z P Z P Z μσμσμσμσμσμσ-<<+=-<<+=-<<+=22.某运动会将在深圳举行,组委会招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:cm ),身高在175cm 以上(包括175cm )定义为“高个子”,身高在175cm 以下(不包括175cm )定义为“非高个子”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率;(2)若从身高180cm 以上(包括180cm )的志愿者中选出男、女各一人,设这2人身高相差cm ξ(0ξ≥),求ξ的分布列和数学期望(均值).23.某大型电器企业,为了解组装车间职工的生活情况,从中随机抽取了100名职工进行测试,得到频数分布表如下: 日组装个数 [)155,165[)165,175[)175,185[)185,195[)195,205[]205,215人数6123430108(1)现从参与测试的日组装个数少于175的职工中任意选取3人,求至少有1人日组装个数少于165的概率;(2)由频数分布表可以认为,此次测试得到的日组装个数Z 服从正态分布(),169N μ,μ近似为这100人得分的平均值(同一组数据用该组区间的中点值作为代表).(i )若组装车间有20000名职工,求日组装个数超过198的职工人数;(ii )为鼓励职工提高技能,企业决定对日组装个数超过185的职工日工资增加50元,若在组装车间所有职工中任意选取3人,求这三人增加的日工资总额的期望.附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<<+=,()220.9545P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=.24.某高三年级学生为了庆祝教师节,同学们为老师制作了一大批同一种规格的手工艺品,这种工艺品有A 、B 两项技术指标需要检测,设各项技术指标达标与否互不影响,若A 项技术指标达标的概率为3,4B 项技术指标达标的概率为89,按质量检验规定:两项技术指标都达标的工艺品为合格品.(1)求一个工艺品经过检测至少一项技术指标达标的概率;(2)任意依次抽取该工艺品4个,设ξ表示其中合格品的个数,求ξ的分布列. 25.近期,某超市针对一款饮料推出刷脸支付活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用刷脸支付.该超市统计了活动刚推出一周内每一天使用刷脸支付的人次,用x 表示活动推出的天数,y 表示每天使用刷脸支付的人次,统计数据如下表所示:(1)在推广期内,与y c d =⋅(均为大于零的常数)哪一个适宜作为刷脸支付的人次y 关于活动推出天数x 的回归方程类型?(给出判断即可,不必说明理由); (2)根据(1)的判断结果及表1中的数据,求y 关于x 的回归方程,并预测活动推出第8天使用刷脸支付的人次;(3)已知一瓶该饮料的售价为2元,顾客的支付方式有三种:现金支付、扫码支付和刷脸支付,其中有10%使用现金支付,使用现金支付的顾客无优惠;有40%使用扫码支付,使用扫码支付享受8折优惠;有50%使用刷脸支付,根据统计结果得知,使用刷脸支付的顾客,享受7折优惠的概率为16,享受8折优惠的概率为13,享受9折优惠的概率为12.根据所给数据估计购买一瓶该饮料的平均花费.参考数据:其中1i i v g y =,7117i i v v ==∑参考公式:对于一组数据1122,),,(,)n n x v x v ,其回归直线ˆˆˆv a bx=+的斜率和截距的最小二乘估计公式分别为:1221ˆ,ni i i nii x v nxvbxnx==-=-∑∑ˆˆa v bx=-. 26.2020年1月10日,引发新冠肺炎疫情的COVID -9病毒基因序列公布后,科学家们便开始了病毒疫苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.已知一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,3天为一个接种周期.已知小白鼠接种后当天出现抗体的概率为12,假设每次接种后当天是否出现抗体与上次接种无关. (1)求一个接种周期内出现抗体次数k 的分布列;(2)已知每天接种一次花费100元,现有以下两种试验方案:①若在一个接种周期内连续2次出现抗体即终止本周期试验,进行下一接种周期,试验持续三个接种周期,设此种试验方式的花费为X 元;②若在一个接种周期内出现2次或3次抗体,该周期结束后终止试验,已知试验至多持续三个接种周期,设此种试验方式的花费为Y 元. 比较随机变量X 和Y 的数学期望的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】1(80120)(80)(120)0.12P X P X P X -<<≤=≥== ,选B.2.D解析:D 【分析】根据题意,两人投中次数相等:两人两次都未投中,两人各投中一次,和两人两次都投中,进而根据相互独立事件概率乘法公式和互斥事件概率加法公式,得到答案. 【详解】由题意,甲、乙两人投篮,投中的概率分别为0.6,0.7,则甲、乙两人各投2次: 两人两次都未投中的概率:()()22010.610.70.0144P =-⨯-=;两人各投中一次的概率:()()111220.610.60.710.70.2016P C C =⨯⨯-⨯⨯⨯-=;两人两次都投中的概率:2220.60.70.1764P =⨯=.所以,两人投中次数相等的概率为:0120.3924P P P P =++=. 故选:D. 【点睛】本题主要考查相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于基础题.3.A解析:A 【分析】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.利用独立重复试验的概率公式可求得所求事件的概率. 【详解】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.所以,比赛结束时A 队的得分高于B 队的得分的概率为43232432212122033333327P C C ⎛⎫⎛⎫⎛⎫=+⋅⋅+⋅⋅=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:A. 【点睛】本题考查概率的求解,考查独立重复试验概率的求解,考查计算能力,属于中等题.4.C解析:C 【分析】根据题意,质点P 移动六次后位于点(4,2),在移动过程中向右移动4次向上移动2次,即6次独立重复试验中恰有4次发生,由其公式计算可得答案. 【详解】根据题意,易得位于坐标原点的质点P 移动六次后位于点(2,4),在移动过程中向上移动4次向右移动2次,则其概率为4262466111222C P C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==. 故选:C . 【点睛】本题考查二项分布与n 次独立重复试验的模型,考查对基础知识的理解和掌握,考查分析和计算能力,属于常考题.5.C解析:C【分析】根据二项分布的期望和方差公式,可知()110E p ξ=,()210E q ξ=,那么()()12E E ξξ>等价于1010p q >,即p q >,并且()()1101D p p ξ=-,()()2101D q q ξ=-,则()()12D D ξξ>等价于()()101101pp q q -<-,即()()11p p q q -<-,分情况讨论,看这两个条件是否可以互相推出即得. 【详解】由题得,()110E p ξ=,()210E q ξ=,故()()12E E ξξ>等价于1010p q >,即p q >. 又()()1101D p p ξ=-,()()2101D q q ξ=-,故()()12D D ξξ>等价于()()101101p p q q -<-,即()()11p p q q -<-.若p q >,因为14pq >,说明12p >,且()()211124p p p p pq +-⎛⎫-<=< ⎪⎝⎭,故1p q -<,故有1122p q ->-.若12q <,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,若12q ≥,则自然有11022p q ->->,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,故221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭即()()11p p q q -<-.若()()11p p q q -<-,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,又因为()()1114p p q q pq -<-≤<,1p q -<,即1122p q ->-.若102p -≤,则与221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭矛盾,故12p >,若12q ≤,则自然有p q >,若12q >,则由221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭知1122p q ->-,即p q >. 所以是充要条件.故选:C 【点睛】本题综合的考查了离散型随机变量期望方差和不等式,属于中档题.6.D解析:D 【分析】对三个命题分别判断真假,即可得出结论. 【详解】对于(1),18的二项展开式的通项为1815163621818rrrr rC x x C x ---⎛⎫⎛⎫⋅⋅=⋅ ⎪ ⎪⎝⎭⎝⎭, 当0r =、6、12、18时,为有理项,共有4个有理项,故(1)正确; 对于(2),事件A 、B 满足()0.15P A =,()0.60P B =,()0.09P AB =, 所以()()()0.150.600.09P AB P A P B =⨯==,满足A 、B 为相互独立事件,故(2)正确;对于(3),当总体平均数是2,若有一个数据超过7,则方差就接近于3, 所以,总体均值为2,总体方差为3时,没有数据超过7,故(3)正确. 故选:D. 【点睛】本题考查命题真假的判断,考查分析法与基本运算能力,考查分析问题和解决问题的能力,属于中等题.7.B解析:B 【分析】分别计算()E ξ和()D ξ的表达式,再判断单调性. 【详解】()00.51(0.5)20.5E x x x ξ=⨯+⨯-+=+,当x 在10,2⎛⎫⎪⎝⎭内增大时, ()E ξ增大()222210.5(0.50)(0.5)(0.51)(0.52)24D x x x x x x x ξ=⨯+-+-⨯+-++-=-++ ()25(1)4D x ξ=--+,当x 在10,2⎛⎫⎪⎝⎭内增大时, ()D ξ增大 故答案选B 【点睛】本题考查了()E ξ和()D ξ的计算,函数的单调性,属于综合题型.8.C解析:C 【分析】由先后抛掷三次一枚质地均匀的硬币,得出事件A “第一次正面向上”,共有4种不同的结果,再由事件A “第一次正面向上”且事件B “后两次均反面向上”,仅有1中结果,即可求解. 【详解】由题意,先后抛掷三次一枚质地均匀的硬币,共有2228⨯⨯=种不同的结果, 其中事件A “第一次正面向上”,共有4种不同的结果,又由事件A “第一次正面向上”且事件B “后两次均反面向上”,仅有1中结果,所以()()1(|)4P AB P B A P A ==,故选C. 【点睛】本题主要考查了条件概率的计算,其中解答中认真审题,准确得出事件A 和事件A B 所含基本事件的个数是解答的关键,着重考查了运算能力,属于基础题.9.C解析:C 【分析】根据超几何分布的概率公式计算各种可能的概率,得出结果 【详解】由题意,知X 取0,1,2,X 服从超几何分布, 它取每个值的概率都符合等可能事件的概率公式,即P(X =0)=27210715C C =,P(X =1)=1173210715C C C =⋅,P(X =2)=23210115C C =, 于是P(X<2)=P(X =0)+P(X =1)=7714151515+= 故选C 【点睛】本题主要考查了运用超几何分布求概率,分别求出满足题意的情况,然后相加,属于中档题.10.C解析:C 【解析】1111632p =--=,111()0223623E X a a =⨯+⨯+⨯=⇒=∴222111()(02)(22)(32)1623D X =-⨯+-⨯+-⨯=∴2(23)2()4D X D X -==点晴:本题考查的是离散型随机变量的期望,方差和分布列中各个概率之间的关系.先根据概率之和为1,求出p 的值,再根据数学期望公式,求出a 的值,再根据方差公式求出D (X ),继而求出D (2X-3).解决此类问题的关键是熟练掌握离散型随机变量的分布列与数学期望.11.B解析:B 【解析】分析:根据3σ原则判断.详解:因为服从正态分布()10,0.04N ,所以10,0.2(100.23,100.23)(9.4,10.6)x μσ==∴∈-⨯+⨯= 所以上午生产情况正常,下午生产情况异常, 选B.点睛:利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.12.B解析:B 【详解】由题意,P (A )=222310C C +=410,P (AB )=2310C =310, ∴P (B|A )=()AB A)P P (=34, 故选B .二、填空题13.【分析】根据题意求出家快递公司进行排名与测试之前的排名比较出现家公司排名不变的概率根据题意满足二项分布根据二项分布概率计算即可【详解】解:首先在一轮测试中家快递公司进行排名与测试之前的排名比较出现家解析:572【分析】根据题意求出5家快递公司进行排名与测试之前的排名比较出现2家公司排名不变的概率,根据题意满足二项分布,根据二项分布概率计算即可. 【详解】解:首先,在一轮测试中5家快递公司进行排名与测试之前的排名比较出现2家公司排名不变的概率为255522011206C A ⨯==, 其次,3轮测试每次发生上述情形的概率均为16P =, 故3轮测试中恰好有2轮测试结果都出现2家公司排名不变的概率为223155()6672C ⨯⨯=. 故答案为:572. 【点睛】独立重复试验与二项分布问题的常见类型及解题策略:(1)在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率;(2)在根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n 和变量的概率,求得概率.14.【分析】首先对事件进行分类分成女生0分男生6分或女生2分男生4分或女生4分男生2分女生的概率可以按照超几何概率求解男生按照独立重复求解概率【详解】依题意设该班所选队员得分之和为6分记为事件A 则可分为 解析:43120【分析】首先对事件进行分类,分成女生0分,男生6分,或女生2分,男生4分,或女生4分,男生2分,女生的概率可以按照超几何概率求解,男生按照独立重复求解概率. 【详解】依题意设该班所选队员得分之和为6分记为事件A ,则可分为下列三类:女生得0分男生得6分,设为事件1A ;女生得2分男生得4分,设为事件2A ;女生得4分男生得2分,设为事件3A ,则:()32321326112120C P A C C ⎛⎫=⨯= ⎪⎝⎭, ()211224232611241221205C C P A C C ⎛⎫⎛⎫=⨯== ⎪ ⎪⎝⎭⎝⎭,()22143326111832212020C P A C C ⎛⎫⎛⎫=⨯== ⎪⎪⎝⎭⎝⎭, ()()()()12343120P A P A P A P A =++=. 故答案为:43120【点睛】本题考查概率的应用问题,重点考查分类讨论,转化与化归的思想,熟练掌握概率类型,属于中档题型.本题的关键是对事件分类.15.【分析】根据次独立重复试验的概率公式进行求解即可【详解】解:考查一位乘客是否在第20层下电梯为一次试验这是次独立重复试验故即有123456故答案为:【点睛】本题主要考查次独立重复试验的概率的计算根据 解析:20243【分析】根据n 次独立重复试验的概率公式进行求解即可. 【详解】解:考查一位乘客是否在第20层下电梯为一次试验,这是6次独立重复试验, 故1~6,3X B ⎛⎫ ⎪⎝⎭.即有6612()()()33k kk P X k C -==⨯,0k =,1,2,3,4,5,6.42641220(4)()()33243P X C ∴==⨯=.故答案为:20243【点睛】本题主要考查n 次独立重复试验的概率的计算,根据题意确实是6次独立重复试验,是解决本题的关键,属于中档题.16.【分析】利用方差公式即可得出答案【详解】结合方差【点睛】本题考查了方差计算公式记住即可 解析:916【分析】利用方差公式()D x npq =,即可得出答案. 【详解】结合方差()31934416D x npq ==⋅⋅=. 【点睛】本题考查了方差计算公式,记住()D x npq =,即可.17.【分析】结合题意分别计算对应的概率计算期望即可【详解】列表:X 0 1 2 P 所以【点睛】本道题考查了数学期望计算方法结合题意即可属于中等难度的题解析:56【分析】结合题意,分别计算0,1,2x =对应的概率,计算期望,即可. 【详解】()112511665018C C P x C C ===,()111452116611118C C C P x C C +===,()11411166129C C P x C C === 列表:所以012181896EX =⨯+⨯+⨯= 【点睛】本道题考查了数学期望计算方法,结合题意,即可,属于中等难度的题.18.【解析】试题分析:的可能取值是012345 0 1 2 3 4 5 考点:期望方差的计算解析:510 , 39【解析】试题分析:ξ的可能取值是0,1,2,3,4,5,012345.考点:期望、方差的计算.19.552【解析】分析:由次独立重复试验的概率公式计算出射中01234次的概率得到得分的分布列再由期望公式得期望详解:设该运动员中弹数为ξ得分数为η则P(ξ=4)==01296P(ξ=3)==03456解析:552.【解析】分析:由n次独立重复试验的概率公式计算出射中0,1,2,3,4次的概率得到得分的分布列,再由期望公式得期望.详解:设该运动员中弹数为ξ,得分数为η,则P(ξ=4)=435⎛⎫⎪⎝⎭=0.129 6,P(ξ=3)=33432C?·55⎛⎫⎪⎝⎭=0.345 6,P(ξ=2)=222432C?·55⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=0.345 6,P(ξ=1)=31432C?·55⎛⎫⎪⎝⎭=0.153 6,P(ξ=0)=425⎛⎫⎪⎝⎭=0.025 6.由题意可知P (η)=P (ξ),所以E (η)=100×0.129 6+65×0.345 6+40×0.345 6+15×0.153 6+0×0.025 6=51.552.点睛:本题考查随机变量的分布列与期望.解题时关键是理解射击时命中n 次就是n 次独立重复试验,由此可由概率公式计算出概率,从而可得得分的分布列,由分布列的期望公式计算出期望.20.【分析】计算出每人的稿件能被录用的概率然后利用独立重复试验的概率公式可求得结果【详解】记事件甲的稿件被录用则因此甲乙两人分别向该出版社投稿篇则两人中恰有人的稿件被录用的概率为故答案为:【点睛】思路点 解析:3572【分析】计算出每人的稿件能被录用的概率,然后利用独立重复试验的概率公式可求得结果. 【详解】记事件:A 甲的稿件被录用,则()2212111522312P A C ⎛⎫⎛⎫=+⋅⋅= ⎪ ⎪⎝⎭⎝⎭,因此,甲、乙两人分别向该出版社投稿1篇,则两人中恰有1人的稿件被录用的概率为125735121272P C =⋅⋅=. 故答案为:3572. 【点睛】思路点睛:独立重复试验概率求法的三个步骤:(1)判断:依据n 次独立重复试验的特征,判断所给试验是否为独立重复试验; (2)分拆:判断所求事件是否需要分拆;(3)计算:就每个事件依据n 次独立重复试验的概率公式求解,最后利用互斥事件概率加法公式计算.三、解答题21.(1)ˆ8124yx =-+;(2)达到“理想状态”;(3)2. 【分析】(1)请根据表中数据计算x 、y ,求出回归系数,写出回归直线方程;(2)利用回归方程计算6x =时ˆy的值,比较即可得出结论; (3)根据正态分布的性质,结合()2140.9544P X <<=即可得答案. 【详解】(1)请根据表中所给前5个月的数据,计算1(12345)35x =⨯++++=, 1(1201051008590)1005y =⨯++++=;12222221()()(2)20(1)5001(15)2(10)ˆ8(2)(1)012()nii i nii xx y y bxx ==---⨯+-⨯+⨯+⨯-+⨯-===--+-+++-∑∑,ˆˆ100(8)3124ay bx =-=--⨯=; y ∴与x 之间的回归直线方程ˆ8124y x =-+;(2)由(1)知ˆ8124yx =-+,当6x =时,ˆ8612476y =-⨯+=; 且807645-=<,6∴月份该十字路口“礼让斑马线”情况达到“理想状态”;(3)因为X 服从正态分布()~8,9X N , 所以()2140.9544P X <<=, 该月没能在14天内缴纳人数为10.95449022-⨯=, 【点睛】方法点睛:求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算211,,,nnii ii i x y x x y ==∑∑的值;③计算回归系数,a b ;④写出回归直线方程为ˆy bx a=+. 22.(1)710p =;(2)分布列见解析,()116E ξ= 【分析】(1)根据分层抽样的比例关系得到人数,再计算概率得到答案.(2)ξ的可能取值为0,1,2,3,4,计算概率得到分布列,再计算数列期望得到答案. 【详解】(1)根据茎叶图:“高个子”有12个,“非高个子”有18个, 故抽取的“高个子”为125230⨯=个,抽取的“非高个子”有3个. 至少有一人是“高个子”的概率为232537111010C p C =-=-=. (2)身高180cm 以上(包括180cm )的志愿者中选出男,女各有3人和2人, 故ξ的可能取值为0,1,2,3,4, 故()1113206p ξ==⨯=,()11111321323p ξ=⨯+⨯==, ()1113226p ξ==⨯=, ()1113236p ξ==⨯=,()1113246p ξ==⨯=.故分布列为:故()01234636666E ξ=⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查了分层抽样,概率的计算,分布列,数学期望,意在考查学生的计算能力和综合应用能力. 23.(1)149204(2)(i )3173人(ii )75 【分析】(1)利用对立事件公式结合古典概型求解(2)(i )先求平均数185μ=,结合σ公式求得()10.68271980.158652P X ->==,再求人数;(ii )先由正态分布得日组装个数为185以上的概率为0.5.设三人中日组装个数超过185个的人数为ξ,增加的日工资总额为η,得到ξ服从二项分布,由50ηξ=求得期望【详解】(1)设至少有1人日组装个数少于165为事件A ,则()3123181491204C P A C =-=,(2)1606170121803419030200102108185100X ⨯+⨯+⨯+⨯+⨯+⨯==(个)又2169σ=,所以13σ=,所以185μ=,13σ=, 所以198μσ+=.(i )()10.68271980.158652P X ->==, 所以日组装个数超过198个的人数为0.15865200003173⨯=(人)(ii )由正态分布得,日组装个数为185以上的概率为0.5.设这三人中日组装个数超过185个的人数为ξ,这三人增加的日工资总额为η,则50ηξ=,且()~3,0.5B ξ,所以()30.5 1.5E ξ=⨯=,所以()()5075E E ηξ==. 【点睛】本题考查古典概型,考查正态分布的概率,考查二项分布,考查转化化归能力,其中确定人数与工资总额的函数关系是关键,是中档题 24.(1)3536;(2)见解析 【分析】(1)结合对立事件的概率关系可求出至少一项技术指标达标的概率; (2)由题意知,2~4,3B ξ⎛⎫⎪⎝⎭,从而可求出()0P ξ=,(1)P ξ=,()2P ξ=,()3P ξ=,()4P ξ=的值,从而可求出分布列.【详解】(1)设:M 一个工艺品经过检测至少一项技术指标达标,则38()1-11493635P M ⎛⎫⎛⎫=-⨯-= ⎪ ⎪⎝⎭⎝⎭;(2)依题意知2~4,3B ξ⎛⎫ ⎪⎝⎭,则411(0)381P ξ⎛⎫=== ⎪⎝⎭,1314218(1)3381P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()222421823327P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()334213233381P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()42164381P ξ⎛⎫=== ⎪⎝⎭分布列为:本题考查了独立事件的概率,考查了离散型随机变量的分布列求解.本题关键是求出ξ每种可能取值下的概率.求离散型随机变量的分布列时,第一步写出变量的可能取值,第二步求出每种取值下的概率,第三步写出分布列.25.(1)x y c d =⋅适宜(2)23.210320y =⨯=,活动推出第8天使用刷脸支付的人次为320(3)平均花费为251150(元) 【分析】(1)直接根据统计数据表判断,x y c d =⋅适宜;(2)把x y c d =⋅,两边同时取常用对数,1gy 11gc gd x =+⋅,则lg y 与x 两者线性相关,根据已知条件求出lg y 关与x 的线性回归方程,进而转化为y 关与x 的线性回归方程;(3)记购买一瓶该饮料的花费为Z (元),则Z 的取值可能为:2,1.8,1.6,1.4,求出Z 的分布,进而求出Z 的期望. 【详解】(1)直接根据统计数据表判断,x y c d =⋅适宜作为扫码支付的人数y 关于活动推出天数x 的回归方程类型;。
人教版高中数学选修2-3练习:第一章 章末复习课 Word版含解析

章末复习课整合·网络构建]警示·易错提醒]1.正确区分“分类”与“分步”,恰当地进行分类,使分类后不重、不漏.2.正确区分是组合问题还是排列问题,要把“定序”和“有序”区分开来.3.正确区分分堆问题和分配问题.4.二项式定理的通项公式T k+1=C a n-k b k是第(k+1)项,而不是k n第k项,注意其指数规律.5.求二项式展开式中的特殊项(如:系数最大的项、二项式系数最大的项、常数项、含某未知数的次数最高的项、有理项……)时,要注意n与k的取值范围.6.注意区分“某项的系数”与“某项的二项式系数”,展开式中“二项式系数的和”与“各项系数的和”,“奇(偶)数项系数的和”与“奇(偶)次项系数的和”.专题一 两个计数原理的应用分类加法计数原理和分步乘法计数原理是本章知识的基础,高考中时有出现,一般是与排列、组合相结合进行考查,难度中等.例1] 现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两部分不能用同一种颜色,则不同的着色方法共有( )高中数学A.144种 B.72种C.64种D.84种解析:法一 根据所用颜色的种数分类第一类:用4种颜色涂,方法有A=4×3×2×1=24(种).4第二类:用3种颜色,必须有一条对角区域涂同色,方法有C C12 A=48(种).1423第三类:用2种颜色,对角区域各涂一色,方法有A=12(种).24根据加法原理,不同的涂色方法共有24+48+12=84(种).法二 根据“高”“学”是否为同色分类第一类:区域“高”与“学”同色,从4色中选1色,有C种14方法,其余区域“中”“数”各有3种方法,共有4×3×3=36(种).第二类:区域“高”与“学”不同色,区域“高”有4种方法,区域“学”有3种方法,区域“中”“数”各有2种方法,共有4×3×2×2=48(种).根据加法原理,方法共有36+48=84(种).答案:D归纳升华应用两个原理解决有关计数问题的关键是区分事件是分类完成还是分步完成,而分类与分步的区别又在于任取其中某一方法是否能完成该事件,能完成便是分类,否则便是分步.对于有些较复杂问题可能既要分类又要分步,此时应注意层次清晰,不重不漏,在分步时,要注意上一步的方法确定后对下一步有无影响(即是否是独立的).变式训练] 在∠AOB的OA边上取3个点,在OB边上取4个点(均除O点外),连同O点共8个点,现任取其中三个点为顶点作三角形,可作的三角形有( )A.48 B.42C.36 D.32解析:分三类:第一类:从OA边上(不包括O)任取一点与从OB 边上(不包括O)任取两点,可构造一个三角形,有C C个;1324第二类:从OA边上(不包括O)任取两点与OB边上(不包括O)任取一点,可构造一个三角形,有C C个;2314第三类:从OA边上(不包括O)任取一点与OB边上(不包括O)任取一点,与O点可构造一个三角形,有C C个.1314由分类加法计数原理,可作的三角形共有N=C C+C C+C C132423141314=42(个).答案:B专题二 排列组合应用题排列组合应用题是高考的一个重点内容,常与实际问题相结合进行考查.要认真阅读题干,明确问题本质,利用排列组合的相关公式与方法解题.1.合理分类,准确分步.例2] 5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员且1、2号中至少有1名新队员的排法有________种(用数字作答).解析:①只有1名老队员的排法有C C A=36(种).②有2名老12233队员的排法有C C C A=12(种).所以共有36+12=48(种).213122答案:482.特殊优先,一般在后.例3] 将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有________种(用数字作答).解析:①当C在第一或第六位时,排法有A=120(种);5②当C在第二或第五位时,排法有A A=72(种);243③当C在第三或第四位时,排法有A A+A A=48(种).23233所以排法共有2×(120+72+48)=480(种).答案:4803.直接间接,灵活选择.例4] 10件产品中有2件合格品,8件优质品,从中任意取4件,至少有1件是合格品的抽法有________种.解析:法一 抽取的4件产品至少有1件合格品分为有1件合格品、2件合格品2种情况:有1件合格品的抽法有C C种;有2件1238合格品抽法有C C种.根据分类加法计数原理至少有1件合格品的228抽法共有C C+C C=140(种).1238228法二 从10件产品中任意抽取4件,有C种抽法,其中没有410合格品的抽法有C种,因此至少有1件合格品的抽法有C-C=4841048 210-70=140(种).答案:1404.元素相邻,捆绑为一.例5] 用数字1,2,3,4,5组成没有重复数字的五位数,则其中数字2,3相邻的偶数有________个(用数字作答).解析:数字2和3相邻的偶数有两种情况.第一种情况,当数字2在个位上时,则3必定在十位上,此时这样的五位数共有6个;第二种情况,当数字4在个位上时,且2,3必须相邻,此时满足要求的五位数有A A =12(个),则一共有6+12=18(个).23答案:185.元素相间,插空解决.例6] 一条长椅上有7个座位,4个人坐,要求3个空位中,恰有2个空位相邻,共有________种不同的坐法.解析:先让4人坐在4个位置上,有A 种排法,再让2个元素4(一个是两个空位作为一个整体,另一个是单独的空位)插入4个人形成的5个“空挡”之间,有A 种插法,所以所求的坐法数为A A =25425480.答案:4806.分组问题,消除顺序.例7] 某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为________.解析:把新转来的4名学生平均分两组,每组2人,分法有=C A3(种),把这两组人安排到6个班中的某2个班中去,有A 种方法,26故不同的安排种数为3A =90. 26答案:90归纳升华解排列组合应用题应遵循三大原则,掌握基本类型,突出转化思想.(1)三大原则是:先特殊后一般的原则、先取后排的原则、先分类后分步的原则.(2)基本类型主要包括:排列中的“在与不在”问题,组合中的“有与没有”问题、“相邻与不相邻”问题、“分组问题”等.(3)转化思想:就是把一些排列组合问题与基本类型相联系,从而把这些问题转化为基本类型,然后加以解决.专题三 二项式定理的应用二项式定理是历年高考中的必考内容,解决二项式定理问题,特别是涉及求二项展开式的通项的问题,关键在于抓住通项公式,还要注意区分“二项式系数”与“展开式系数”.例8] (1)已知的展开式中第三项与第五项的系数之比为(x 2-ix )n -,其中i 2=-1,则展开式中系数为实数且最大的项为( ) 314A .第三项B .第四项C .第五项D .第五项或第六项(2)设(3x -1)6=a 6x 6+a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 6+a 4+a 2+a 0=________.解析:(1)T 3=-C x 2n -5,T 5=C x 2n -10. 2n 4n 由-=-,得n 2-5n -50=0,解得n =10(舍去n =-5), C C 314又T r +1=C (-i)r x 20-r , r 1052据此可知当r 分别取0,2,4,6,8,10时其系数为实数,且当r =4时,C =210为最大. 410(2)令x=1,得a6+a5+a4+a3+a2+a1+a0=26=64;令x=-1,得a6-a5+a4-a3+a2-a1+a0=4 096.两式相加,得2(a6+a4+a2+a0)=4 160,所以a6+a4+a2+a0=2 080.答案:(1)C (2)2 080归纳升华(1)区分“项的系数”与“二项式系数”.项的系数与a,b有关,可正可负,二项式系数只与n有关,恒为正数.(2)切实理解“常数项”“有理项(字母指数为整数)”“系数最大的项”等概念.(3)求展开式中的指定项,要把该项完整写出,不能仅仅说明是第几项.(4)赋值法求展开式中的系数和或部分系数和,常赋的值为0,±1等.(x-2x3)5变式训练] (1)展开式中的含x-3的项的系数为( )A.80 B.60C.40 D.-40(2)已知(1+x)6(1-2x)5=a0+a1x+a2x2+…+a11x11,则a1+a2+…+a11=________.解析:(1)设展开式的第(r+1)项为T r+1=C x5-r=(-2)r Cr5(-2x3)r r5 x5-4r,令5-4r=-3,得r=2,所以,展开式中含x-3的项为T3=(-2)2C x-3=40x-3.25(2)令x=0,得a0=1;令x=1,得a0+a1+a2+…+a11=-64.所以a1+a2+…+a11=-65.答案:(1)C (2)-65专题四 分类讨论思想分类讨论思想在解决排列组合问题时经常应用,此类问题一般情况繁多,因此要对各种不同的情况进行合理的分类与准确的分步,以便有条不紊地进行解答,避免重复或遗漏的现象发生.例4] 从10种不同的作物中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种子不能放入第1号瓶内,那么不同的放法共有________种.解析:根据选出的6种种子中所含甲、乙种子个数来分类:选出的6种种子中只含甲或只含乙的不同放法都为C A A;选出的6种58155种子中,同时含有甲与乙的不同放法有C A A;选出的6种种子48254中,都不含甲与乙的不同放法有A.故不同的放法共有2C A A+C A685815548 A+A=120 960(种).25468答案:120 960归纳升华排列组合的综合问题一般比较复杂,分类方法也灵活多变.一般有以下一些分类方式:(1)根据元素分类,又包括根据特殊元素分类,根据元素特征分类,根据特殊元素的个数分类;(2)根据特殊位置分类;(3)根据图形分类,又包括根据图形的特征分类,根据图形的种类分类;(4)根据题设条件分类.变式训练] 由1,2,3,4,5,6六个数字可组成________个无重复且是6的倍数的五位数.解析:若一个整数是偶数且是3的倍数,则这个整数是6的倍数.据此本题分两类求解.第一类:由1,2,4,5,6作数码.首先从2,4,6中任选一个作为个位数字,有A种选法,然后其余四个数字在其他数位上全排13列,有A种选法,所以符合条件的五位数共有N1=A A=72(个).4134第二类:由1,2,3,4,5作数码.依照第一类的方法,符合条件的五位数有N2=A A=48(个).124综上,符合条件的五位数共有N=N1+N2=120(个).答案:120。
常德市高中数学选修2-3第一章《计数原理》测试(含答案解析)

一、选择题1.杨辉是我国南宋末年的一位杰出的数学家.在他著的《详解九章算法》一书中,画了一张表示二项式展开后的系数构成的三角形数阵(如图所示),称做“开方做法本源”,现在简称为“杨辉三角”,它是杨辉的一大重要研究成果.它比西方的“帕斯卡三角形”早了393年.若用i j a -表示三角形数阵的第i 行第j 个数,则1003a -=( )A .5050B .4851C .4950D .50002.若13nx x ⎛⎫+ ⎪⎝⎭展开式的二项式系数之和为64,则展开式中的常数项是( )A .1215B .135C .18D .93.把4个不同的小球全部放人3个不同的盒子中,使每个盒子都不空的放法总数为( ) A .1333C A B .3242C AC .132442C C CD .2343C A4.设()22201221nn n x x a a x a x a x ++=++++,则022n a a a 的值是( )A .()1312n- B .1312nC .3nD .31n +5.如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”.现提供4种颜色给“弦图”的5个区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有( )A .48种B .72种C .96种D .144种6.二项式3nx x 的展开式中第13项是常数项,则n =( )A .18B .21C .20D .307.袋中有大小相同的四个白球和三个黑球,从中任取两个球,两球同色的概率为( )A .47B .37C .27D .8218.5(3)(2)x x -+的展开式中3x 的系数为( ) A .10B .40-C .200D .2409.在12202011x x ⎛⎫++ ⎪⎝⎭的展开式中, 2x 项的系数为( ) A .10B .25C .35D .6610.已知8290129(3)(23)(1)(1)(1)x x a a x a x a x --=+-+-+⋅⋅⋅+-,则6a =( )A .1792-B .1792C .5376-D .537611.式子22223459C C C C ++++=( )A .83B .84C .119D .12012.若用1,2,3,4,5,6,这六个数字组成没有重复数字且任何相邻两个数字的奇偶性不同的六位数,则这样的六位数共有多少个( ) A .720B .36C .144D .72二、填空题13.函数()y f x =的定义域D 和值域A 都是集合{12,3},的非空真子集,如果对于D 内任意的x ,总有()()x f x xf x ++的值是奇数,则满足条件的函数()y f x =的个数是_____;14.在一个正六边形的六个区域涂色(如图),要求同一区域同一种颜色,相邻的两块区域(有公共边)涂不同的颜色.现有5种不同的颜色可供选择,则有________种涂色方案.15.已知正整数n ,二项式322nx x ⎛⎫+ ⎪⎝⎭的展开式中含有7x 的项,则n 的最小值是________.16.某单位拟安排6位员工在今年6月14号至16号(某节假期)值班,每天安排2人,每人值班1天.若6位员工中的甲不值16号,乙不值14号,则不同的安排方法共有____________种.17.设二项式11323nx x ⎛⎫+ ⎪⎝⎭展开式的各项系数和为t ,其二项式系数之和为h ,若272h t +=,则二项展开式中2x 项的系数为__________.18.,,,,,A B C D E F 六人并排站成一排,,A B 必须站在一起,且,C D 不能相邻,那么不同的排法共有_____种(结果用数字表示).19.从0,1,2,3,4,5这6个数字中任取3个组成一个无重复数字的三位数,其中奇数的个数是__________.20.若多项式()()()10112110110112111x x a a x a x a x +=+++++++,则10a =______.三、解答题21.男运动员6名,女运动员4名,其中男、女队长各1名.现选派5人外出参加比赛,在下列情形中各有多少种选派方法? (1)男运动员3名,女运动员2名; (2)队长中至少有1人参加; (3)既要有队长,又要有女运动员.22.已知n二项展开式中,第4项的二项式系数与第3项的二项式系数的比为8:3(1)求n 的值;(2)求展开式中3x 项的系数(3)计算式子01231010101010102481024C C C C C -+-++的值.23.已知数列{}n a 的首项为1,记()()()()120122123, 111nn n n nn F x n a C x a C x x a C x x --=-+-+-()11111n n n nn n n n a C x x a C x --+++-+.(1)若数列{}n a 是公比为3的等比数列,求()1, 2020F -的值;(2)若数列{}n a 是公差为2的等差数列,求证:(), 2020F x 是关于x 的一次多项式.24.若423401234(2x a a x a x a x a x =++++ (1)求2a 的值;(2)求2202413()()a a a a a ++-+25.用0,1,2,3,4这五个数字组成无重复数字的自然数. (1)在组成的五位数中,所有奇数的个数有多少? (2)在组成的五位数中,数字1和3相邻的个数有多少? (3)在组成的五位数中,若从小到大排列,30124排第几个?26.(1)把6本不同的书分给4位学生,每人至少一本,有多少种方法? (2)由0,1,2,3,4,5这6个数字组成没有重复数字的四位偶数由多少个?(3)某旅行社有导游9人,其中3人只会英语,4人只会日语,其余2人既会英语,也会日语,现从中选6人,其中3人进行英语导游,另外3人进行日语导游,则不同的选择方法有多少种?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】依据二项展开式系数可知,得到第i 行第j 个数应为11j i C --,即可求得1003a -的值.【详解】依据二项展开式系数可知,第i 行第j 个数应为11j i C --, 故第100行第3个数为299999848512C ⨯== 故选:B . 【点睛】本题考查二项展开式的应用,其中解答中得出第i 行第j 个数应为11j i C --是解答的关键,着重考查推理与运算能力,属于基础题.2.B解析:B 【解析】分析:由二项式系数和求出指数n ,再写出展开式通项后可求得常数项. 详解:由题意264n=,6n =,∴通项为36662166(3)3r r rr r rr T C x C x ---+==, 令3602r -=,4r =,∴常数项为2463135C =, 故选B..点睛:在()n a bx +展开式中二项式系数为2n ,所有项的系数和为()n a b +.要注意这两个和是不一样的,二项式系数和是固定的,只与指数n 有关,而所有项系数和还与二项式中的系数,a b 有关.3.D解析:D 【分析】利用捆绑法选择两个球看成整体,再全排列得到答案. 【详解】选择两个球看成整体,共有24C 种取法,再把三个球放入三个盒子中,有33A 种放法,故共有2343C A 种放法. 故选:D. 【点睛】本题考查了排列和组合的应用,意在考查学生的应用能力,利用捆绑法是解题的关键.4.B解析:B 【分析】本题可以通过利用二项展开式的系数关系,采用赋值法将x 分别赋值为1、1-,然后通过运算即可得出结果. 【详解】()22201221nn n x x a a x a x a x ++=++++,令1x =,01223n na a a a ①,令1x =-,01221n a a a a ②,(①+②)02212312nna a a , 故选:B . 【点睛】本题考查二项展开式的相关运算,可通过赋值法进行计算,考查计算能力,考查化归与转化思想,是中档题.5.B解析:B 【分析】A 区域与其他区域都相邻,从A 开始分步进行其它区域填涂可解【详解】解:根据题意,如图,假设5个区域依次为A B C D E 、、、、,分4步分析: ①,对于A 区域,有4种涂法,②,对于B 区域,与A 相邻,有3种涂法, ③,对于C 区域,与A B 、 相邻,有2种涂法,④,对于D 区域,若其与B 区域同色,则E 有2种涂法,若D 区域与B 区域不同色,则E 有1种涂法,则D E 、 区域有2+1=3种涂色方法, 则不同的涂色方案共有4×3×2×3=72种; 故选: B .【点睛】本题考查两个计数原理的综合问题使用两个计数原理进行计数的基本思想:对需用两个计数原理解决的综合问题要“先分类,再分步”,即先分为若干个“既不重复也不遗漏”的类,再对每类中的计数问题分成若干个“完整的步骤”,求出每个步骤的方法数,按照分步乘法计数原理计算各类中的方法数,最后再按照分类加法计数原理得出总数.6.D解析:D 【分析】直接利用二项式定理计算得到答案. 【详解】二项式3nx x 的展开式中第13项12101212123313()n n n n T C x C x x --⎛== ⎝, 令1003n-=,得30n =. 故选:D. 【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.7.B解析:B 【分析】根据题意可知,所选的两个球均为白球或黑球,利用组合计数原理与古典概型的概率公式可求得所求事件的概率. 【详解】由题意可知,所选的两个球均为白球或黑球,由古典概型的概率公式可知,所求事件的概率为22432737C C P C +==. 故选:B. 【点睛】本题考查古典概型概率的计算,涉及组合计数原理的应用,考查计算能力,属于中等题.8.B解析:B 【分析】首先将5(3)(2)x x -+拆开得到555((2)3(23))(2)x x x x x =+-+-+,得到5(3)(2)x x -+的展开式中3x 的系数与5(2)x +展开式中2x 项和3x 项的系数有关,化简求得结果. 【详解】555((2)3(23))(2)x x x x x =+-+-+,5(2)x +展开式中2x 项的系数为335280C ⋅=, 5(2)x +展开式中3x 项的系数为225240C ⋅=, 所以5(3)(2)x x -+的展开式中3x 的系数为8034040-⨯=-, 故选:B. 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有求两个二项式乘积展开式的系数问题,在解题的过程中,注意分析与哪些项有关,属于简单题目.9.D解析:D 【分析】分析12202011x x ⎛⎫++ ⎪⎝⎭的展开式的本质就是考虑12个202011x x ⎛⎫++ ⎪⎝⎭,每个括号内各取202011,,x x 之一进行乘积即可得到展开式的每一项,利用组合知识即可得解.【详解】12202011x x ⎛⎫++ ⎪⎝⎭的展开式考虑12个202011x x ⎛⎫++ ⎪⎝⎭, 每个括号内各取202011,,x x 之一进行乘积即可得到展开式的每一项,要得到2x 项,就是在12个202011x x ⎛⎫++ ⎪⎝⎭中,两个括号取x ,10个括号取1, 所以其系数为21266C =. 故选:D 【点睛】此题考查求多项式的展开式指定项的系数,关键在于弄清二项式定理展开式的本质问题,将问题转化为计数原理组合问题.10.D解析:D 【分析】将原式改写成88(3)(23)[2(1)][2(1)1]x x x x --=----,利用二项式定理解决系数问题即可得解.【详解】88(3)(23)[2(1)][2(1)1]x x x x --=----290129(1)(1)(1)a a x a x a x =+-+-+⋅-+⋅⋅,所以26356882C 2C 2358417925376.a =⨯⨯+⨯=+= 故选:D 【点睛】此题考查二项式定理的理解辨析和应用,关键在于熟练掌握定理公式,根据公式处理系数关系.11.C解析:C 【分析】根据组合数的计算公式111rr r n n n C C C ++++=,化简运算,即可求解.【详解】由题意,根据组合数的计算公式111rr r n n n C C C ++++=,可得22223459C C C C ++++=32222334591C C C C C +++++-322244591C C C C =++++-32235591011119C C C C =+++-==-=.故选:C. 【点睛】本题主要考查了组合数的化简与运算,其中解答中熟记组合数的运算公式,准确运算是解答的关键,着重考查了计算能力.12.D解析:D 【分析】第一步先将1,3、5排列,共有336A =种排法;第二步再将2,4、6插空排列,不能空着两个偶数之间的空,先用两个元素排列中间两个空,在把两端的空位选一个放第三个元素,得到结果. 【详解】解:由题意知,本题是一个分步计数问题, 第一步先将1,3、5排列,共有336A =种排法,第二步再将2,4、6插空排列,不能空着两个偶数之间的空, 先用两个元素排列中间两个空,在把两端的空位选一个放第三个元素,共有23212A =种排法, 由分步乘法计数原理得这样的六位数共有:61272⨯=. 故选:D. 【点睛】本题考查分步计数原理,以及排列数的计算和插空法的应用,解题的关键是看出做完一件事需要分成几步,每一步包括几种方法.二、填空题13.【分析】化简得因此中至少一个为奇数再分两种情况讨论得解【详解】因为所以中至少一个为奇数定义域为的都可以有种;定义域为的函数所以有种;所以共种故答案为:29【点睛】关键点睛:解答本题有两个关键:其一是 解析:29【分析】化简得()()(1)(()1)1,x f x xf x x f x ++=++-因此(),f x x 中至少一个为奇数,再分两种情况讨论得解. 【详解】因为()()(1)(()1)1,x f x xf x x f x ++=++- 所以(),f x x 中至少一个为奇数,定义域为{1},{3},{1,3}的都可以,有3333=15++⨯种; 定义域为{}{}{}2,1,2,2,3的函数(2){1,3}f ∈, 所以有23223=14+⨯+⨯种; 所以共29种. 故答案为:29 【点睛】关键点睛:解答本题有两个关键:其一是分析出(),f x x 中至少一个为奇数,其二是合理分类讨论.14.4100【分析】分类讨论:三个区域用同一种颜色用2种颜色用3种颜色由分步计数原理可得结论【详解】考虑三个区域用同一种颜色共有方法数有考虑三个区域用2种颜色共有方法数有考虑三个区域用3种颜色共有方法数解析:4100 【分析】分类讨论:A 、C 、E 三个区域用同一种颜色,用2种颜色,用3种颜色,由分步计数原理可得结论. 【详解】考虑A 、C 、E 三个区域用同一种颜色,共有方法数有354320⨯=,考虑A 、C 、E 三个区域用2种颜色,共有方法数有(543)4332160⨯⨯⨯⨯⨯=, 考虑A 、C 、E 三个区域用3种颜色,共有方法数有33531620A ⨯=, 故总计有方法数320216016204100++=. 故答案为:4100. 【点睛】本题考查分类计数原理和分步计数原理,解题关键是确定完成事件的方法,是分类还是分步?本题完成涂色这个事件,采取的是先分类:按A 、C 、E 三个区域所用颜色数分三类,然后每类再分步,每类里先涂色A 、C 、E 三个区域,然后再涂色其它三个区域.15.【分析】确定展开式的通项令的指数为即可求得结论【详解】二项式的展开式通项为令可得当时取最小值故答案为:【点睛】本题考查二项展开式通项的应用考查学生的计算能力属于中等题 解析:4【分析】确定展开式的通项,令x 的指数为7,即可求得结论. 【详解】二项式322nx x ⎛⎫+ ⎪⎝⎭的展开式通项为()3351222kn k k k kn k k n n T C x C x x --+⎛⎫=⋅=⋅ ⎪⎝⎭. 令357n k -=,可得573k n +=,当1k =时,n 取最小值4. 故答案为:4. 【点睛】本题考查二项展开式通项的应用,考查学生的计算能力,属于中等题.16.42【分析】根据题意不同的安排方法的数目等于所有排法减去甲值16号或乙值14号的排法数再加上甲值16号且乙值14号的排法进而计算可得答案【详解】解:根据题意不同的安排方法的数目为:所有排法减去甲值1解析:42 【分析】根据题意,不同的安排方法的数目等于所有排法减去甲值16号或乙值14号的排法数,再加上甲值16号且乙值14号的排法,进而计算可得答案. 【详解】解:根据题意,不同的安排方法的数目为:所有排法减去甲值16号或乙值14号的排法数,再加上甲值16号且乙值14号的排法,即221211645443242C C C C C C -⨯+=, 故答案为:42. 【点睛】本题考查组合数公式的运用,注意组合与排列的不同以及各种排法间的关系,避免重复、遗漏.17.1【分析】给二项式中的赋值1求出展开式的各项系数和利用二项式系数之和公式求出再代入解方程求出的值从而得出二形式的表达式再求出二项式中项的系数即可【详解】令二项式中的为1得到各项系数之和为又二项式系数解析:1 【分析】给二项式中的x 赋值1,求出展开式的各项系数和t ,利用二项式系数之和公式求出h ,再代入272h t +=,解方程求出n 的值,从而得出二形式的表达式,再求出二项式中2x 项的系数即可. 【详解】令二项式中的x 为1得到各项系数之和为4=n t ,又二项式系数之和为2=n h , 因为272h t +=,,所以42272n n +=,解得4n =,所以41111332233nx x x x ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭, 所以它展开式的通项为443243-+-k kkkC x,要得到2x 项的系数,则需令4232-+=k k, 解得4k =,所以二项展开式中2x 项的系数为444431-=C .故答案为:1. 【点睛】本题主要考查二项式展开式的各项系数之和,二项式系数之和,二项展开式通项的应用,正确运用公式是解题关键.18.144【分析】根据题意分2步进行分析:①将两人看成一个元素与人进行全排列易得排好后有4个空位;②在4个空位中任选2个安排由分步计数原理计算可得答案【详解】解:根据题意分2步进行分析:①将两人看成一个解析:144 【分析】根据题意,分2步进行分析:①将AB 两人看成一个元素,与2EF 人进行全排列,易得排好后有4个空位;②在4个空位中任选2个,安排C 、D ,由分步计数原理计算可得答案. 【详解】解:根据题意,分2步进行分析:①将AB 两人看成一个元素,与2EF 人进行全排列, 有232312A A =种排法,排好后有4个空位,②在4个空位中任选2个,安排C 、D ,有2412A =种情况, 则有1212144⨯=种不同的排法. 故答案为:144. 【点睛】本题考查排列、组合的应用,注意常见的相邻和不相邻问题的处理方法有捆绑法和插空法.19.48【分析】根据题意分3步进行分析:①从135三个数中取一个排个位;②0不能在百位则百位的安排方法有4种;③在剩下的4个数中任选1个安排在十位由分步计数原理计算可得答案【详解】解:根据题意分3步进行解析:48【分析】根据题意,分3步进行分析:①从1、3、5三个数中取一个排个位;②0不能在百位,则百位的安排方法有4种;③在剩下的4个数中任选1个,安排在十位,由分步计数原理计算可得答案. 【详解】解:根据题意,分3步进行分析:①从1、3、5三个数中取一个排个位,有3种安排方法, ②0不能在百位,则百位的安排方法有4种,③在剩下的4个数中任选1个,安排在十位,有4种情况, 则符合题意的奇数的个数是为34448⨯⨯=个. 故答案为:48. 【点睛】本题考查排列组合及简单的计算原理,采用特殊元素特殊位置优先考虑的方法.20.【分析】由二项式定理及其展开式通项公式得展开式的通项为令解得则得解【详解】由展开式的通项为令解得则故答案为:【点睛】本题考查了二项式定理及其展开式通项公式意在考查学生对这些知识的理解掌握水平 解析:22-【分析】由二项式定理及其展开式通项公式得111122[(1)1]x x =+-展开式的通项为111112(1)(1)r r r r T C x -+=+-,令1110r -=,解得1r =,则110112(1)22a C =⨯-=-,得解.【详解】由111122[(1)1]x x =+-展开式的通项为111112(1)(1)rr r r T C x -+=+-, 令1110r -=,解得1r =,则110112(1)22a C =⨯-=-, 故答案为:22-. 【点睛】本题考查了二项式定理及其展开式通项公式,意在考查学生对这些知识的理解掌握水平.三、解答题21.(1)120(种);(2)196(种);(3)191(种). 【分析】(1)本题是一个分步计数问题,首先选3名男运动员,有36C 种选法.再选2名女运动员,有24C 种选法.利用乘法原理得到结果;(2)只有男队长的选法为48C 种,只有女队长的选法为48C 种,男、女队长都入选的选法为38C 种,把所有的结果数相加;(3)当有女队长时,其他人选法任意,共有49C 种选法.不选女队长时,必选男队长,共有48C 种选法.其中不含女运动员的选法有45C 种,得到结果.【详解】 (1)分两步完成:第一步,选3名男运动员,有36C 种选法;第二步,选2名女运动员,有24C 种选法.由分步乘法计数原理可得,共有3264120C C ⋅=(种)选法.(2)方法一(直接法)可分类求解: “只有男队长”的选法种数为48C ; “只有女队长”的选法种数为48C ; “男、女队长都入选”的选法种数为38C , 所以共有43882196C C +=(种)选法.方法二(间接法)从10人中任选5人有510C 种选法,其中不选队长的方法有58C 种.所以“至少有1名队长”的选法有55108196C C -=(种).(3)当有女队长时,其他人任意选,共有49C 种选法;当不选女队长时,必选男队长,共有48C 种选法,其中不含女运动员的选法有45C 种,所以不选女队长时的选法共有4485C C -()种.所以既要有队长又要有女运动员的选法共有444985191C C C +-=(种).【点睛】本题主要考查了分步乘法计数原理,考查分类加法计数原理,在比较复杂的题目中,会同时出现分类和分步,本题是一个比较综合的题目,属于中档题. 22.(1)10n =;(2)180;(3)1. 【解析】试题分析: 本题主要考查二项式定理的应用,二项展开式的通项公式,注意根据题意,分析所给代数式的特点,通过给二项式的x 赋值,求展开式的系数和,属于基础题.第一问,直接利用条件可得3283n n C C =,求得n 的值;第二问,在二项展开式的通项公式中,令x的幂指数等于3,求出r 的值,即可求得展开式中x 3项的系数.第三问,在10二项展开式中,令x=1,可得式子01231010101010102481024C C C C C -+-++的值.试题(1)由第4项的二项式系数与第3项的二项式系数的比为8:3,可得3283n n C C =,化简可得2833n -=,求得10n =. (2)由于n 二项展开式的通项公式为5110(2)r r rr T C x -+=-,令53r -=,求得2r,可得展开式中3x 项的系数为2210(2)180C -=. (3)由二项式定理可得105100(2)n r r rr C x -==-∑, 所以令x=1得01231010101010102481024C C C C C -+-++10(12)1=-=.考点:二项式定理的应用;二项式系数的性质.23.(1)1(2)证明见解析; 【分析】(1)根据13-=n n a ,得到()()()()()1220012,313131nn n n nn F x n C x C x x C x x --=-+-+-()()()()()1113131312n n n nn nn n C x x C x x x x --++-+=-+=+求解.(2)易得21n a n =-,则(),F x n ()()()()()101222112114(1)12--=-++-++-+++nn n n n nn nn C x C x x C x n C xx ,再转化为(),F x n ()()10122211(1)--⎡⎤=-+-+-+++⎣⎦n n n n n n n n n C x C x x C x x C x ()11222212(1)n n n n n n n C x x C x x nC x --⎡⎤-+-++⎣⎦,利用二项式定理及组合数公式求解.【详解】(1)由题意得:13-=n n a ,∴()()()()()1220012,313131nn n n nn F x n C x C x x C x x --=-+-+-()()()()()1113131312n n nnn nn n C x x C x x x x --++-+=-+=+,∴()()20201,2020121F -=-=;(2)证明:若数列{}n a 是公差为2的等差数列,则21n a n =-.()()()()10111121,111---+=-+-++-+nn n n n nn n n n n n F x n a C x a C x x a C x x a C x ,()()()()()101222112114(1)12--=-++-++-+++nn n n n nn nn C x C x x C x n C x x ,()()10122211(1)--⎡⎤=-+-+-+++⎣⎦n n n n n n n n n C x C x x C x x C x()11222212(1)n n n n n n n C x x C x x nC x --⎡⎤-+-++⎣⎦,由二项式定理知,()()()10122211(1)11---+-+-=-+=⎡⎤⎣++⎦nn n n n nn n nnC x C x x C x x x x C x ,因为()()()()111!!!!1!!kk n n n n kC k n C k n k k n n k --⋅-=⋅=⋅=---,所以()1122212(1)---+-++n n n n n nn C x x C x nC x x()112211111(1)------=-+-++n n n n n n nnC x x n x x nC x C()112111111(1)n n n n n n n nx C x C x x C x -------=⎦-+-++⎡⎤⎣()11-=-+=⎡⎤⎣⎦n nx x x nx ,所以(),12F x n nx =+.(),202014040F x x =+.【点睛】本题主要考查二项式定理及其展开式以及组合数公式,等差数列,等比数列的通项公式,还考查了运算求解的能力,属于中档题. 24.(1) 72 ;(2) 1 【分析】(1)求2a 时,可通过二项展开式的通项去求解;(2)先观察式子特征,注意到可进行平方差变形;然后根据1x =±时的值来计算最终结果. 【详解】(1)因为222224C (2)a x x =,所以22224C (2)72a ==; (2)22024130123401234()()()()a a a a a a a a a a a a a a a ++-+=++++-+-+当1x =时,401234(2a a a a a ++++=;当1x =-时,401234(2a a a a a --+-+=;所以2244402413()()2)2)(34)1a a a a a ++-+==-=. 【点睛】对于230123()...nn f x a a x a x a x a x =+++++形式的展开式,奇次项系数和:(1)(1)2f f +-,偶次项系数和:(1)(1)2f f --,所有项系数和:(1)f .25.(1)36个(2)36个(2)49个 【解析】 【分析】(1)先排个位数,方法数有12C 种,然后排万位数,方法数有13C 种,剩下百位、十位和千位任意排,方法数有33A 种,再按分步乘法计数原理即可求得种类数.(2)把数字1和3捆绑在一起,则相当于有4个位置,最高位不为0,其余位置任意排; (3)计算出比30124小的五位数的情况,即可知道30124排第几个. 【详解】(1)在组成的五位数中,所有奇数的个数有113233=236=36C C A ⨯⨯个; (2)在组成的五位数中,数字1和3相邻的个数有21323323636A C A =⨯⨯=个;(3)要求在组成的五位数中,要求得从小到大排列,30124排第几个,则计算出比30124小的五位数的情况,比30124小的五位数,则万位为1或2,其余位置任意排,即142422448C A=⨯=,故在组成的五位数中比30124小的数有48个,所以在组成的五位数中,若从小到大排列,30124排第49个.【点睛】本小题主要考查简单的排列组合问题,主要是数字的排列.要注意的问题主要是有特殊条件或者特殊要求的,要先排特殊位置或优先考虑特殊要求.如本题中,第一问要求是奇数,那么就先排个位.由于数字的万位不能为零,故第二考虑的是万位,本小题属于基础题. 26.(1)1560;(2)156;(3)92.【解析】【分析】(1)分为3,1,1,1和2,2,1,1两类分别计算,加和得到结果;(2)分为个位是0和个位不是0两类分别计算,加和得到结果;(3)分为只会英语的人中选了3人作英语导游、选了2人作英语导游和选了1人作英语导游三类分别计算,加和得到结果.【详解】(1)把6本不同的书分给4位学生,每人至少一本,有3,1,1,1和2,2,1,1两类分配方式为3,1,1,1时,共有:3114632433480C C CAA⋅=种分法分配方式为2,2,1,1时,共有:2214642422221080C C CAA A⋅=种分法由分类加法计数原理可得,共有:48010801560+=种分法(2)若个位是0,共有:3560A=个若个位不是0,共有:11224496C C A=个由分类加法计数原理可得,共有:6096156+=个(3)若只会英语的人中选了3人作英语导游,共有:3620C=种选法若只会英语的人中选了2人作英语导游,共有:12323560C C C=种选法若只会英语的人中选了1人作英语导游,共有:133412C C=种选法由分类加法计数原理可得,共有:20601292++=种选法【点睛】本题考查排列组合的综合应用问题,涉及到分组分配问题、元素位置有限制的排列组合问题等知识,关键是能够根据题目的要求进行合理的分类,最终通过分类加法计数原理得到结果.。
新北师大版高中数学高中数学选修2-3第一章《计数原理》检测卷(包含答案解析)(4)

一、选择题1.两个实习生每人加工一个零件.加工为一等品的概率分别为56和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A .12B .13C .512D .162.已知()~,X B n p ,且()2E X =,()43D X =,则n =( ) A .5B .6C .7D .83.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不相同”,B 为“甲独自去一个景点”,则概率P (A |B )等于( ) A .49B .29C .12D .134.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = ) A .85B .65C .45D .255.连续投掷2粒大小相同,质地均匀的骰子3次,则恰有2次点数之和不小于10的概率为( ) A .112B .572C .115D .52166.设离散型随机变量X 可能的取值为1,2,3,4,()P X k ak b ==+,又X 的数学期望为()3E X =,则a b += A .110B .0C .110-D .157.若随机变量X 的分布列为:已知随机变量Y aX b =+(,,0)a b R a ∈>,且()10,()4E Y D Y ==,则a 与b 的值为( ) A .10,3a b ==B .3,10a b ==C .5,6a b ==D .6,5a b ==8.已知随机变量ξ服从正态分布2(2,)N σ,且(4)0.8P ξ<=,(02)P ξ<<=( ). A .0.6B .0.4C .0.3D .0.29.2017年5月30日是我国的传统节日端午节,这天小明的妈妈为小明煮了5个粽子,其中两个大枣馅三个豆沙馅,小明随机取出两个,事件A =“取到的两个为同一种馅”,事件B =取到的两个都是豆沙馅”,则(|)P B A =( )A .34B .14C .110D .31010.设样本x 1,x 2,…,x 10数据的平均值和方差分别为3和5,若y i =x i +a(a 为非零实数,i=1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为( ) A .3,5B .3+a ,5C .3+a ,5+aD .3,5+a11.如下五个命题:①在线性回归模型中,2R 表示解释变量对于预报变量变化的贡献率,在对女大学生的身高预报体重的回归分析数据中,算得20.64R ≈,表明“女大学生的体重差异有64%是由身高引起的”②随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度,方差或标准差越小,则随机变量偏离于均值的平均程度越大;③正态曲线关于直线x σ=对称,这个曲线只有当()3,3x σσ∈-时,才在x 轴上方; ④正态曲线的对称轴由μ确定,当μ一定时,曲线的形状由σ决定,并且σ越大,曲线越“矮胖”;⑤若随机变量()~0,1N ξ,且()1,P p ξ>=则()1102P p ξ-<<=-; 其中正确命题的序号是 A .②③B .①④⑤C .①④D .①③④12.将3颗骰子各掷一次,记事件A 为“三个点数都不同”,事件B 为“至少出现一个1点”,则条件概率(A |B)P 和(|)P B A 分别为( ) A .160,291B .560,1891C .601,912D .911,2162二、填空题13.某市一次高三年级数学统测,经抽样分析,成绩X 近似服从正态分布()284,N σ,且(7884)0.3P X <≤=.该市某校有400人参加此次统测,估计该校数学成绩不低于90分的人数为____.14.在一个袋中放入四种不同颜色的球,每种颜色的球各两个,这些球除颜色外完全相同.现玩一种游戏:游戏参与者从袋中一次性随机抽取4个球,若抽出的4个球恰含两种颜色,获得2元奖金;若抽出的4个球恰含四种颜色,获得1元奖金;其他情况游戏参与者交费1元.设某人参加一次这种游戏所获得奖金为X ,则()E X =________. 15.如图所示,旋转一次的圆盘,指针落在圆盘中3分处的概率为a ,落在圆盘中2分处的概率为b ,落在圆盘中0分处的概率为c ,(,,(0,1)a b c ∈),已知旋转一次圆盘得分的数学期望为1分,则213a b+的最小值为________.16.为响应国家号召,打赢脱贫致富攻坚战,武汉大学团队带领湖北省大悟县新城镇熊湾村村民建立有机、健康、高端、绿色的蔬菜基地,并策划“生产、运输、销售”一体化的直销供应模式,据统计,当地村民两年时间成功脱贫.蔬菜种植基地将采摘的有机蔬菜以每份三斤称重并保鲜分装,以每份10元的价格销售到生鲜超市,每份15元的价格卖给顾客,如果当天前8小时卖不完,则超市通过促销以每份5元的价格卖给顾客(根据经验,当天能够把剩余的有机蔬菜都低价处理完毕,且处理完毕后,当天不再进货).该生鲜超市统计了100天有机蔬菜在每天的前8小时内的销售量(单位:份),制成如下表格(注:*,x y N ∈,且30x y +=).若以100天记录的频率作为每日前8小时销售量发生的概率,该生鲜超市当天销售有机蔬菜利润的期望值为决策依据,若购进17份比购进18份的利润的期望值大,则x 的最小值是________. 前8小时内销售量 15 16 17 18 19 20 21 频数10x16161513y17.同学甲参加某科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错或不答均得零分.假设同学甲答对第一、二、三个问题的概率分别为0.8,0.6,0.5,且各题答对与否相互之间没有影响,则同学甲得分不低于300分的概率是_______.18.已知随机变量X ~B (10,0.2),Y =2X +3,则EY 的值为____________.19.一个碗中有10个筹码,其中5个都标有2元,5个都标有5元,某人从此碗中随机抽取3个筹码,若他获得的奖金数等于所抽3个筹码的钱数之和,则他获得奖金的期望为________.20.某大学选拔新生补充进“篮球”,“电子竞技”,“国学”三个社团,据资料统计,新生通过考核选拔进入这三个社团成功与否相互独立,2019年某新生入学,假设他通过考核选拔进入该校的“篮球”,“电子竞技”,“国学”三个社团的概率依次为概率依次为m ,13,n ,已知三个社团他都能进入的概率为124,至少进入一个社团的概率为34,且m >n .则m n +=_____三、解答题21.2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间[)20,40,9:40~10:00记作[)40,60,10:00~10:20记作[)60,80,10:20~10:40记作[)80,100.例如:10点04分,记作时刻64.(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X ,求X 的分布列与数学期望;(3)由大数据分析可知,车辆在每天通过该收费点的时刻T 服从正态分布()2,N μσ,其中μ可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,2σ可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).参考数据:若()2,T N μσ~,则()0.6827P T μσμσ-<≤+=,()220.9545P T μσμσ-<≤+=,()330.9973P T μσμσ-<≤+=.22.近来国内一些互联网公司为了赢得更大的利润、提升员工的奋斗姿态,要求员工实行996''工作制,即工作日早9点上班,晚上21点下班,中午和傍晚最多休息1小时,总计工作10小时以上,并且一周工作6天的工作制度,工作期间还不能请假,也没有任何补贴和加班费.消息一出,社交媒体一片哗然,有的人认为这是违反《劳动法》的一种对员工的压榨行为,有的人认为只有付出超越别人的努力和时间,才能够实现想要的成功,这是提升员工价值的一种有效方式.对此,国内某大型企业集团管理者认为应当在公司内部实行996''工作制,但应该给予一定的加班补贴(单位:百元),对于每月的补贴数额集团人力资源管理部门随机抽取了集团内部的1000名员工进行了补贴数额(单位:百元)期望值的网上问卷调查,并把所得数据列成如下所示的频数分布表: 组别(单位:百元) [)0,20[)20,40[)40,60[)60,80[)80,100频数(人数)22504502908(Ⅰ)求所得样本的中位数(精确到百元);(Ⅱ)根据样本数据,可近似地认为员工的加班补贴X 服从正态分布()251,15N ,若该集团共有员工4000,试估计有多少员工期待加班补贴在8100元以上;(Ⅲ)已知样本数据中期望补贴数额在[]80,100范围内的8名员工中有5名男性,3名女性,现选其中3名员工进行消费调查,记选出的女职员人数为Y ,求Y 的分布列和数学期望.附:若()2~,X N μσ,则()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=,()330.9974P X μσμσ-<<+=.23.2020年初,由于疫情影响,开学延迟,为了不影响学生的学习,国务院、省市区教育行政部门倡导各校开展“停学不停课、停学不停教”,某校语文学科安排学生学习内容包含老师推送文本资料学习和视频资料学习两类,且这两类学习互不影响已知其积分规则如下:每阅读一篇文本资料积1分,每日上限积5分;观看视频1个积2分,每日上限积6分.经过抽样统计发现,文本资料学习积分的概率分布表如表1所示,视频资料学习积分的概率分布表如表2所示.(1)现随机抽取1人了解学习情况,求其每日学习积分不低于9分的概率;(2)现随机抽取3人了解学习情况,设积分不低于9分的人数为ξ,求ξ的概率分布及数学期望.24.某工厂计划建设至少3个,至多5个相同的生产线车间,以解决本地区公民对特供商品A 的未来需求.经过对先期样本的科学性调查显示,本地区每个月对商品A 的月需求量均在50万件及以上,其中需求量在50~ 100万件的频率为0.5,需求量在100~200万件的频率为0.3,不低于200万件的频率为0.2.用调查样本来估计总体,频率作为相应段的概率,并假设本地区在各个月对本特供商品A 的需求相互独立.(1)求在未来某连续4个月中,本地区至少有2个月对商品A 的月需求量低于100万件的概率.(2)该工厂希望尽可能在生产线车间建成后,车间能正常生产运行,但每月最多可正常生产的车间数受商品A 的需求量x 的限制,并有如下关系: 商品A 的月需求量x (万件) 50100x ≤< 100200x ≤<200x ≥车间最多正常运行个数345若一个车间正常运行,则该车间月净利润为1500万元,而一个车间未正常生产,则该车间生产线的月维护费(单位:万元)与月需求量有如下关系:商品A 的月需求量x (万件)50100x ≤<100200x ≤<未正常生产的一个车间的月维护费(万元)500600试分析并回答该工厂应建设生产线车间多少个?使得商品A 的月利润为最大. 25.如图,直角坐标系中,圆的方程为2213131,(1,0),,,,2222x y A B C ⎛⎫⎛⎫+=--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为圆上三个定点,某同学从A 点开始,用掷骰子的方法移动棋子,规定:①每掷一次骰子,把一枚棋子从一个定点沿圆弧移动到相邻下一个定点;②棋子移动的方向由掷骰子决定,若掷出骰子的点数为3的倍数,则按图中箭头方向移动;若掷出骰子的点数为不为3的倍数,则按图中箭头相反的方向移动.设掷骰子n 次时,棋子移动到A ,B ,C 处的概率分别为(),(),(),n n n P A P B P C 例如:掷骰子一次时,棋子移动到A ,B ,C 处的概率分别为111()0,()3P A P B ==,12()3P C =.(1)分别掷骰子二次,三次时,求棋子分别移动到A ,B ,C 处的概率;(2)掷骰子N 次时,若以X 轴非负半轴为始边,以射线OA ,OB ,OC 为终边的角的正弦值弦值记为随机变量n X ,求5X 的分布列和数学期望; 26.甲、乙两名篮球运动员,甲投篮一次命中的概率为23,乙投篮一次命中的概率为12,若甲、乙各投篮三次,设X 为甲、乙投篮命中的次数的差的绝对值,其中甲、乙两人投篮是否命中相互没有影响.(1)若甲、乙第一次投篮都命中,求甲获胜(甲投篮命中数比乙多)的概率; (2)求X 的分布列及数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】根据题意,分析可得,这两个零件中恰有一个一等品包含仅第一个实习生加工一等品与仅第二个实习生加工一等品两种互斥的事件,而两个零件是否加工为一等品相互独立,进而由互斥事件与独立事件的概率计算可得答案. 【详解】记两个零件中恰好有一个一等品的事件为A , 即仅第一个实习生加工一等品为事件1A , 仅第二个实习生加工一等品为事件2A 两种情况, 则()()()125113164643P A P A P A =+=⨯+⨯=, 故选:B . 【点睛】本题考查了相互独立事件同时发生的概率与互斥事件的概率加法公式,解题前,注意区分事件之间的相互关系,属于基础题.2.B解析:B 【解析】∵~(,)X B n p ,∴()2E X =,4()3D X =,∴2np =,且4(1)3np p -=,解得613n p =⎧⎪⎨=⎪⎩, ∴6n =,故选B .3.C解析:C 【分析】根据甲、乙、丙三人到三个景点旅游,甲独自去一个景点有3种,乙、丙有224⨯=种,得到B 事件“甲独自去一个景点”可能性,再求得A 事件“三个人去的景点不相同”的可能性,然后利用条件概率求解. 【详解】甲独自去一个景点有3种,乙、丙有224⨯=种,则B “甲独自去一个景点”,共有3412⨯=种,A “三个人去的景点不相同”,共有3216⨯⨯=种, 所以概率P (A |B ) 61122==.【点睛】本题主要考查条件概率的求法,还考查了分析求解问题的能力,属于中档题.4.B解析:B 【分析】由题意知,3~(5,)3X B m +,由3533EX m =⨯=+,知3~(5,)5X B ,由此能求出()D X .【详解】由题意知,3~(5,)3X B m +, 3533EX m ∴=⨯=+,解得2m =, 3~(5,)5X B ∴,336()5(1)555D X ∴=⨯⨯-=.故选:B . 【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.5.B解析:B 【分析】基本事件总数n =6×6=36,利用列举法求出出现向上的点数之和不小于10包含的基本事件有6个,由此能求出一次出现向上的点数之和不小于10的概率,再结合独立重复试验的概率公式求解即可. 【详解】连续投掷2粒大小相同,质地均匀的骰子1次, 基本事件总数n =6×6=36,出现向上的点数之和不小于10包含的基本事件有:(4,6),(6,4),(5,5),(5,6),(6,5),(6,6),共有6个, ∴每次投掷,两骰子点数之和不小于10的概率为16, 又投掷3次,相当于3次独立重复试验,故恰有两次点数之和不小于10的概率为2231556672C ⎛⎫⋅= ⎪⎝⎭.故选:B本题考查独立重复试验的概率的求法,考查古典概型概率计算公式、列举法等基础知识,考查运算求解能力,是中档题.6.A解析:A 【分析】将1,2,3,4X =代入()P X k =的表达式,利用概率之和为1列方程,利用期望值列出第二个方程,联立方程组,可求解得+a b 的值. 【详解】依题意可的X 的分布列为()()()()23412233443a b a b a b a b a b a b a b a b +++++++=⎧⎨+++++++=⎩,解得1,010a b ==,故110a b +=.所以选A. 【点睛】本小题主要考查离散型随机变量分布列,考查概率之和为1,考查离散型随机变量的数学期望,还考查了方程的思想.属于基础题.7.C解析:C 【解析】 分析:详解:由随机变量X 的分布列可知,m 10.20.8=-=, ∴()00.210.80.8E X =⨯+⨯=,()10.20.80.16D X =⨯⨯=,∴()()()()2b 10?4E Y aE X D Y a D X =+===, ∴20.8a b 10? 0.164a +==, ∴5,6a b == 故选C点睛:本题考查了随机变量的数学期望及其方差,考查了推理能力与计算能力,属于中档题.8.C解析:C 【解析】∵P (ξ<4)=0.8,∴P (ξ>4)=0.2, 由题意知图象的对称轴为直线x =2,P (ξ<0)=P (ξ>4)=0.2,∴P (0<ξ<4)=1-P (ξ<0)-P (ξ>4)=0.6. ∴P (0<ξ<2)=12P (0<ξ<4)=0.3 9.A解析:A 【解析】由题意,2223C +C 4P A ==1010(),23C 3P AB ==1010()P AB 3P A |B ==P A 4()()()∴,故选:A .【思路点睛】求条件概率一般有两种方法:一是对于古典概型类题目,可采用缩减基本事件总数的办法来计算,P(B|A)=n AB n A ()(),其中n(AB)表示事件AB 包含的基本事件个数,n(A)表示事件A 包含的基本事件个数. 二是直接根据定义计算,P(B|A)=p AB p A ()(),特别要注意P(AB)的求法.10.B解析:B 【解析】根据题意,样本x 1,x 2,…,x 10数据的平均值和方差分别为3和5, 则有x =110(x 1+x 2+…+x 10)=3, S 2x =110[(x 1-3)2+(x 2-3)2+…+(x 10-3)2]=5, 对于y i =x i +a ; 则有y =110(x 1+a +x 2+a +…+x 10+a )=(x 1+x 2+…+x 10+10a )=3+a , S 2y =110[(y 1-3-a )2+(y 2-3-a )2+…+(y 10-3-a )2]=5, 本题选择B 选项.11.B解析:B 【解析】对于命题①,因为2R 表示解释变量对于预报变量变化的贡献率,所以算得20.64R ≈,表明“女大学生的体重差异有64%是由身高引起的”,故该命题①是正确的;对于命题②,由于随机变量的方差和标准差都反映了随机变量取值偏离于均值的整齐程度,因此方差或标准差越小,则随机变量偏离于均值的差异越大,命题②是错误;对于命题③,由于整个正太曲线都在轴上方,所以命题③的说法是不正确的;对于命题④,由于正态曲线的对称轴由μ确定,当μ一定时,曲线的形状由σ决定,并且σ越大,曲线越贴近于轴,因此命题④的说法是正确的;对于命题⑤,由于随机变量()~0,1N ξ,且()1P p ξ>= ,所以依据正太曲线的对称性可得()1P p ξ<-= ,故()1112,P p ξ-<<=- 所以()1102P p ξ-<<=-,即命题⑤是正确的,综上应选答案B 。
(必考题)高中数学高中数学选修2-3第一章《计数原理》测试卷(答案解析)(3)

一、选择题1.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,则质点P 移动六次后位于点(2,4)的概率是( )A .612⎛⎫ ⎪⎝⎭B .44612C ⎛⎫ ⎪⎝⎭C .62612C ⎛⎫ ⎪⎝⎭D .6246612C C ⎛⎫ ⎪⎝⎭2.已知离散型随机变量X 的分布列为则D (X )的最大值是( ) A .29B .59C .89D .2093.已知随机变量ξ满足(0)1P p ξ==-,(1)P p ξ==,其中01p <<.令随机变量|()|E ηξξ=-,则( )A .()()E E ηξ>B .()()E E ηξ<C .()()D D ηξ>D .()()D D ηξ<4.已知随机变量X 服从正态分布()100,4N ,若()1040.1359P m X <<=,则m 等于 ( )[附:()()0.6826,220.9544P X P X μσμσμσμσ-<<+=-<<+=] A .100B .101C .102D .D .1035.在三次独立重复试验中,事件A 在每次试验中发生的概率相同,若事件A 至少发生一次的概率为6364,则事件A 发生次数ξ的期望和方差分别为 ( ) A .94和916 B .34和316C .916和364D .94和9646.体育课上定点投篮项目测试规则:每位同学有3次投篮机会,一旦投中,则停止投篮,视为合格,否则一直投3次为止.每次投中与否相互独立,某同学一次投篮投中的概率为p ,若该同学本次测试合格的概率为0.784,则p =( )A . 0.4B .0.6C .0.1D .0.27.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率是( )A .0.72B .0.8C .89D .0.98.抛掷一枚均匀的硬币4次,则出现正面的次数多于反面的概率( ) A .38B .12C .516D .7169.当σ取三个不同值123,,σσσ时,正态曲线()20,N σ的图象如图所示,则下列选项中正确的是( )A .123σσσ<<B .132σσσ<<C .213σσσ<<D .321σσσ<<10.口袋中装有大小、轻重都无差别的5个红球和4个白球,每一次从袋中摸出2个球,若颜色不同,则为中奖每次摸球后,都将摸出的球放回口袋中,则3次摸球恰有1次中奖的概率为( ). A .80243B .100243C .80729D .10072911.已知随机变量X 服从正态分布2(2,)N σ,(4)0.84P X ≤=,则(02)P X ≤≤=( ) A .0.64B .0.16C .0.32D .0.3412.小明的妈妈为小明煮了 5 个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件‘‘"A 取到的两个为同一种馅,事件‘‘"B =取到的两个都是豆沙馅,则()P B A =∣ ( )A .14B .34C .110D .310二、填空题13.若有一个不透明的袋子内装有大小、质量相同的6个小球,其中红球有2个,白球有4个,每次取两个,取后放回,连续取三次,设随机变量ξ表示取出后都是白球的次数,则()E ξ=______ .14.数轴上有一质点,从原点开始每次等可能的向左或向右移动一个单位,则移动4次后,该质点的坐标为2的概率为________.15.在一个袋中放入四种不同颜色的球,每种颜色的球各两个,这些球除颜色外完全相同.现玩一种游戏:游戏参与者从袋中一次性随机抽取4个球,若抽出的4个球恰含两种颜色,获得2元奖金;若抽出的4个球恰含四种颜色,获得1元奖金;其他情况游戏参与者交费1元.设某人参加一次这种游戏所获得奖金为X ,则()E X =________. 16.小王做某个试验,成功的概率为23,失败的概率为13,成功一次得2分,失败一次得-1分,求100次独立重复试验的总得分的期望______.17.随机变量ξ服从正态分布()240,N σ,若()300.2P ξ<=,则()3050P ξ<<=______.18.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球,2个白球,乙袋装有1个红球,5个白球.现分别从甲、乙两袋中各随机抽取1个小球,记抽取到红球的个数为X,则随机变量X 的均值EX=_____. 19.甲、乙两人投篮命中的概率分别为p,q,他们各投2次,若p=12,且甲比乙投中次数多的概率为736,则q 的值为____. 20.已知某次数学考试中,学生的成绩X 服从正态分布,即()~N 85,225X ,则这次考试中,学生成绩落在区间[]100,130之内的概率为____________.(注:()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=,()330.9974P X μσμσ-<<+=)三、解答题21.某知名电脑品牌为了解客户对其旗下的三种型号电脑的满意情况,随机抽取了一些客户进行回访,调查结果如表:满意度是指,回访客户中,满意人数与总人数的比值.用满意度来估计每种型号电脑客户对该型号电脑满意的概率,且假设客户是否满意相互独立.(1)从型号Ⅰ和型号Ⅱ电脑的所有客户中各随机抽取1人,记其中满意的人数为X ,求X 的分布列和期望;(2)用“11ξ=”,“21ξ=”,“31ξ=”分别表示Ⅰ,Ⅱ,Ⅲ型号电脑让客户满意,“10ξ=”,“20ξ=”,“30ξ=”分别表示Ⅰ,Ⅱ,Ⅲ型号电脑让客户不满意,比较三个方差()1D ξ、()2D ξ、()3D ξ的大小关系.22.某次数学知识比赛中共有6个不同的题目,每位同学从中随机抽取3个题目进行作答,已知这6个题目中,甲只能正确作答其中的4个,而乙正确作答每个题目的概率均为23,且甲、乙两位同学对每个题目的作答都是相互独立、互不影响的.(1)求乙同学答对2个题目的概率;(2)若甲、乙两位同学答对题目个数分别是m,n,分别求出甲、乙两位同学答对题目个数m,n的概率分布和数学期望.23.某单位选派甲、乙、丙三人组队参加知识竞赛,甲、乙、丙三人在同时回答一道问题时,已知甲答对的概率是34,甲、丙两人都答错的概率是112,乙、丙两人都答对的概率是14,规定每队只要有一人答对此题则该队答对此题.(1)求该单位代表队答对此题的概率;(2)此次竞赛规定每队都要回答10道必答题,每道题答对得20分,答错得10分.若该单位代表队答对每道题的概率相等且回答任一道题的对错对回答其他题没有影响,求该单位代表队必答题得分的均值(精确到1分).24.某种工业机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金700元,在延保的两年内可免费维修2次,超过2次每次收取维修费200元;方案二:交纳延保金1000元,在延保的两年内可免费维修4次,超过4次每次收取维修费100元.某工厂准备一次性购买2台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:以这50台机器维修次数的频率代替1台机器维修次数发生的概率.记X表示这2台机器超过质保期后延保的两年内共需维修的次数.(1)求X的分布列;(2)以所需延保金及维修费用的期望值为决策依据,工厂选择哪种延保方案更合算?25.数学是研究数量、结构、变化、空间以及信息等概念的一门科学.在人类历史发展和社会生活中,数学发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具.(1)为调查大学生喜欢数学命题是否与性别有关,随机选取50名大学生进行问卷调查,当被调查者问卷评分不低于80分则认为其喜欢数学命题,当评分低于80分则认为其不喜欢数学命题,问卷评分的茎叶图如下:依据上述数据制成如下列联表:请问是否有90%的把握认为大学生是否喜欢数学命题与性别有关?参考公式及数据:22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++. 20()P K k ≥0.100 0.050 0.010 0.0010k2.7063.841 6.635 10.828A (01)p p <<,各轮命题相互独立,若该同学在3轮命题中恰有2次成功的概率为49,记该同学在3轮命题中的成功次数为X ,求()E X .26.某选修课的考试按A 级、B 级依次进行,只有当A 级成绩合格时,才可继续参加B 级的考试.已知每级考试允许有一次补考机会,两个级别的成绩均合格方可获得该选修课的合格证书.现某人参加这个选修课的考试,他A 级考试成绩合格的概率为23,B 级考试合格的概率为12.假设各级考试成绩合格与否均互不影响. (1)求他不需要补考就可获得该选修课的合格证书的概率;(2)在这个考试过程中,假设他不放弃所有的考试机会,求他一共参加3次考试的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据题意,质点P 移动六次后位于点(4,2),在移动过程中向右移动4次向上移动2次,即6次独立重复试验中恰有4次发生,由其公式计算可得答案. 【详解】根据题意,易得位于坐标原点的质点P 移动六次后位于点(2,4),在移动过程中向上移动4次向右移动2次,则其概率为4262466111222C P C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==. 故选:C . 【点睛】本题考查二项分布与n 次独立重复试验的模型,考查对基础知识的理解和掌握,考查分析和计算能力,属于常考题.2.C解析:C 【分析】根据分布列中概率和为1可得a 的范围和b 的值,再求出,EX DX 的表达式,转化成求二次函数在闭区间的最值问题. 【详解】12133b a a b +-+=⇒=,又110033a a -≥⇒≤≤, 1242()3333EX b a a a b a =+⨯-+⨯=++=+,2221(1)(2)()(3)3DX EX b EX a EX a =-⋅+-⋅-+-⋅2221215()()()()3333a b a a a a =--⋅+-⋅-+-⋅22212215()()()()33333a a a a a =--⋅+-⋅-+-⋅27239a a =-++,对称轴为7163a =>,∴max 1728()9999DX =-++=, 故选:C. 【点睛】本题考查标准差的最值求解,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将问题转化为函数的最值问题.3.D解析:D 【分析】根据题意,列表求得随机变量ξ及η的分布列,可知均为两点分布.由两点分布的均值及方差表示出()(),E D ξξ和()E η()D η,根据01p <<比较大小即可得解.【详解】随机变量ξ满足(0)1P p ξ==-,(1)P p ξ==,其中01p <<. 则随机变量ξ的分布列为:所以,1E p D p p ==- 随机变量|()|E ηξξ=-,所以当0ξ=时,()E p ηξξ=-=,当1ξ=时,()1E p ηξξ=-=-所以随机变量|()|E ηξξ=-的分布列如下表所示(当0.5p =时,η只有一个情况,概率为1):则1121E p p p p p p η=-+-=-()()()()22211121D p p p p p p p p η=--⋅-+---⋅⎡⎤⎡⎤⎣⎦⎣⎦()()2121p p p =--当()()E E ξη=即()21p p p =-,解得12p =.所以A 、B 错误. ()()D D ξη-()()()21121p p p p p =----()22410p p =->恒成立.所以C 错误,D 正确 故选:D 【点睛】本题考查了随机变量的分布列,两点分布的特征及均值和方差求法,属于中档题.4.C解析:C 【分析】 由()()0.1322259P X P X μσμσμσμσ-<<+--<<+=,再根据正态分布的对称性,即可求解. 【详解】由题意,知()()0.6826,220.9544P X P X μσμσμσμσ-<<+=-<<+=,则()()220.95440.682620.13592P X P X μσμσμσμσ-<<+--<<+-==,所以要使得()1040.1359P m X <<=,则102m =,故选C. 【点睛】本题主要考查了正态分布的应用,其中解答中熟记正态分布的对称性,以及概率的计算方法是解答的关键,着重考查了运算与求解能力,属于基础题.5.A解析:A 【分析】根据独立重复试验的概率计算公式,求得34p =,再根据二项分布的期望与方差的公式,即可求解. 【详解】由题意,设事件A 在每次试验中发生的概率为P , 因为事件A 至少发生一次的概率为6364,即333631(1)64C p --=,解得34p =, 则事件A 发生的次数ξ服从二项分布3(3,)4B ξ~, 所以事件A 发生的次数ξ的期望为39()344E ξ=⨯=,方差为339()3(1)4416D ξ=⨯⨯-=,故选A. 【点睛】本题主要考查了独立重复试验的概率的计算,以及二项分布的期望与方差的计算,其中解答中熟记独立重复试验的概率的计算公式,以及二项分布的性质是解答的关键,着重考查了推理与运算能力,属于基础题.6.A解析:A 【解析】 【分析】根据合格的情况列方程:()()2110.784p p p p p +-+-=,解方程求出结果. 【详解】由题意可得:()()2110.784p p p p p +-+-= 整理可得:()()22212330.784p p p p p pp -+-+=-+=解得:0.4p = 本题正确选项:A【点睛】本题考查概率的求法,考查对立事件概率计算公式、相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.7.A解析:A 【分析】设一批种子的发芽率为事件A ,则()0.9P A =,出芽后的幼苗成活率为事件B ,则()|0.8P B A =,根据条件概率公式计算即可,【详解】设一批种子的发芽率为事件A ,则()0.9P A =, 出芽后的幼苗成活率为事件B ,则()|0.8P B A =,∴这粒种子能成长为幼苗的概率()()()|0.90.80.72P P AB P A P B A ===⨯=. 故选:A . 【点睛】本题主要考查了条件概率的问题,关键是分清是在什么条件下发生的,属于基础题.8.C解析:C 【分析】掷一枚均匀的硬币4次,则出现正面的次数多于反面的次数包含出现4次正面和出现3次正面一次反面,由此能求出出现正面的次数多于反面的次数的概率. 【详解】掷一枚均匀的硬币4次,则出现正面的次数多于反面的次数包含出现4次正面和出现3次正面一次反面,∴出现正面的次数多于反面的次数的概率:4433441115()()22216p C C =+⋅=. 故选C . 【点睛】本题考查概率的求法,是基础题,解题时要认真审题,注意互斥事件概率计算公式的合理运用.9.A解析:A 【解析】分析:由题意结合正态分布图象的性质可知,σ越小,曲线越“瘦高”,据此即可确定123,,σσσ的大小.详解:由正态曲线的性质知,当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,所以1230σσσ<<<.本题选择A 选项.点睛:本题主要考查正态分布图象的性质,系数对正态分布图象的影响等知识,意在考查学生的转化能力和计算求解能力.10.A解析:A 【解析】每次摸球中奖的概率为114529C C 2059C 36==,由于是有放回地摸球,故3次摸球相当于3次独立重复实验,所以3次摸球恰有1次中奖的概率2135580C 199243P ⎛⎫=⨯⨯-= ⎪⎝⎭. 故选A .点睛:判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验,在每次试验中事件A 发生的概率是否均为p ;②随机变量是否为在这n 次独立重复试验中某事件发生的次数,且()()1n kk kn p X k C p p -==-表示在独立重复试验中,事件A 恰好发生k 次的概率.11.D解析:D 【解析】∵随机变量ξ服从正态分布2(2,)N σ,2μ=,得对称轴是2x =,(4)0.84P ξ=≤, ∴(4)(0)0.16P P ξξ≥=<=,∴(02)0.50.160.34P ξ≤≤=-=,故选D .12.B解析:B 【详解】由题意,P (A )=222310C C +=410,P (AB )=2310C =310, ∴P (B|A )=()AB A)P P (=34, 故选B .二、填空题13.【分析】计算出从袋中随机抽取两个球都是白球的概率可知然后利用二项分布的期望公式可计算出的值【详解】从袋中随机抽取两个球都是白球的概率为由题意可知由二项分布的期望公式得故答案为:【点睛】本题考查二项分5【分析】计算出从袋中随机抽取两个球都是白球的概率p ,可知()3,B p ξ,然后利用二项分布的期望公式可计算出()E ξ的值. 【详解】从袋中随机抽取两个球都是白球的概率为242625C p C ==,由题意可知,23,5B ξ⎛⎫⎪⎝⎭,由二项分布的期望公式得()26355E ξ=⨯=.故答案为:65. 【点睛】本题考查二项分布期望的计算,解题时要弄清随机变量满足的分布列类型,考查计算能力,属于中等题.14.【分析】由题意分析可知质点4次运动中有1次向左3次向右根据独立事件的概率公式求解【详解】由题意可知质点移动4次后位于坐标为2的位置说明4次中有1次向左3次向右并且每次向左或向右的概率都是所以移动4次解析:14【分析】由题意分析可知质点4次运动中有1次向左,3次向右,根据独立事件的概率公式求解. 【详解】由题意可知质点移动4次后位于坐标为2的位置,说明4次中有1次向左,3次向右,并且每次向左或向右的概率都是12,所以移动4次后,该质点的坐标为2的概率314111224p C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭.故答案为:14【点睛】本题考查独立事件概率的实际应用问题,属于基础题型,本题的关键是抽象出质点运动方向,以及概率类型.15.【分析】首先根据题意判断出的可取值有并利用概率公式求得对应的概率最后利用离散型随机变量的期望公式求得结果【详解】由已知1又所以故答案为:【点睛】该题考查的是有关离散型随机变量的期望的求解问题涉及到的7【分析】首先根据题意,判断出X 的可取值有2,1,1-,并利用概率公式求得对应的概率,最后利用离散型随机变量的期望公式求得结果. 【详解】由已知2X =,1,1-, 又()22242486(2)70C C P X C ===,()441424816(1)70C C P X C ===,()22114224848(1)70C C C P X C =-==,所以12164827070707EX =+-=-, 故答案为:27-. 【点睛】该题考查的是有关离散型随机变量的期望的求解问题,涉及到的知识点有古典概型概率公式,离散型随机变量的期望公式,属于简单题目.16.100【分析】计算得到答案【详解】设一次实验得分为根据题意:故100次独立重复试验的总得分的期望为故答案为:【点睛】本题考查了数学期望意在考查学生的计算能力和应用能力解析:100 【分析】 计算()2121133E X =⨯-⨯=,得到答案. 【详解】设一次实验得分为X ,根据题意:()2121133E X =⨯-⨯=, 故100次独立重复试验的总得分的期望为()100100E X =. 故答案为:100. 【点睛】本题考查了数学期望,意在考查学生的计算能力和应用能力.17.6【解析】【分析】根据随机变量服从正态分布知正态曲线的对称轴是且依据正态分布对称性即可求得答案【详解】解:根据随机变量服从正态分布知正态曲线的对称轴是利用正态分布的对称性可得所以故答案为06【点睛】解析:6 【解析】 【分析】根据随机变量ξ服从正态分布,知正态曲线的对称轴是40ξ=,且()300.2P ξ<=,依据正态分布对称性,即可求得答案. 【详解】解:根据随机变量ξ服从正态分布,知正态曲线的对称轴是40ξ=, 利用正态分布的对称性可得()()50300.2P P ξξ>=<=, 所以()()()30501503010.40.6P P P ξξξ⎡⎤<<=->+<=-=⎣⎦ 故答案为0.6 【点睛】本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,考查运算求解能力,属于基础题.18.【分析】结合题意分别计算对应的概率计算期望即可【详解】列表:X 0 1 2 P 所以【点睛】本道题考查了数学期望计算方法结合题意即可属于中等难度的题解析:56【分析】结合题意,分别计算0,1,2x =对应的概率,计算期望,即可. 【详解】()112511665018C C P x C C ===,()111452116611118C C C P x C C +===,()11411166129C C P x C C === 列表:所以012181896EX =⨯+⨯+⨯= 【点睛】本道题考查了数学期望计算方法,结合题意,即可,属于中等难度的题.19.【分析】由题意根据甲比乙投中次数多的可能情形有:甲投中1次乙投中0次;甲投中2次乙投中1次或0次再由概率的加法公式即可列出方程求解答案【详解】甲比乙投中次数多的可能情形有:甲投中1次乙投中0次;甲投解析:23【分析】由题意,根据甲比乙投中次数多的可能情形有:甲投中1次,乙投中0次;甲投中2次,乙投中1次或0次,再由概率的加法公式,即可列出方程,求解答案. 【详解】甲比乙投中次数多的可能情形有:甲投中1次,乙投中0次;甲投中2次,乙投中1次或0次.由题意得p(1-p)·(1-q)2+p 2[(1-q)2+q(1-q)]=,解得q=或q=(舍). 【点睛】本题主要考查了相互独立事件的概率的计算,其中认真审题,根据甲比乙投中次数多的可能情形:甲投中1次,乙投中0次;甲投中2次,乙投中1次或0次,再根据概率的加法公式求解是解答的关键,着重考查了推理与运算能力.20.【解析】【分析】已知X~N (σ2)则正态曲线关于x=85对称根据与所求区间的关系和已知概率求解【详解】:∵学生的成绩服从正态分布X~N (85225)即=85=15∴P(70<X<100)=06826 解析:0.1574【解析】 【分析】已知X~N (μ ,σ2),则正态曲线关于x=85对称.根据[,μσμσ-+],[2,2μσμσ-+][3,3μσμσ-+] 与所求区间的关系,和已知概率求解. 【详解】:∵学生的成绩X 服从正态分布X~N (85,225) 即μ=85,σ=15∴P(70<X<100)=0.6826 ,P(40<X<130)=0.9974 ∴P(100<X<130)=()10.99740.68260.15742-= 【点睛】在实际问题中进行正态分布条件下的概率计算时,关键是确定正态分布的两个重要参数μ和σ,以及三个范围[,μσμσ-+],[2,2μσμσ-+][3,3μσμσ-+]与所求区间的关系,结合已知概率,进行求解。
(完整word)数学选修2-3第一章练习题含答案,推荐文档

选修2-3第一章练习试卷一、选择题(共14小题;共70分)1. 甲、乙两人计划从A,B,C三个景点中各选择两个游玩,则两人所选景点不全相同的选法共有( )A. 3种B. 6种C. 9种D. 12种2. 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,两位老人相邻但不排在两端,不同的排法共有 ( )A. 1440种B. 960种C. 720种D. 480种3. 二项式(x−x )6展开式中的常数项为 ( )A. -240B. 160C. -160D. 2404. 若(1+x)(1−2x)7=a0+a1x+a2x2+⋯+a8x8,则a1+a2+⋯+a7的值是 ( )A. -2B. -3C. 125D. -1315. (x+√3y)6的二项展开式中,x2y4项的系数是 ( )A. 45B. 90C. 135D. 2706. 现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )A. 56B. 65C. 5×6×5×4×3×22D. 6×5×4×3×27. 设(x√x )6的展开式中x3的系数为M,二项式系数为N,则M+N = ( )A. 75B. 60C. 55D. 458. 5个人分4件同样的服装,每人至多分1件,而且服装必须分完,那么不同的分法种数是( )A. 54B. 45C. C54D. A549. 某学校开设“蓝天工程博览课程”,组织6个年级的学生外出参观包括甲博物馆在内的6个博物馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的方案有 ( )A. A62×A54种B. A62×54种C. C62×A54种D. C62×54种10. 某国际会议结束后,中、美、俄等21国领导人合影留念,他们站成两排,前排11人,后排10人,中国领导人站在前排正中间位置,美、俄两国领导人也站前排并与中国领导人相邻,如果对其他国家领导人所站位置不做要求,那么不同的站法共有 ( )A. A1818种B. A2020种C. A32A183A1010种D. A22A1818种11. (√x+√x3)12的展开式中,含x的正整数次幂的项共有( )A. 4项B. 3项C. 2项D. 1项12. 从4个男生,3个女生中挑选4人参加智力竞赛,要求至少有1个女生参加的选法共有 ( )A. 12种B. 34种C. 35种D. 340种13. 要排出某理科班一天中语文、数学、物理、英语、生物、化学6堂课的课程表,要求语文课排在上午(前4节),生物课排在下午(后2节),不同排法种数为 ( ).A. 144B. 192C. 360D. 72014. 某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为( )A. 16B. 18C. 24D. 32二、填空题(共3小题;共15分)15. 一个袋子里装有7张不同的中国移动手机卡,另一个袋子里装有8张不同的中国联通手机卡,某人想得到一张中国移动卡和一张中国联通卡,供自己今后选择使用,一共有种不同的取法.16. 从1,2,⋯,10这十个数中取出四个数,使它们的和为奇数,共有种取法(用数字作答).17. 平面上有7个点,除某3点在一条直线上外,再无其他三点共线,若过其中两点作一直线,则可作成不同的直线条.三、解答题(共5小题;共65分)18. 设集合M={−3,−2,−1,0,1,2},P(a,b)是坐标平面上的点,a,b∈M .ⅠP可以表示多少个平面上的不同的点?ⅡP可以表示多少个第二象限内的点?ⅢP可以表示多少个不在直线y=x上的点?19. 要从5名女生,7名男生中选出5名代表,按下列要求,分别有多少种不同的选法?Ⅰ至少有1名女生入选;Ⅱ至多有2名女生入选;Ⅲ男生甲和女生乙入选;Ⅳ男生甲和女生乙不能同时入选;Ⅴ男生甲、女生乙至少有一个人入选.20. 已知10件不同的产品中有4件次品,现对它们一一测试,直至找到所有4件次品为止.Ⅰ若恰在第2次测试时,才测试到第一件次品,第8次才找到最后一件次品,则共有多少种不同的测试方法?21. 已知(3−2x)7=a0+a1x+a2x2+⋯+a7x7,求:Ⅰa1+a2+⋯+a7;Ⅱa0+a2+a4+a6;Ⅲ∣a0∣+∣a1∣+∣a2∣+⋯+∣a7∣.22. 7位同学站队:Ⅰ站成一排,共有多少种不同的排法?Ⅱ站成两排(前3后4),共有多少种不同的排法?Ⅲ站成一排,其中甲站在中间的位置,共有多少种不同的排法?Ⅳ站成一排,甲、乙不能站在排头和排尾的排法共有多少种?参考答案第一部分 1. B2. 答案:B解析:可分3步.第一步,排两端,∵从5名志愿者中选2名有 A 52=20 种排法,第二步,∵2位老人相邻,把2个老人看成整体,与剩下的3名志愿者全排列,有 A 44=24 种排法.第三步,2名老人之间的排列,有 A 22=2 种排法.最后,三步方法数相乘,共有 20×24×2=960 种排法. 3. 答案:D解析:由于 (x √x )6展开式的通项公式为 T r+1=C 6r⋅x 6−r⋅(−2x −12)r=(−2)r C 6r ⋅x 6−32r ,令 6−32r =0,解得 r =4,∴展开式中的常数项为 (−2)4⋅C 64=240,故选D . 4. 答案:C 解析:由题意可知 a 8=(−2)7=−128,令 x =0 得 a 0=1,令 x =1 得 a 0+a 1+a 2+⋯+a 7+a 8=−2,所以 a 1+a 2+⋯+a 7=125.故选C . 5. 答案:C解析:由于 (x +√3y)6的二项展开式的通项公式为 T r+1=C 6r ⋅x 6−r ⋅(√3y)r,令 6−r =2,得 r =4,∴ x 2y 4 项的系数是 C 64⋅(√3)4=135,故选C .6. A7. 答案:A解析: (x x )6展开式的通项公式为 T r+1=C 6r⋅x 6−r⋅x )r=(−2)r⋅C 6r ⋅x 12−3r 2,令 12−3r2=3,可得r =2,当 r =2时, T 3=(−2)2⋅C 62⋅x 3=60x 3,即 x 3项的系数 M 为60;二项式系数 N 为 C 62=15,∴ M +N =60+15=75,故选A. 8. 答案:C解析:因为是同样的服装,所以是组合的问题. 9. 答案:D 解析:从 6 个年级中选出 2 个年级参观甲博物馆,则方法有 C 62 种,其余的 4 个年级,每一个年级都有 5 种选择方法,所以一共有 C 62×54 种方法.10. 答案:D解析:中国领导人站在前排正中间位置,美、俄两国领导人站前排并与中国领导人相邻,有 A 22 种站法;其他 18 国领导人可以任意站,因此有 A 1818 种站法.根据分步计数原理,共有 A 22A 1818种站法.11. 答案:B 解析:因为 T r+1=C 12r(√x)12−r (√x 3)r =C 12r x 6−r6.当 r =0,6,12 时,x 为正整数次幂.12. 答案:B解析: C 74−C 44=C 73−1=34.13. 答案:B解析:根据题意,语文课排在上午(前4节),生物课排在下午(后2节),则有 C 41⋅C 21=8 种排法;将剩下的4门课全排列,有 A 44=24 种排法,所以由分步乘法计数原理,共有 8×24=192 种排法,故选B . 14. C第二部分 15. 答案:56解析:从移动、联通卡中各取一张,则要分两步进行,从移动卡中取一张有 7 种方法,从联通卡中取一张有 8 种方法,则应用乘法计数原理,共有取法 7×8=56 种.16. 答案: 100解析:要使四个数的和为奇数,则需 3 偶 1 奇或 3 奇 1 偶,故共有 C 53C 51+C 53C 51=100(种).17. 答案: 19解析: C 72−C 32+1=19.第三部分18. (1) 分两步,第一步确定横坐标有 6 种,第二步确定纵坐标有 6 种,经检验 36 个点均不相同,由分步乘法计数原理得 N =6×6=36 (个).(2) 分两步,第一步确定横坐标有 3 种,第二步确定纵坐标有 2 种,根据分步乘法计数原理得 N =3×2=6 个. (3) 分两步,第一步确定横坐标有 6 种,第二步确定纵坐标有 5 种,根据分步乘法计数原理得 N =6×5=30 个.19. (1) 至少有 1 名女生入选的选法为 C 125−C 75=771; (2) 至多有 2 名女生入选的选法为 C 75+C 51C 74+C 52C 73=546; (3) 男生甲和女生乙入选的选法为 C 22C 103=120;(4) 男生甲和女生乙不能同时入选的选法为 C 125−C 22C 103=672;(5) 男生甲、女生乙至少有一个人入选的选法为 C 125−C 105=540 .20. (1) 若恰在第 2 次测试时,才测到第一件次品,第 8 次才找到最后一件次品,若是不放回的逐个抽取测试.第 2 次测到第一件次品有 4 种抽法;第 8 次测到最后一件次品有 3 种抽法; 第 3 至第 7 次抽取测到最后两件次品共有 A 52 种抽法;剩余 4 次抽到的是正品,共有 A 42A 52A 64=86400 种抽法.21. (1) 令 x =0,得 a 0=37.令 x =1,得 a 0+a 1+⋯+a 7=1⋯①, 所以 a 1+a 2+⋯+a 7=1−37=−2186.(2) 令x =−1,得 a 0−a 1+a 2+⋯−a 7=57⋯②. ①+② 得2(a 0+a 2+a 4+a 6)=1+57,所以a0+a2+a4+a6=39063.(3)因为(3+2x)7与(3−2x)7的展开式中对应项的系数的绝对值相等,而(3+2x)7的展开式各项系数均为正数,所以∣a0∣+∣a1∣+∣a2∣+⋯+∣a7∣即为(3+2x)7的展开式的各项系数和,故∣a0∣+∣a1∣+∣a2∣+⋯+∣a7∣= 57=78125.22. (1)问题可以看作:7个元素的全排列A77=5040.(2)根据分步计数原理:7×6×5×4×3×2×1=7!=5040.(3)问题可以看作:余下的6个元素的全排列A66=720.(4)解法1(直接法):第一步从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有A52种方法;第二步从余下的5位同学中选5位进行排列(全排列)有A55种方法,所以一共有A52A55=2400种排列方法.解法2:(排除法)若甲站在排头有A66种方法;若乙站在排尾有A66种方法;若甲站在排头且乙站在排尾则有A55种方法,所以,甲不能站在排头,乙不能排在排尾的排法.共有A77−4A66+2A55=2400种.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学选修2-3计数原理测试题
一、选择题
1.若m 为正整数,则乘积()()()=+++2021m m m m
( ) A .20m A B .21m A C .20
20+m A D .2120+m A 2.若直线0=+By Ax 的系数B A ,同时从0,1,2,3,5,7六个数字中取不同的值,则这些方程表
示不同的直线条数 ( )
A . 22
B . 30
C . 12
D . 15
3.四个编号为1,2,3,4的球放入三个不同的盒子里,每个盒子只能放一个球,编号为1
的球必须放入,则不同的方法有 ( )
A .12种
B .18种
C .24种
D .96种
2.将3个不同的小球放入4个盒子中,则不同放法种数有 ( )
A .81
B .64
C .12
D .14
4.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数
字12340应是第几个数 ( )
A .6
B .9
C .10
D .8
5.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、
乙两名志愿者不能从事翻译工作,则选派方案共有 ( )
A.280种
B.240种
C.180种
D.96种
6. 若425225+=x x C C ,则x 的值为 ( )
A .4
B .7
C .4或7
D .不存在
7.某班举行联欢会,原定的五个节目已排出节目单,演出前又增加了两个节目,若将这两
个节目插入原节目单中,则不同的插法总数为 ( )
A.42
B.36
C.30
D.12
8.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数
字12340应是第( )个数.
A.6
B.9
C.10
D.8
9. 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排
在两端,不同的排法共有( )
A.1440种 B.960种
C.720种 D.480种
10.从字母,,,,,a b c d e f 中选出4个数字排成一列,其中一定要选出a 和b ,
并且必须相邻(a 在b 的前面),共有排列方法( )种.
A.36 B.72
11.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为()
A.120 B.240 C.280 D.60
12.从6个正方形拼成的12个顶点(如上图)中任取3个顶点作为一组,其中可以构成三角形的组数为( ) A.208 B.204 C.200 D.196
二、填空题
13. 今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列
有种不同的方法(用数字作答).
14.4名男生,4名女生排成一排,女生不排两端,则有种不同排法. 15.以1239
,,,这几个数中任取4个数,使它们的和为奇数,则共有种不同取法.
16. 从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有_____种。
(用数字作答)
17.在50件产品n中有4件是次品,从中任意抽了5件,至少有3件是次品的抽法共有______________种(用数字作答).
18.从1,3,5,7,9中任取三个数字,从0,2,4,6,8中任取两个数字,组成没有重复数字的五位数,共有________________个?
三、解答题
19.7个排成一排,在下列情况下,各有多少种不同排法?
(1)甲排头,
(2)甲不排头,也不排尾
(3)甲、乙、丙三人必须在一起,
(4)甲、乙之间有且只有两人,
(5)甲、乙、丙三人两两不相邻,
(6)甲在乙的左边(不一定相邻),
(7)甲、乙、丙三人按从高到矮,自左向右的顺序,
(8)甲不排头,乙不排当中。
20. 方程x 2m +y 2n
=1表示焦点在y 轴上的椭圆,其中m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},那么这样的椭圆有多少个?
21.证明:11m m m n n n A mA A -++=.
22. 从7名男生5名女生中选取5人,分别求符合下列条件的选法总数有多少种?
(1)A ,B 必须当选;
(2)A ,B 必不当选;
(3)A ,B 不全当选;
(4)至少有2名女生当选;
(5)选取3名男生和2名女生分别担任班长、体育委员等5种不同的工作,但体育委员必须由男生担任,班长必须由女生担任.
23.从4名男生,3名女生中选出三名代表,
(1)不同的选法共有多少种?
(2)至少有一名女生的不同的选法共有多少种?
(3)代表中男、女生都要有的不同的选法共有多少种?
24.用0,1,2,3,4,5这六个数字:
(1)可组成多少个无重复数字的自然数?
(2)可组成多少个无重复数字的四位偶数?
(3)组成无重复数字的四位数中比4023大的数有多少?
25.6本不同的书,按照以下要求处理,各有几种分法?
(1)一堆一本,一堆两本,一堆三本;
(2)甲得一本,乙得二本,丙得三本;
(2)一人得一本,一人得二本,一人得三本;
(3)平均分给甲、乙、丙三人;
(4)平均分成三堆.
26.从{}3,2,1,0,1,2,3,4---中任选三个不同元素作为二次函数2
y ax bx c =++的系数,问能组成多少条图像为经过原点且顶点在第一象限或第三象限的抛物线?。