2018-2019年韶关市小升初数学模拟试卷整理(3)附答案附答案
2018年韶关市小学毕业小升初模拟数学试题(共6套)附详细答案附答案

小升初数学试卷一、填空题(共6小题,每小题2分,满分12分)1、生产的90个零件中,有10个是废品,合格率是90%.________(判断对错).2、真分数除以假分数的商一定比1小.________(判断对错)3、大圆周长与直径的比值大于小圆周长与直径的比值.________(判断对错)4、一个长方形的长增加50%,宽减少,长方形的面积不变.________(判断对错)5、一根木料锯成4段要4分钟,锯成7段要7分钟.________(判断对错)6、甲、乙两数是正整数,如果甲数的恰好是乙数的,则甲、乙两数和的最小值是13.________(判断对错)二、选择题(共10小题,每小题3分,满分30分)7、甲数是a,比乙数的3倍少b,表示乙数的式子是________ .8、的分子扩大3倍,要使分数大小不变,分母应加上________ .9、已知M=4322×1233,N=4321×1234,下面结论正确的是________10、小明上学期期末考试语文86分,数学比语文、数学两科的平均分高6分,则数学期末考试的分数是________ .11、盒子里有8个黄球,5个红球,至少摸________ 次一定会摸到红球.12、甲步行每分钟行80米,乙骑自行车每分钟200米,二人同时同地相背而行3分钟后,乙立即调头来追甲,再经过________ 分钟乙可追上甲.13、某砖长24厘米,宽12厘米,高5厘米,用这样的砖堆成一个正方体,用砖的块数可以为________ .14、小华从A到B,先下坡再上坡共有小时,如果两地相距24千米,下坡每小时行4千米,上坡每小时行3千米,那么原路返回要________ 小时.15、已知× <+ ,且a、b、c都是不等于0的自然数,则有________ .16、同一宿舍住着小花、小朵、小美、小丽四名学生,正在听音乐,她们中有一个人在修指甲,一人在做头发,一人在化妆,一人在看书,已知:、小花不在修指甲,也不在看书(2)小朵不在化妆,也不在修指甲(3)如果小花不在化妆,那么小美就不在修指甲(4)小丽不在看书,也不在修指甲,下列说法正确的是()A、小花在化妆B、小朵在做头发C、小丽在化妆三、解答题(共6小题,满分12分)17、一座城市地图中两地图上距离为10cm,表示实际距离30km,该幅地图的比例尺是________.18、在边长为a厘米的正方形上剪下一个最大的圆,这个圆与正方形的周长比是________.19、一辆汽车的速度是每小时59千米,现有一块每5小时慢10分钟的表,若用该表计时,则测得这辆汽车的速度是________千米/小时.20、如图是一个棱长4厘米的正方体,在正方体上面正中向下挖一个棱长是2厘米的正方体小洞,接着在小洞的底面正中再向下挖一个棱长是1厘米正方体小洞,最后得到的立方体图形的表面积是多少平方厘米?21、在生活中,经常把一些同样大小的圆柱管如图捆扎起来,下面我们来探索捆扎时绳子的长度,图中,每个圆的直径都是8厘米,当圆柱管放置放式是“单层平放”时,捆扎后的横截面积如图所示:那么,当圆柱管有100个时需要绳子________厘米(π取3)22、有一个10级的楼梯,某人每次能登上1级或2级,现在他要从地面登上第10级,有________种不同的方式.四、解方程23、解方程:①3.2x﹣4×3=52②8(x﹣2)=2(x+7)五、计算题24、计算题.①② +(4 )③3.14×43+7.2×31.4﹣150×0.314④1+3 +5 .六、解决问题25、请根据下面的统计图回答下列问题.(1)________月份收入和支出相差最小.(2)9月份收入和支出相差________万元.(3)全年实际收入________万元.(4)平均每月支出________万元.(5)你还获得了哪些信息?26、一项工程,甲独做10天完成,乙独做12天完成,现两人合做,完成后共得工资2200元,如果按完成工程量分配工资,甲、乙各分得多少元?27、一块长方形铁皮利用图中阴影部分刚好能做成一个圆柱形油桶,(如图)(接头处忽略不计),这个桶的容积是________ 立方分米.(单位:分米)28、两个顽皮的孩子逆着自动扶梯行驶的方向行走,从扶梯的一端到达另一端,男孩走了100秒,女孩走了300秒.已知在电梯静止时,男孩每秒走3米,女孩每秒走2米.则该自动扶梯长________米.29、甲、乙两人合作清理400米环形跑道上的积雪,两人同时从同一地点背向而行各自进行清理,最初甲清理的速度比乙快,后来乙用了10分钟去调换工具,回来继续清理,但工作效率比原来提高了一倍,结果从甲、乙开始清理时算起,经过1小时,就完成了清理积雪工作,并且两人清理的跑道一样长,问乙换工具后又工作了多少分钟?30、底边长为6厘米,高为9厘米的等腰三角形20个,迭放如图:每两个等腰三角形有等距离的间隔,底边迭合在一起的长度是44厘米.回答下列问题:(1)两个三角形的间隔距离?(2)三个三角形重迭(两次)部分的面积之和是多少?(3)只有两个三角形重迭(一次)部分的面积之和是多少?(4)迭到一起的总面积是多少?答案解析部分一、<b >填空题(共6</b><b >小题,每小题2</b><b>分,满分12</b><b>分)</b>1、【答案】错误【考点】百分率应用题【解析】【解答】解:合格产品的个数:90﹣10=80(个),合格率:×100%≈0.889=88.9%;答:合格率是88.9%.故答案为:错误.【分析】首先理解合格率,合格率是指合格产品的个数占产品总个数的百分之几,进而用:×100%=合格率,由此列式解答后再判断.2、【答案】正确【考点】分数大小的比较,分数除法【解析】【解答】解:举例:÷= <1;÷= <1;÷= <1;而且找不出反例,所以真分数除以假分数的商一定比1小.故答案为:正确.【分析】首先要理解真分数和假分数的概念,真分数是分子比分母小的分数,即真分数都小于1;假分数是分子等于或大于分母的数,假分数大于等于1,举例进行验证.3、【答案】错误【考点】圆的认识与圆周率【解析】【解答】解:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率.一般用“π”表示.即周长÷直径=π(一定),所以大圆周长与直径的比值和小圆周长与直径的比值相等.故答案为:错误.【分析】根据圆周率的意义,任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率.由此解答即可.4、【答案】正确【考点】长方形、正方形的面积【解析】【解答】解:原来的面积:ab;后来的面积:[a×(1+50%)]×[b×(1﹣)],=1.5a× b,=ab;故长方形的面积不变.故答案为:正确.【分析】设长方形原来的长和宽分别是a和b;根据“长方形的面积=长×宽”计算出原来的长方形的面积;然后根据一个数乘分数的意义,分别计算出后来长方形的长和宽,并根据长方形的面积计算公式计算出后来的面积,进行比较,得出结论.5、【答案】错误【考点】植树问题【解析】【解答】解:4÷(4﹣1)×(7﹣1)=4÷3×6=8(分钟)答:锯成7段要8分钟.故答案为:错误.【分析】根据题意,分成4段,截的次数是4﹣1=3次,那么可以求出截一次的时间;分7段,截的次数是7﹣1=6次,乘上截每次的时间即可.6、【答案】正确【考点】最大与最小【解析】【解答】解:把乙数看做单位“1”,则甲数是÷ = ,所以甲乙两个数的和是1+= ,因为甲、乙两数是自然数,要使甲乙两数之和也是自然数,让它最小,乙只能是10,从而甲数是3,和为13.答:甲、乙两数和的最小值是13.故答案为:正确.【分析】把乙数看做单位“1”,则甲数是÷ = ,所以甲乙两个数的和是1+ = ,因为甲、乙两数是自然数,要使甲乙两数之和也是自然数,让它最小,乙只能是10,从而甲数是3,和为13.二、<b >选择题(共10</b><b >小题,每小题3</b><b>分,满分30</b><b>分)</b>7、【答案】(a+b)÷3【考点】用字母表示数【解析】【解答】解:乙数=(a+b)÷3,【分析】甲数加上b是乙数的3倍,再除以3就是乙数.8、【答案】24【考点】分数的基本性质【解析】【解答】解:的分子扩大3倍,要使分数大小不变,分母也应扩大3倍;12×3=36,36﹣12=24;分母应加上24.【分析】根据分数的基本性质:分数的分子和分母同时扩大或缩小相同的倍数(0除外),分数的大小不变;由此即可得出答案.9、【答案】M<N【考点】比较大小【解析】【解答】解:N=4321×1234=(4322﹣1)×(1233+1)=4322×1233+4322﹣1233﹣1=M+3088,所以M<N.【分析】N=4321×1234=(4322﹣1)×(1233+1)=4322×1233+4322﹣1233﹣1=M+3088,所以M<N,据此判断即可.10、【答案】98【考点】平均数的含义及求平均数的方法【解析】【解答】解:86+6×2=86+12=98(分)答:数学期末考试的分数是98分.【分析】根据“语文86分,数学比语文、数学两科的平均分高6分,”知道数学数学期末考试的分数是比语文多6×2分,由此即可得出答案.11、【答案】9【考点】抽屉原理【解析】【解答】解:8+1=9(次),答:至少需要摸9次一定会摸到红球.【分析】考虑最坏情况:摸出8次,都是摸出的黄球,则再摸出一个一定是红球,据此即可解答.12、【答案】7【考点】追及问题【解析】【解答】解:(80+200)×3÷(200﹣80),=280×3÷120,=840÷120,=7(分);答:再经过7分钟乙可追上甲.【分析】先求出二人同时同地相背而行3分钟走的路程,再根据路程差÷速度差=追及时间,即可解答.13、【答案】1200【考点】简单的立方体切拼问题【解析】【解答】解:24、12、5的最小公倍数是120,120÷24=5(块),120÷12=10 (块),120÷5=24(块),所以一共需要:5×10×24=1200(块),【分析】先求出24、12、5的最小公倍数为120,即堆成的正方体的棱长是120厘米,由此求出正方体每条棱长上需要的小长方体的个数,即可解决问题.14、【答案】【考点】简单的行程问题【解析】【解答】解:设小华从A到B上坡路程为x千米,则下坡路程为24﹣x千米,根据题意可得方程:4x+72﹣3x=2×434x﹣3x=86﹣72x=1424﹣14=10(千米)那么可得返回时上坡路为10千米,下坡路为14千米:(10÷3)+(14÷4)===(小时)答:返回时用的时间是小时.【分析】①要求原路返回所用的时间,需要求出,上坡路的距离和下坡路的距离分别是多少;所以这里可以根据题干先求出去时的上坡路程和下坡路程;②根据题干,设小华从A到B上坡路程为x千米,则下坡路程为24﹣x千米,根据速度、时间和路程的关系,利用上坡路用的时间+下坡路用的时间=总时间,即可列出方程求得去时的上坡路程和下坡路程,从而得出返回时的上坡路程和下坡路程,即可解决问题.15、【答案】a+b>c【考点】分数大小的比较【解析】【解答】解:× = ,+ = = ,即<,所以:c×c<c(a+b).则a+b>c.故选:A.【分析】由于× = ,+ = = ,即<,c×c<c(a+b).由于在乘法算式中,其中一个因数相同,另一个因数越大,则即就越大,所以a+b>c.16、【答案】【考点】逻辑推理【解析】【解答】解:根据条件(1)小花不在修指甲,也不在看书(2)小朵不在化妆,也不在修指甲(4)小丽不在看书,也不在修指甲,可以得出只有小美在修指甲,再由条件(3)如果小花不在化妆,那么小美就不在修指甲推知小花一定在化妆.故选:A.【分析】由条件(1)小花不在修指甲,也不在看书(2)小朵不在化妆,也不在修指甲(4)小丽不在看书,也不在修指甲,可以得出只有小美在修指甲,再由条件(3)如果小花不在化妆,那么小美就不在修指甲推知小花一定在化妆,据此解答即可.三、<b >解答题(共6</b><b >小题,满分12</b><b>分)</b>17、【答案】1:300000【考点】比例尺【解析】【解答】解:因为,30km=3000000cm,所以,10cm:3000000cm=1:300000;故答案为:1:300000.【分析】根据比例尺的意义知道,图上距离与实际距离的比就是比例尺,由此先把实际距离30千米换算成以厘米做单位,再写出对应比,化简即可.18、【答案】π:4【考点】用字母表示数,比的意义【解析】【解答】解:aπ:4a=π:4;答:这个圆与正方形的周长比是π:4.故答案为:π:4.【分析】根据题意可知在边长a厘米的正方形中剪下一个最大的圆,该圆的直径为a厘米,再根据圆的周长公式:C=πd,和正方形的周长公式,计算即可求解.19、【答案】61【考点】简单的行程问题【解析】【解答】解:正常表走5小时,慢表只走了:5×60﹣10=300﹣10=290(分)= (小时)这辆汽车的速度是:59×5÷=295÷≈61(千米/小时)答:测得这辆汽车的时速约61千米/小时.故答案为:61.【分析】由题意可知:正常表走5小时,慢表走的时间是5×60﹣10=290分,然后再根据速度=路程÷时间进行解答.20、【答案】解:42×6+22×4+12×4,=96+16+4,=116(平方厘米)答:最后得到的立方体图形的表面积是116平方厘米.【考点】长方体和正方体的表面积【解析】【分析】把棱长是2厘米的正方体的底面向上平移,把棱长是1厘米的正方体底面向上平移,则容易看出:求最后得到的立方体图形的表面积,即棱长为4厘米的正方体的表面积与棱长为2厘米的正方体四个侧面和棱长为1厘米的正方体四个侧面的面积之和;根据“正方体的表面积=棱长2×6”求出棱长为4厘米的正方体的表面积,根据“正方体的侧面积=棱长2×4”分别求出棱长为2厘米的正方体四个侧面和棱长为1厘米的正方体四个侧面的面积,然后相加即可.21、【答案】1608【考点】数与形结合的规律【解析】【解答】解:8×3+16×(100﹣1)=24+1584=1608(厘米);故答案为:1608.【分析】如图,把绳子的长度分解:1个圆柱体时,绳子的长度就是底面圆的周长;2个圆柱体时,绳子的长度就是一个底面圆的周长加上2个圆的直径;3个圆柱体,绳子的长度就是一个底面圆的周长加上4个圆的直径;100个圆柱体,绳子的长度就是一个底面圆的周长加上99个圆的直径.22、【答案】89【考点】排列组合【解析】【解答】解:当跨上1级楼梯时,只有1种方法,当跨上2级楼梯时,有2种方法,当跨上3级楼梯时,有3种方法,当跨上4级楼梯时,有5种方法,…以此类推;最后,得出数列1、2、3、5、8、13、21、34、55、89;发现从第三个数开始,每个数都是前面两个数的总和;这样,到第10级,就有89种不同的方法.答:从地面登上第10级,有89种不同的方法.故答案为:89.【分析】这是一道菲波那契数列的应用题目,解答时,可以采用化繁为简的方法,用列举的方法先找出登上级数少的1级、2级、3级、4级各有几种方法,再在此基础上运用找规律的方法得出结果.[因为每次跨到n级,只能从(n﹣1)或(n﹣2)级跨出.根据加法原理得到跨到第1、2、3、4、5、6、7、8、9、10级的方法依次为:1、2、3、5、8、13、21、34、55、89.四、<b >解方程</b>23、【答案】解:①3.2x﹣4×3=523.2x﹣12=523.2x﹣12+12=52+123.2x=643.2x÷3.2=64÷3.2x=20②8(x﹣2)=2(x+7)8x﹣16=2x+148x﹣16﹣2x=2x+14﹣2x6x﹣16+16=14+166x=306x÷6=30÷6x=5【考点】方程的解和解方程【解析】【分析】(1)先化简方程的左边,变成3.2x﹣12=52,然后方程的两边同时加上12,再同时除以3.2即可;(2)先根据乘法分配律化简方程的左右两边,再根据等式的性质解这个方程即可.五、<b >计算题</b>24、【答案】解:①==② +(4 )= + ×= +2=2③3.14×43+7.2×31.4﹣150×0.314=3.14×43+72×3.14﹣15×3.14=3.14×(43+72﹣15)=3.14×100=314④1+3 +5=(1+3+5+7+9+11+13+15+17+19)+()=(1+19)×10÷2+()=90+()=100+=100【考点】分数的巧算【解析】【分析】(1)从左往右依次运算;(2)先算括号内的,再算括号外的除法,最后算加法;(3)运用乘法分配律简算;(4)把分数拆成整数与分数相加的形式,然后再把分数拆成两个分数相减的形式,通过加减相互抵消,求得结果.六、<b >解决问题</b>25、【答案】(1)4(2)30(3)740(4)30(5)得出:7月份收入和支出相差最大【考点】平均数的含义及求平均数的方法,复式折线统计图,从统计图表中获取信息【解析】【解答】解:(1)由图示得出:4月份收入和支出相差最小;(2)70﹣40=30(万元).答:9月份收入和支出相差30万元.(3)40+60+30+30+50+60+80+70+70+80+90+80=740(万元).答:全年实际收入740万元.(4)(20+30+10+20+20+30+20+30+40+50+40+50)÷12=360÷12=30(万元).答:平均每月支出30万元.故答案为:(1)4;(2)30;(3)740;(4)30.【分析】(1)同一个月份收入和支出的点最接近的相差最小;(2)用9月份收入减支出即可;(3)把12个月的收入相加即可;(4)用12个月的总支出除以12即可;(5)从图中获得正确信息即可.26、【答案】解:甲乙两人工作量的比是::=6:5,甲分的钱是:2200×,=2200× ,=1200(元),乙分的钱是:2200× ,=2200× ,=1000(元).答:甲分1200元,乙分1000元。
2018年韶关市小学毕业小升初模拟数学试题(共6套)附详细答案

小升初数学试卷58一、填空题:(每题2分,共20分)1、6公顷80平方米=________平方米,42毫升=________立方厘米=________立方分米,80分=________时.2、奥运会每4年举办一次.北京奥运会是第29届,那么第24届是在________年举办的.3、在横线里填写出分母都小于12的异分母最简分数.=________+________=________+________.4、一个圆柱形的水桶,里面盛有18升水,正好盛满,如果把一块与水桶等底等高的圆锥形实心木块完全浸入水中,这时桶内还有________升水.5、如果a= b,那么a与b成________比例,如果= ,那么x与y成________比例.6、花店里有两种玫瑰花,3元可以买4枝红玫瑰,4元可以买3枝黄玫瑰,红玫瑰与黄玫瑰的单价的最简整数比是________.7、一个四位数4AA1能被3整除,A=________.8、如图,两个这样的三角形可以拼成一个大三角形,拼成后的三角形的三个内角的度数比是________或者________.9、如图,把一张三角形的纸如图折叠,面积减少.已知阴影部分的面积是50平方厘米,则这张三角形纸的面积是________平方厘米.10、有一串数,,,,,,,,,,,,,,,,…,这串数从左开始数第________个分数是.二、选择题:(每题2分,共16分)11、甲、乙两堆煤同样重,甲堆运走,乙堆运走吨,甲、乙两堆剩下的煤的重量相比较()A、甲堆重B、乙堆重C、一样重D、无法判断12、下面能较为准确地估算12.98×7.09的积的算式是()A、12×7B、13×7C、12×8D、13×813、已知a能整除19,那么a()A、只能是19B、是1或19C、是19的倍数D、一定是3814、甲数除以乙数的商是5,余数是3,若甲、乙两数同时扩大10倍,那么余数()A、不变B、是30C、是0.3D、是30015、小圆半径与大圆直径之比为1:4,小圆面积与大圆面积比为()A、1:2B、1:4C、1:8D、1:1616、下面的方框架中,()具有不易变形的特性.A、B、C、D、17、在下面形状的硬纸片中,把它按照虚线折叠,能折成一个正方体的是()A、B、C、D、18、一个长9厘米、宽6厘米、高3厘米的长方体,切割成3个体积相等的长方体,表面积最大可增加()A、36平方厘米B、72平方厘米C、108平方厘米D、216平方厘米三、计算题:(共24分)19、计算下列各题,能简算的要简算:(1)69.58﹣17.5+13.42﹣2.5(2)×(×19﹣)(3)+ + +(4)[1﹣(﹣)]÷ .20、求未知数x的值:(1):x=15%:0.18(2)x﹣x﹣5=18.四、动手操作题:21、如图(1),一个长方形纸条从正方形的左边开始以每秒2厘米的速度沿水平方向向右行驶,如图(2)是运动过程中长方形纸条和正方形重叠部分的面积与运动时间的关系图.(1)运动4秒后,重叠部分的面积是多少平方厘米?(2)正方形的边长是多少厘米?(3)在图(2)的空格内填入正确的时间.五、应用题:(第1题~第4题每题6分,第5题8分,共32分)22、泰州地区进入高温以来,空调销售火爆,下面是两商场的促销信息:文峰大世界:满500元送80元.五星电器:打八五折销售.“新科”空调两商场的挂牌价均为每台2000元;“格力”空调两商场的挂牌价均为每台2470元.问题:如果你去买空调,在通过计算比较一下,买哪种品牌的空调到哪家商场比较合算?23、两辆汽车同时从A地出发,沿一条公路开往B地.甲车比乙车每小时多行5千米,甲车比乙车早小时到达途中的C地,当乙车到达C地时,甲车正好到达B地.已知C地到B地的公路长30千米.求A、B 两地之间相距多少千米?24、盒子里有两种不同颜色的棋子,黑子颗数的等于白子颗数的.已知黑子颗数比白子颗数多42颗,两种棋子各有多少颗?25、一个长方体的木块,它的所有棱长之和为108厘米,它的长、宽、高之比为4:3:2.现在要将这个长方体削成一个体积最大的圆柱体,这个圆柱体体积是多少立方厘米?26、甲、乙、丙三人合作完成一项工程,共得报酬1800元,三人完成这项工程的情况是:甲、乙合作8天完成工程的,接着乙、丙又合作2天,完成余下的,然后三人合作5天完成了这项工程,按劳付酬,各应得报酬多少元?答案解析部分一、<b >填空题:(每题2</b><b >分,共20</b><b>分)</b>1、【答案】60080;42;0.042;1【考点】时、分、秒及其关系、单位换算与计算,面积单位间的进率及单位换算,体积、容积进率及单位换算【解析】【解答】解:(1)6公顷80平方米=60080平方米;(2)42毫升=42立方厘米=0.042立方分米(3)80分=时.故答案为:60080,42,0.042,.【分析】(1)把6公顷乘进率10000化成80000平方米再与80平方米相加.(2)立方厘米与毫升是等量关系二者互化数值不变;低级单位立方厘米化高级单位立方分米除以进率1000.(3)低级单位分化高级单位时除以进率60.2、【答案】1988【考点】日期和时间的推算【解析】【解答】解:29﹣24=5(届),4×5=20(年),2008﹣20=1988(年).答:第24届汉城奥运会是在1988年举办的.故答案为:1988.【分析】要求第24届奥运会是在那年举办,要先求出24届与29届相差几届,根据每4年举办一次,相差几届,就是几个4年,然后用2008减去相差的时间,即得到24届的举办时间.3、【答案】;;;【考点】最简分数【解析】【解答】解:故答案为:、、、.【分析】根据要求,把写成分母都小于12的异分母最简分数,把分子11写成9+2,变成,然后约分即可,再把11写成8+3,变成进行约分.4、【答案】12【考点】关于圆锥的应用题【解析】【解答】解:18×(1﹣)=18×=12(升)答:这时桶内还有12升水.【分析】把一块与水桶等底等高的圆锥形实心木块完全浸入水中,说明圆锥占据的体积是里面水的体积的,那桶内的水是原来的(1﹣),根据分数乘法的意义,列式解答即可.5、【答案】正;反【考点】正比例和反比例的意义【解析】【解答】解:因为a=b,所以a:b= (一定)是比值一定;所以a与b成正比例;因为=,所以xy=15×8=120(一定)所以x与y成反比例.故答案为:正,反.【分析】判断两个相关联的量成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,由此逐一分析即可解答.6、【答案】9:16【考点】求比值和化简比【解析】【解答】解:红玫瑰:3÷4=0.75(元)黄玫瑰:4÷3=(元)0.75:=(0.75×12):(×12)=9:16;答:甲、乙两种铅笔的单价的最简整数比是9:16.故答案为:9:16.【分析】根据“总价÷数量=单价”,分别求出红玫瑰与黄玫瑰的单价,再作比化简即可.7、【答案】2或5或8【考点】2、3、5的倍数特征【解析】【解答】解:当和为9时:4+A+A+1=9,A=2,当和为12时:4+A+A+1=12,A=3.5,当和为15时:4+A+A+1=15,A=5,当和为18时:4+A+A+1=18,A=6.5,当和为21时:4+A+A+1=121,A=8.故答案为:2或5或8.【分析】能被3整除,说明各个数位上的数相加的和能被3整除,4+A+A+1的和一定是3的倍数,因为A 是一个数字,只能是0、1、2、3、…、9中的某一个整数,最大值只能是9.若A=9,那么4+A+A+1=23,23<24,那么它们的数字和可能是6,9,12,15,18,21,当和为6时,A=0.5不行;当和等于9时,A=2,可以;当和为12时,A=3.5不行;当和为15时,A=5可以;当和为18时,A=6.5不行;当和为21时,A 等于8可以.8、【答案】1:1:1;1:1:4【考点】图形的拼组【解析】【解答】解:(1)当以长直角边为公共边时,如图它的三个角的度数的比是:(30°+30°):60°:60°=60°:60°:60°=1:1:1;(2)当以短直角边时,如图它的三个角的度数的比是30°:30°:(60°+60°)=30°:30°:120°=1:1:4.故答案位:1:1:1或者1:1:4.【分析】两个这样的三角形拼成一个大三角形的方法有两种,一种是以长直角边为公共边,另一种是以短直角边为公共边,然后根据各个角的度数,算出它们之间的比,据此解答.9、【答案】200【考点】简单图形的折叠问题【解析】【解答】解:因为折叠后面积减少,所以阴影部分的面积占三角形纸的面积的:1﹣﹣=,所以角形纸的面积:50÷=200(平方厘米).答:张三角形纸的面积是200平方厘米.故答案为:200.【分析】根据面积减少,先求出阴影部分面占三角形纸的面积的份数,即1﹣﹣=,然后用阴影部分面积除以所占的份数计算即可得解.10、【答案】111【考点】数列中的规律【解析】【解答】解:分母是11的分数一共有;2×11﹣1=21(个);从分母是1的分数到分母是11的分数一共:1+3+5+7+ (21)=(1+21)×11÷2,=22×11÷2,=121(个);还有10个分母是11的分数;121﹣10=111;是第111个数.故答案为:111.【分析】分母是1的分数有1个,分子是1;分母是2的分数有3个,分子是1,2,1;分母是3的分数有5个,分子是1,2,3,2,1;分母是4的分数有7个;分子是1,2,3,4,3,2,1.分数的个数分别是1,3,5,7…,当分母是n时有2n﹣1个分数;由此求出从分母是1的分数到分母是11的分数一共有多少个;分子是自然数,先从1增加,到和分母相同时再减少到1;所以还有10个分母是11的分数,由此求解.二、<b >选择题:(每题2</b><b >分,共16</b><b>分)</b>11、【答案】D【考点】分数的意义、读写及分类【解析】【解答】解:由于不知道这两堆煤的具体重量,所以无法确定哪个剩下的多.故选:D.【分析】由于不知道这两堆煤的具体重量,所以无法确定哪个剩下的多:如果两堆煤同重1吨,第一堆用去它的,即用了1×= 吨,即两堆煤用的同样多,则剩下的也一样多;如果两堆煤重量多于1吨,第二堆用的就多于吨,则第一堆剩下的多;如果两堆煤重量少于1吨,第二堆的就少于堆,则第二堆剩下的多;据此即可解答.12、【答案】B【考点】数的估算【解析】【解答】解:因为12.98×7.09≈13×7,所以较为准确地估算12.98×7.09的积的算式是B.故选:B.【分析】根据小数乘法的估算方法:把相乘的因数看成最接近它的整数来算.12.98最接近13,7.09最接近7,所以较为准确地估算12.98×7.09的积的算式是B.13、【答案】B【考点】整除的性质及应用【解析】【解答】解:因为a能整除19,所以19÷a的值是一个整数,因为19=1×19,所以a是1或19.故选:B.【分析】若a÷b=c,a、b、c均是整数,且b≠0,则a能被b、c整除,或者说b、c能整除a.因为a能整除19,所以19÷a的值是一个整数,所以a是1或19.14、【答案】B【考点】商的变化规律【解析】【解答】解:甲数除以乙数商是5,余数是3,如果甲数和乙数同时扩大10倍,那么商不变,仍然是5,余数与被除数和除数一样,也扩大了10倍,应是30.例如;23÷4=5…3,则230÷40=5…30.故选:B.【分析】根据商不变的性质“被除数和除数同时扩大或缩小相同的倍数(0除外),商不变”,可确定商仍然是5;但是余数变了,余数与被除数和除数一样,也扩大了10倍,由此确定余数是30.15、【答案】B【考点】比的意义,圆、圆环的面积【解析】【解答】解:设小圆半径为x,则大圆直径为4x,由题意得:小圆面积:πx2大圆面积:π(4x÷2)2=4πx2所以小圆面积与大圆面积比:πx2:4πx2=1:4故选:B.【分析】设小圆半径为x,则大圆直径为4x,利用圆的面积=πr2,分别计算得出大圆与小圆的面积即可求得它们的比.16、【答案】A【考点】三角形的特性【解析】【解答】解:因为三角形具有不易变形的特点,平行四边形具有容易变形的特点,图中只有A中有三角形,所以选择A.故选:A.【分析】根据三角形和平行四边形的知识,知道三角形具有不易变形的特点,平行四边形具有容易变形的特点,图中只有A中有三角形,据此判断.17、【答案】B【考点】正方体的展开图【解析】【解答】解:根据正方体展开图的特征,选项A、C、D不能折成正方体;选项B能折成一个正方体.故选:B.【分析】根据正方体展开图的11种特征,选项A、C、D都不是正方体展开图,不能折成正方体;只有选项B属于正方体展开图的“1﹣4﹣1”型,能折成一个正方体.18、【答案】D【考点】简单的立方体切拼问题【解析】【解答】解:9×6×4=216(平方厘米),答:表面积最大可增加216平方厘米.故选:D.【分析】根据长方体切割小长方体的特点可得:要使切割后表面积增加的最大,可以平行于原长方体的最大面,即9×6面,进行切割,这样表面积就会增加4个原长方体的最大面;据此解答.三、<b >计算题:(共24</b><b >分)</b>19、【答案】(1)解:69.58﹣17.5+13.42﹣2.5=(69.58+13.42)﹣(17.5+2.5)=83﹣20=63;(2)解:×(×19﹣)= × ×(19﹣1)= × ×18=9(3)解:+ + += ×(﹣+ ﹣+ ﹣+ ﹣)= ×(﹣)= ×= ;(4)解:[1﹣(﹣)]÷=[1﹣]÷= ÷=1【考点】运算定律与简便运算,分数的四则混合运算【解析】【分析】(1)利用加法交换律与减法的性质简算;(2)利用乘法分配律简算;(3)把分数拆分简算;(4)先算小括号里面的减法,再算中括号里面的减法,最后算除法.20、【答案】(1)解::x=15%:0.1815%x=0.18×15%x=0.2715%x÷15%=0.27÷15%x=1.8;(2)解:x﹣x﹣5=18x﹣5=18x﹣5+5=18+5x=23x×3=23×3x=69【考点】方程的解和解方程,解比例【解析】【分析】(1)先根据比例的基本性质:两内项的积等于两外项的积,把方程转化为15%x=0.18×,再依据等式的性质,方程两边同除以15%求解;(2)先化简方程得x﹣5=18,再依据等式的性质,方程两边同加上5再同乘上3求解.四、<b >动手操作题:</b>21、【答案】(1)解:长方形的长是:2×4=8(厘米),宽是2厘米,重叠的面积是:8×2=16(平方厘米);答:运行4秒后,重叠面积是16平方厘米。
2018-2019韶关市小学毕业数学总复习小升初模拟训练试卷20-22(共3套)附详细试题答案

小升初数学综合模拟试卷20一、填空题:1.13×99+135×999+1357×9999=______.2.一个两位数除以13,商是A,余数是B,A+B的最大值是_______.3.12345678987654321除本身之外的最大约数是______.4.有甲、乙两桶油,甲桶油比乙桶油多174千克,如果从两桶中各取5.图中有两个正方形,这两个正方形的面积值恰好由2、3、4、5、6、7这六个数字组成,那么小正方形的面积是______,大正方形的面积是______.6.如图,E、F分别是平行四边形ABCD两边上的中点,三角形DEF的面积是7.2平方厘米,平行四边形ABCD的面积是_______平方厘米.7.一辆公共汽车由起点到终点站共有10个车站,已知前8个车站共上车93人,除终点外前面各站共计下车76人.从前8个车站上车且在终点站下车的共有______人.9.某人以分期付款的方式买一台电视机,买时第一个月付款750元,以后每月付150元;或者前一半时间每月付300元,后一半时间每月付100元.两种付款方式的付款总数及时间都相同,这台电视机的价格是______元.10.一辆长12米的汽车以每小时36千米的速度由甲站开往乙站,上午9点40分,在距乙站2000米处遇到一行人,1秒后汽车经过这个行人,汽车到达乙站休息10分后返回甲站,汽车追上那位行人的时间是______.二、解答题:2.小明拿一些钱到商店买练习本,如果买大练习本可以买8本而无剩余;如果买小练习本可以买12本而无剩余,已知每个大练习本比小练习本贵0.32元,小明有多少元钱?3.某工厂的一只走时不够准确的计时钟需要69分(标准时间)时针与分钟才能重合一次,工人每天的正常工作时间是8小时,在此期间内,每工作1小时付给工资4元,而若超出规定时间加班,则每小时付给工资6元,如果一个工人照此钟工作8小时,那么他实际上应得到工资多少元?4.某次比赛中,试题共六题,均为是非题.正确的画“+ ”,错误的画“-”,记分方法是:每题答对的得2分,不答的得1分,答错的得0分,已知赵、钱、孙、李、周、吴、郑七人的答案及前六个人的得分记录如下表所示,请计算姓郑的得分.答案一、填空题:1.13704795原式=1300-13+135000-135+13570000-1357=13706300-1505=137047952.18因为余数最大是12,且99÷13=7…8,所以90÷13=6…12,A+B=6+12=18.3.4115226329218107因为12345678987654321除去1以外的最小约数是3,则12345678987654321的最大约数为12345678987654321÷3=4115226329218107174×3+4=526(千克)因此两桶油共重526+(526-174)=878(千克)5.273,546根据图形可以看出,大正方形面积是小正方形面积的2倍.经试验可知:273×2=546,所以小正方形面积为273,大正方形的面积为546.6.19.27.17因为在第9个车站上车的人,决不会在第9站下车,因此除终点外前面各站下车的76人都是在前8个车站上车的,所以从前8个车站上车且在终点下车的共有93-76=17(人)8.153因为总人数应是18,7,4的公倍数,而18,7,4的最小公倍数是252,所以参加考试的人数为252人.9.2400750+150x-150=200x50x=600x=12所以电视机的价格是根据题意可知,汽车的速度是每秒10米.行人的速度是每秒(12÷1-10=)2米.汽车到达乙站,休息10分后,行人又走了2×(2000÷10+60×10)=1600(米)汽车追上行人共需时间2000÷10+60×10+(2000+1600)÷(10-2)=1250(秒)=20分5秒9点40分+20分5秒=10点05秒.二、解答题:1.12.7.68元根据题意可知,如果买8个小练习本会剩下(0.32×8=)2.56元,而这2.56元正好可以再买4个小练习本,所以小明共有2.56×(12÷4)=7.68(元)正常钟表的时针和分针重合一次需要不准确的钟表走8小时,实际上是走应得工资为=32+2.6=34.6(元)4.8分从周做5题得9分可以看出,周做对了4道题,下面分别讨论:(1)假设第一题错,则第二、三、四、六题对,此时赵无法得到7分.(2)假设第二题错,则第一、三、四、六题对,此时赵无法得到7分.(3)假设第三题错,则第一、二、四、六题对,此时吴无法得到7分.(4)假设第四题错,则第一、二、三、六题对.此时第5题若填“十”,则赵、吴都可得到7分,钱、孙、李可得5分,由此推出郑得8分.(5)假设第六题错,则第一、二、三、四题对,则赵、吴无法同时得到7分.所以只有(4)满足条件.小升初数学综合模拟试卷21一、填空题:2.某班学生参加一次考试,成绩分为优、良、及格、不及格四等.已知人数不超过60人,则该班不及格的学生有______人.3.六个自然数的平均数是7,其中前四个数的平均数是8,第4个数是11,那么后三个数的平均数是______.4.在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数.某些两位数中间插入某个数码后变成的三位数,是原来两位数的9倍.这样的两位数共有______个.5.10个连续偶数的和是从1开始的10个连续奇数和的3.5倍,其中最大的偶数是______.6.一堆草,可以供3头牛或4只羊吃14天,或者供4头牛和15只羊吃7天.将这堆草供给6头牛和7只羊吃,可以吃______天.7.将一根长为1997厘米的铁丝截成199厘米和177厘米两种长度的铁丝,剩余部分最少是______厘米.8.如图,在长方形ABCD中,AB=6厘米,BC=8厘米,四边形EFHG的面积是3平方厘米,阴影部分的面积和是______平方厘米.9.分子小于6,而分母小于60的不可约真分数有______个.10.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明,如果公共汽车从始发站每次间隔同样的时间发一辆车,那么相邻两车间隔______分.二、解答题:2.一个分数,分母是901,分子是一个质数,现在有下面两种方法:(1)分子和分母各加一个相同的一位数;(2)分子和分母各减一个相同的一位数.子.3.1997个数排成一行,除两头的两个数之外,其余每数的3倍恰好等于与它相邻前后两数之和,这一行数最左边的几个数是:0,1,3,8,…,问最右边那个数除以6余几?4.有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时.问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?答案一、填空题:1.42.1根据题意可知,该班人数应是2、3、7的公倍数.由于该班人数不超过60,所以该班人数为42.不及格人数为3.7后三个数的和为11+(7×6-8×4)=21所以后三个数的平均数为7.4.4可将原题转化为数字谜问题:其中A、B可以取相同的数字,也可以取不同的数字.显然B只能取5,A×9+4后必须进位,所以A=1,2,3,4.两位数分别是15、25、35、45.5.44从1开始的10个连续奇数的和是100,10个连续偶数的和是(100×3.5=)350,最大的偶数是350÷10+9=44根据题意,3头牛、4只羊吃14天,可推出6头牛、8只羊吃7天.对比4头牛、15只羊吃7天,可知2头牛与7只羊吃草量相同,即1头牛相当于3.5只羊的吃草量.所以4头牛、15只羊吃7天相当于3.5×4+15=29(只)羊吃7天,6头牛、7只羊相当于3.5×6+7=28(只)羊,可以吃7.6长度为199厘米的铁丝最少截1根,最多截9根,列表计算.8.15平行四边形面积为(6×8=)48平方厘米,三角形BEC面积为(48÷2=)24平方厘米,三角形BHC面积为(48÷4=)12平方厘米.因为S△BDC=S△BEC,所以S△DGC=S△BEG同理,S△ABF=S△FCE因此S阴=S△BEC-S△HBC+S四边形EFHG=24-12+3=15(平方厘米)9.197以分子为1、2、3、4、5分类计算.(1)分子是1的分数有58个;(2)分子是2的分数有29个;(3)分子是3的分数有38个;(4)分子是4的分数有28个;(5)分子是5的分数有44个.共有58+29+38+28+44=197(个)10.8设汽车速度为a,小光的速度为b,则小明的速度为3b,因为汽车之间的间隔相等,所以可列方程(a-b)×10=(a-3b)×20即a-b=(a-3b)×2整理后有a=5b这说明汽车的速度是小光速度的5倍.所以在相同的距离中,小光所用时间是汽车所用时间的5倍.即小光走10分,汽车行2分.由于每10分有一辆车超过小光,所以汽车间隔(10-2=)8分钟.二、解答题:1.82.487因为901=13×69+4,所以可分两种情况讨论:(1)分母加9后是13的倍数,此时分子为7×(69+1)-9=481但481=13×37不是质数,舍.(2)分母减4后是13的倍数,此时分子为7×69+4=487由于487是质数,所以487为所求.3.3设相邻的三个数为a n-1,a n,a n+1.根据题设有3a n=a n-1+an+1,所以an+1=3a n-a n-1.设a n=6q1+r1,a n-1=6q2+r2.则a n+1=3×(6q1+r1)-6q2+42=6(3q1-q2)+(3r1-r2)由此可知,a n+1除以6的余数等于(3r1-r2)除以6的余数.所以这一行数中被6除的余数分别为:0,1,3,2,3,1,0,5,3,4,3,5,0,可以发现,12个数为一个循环,所以1997÷12=166 (5)由此可知第 1997个数除以 6余 3.4.5根设1根出水管每小时的排水量为1份,则8根出水管3小时的排水量为(8×3=)24份, 3根出水管18小时的排水量为(3×18=)54份.所以进水管每小时的进水量为(54-24)÷(18-3)=2(份)蓄水池原有水最为24-2×3=18(份)要想在8小时放光水,应打开水管18÷8+2=4.25(根)所以至少应打开5根排水管.小升初数学综合模拟试卷22一、填空题:2.设A=30×70×110×170×210,那么不是A的约数的最小质数为______.3.一张试卷共有15道题,答对一道题得6分,答错一道题扣4分,小明答完了全部的题目却得了0分,那么他一共答对了______道题.4.一行苹果树有16棵,相邻两棵间的距离都是3米,在第一棵树旁有一口水井,小明用1只水桶给苹果树浇水,每棵浇半桶水,浇完最后一棵时,小明共走了______米.5.有一个四位数,它的个位数字与千位数字之和为10,且个位既是偶数又是质数,去掉个位数字和千位数字,得到一个两位质数,又知道这个四位数能被72整除,则这个四位数是______·6.甲、乙二人分别以每小时3千米和5千米的速度从A、B两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距______千米.7.如图,在△ABC中,DC=3BD,DE=EA,若△ABC面积是2,则阴影部分的面积是______.8.小朋从1997年的日历中抽出14张,是从5月14日到5月27日连续14天的.这14天的日期数相加是287.小红也抽出连续的14天的日历14张,这14天的日期数虽然与小明的不相同,但相加后恰好也是287.小红抽出的14张是从______月______日到______月______日的.9.今有五个自然数,计算其中任意三个数的和,得到了10个不同的自然数,它们是:15、16、18、19、21、22、23、26、27、29,这五个数的积是______.10.某工厂的记时钟走慢了,使得标准时间每70分钟分针与时针重合一次.李师傅按照这慢钟工作8小时,工厂规定超时工资要比原工资多3.5倍,李师傅原工资每小时3元,这天工厂应付给李师傅超时工资______元.二、解答题:1.计算问参加演出的男、女生各多少人?3.国际象棋比赛的奖金总数为10000元,发给前五名.每一名次的奖金都不一样,名次在前的钱数是比名次在后的钱数多,每份奖金钱数都是100元的整数倍.现在规定,第一名的钱数是第二、三名两人之和,第二名的钱数是第四、五名两人之和,那么第三名最多能得多少元?4.在一条公路上,甲、乙两地相距600米,小明和小强进行竞走训练,小明每小时行走4千米,小强每小时行走5千米.9点整,他们二人同时从甲、乙两地出发相向而行,1分后二人都调头反向而行,又过3分,二人又都调头相向而行,依次按照1、3、5、7、…(连续奇数)分钟数调头行走,那么二人相遇时是几点几分?答案一、填空题:1.1002.13根据A=30×70×110×170×210,可知2,3,5,7,11都是A的约数,而13不是A的约数.3.6因为小明答完了全部题目后得0分,所以他答对的题数与答错的题数之比为4∶6=2∶3,小明答对了15÷(2+3)×2=6(道)4.339(3+9+15+21+27+33+39)×2+45=339(米)能被8和9整除(8×9=72).因此8+a+b+2=10+a+b是9的倍数,由此可知a+b=8或a+b=17.53三种可能.若a+b=17,根据8+9=17,只有89一种可能.在四位数8172,8712,8532,8892中只有8712能被8整除,所以8712为所求.6.19.2因为甲、乙二人的速度比是3∶5,所以甲、乙二人在相同路程上所用的时间比是5∶3,因此A、B两地相距连结FD,由AE=ED可知:S△AFE=S△EFD,S△AEC=S△DCE由DC=3BD,可知:S△DCF=3S△BDF.因此S△ABC=(1+3+3)×S△BDF=7S△BDF8.2月16日,3月1日14+15+16+…+27=287,如果再找出14个连续的自然数之和为287是不可能的.需要调整,找出另外14个数的和为287,试验:(1)如果前面去掉14日,后面增加28日,显然和大于287;(2)如果前面去掉14、15日,后面增加2天,和为29,只能增加28日、 1日,这说明这个月的最后一天为28日.(3)如果前面去掉三天或三天以上,无论后面如何排,其和都不是287.所以小红抽出的14张是从2月16日到3月1日.9.5184因为计算其中任意三个数的和,所以每个数都使用了6次,因此这六个数的总和为(15+16+18+19+21+22+23+26+27+29)÷6=36设五个数从小到大依次为A、B、C、D、E,则所以 C=15+29-36=8.根据A+B+D=16,C=8,可推出D=9.所以E=29-(C+D)=12.根据B+D+E=27,可推出B=27-(D+E)=6.所以A=15-(B+C)=1.这五个数的乘积为1×6×8×9×12=5184.10.10.5走时正常的钟时针与分针重合一次需要慢钟走8小时,实际上是走所以应付超时工资二、解答题:1.22.男生16人,女生30人.因此女生人数为(46-16=)30人.3.1700为叙述方便,将100元作为计算单位,10000元就是100.根据题目条件可知五个人的奖金实际上是3个第二名与2个第三名的奖金之和.取偶数,因此第三名至多是(100-22×3)÷2=174.9点24分.如果不掉头行走,二人相遇时间为600÷[(4+5)×1000÷60]=4(分)两人相向行走1分后,掉头背向行走3分,相当于从出发地点背向行走(3-1=)2分;两人又掉头行走5分,相当于从出发地点相向行走(5-2=)3分;两人又掉头行走7分,相当于从出发地点背向行走(7-3=)4分;两人又掉头行走9分,相当于从出发地点相向行走(9-4=)5分.但在行走4分时二人就已经相遇了.因此共用时间1+3+5+7+8=24(分)相遇时间是9点24分.。
2018-2019韶关市小学毕业数学总复习小升初模拟训练试卷19-21(共3套)附详细试题答案

小升初数学综合模拟试卷19一、填空题:2.用1,2,3,4,5,6,7这七个数字组成三个两位数,一个一位数,并且使这四个数的和等于100,如果要求最小的两位数尽可能小,那么其中最大的两位数是______.3.小红和小明参加一个联欢会,在联欢会中,小红看到不戴眼镜的同联欢会的共有_______名同学.4.一次数学测验,六(1)班全班平均90分,男生平均88.5分,女生平均92分,这个班女生有18人,男生有______人.5.如图,M、N分别为平行四边形相邻两边的中点,若平行四边形面6.一个六位数□1997□能被33整除,这样的数是______.7.有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合,如图所示,已知露在外的部分中,红色面积是20,黄色面积是14,绿色面积是10,那么正方形盒子的面积是_______.8.有200多枚棋子摆成了一个n行n列的正方形,甲先从中取走10枚,乙再从中取走10枚,……,这样轮流取下去,直到取完为止.结果最后一枚被乙取走.乙共取走了______枚棋子.9.一艘油轮的船长已经50多岁,船上有30多名工作人员,其中男性占多数.如果将船长的年龄、男工作人员的人数和女工作人员的人数相乘,则积为15606,船上共有______名工作人员,船长的年龄是______岁.10.小明放学后沿某路公共汽车路线,以每小时4千米的速度步行回家.沿途该路公共汽车每隔9分就有一辆从后面超过他,每7分又遇到迎面开来的一辆车.如果这路公共汽车按相同的时间间隔以同一速度不停地运行,那么汽车每隔______分发一辆车.二、解答题:1.计算:2.有一种用六位数表示日期的方法,如用911206表示91年12月6日,也就是用前两位表示年,中间两位表示月,后两位表示日.如果用这种方法表示1997年的日期,全年中六个数字都不相同的日期共有多少天?3.少年歌手大奖赛的裁判小组由若干人组成,每名裁判员给歌手的最高分不超过10分.第一名歌手演唱后的得分情况是:全体裁判员所给分数的平均分是9.64分;如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.60分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.68分.求所有裁判员所给分数中的最低分最少可以是多少分?这时大奖赛的裁判员共有多少名?4.A、B、C三名同学参加了一次标准化考试,试题共10道,都是正误题,每道题10分,满分为100分.正确的画“√”,错误的画“×”.他们的答卷如下表:答案一、填空题:1.102.47要使最小的两位数尽可能小,最好十位是1,个位是2,此时四个数的个位之和应等于20,可找到这样的四个数2、5、6、7.在余下的数3、4中取4,可组成最大的两位数47.3.16如果小红和小明都戴眼镜或都不戴眼镜,那么他们看到的戴眼镜的比例应当相同,由于小明看到的戴眼镜的比例高,所以小红戴眼镜,小明不戴眼镜,因此总人数为4.24(92-90)×18÷(90-88.5)=24(人)5.6六个.6.919974,619971,219978a+b+1+9+9+7=a+b+26是3的倍数,因此a+b=1,4,7,10,13,16.(a+9+7)-(1+9+b)=a-b+6是11的倍数,因此a-b=5或b-a=6.因为a、b是整数,所以a+b与a-b同奇同偶,经试验,可找到以下三组解:7.51.2作辅助线,在黄色纸片中截出面积为a的部分,如图所示.所以14-a=10+aa=2设空白部分面积为x,将上图转化为正方形盒子的面积为12+20+12+7.2=51.28.126因为棋子数是200多,且是一个平方数,所以行数n可能是15,16,17.若n=15,15×15=225,即共有225枚棋子.由于是甲先取10枚,乙再取10枚,因此第225枚棋子被甲取走,不合题意.若n=16,16×16=256,即共有256枚棋子,根据规则可知,第256枚被乙取走.若n=17,17×17=289,即共有289枚棋子.根据规则可知,第289枚被甲取走,不合题意.所以满足条件的棋子数是256枚,乙共取走260÷2-4=126(枚)9.35,51因为15606=2×3×3×3×17×17,且船长是50多岁,所以有2×3×3×3=54和3×17=51两种情况.若船长54岁,则男女工作人员各17名,不合题意,所以船长只能是51岁.此时男女工作人员的乘积为2×3×3×17,男女工作人员的人数分配有下面五种:(153,2),(102,3)(51,60),(34,9),(18,17).根据工作人员共有30多名和男多女少的条件可知,男有18人,女有17名满足.所以工作人员共有35名.因为无论是迎面来的车,还是后面追来的车,两车之间的距离总是一样的.所以设车速为x,有两车之间的距离为发车的时间间隔为二、解答题:1.0原式=a(b-c)+b(c-a)+c(a-b)=ab-ac+bc-ba+ca-cb=02.73天分类按月计算1月、2月、10月分别有5天;3月、4月、6月分别有10天;5月、8月分别有11天;12月有6天;7月、9月没有.5×3+10×3+11×2+6=733.9.28分.10名设裁判员有x名,那么(1)总分为9.64x;(2)去掉最高分后的总分为9.60(x-1),由此可知最高分为:9.64x-9.60(x-1)=0.04x+9.6(3)去掉最低分后的总分为9.68(x-1),由此可知最低分为:9.64x-9.68(x-1)=9.68-0.04x因为最高分不超过10,所以0.04x+9.6不超过10,也就是0.04x不超过0.4,由此可知x不超过10.当x取10时,最低分有最小值,是9.68-0.04×10=9.28(分)所以最低分是9.28分,裁判员有10名4.1至10题的正确答案是×、×、√、√、√、√、√、×、√、×观察A与B的答案可知,A、B有4道题答案相同,6道题答案不同.因为每人都是70分,所以4道答案相同的题都答对了,6道答案不同的题各对了3道.由此可知第1、3、4、10题的答案分别是×、√、√、×.同理,B、C有4题答案相同,根据每人都是70分,所以4道答案相同的题都答对了,即第2、3、5、7题的答案分别是×、√、√、√.同理,A、C也有4题答案相同,这4道题都答对了,即第3、6、8、9题的答案分别是√、√、×、√.由此可知,1至10题的答案分别是×、×、√、√、√、√、√、×、√、×.小升初数学综合模拟试卷20一、填空题:1.13×99+135×999+1357×9999=______.2.一个两位数除以13,商是A,余数是B,A+B的最大值是_______.3.12345678987654321除本身之外的最大约数是______.4.有甲、乙两桶油,甲桶油比乙桶油多174千克,如果从两桶中各取5.图中有两个正方形,这两个正方形的面积值恰好由2、3、4、5、6、7这六个数字组成,那么小正方形的面积是______,大正方形的面积是______.6.如图,E、F分别是平行四边形ABCD两边上的中点,三角形DEF的面积是7.2平方厘米,平行四边形ABCD的面积是_______平方厘米.7.一辆公共汽车由起点到终点站共有10个车站,已知前8个车站共上车93人,除终点外前面各站共计下车76人.从前8个车站上车且在终点站下车的共有______人.9.某人以分期付款的方式买一台电视机,买时第一个月付款750元,以后每月付150元;或者前一半时间每月付300元,后一半时间每月付100元.两种付款方式的付款总数及时间都相同,这台电视机的价格是______元.10.一辆长12米的汽车以每小时36千米的速度由甲站开往乙站,上午9点40分,在距乙站2000米处遇到一行人,1秒后汽车经过这个行人,汽车到达乙站休息10分后返回甲站,汽车追上那位行人的时间是______.二、解答题:2.小明拿一些钱到商店买练习本,如果买大练习本可以买8本而无剩余;如果买小练习本可以买12本而无剩余,已知每个大练习本比小练习本贵0.32元,小明有多少元钱?3.某工厂的一只走时不够准确的计时钟需要69分(标准时间)时针与分钟才能重合一次,工人每天的正常工作时间是8小时,在此期间内,每工作1小时付给工资4元,而若超出规定时间加班,则每小时付给工资6元,如果一个工人照此钟工作8小时,那么他实际上应得到工资多少元?4.某次比赛中,试题共六题,均为是非题.正确的画“+ ”,错误的画“-”,记分方法是:每题答对的得2分,不答的得1分,答错的得0分,已知赵、钱、孙、李、周、吴、郑七人的答案及前六个人的得分记录如下表所示,请计算姓郑的得分.答案一、填空题:1.13704795原式=1300-13+135000-135+13570000-1357=13706300-1505=137047952.18因为余数最大是12,且99÷13=7…8,所以90÷13=6…12,A+B=6+12=18.3.4115226329218107因为12345678987654321除去1以外的最小约数是3,则12345678987654321的最大约数为12345678987654321÷3=4115226329218107174×3+4=526(千克)因此两桶油共重526+(526-174)=878(千克)5.273,546根据图形可以看出,大正方形面积是小正方形面积的2倍.经试验可知:273×2=546,所以小正方形面积为273,大正方形的面积为546.6.19.27.17因为在第9个车站上车的人,决不会在第9站下车,因此除终点外前面各站下车的76人都是在前8个车站上车的,所以从前8个车站上车且在终点下车的共有93-76=17(人)8.153因为总人数应是18,7,4的公倍数,而18,7,4的最小公倍数是252,所以参加考试的人数为252人.9.2400750+150x-150=200x50x=600x=12所以电视机的价格是根据题意可知,汽车的速度是每秒10米.行人的速度是每秒(12÷1-10=)2米.汽车到达乙站,休息10分后,行人又走了2×(2000÷10+60×10)=1600(米)汽车追上行人共需时间2000÷10+60×10+(2000+1600)÷(10-2)=1250(秒)=20分5秒9点40分+20分5秒=10点05秒.二、解答题:1.12.7.68元根据题意可知,如果买8个小练习本会剩下(0.32×8=)2.56元,而这2.56元正好可以再买4个小练习本,所以小明共有2.56×(12÷4)=7.68(元)正常钟表的时针和分针重合一次需要不准确的钟表走8小时,实际上是走应得工资为=32+2.6=34.6(元)4.8分从周做5题得9分可以看出,周做对了4道题,下面分别讨论:(1)假设第一题错,则第二、三、四、六题对,此时赵无法得到7分.(2)假设第二题错,则第一、三、四、六题对,此时赵无法得到7分.(3)假设第三题错,则第一、二、四、六题对,此时吴无法得到7分.(4)假设第四题错,则第一、二、三、六题对.此时第5题若填“十”,则赵、吴都可得到7分,钱、孙、李可得5分,由此推出郑得8分.(5)假设第六题错,则第一、二、三、四题对,则赵、吴无法同时得到7分.所以只有(4)满足条件.小升初数学综合模拟试卷21一、填空题:2.某班学生参加一次考试,成绩分为优、良、及格、不及格四等.已知人数不超过60人,则该班不及格的学生有______人.3.六个自然数的平均数是7,其中前四个数的平均数是8,第4个数是11,那么后三个数的平均数是______.4.在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数.某些两位数中间插入某个数码后变成的三位数,是原来两位数的9倍.这样的两位数共有______个.5.10个连续偶数的和是从1开始的10个连续奇数和的3.5倍,其中最大的偶数是______.6.一堆草,可以供3头牛或4只羊吃14天,或者供4头牛和15只羊吃7天.将这堆草供给6头牛和7只羊吃,可以吃______天.7.将一根长为1997厘米的铁丝截成199厘米和177厘米两种长度的铁丝,剩余部分最少是______厘米.8.如图,在长方形ABCD中,AB=6厘米,BC=8厘米,四边形EFHG的面积是3平方厘米,阴影部分的面积和是______平方厘米.9.分子小于6,而分母小于60的不可约真分数有______个.10.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明,如果公共汽车从始发站每次间隔同样的时间发一辆车,那么相邻两车间隔______分.二、解答题:2.一个分数,分母是901,分子是一个质数,现在有下面两种方法:(1)分子和分母各加一个相同的一位数;(2)分子和分母各减一个相同的一位数.子.3.1997个数排成一行,除两头的两个数之外,其余每数的3倍恰好等于与它相邻前后两数之和,这一行数最左边的几个数是:0,1,3,8,…,问最右边那个数除以6余几?4.有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时.问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?答案一、填空题:1.42.1根据题意可知,该班人数应是2、3、7的公倍数.由于该班人数不超过60,所以该班人数为42.不及格人数为3.7后三个数的和为11+(7×6-8×4)=21所以后三个数的平均数为7.4.4可将原题转化为数字谜问题:其中A、B可以取相同的数字,也可以取不同的数字.显然B只能取5,A×9+4后必须进位,所以A=1,2,3,4.两位数分别是15、25、35、45.5.44从1开始的10个连续奇数的和是100,10个连续偶数的和是(100×3.5=)350,最大的偶数是350÷10+9=44根据题意,3头牛、4只羊吃14天,可推出6头牛、8只羊吃7天.对比4头牛、15只羊吃7天,可知2头牛与7只羊吃草量相同,即1头牛相当于3.5只羊的吃草量.所以4头牛、15只羊吃7天相当于3.5×4+15=29(只)羊吃7天,6头牛、7只羊相当于3.5×6+7=28(只)羊,可以吃7.6长度为199厘米的铁丝最少截1根,最多截9根,列表计算.8.15平行四边形面积为(6×8=)48平方厘米,三角形BEC面积为(48÷2=)24平方厘米,三角形BHC面积为(48÷4=)12平方厘米.因为S△BDC=S△BEC,所以S△DGC=S△BEG同理,S△ABF=S△FCE因此S阴=S△BEC-S△HBC+S四边形EFHG=24-12+3=15(平方厘米)9.197以分子为1、2、3、4、5分类计算.(1)分子是1的分数有58个;(2)分子是2的分数有29个;(3)分子是3的分数有38个;(4)分子是4的分数有28个;(5)分子是5的分数有44个.共有58+29+38+28+44=197(个)10.8设汽车速度为a,小光的速度为b,则小明的速度为3b,因为汽车之间的间隔相等,所以可列方程(a-b)×10=(a-3b)×20即a-b=(a-3b)×2整理后有a=5b这说明汽车的速度是小光速度的5倍.所以在相同的距离中,小光所用时间是汽车所用时间的5倍.即小光走10分,汽车行2分.由于每10分有一辆车超过小光,所以汽车间隔(10-2=)8分钟.二、解答题:1.82.487因为901=13×69+4,所以可分两种情况讨论:(1)分母加9后是13的倍数,此时分子为7×(69+1)-9=481但481=13×37不是质数,舍.(2)分母减4后是13的倍数,此时分子为7×69+4=487由于487是质数,所以487为所求.3.3设相邻的三个数为a n-1,a n,a n+1.根据题设有3a n=a n-1+an+1,所以an+1=3a n-a n-1.设a n=6q1+r1,a n-1=6q2+r2.则a n+1=3×(6q1+r1)-6q2+42=6(3q1-q2)+(3r1-r2)由此可知,a n+1除以6的余数等于(3r1-r2)除以6的余数.所以这一行数中被6除的余数分别为:0,1,3,2,3,1,0,5,3,4,3,5,0,可以发现,12个数为一个循环,所以1997÷12=166 (5)由此可知第 1997个数除以 6余 3.4.5根设1根出水管每小时的排水量为1份,则8根出水管3小时的排水量为(8×3=)24份, 3根出水管18小时的排水量为(3×18=)54份.所以进水管每小时的进水量为(54-24)÷(18-3)=2(份)蓄水池原有水最为24-2×3=18(份)要想在8小时放光水,应打开水管18÷8+2=4.25(根)所以至少应打开5根排水管.。
2018年韶关市小学毕业小升初模拟数学试题(共6套)附详细答案附答案

小升初数学试卷64一、判断题1、甲数比乙数少,乙数比甲数多.________(判断对错)2、分针转180°时,时针转30°________(判断对错)3、一个圆的周长小,它的面积就一定小.________(判断对错)4、495克盐水,有5克盐,含盐率为95%.________.(判断对错)5、一根木棒截成3段需要6分钟,则截成6段需要12分钟________(判断对错)6、要剪一个面积是9.42cm2的圆形纸片,至少要11cm2的正方形纸片.()(判断对错)二、选择题加填空题加简答题7、定义前运算:○与?已知A○B=A+B﹣1,A?B=A×B﹣1.x○(x?4)=30,求x.()A、B、C、8、一共有几个三角形________.9、一款东西120元,先涨价30%,再打8折,原来(120元),利润率为50%.则现在变为________%.10、水流增加对船的行驶时间()A、增加B、减小C、不增不减D、都有可能11、教室里有红黄蓝三盏灯,只有一个拉环,拉一次红灯亮,拉两次亮红灯和黄灯,拉三次三灯全亮,拉四次全部灭,现有编号1到100的同学,每个同学拉开关拉自己编号次灯.比如第一个同学拉一次,第二个同学拉两次,照此规律一百个同学拉完灯的状态是________.12、跳蚤市场琳琳卖书,两本每本60元,一本赚20%,一本亏20%,共()A、不亏不赚B、赚5元C、亏2元D、亏5元13、一张地图比例尺为1:30000000,甲、乙两地图上距离为6.5cm,实际距离为________千米.14、一个长方形的长和宽都为整数厘米,面积160有几种可能?15、环形跑道400米,小百、小合背向而行,小百速度是6米/秒,小合速度是4米/秒,当小百碰上小合时立即转向跑,小合不改变方向,小百追上小合时也立即转向跑,小合仍不改变方向,问两人第11次相遇时离起点多少米?(按较短距离算,追上和迎面都算相遇)16、甲、乙、丙合作一项工程,4天干了整个工程的,这4天内,除丙外,甲又休息了2天,乙休息了3天,之后三人合作完成,甲的效率是丙的3倍,乙的效率是丙的2倍.问工程前后一共用了多少天?17、以BD为边时,高20cm,以CD为边时,高14cm,▱ABCD周长为102厘米,求面积?18、100名学生去离学校33公里的地方,只有一辆载25人的车,车每小时行驶55公里,学生步行速度5km/h,求最快要多久到目的地?19、A、B、C、D四个数,每次计算三个数的平均值,这样计算四次,得出的平均数分别为29、28、32、36(未确定),求四个数的平均值.20、一根竹竿,一头伸进水里,有1.2米湿了,另一头伸进去,现没湿部分是全长的一半少0.4米,求没湿部分的长度.21、货车每小时40km,客车每小时60km,A、B两地相距360km,同时同向从甲地开往乙地,客车到乙地休息了半小时后立即返回甲地,问从甲地出发后几小时两车相遇?22、欢欢与乐乐月工资相同,欢欢每月存30%,乐乐月开支比欢欢多10%,剩下的存入银行1年(12个月)后,欢欢比乐乐多存了5880元,求欢欢、乐乐月工资为多少?23、小明周末去爬山,他上山4千米/时,下上5千米/时,问他上下山的平均速度是多少?24、一个棱长为1的正方体,按水平向任意尺寸切成3段,再竖着按任意尺寸切成4段,求表面积.25、一个圆柱和一个圆锥底面积比为2:3,体积比为5:6,求高的比.三、计算题26、计算题.0.36:8=x:2515÷[()]﹣0.591× ﹣1÷13×100+9× +11 ÷11[22.5+(3 +1.8+1.21× )]+ + + +…+答案解析部分一、<b >判断题</b>1、【答案】错误【考点】分数的意义、读写及分类【解析】【解答】解:把乙数看作5份数,甲数就是5﹣3=2份数(5﹣2)÷2= .答:乙数比甲数多.故答案为:错误.【分析】甲数比乙数少,把乙数看作5份数,那么甲数就是5﹣3=2份数;要求乙数比甲数多几分之几,需把甲数看作单位“1”,也就是求乙数比甲数多的部分占甲数的几分之几,列式计算后再判断得解.2、【答案】错误【考点】角的概念及其分类【解析】【解答】解:180÷6×0.5=30×0.5=15(度)答:分针转180°时,时针转15度.故答案为:错误.【分析】1分钟分针旋转的度数是6度,依此先求出分针转180度需要的时间,时针1分钟旋转的度数是0.5度,乘以求出的分钟数,即可得到时针旋转的度数.3、【答案】正确【考点】圆、圆环的周长,圆、圆环的面积【解析】【解答】解:半径确定圆的大小,周长小的圆,半径就小,所以面积也小.所以原题说法正确.故答案为:正确.【分析】圆的半径的大小确定圆的面积的大小;半径大的圆的面积就大;圆的周长=2πr,周长小的圆,它的半径就小.由此即可判断.4、【答案】错误【考点】百分率应用题【解析】【解答】解:5÷495×100%≈1%答:含盐率约是1%.故答案为:错误.【分析】495克盐水,有5克盐,根据分数的意义可知,用含盐量除以盐水总量即得含盐率是多少.5、【答案】错误【考点】整数四则混合运算,整数、小数复合应用题,比例的应用【解析】【解答】解:6÷(3﹣1)=6÷2=3(分钟)3×(6﹣1)=3×5=15(分钟)15>12故答案为:错误.【分析】截成3段需要需要截2次,需要6分钟,由此求出截一次需要多少分钟;截成6段,需要截5次,再乘截一次需要的时间就是截成6段需要的时间,然后与12分钟比较即可.6、【答案】错误【考点】长方形、正方形的面积,圆、圆环的面积【解析】【解答】解:小正方形的面积(半径的平方):9.42÷3.14=3(平方厘米),大正方形的面积:3×4=12(平方厘米);答:至少需要一张12平方厘米的正方形纸片.故答案为:错误.【分析】要剪一个面积是9.42平方厘米的圆形纸片,需要的正方形纸片的边长是圆的直径,知道圆的面积可以求半径的平方,把正方形用互相垂直的圆的两个直径分成4个小正方形,则每个小正方形的面积都为圆的半径的平方,进而可求大正方形的面积.二、<b >选择题加填空题加简答题</b>7、【答案】B【考点】定义新运算【解析】【解答】解:x○(x?4)=30x○(4x﹣1)=30x+4x﹣1﹣1=305x=32x= .故选:B.【分析】根据题意可知,A○B=A+B﹣1,表示两个数的和减1,A?B=A×B﹣1表示两个数的积减1;根据这种新运算进行解答即可.8、【答案】37【考点】组合图形的计数【解析】【解答】解:根据题干分析可得:顶点O在上面的三角形,一共有5+4+3+2+1=15(个)顶点O在左边的三角形一共有6+5+4+3+2+1=21(个)15+21+1=37(个)答:一共有37个三角形.故答案为:37.【分析】先看顶点O在上面的三角形,一共有5+4+3+2+1=15个三角形,再看顶点O在左边的三角形一共有6+5+4+3+2+1=21个,据此加起来,再加上大三角形即可解答问题.9、【答案】56【考点】百分数的实际应用【解析】【解答】解:120×(1+30%)×80%=120×130%×80%=124.8(元)120÷(1+50%)=120÷150%=80(元)(124.8﹣80)÷80=44.8÷80=56%答:现在利润率是56%.故答案为:56.【分析】将原价当作单位“1”,则先涨价30%后的价格是原价的1+30%,再打八折,即按涨价后价格的80%出售,则此时价格是原价的(1+30%)×80%,又原来利润是50%,则原来售价是进价的1+50%,则进价是120÷(1+50%)=80元,又现在售价是120×(1+30%)×80%=124.8元,则此时利润是124.8﹣80元,利润率是(124.8﹣80)÷80.10、【答案】D【考点】简单的行程问题【解析】【解答】解:分三种情况:1.小船船头垂直于河岸时,小船行驶时间不增不减,所以C正确;2.当小船顺水而下时,船速加快,时间减少,所以B正确;3.当小船逆水而上时,船速减慢,时间增加,所以A正确;故选:D.【分析】此题分几种情况:1.小船船头垂直于河岸时,由于船的实际运动与沿船头指向的分运动同时发生,时间相等,故水流速度对小船的渡河时间无影响,2.当小船顺水而下时,船速等于静水速度加水速,速度加快,路程不变时,时间减少,3.当小船逆水而上时,船速等于静水时速度减水速,所以船速减慢,时间增加.所以三种情况都可能出现,据此解答.11、【答案】第100个同学拉之前,灯不可能全灭.应该是总次数1+2+3+.+100=5050 5050÷4=1262.2就是第二次的状态,红灯和黄灯亮【考点】奇偶性问题【解析】【解答】解:第100个同学拉之前,灯不可能全灭.应该是总次数1+2+3+.+100=5050,5050÷4=1262(次)…2,就是第二次的状态,红灯和黄灯亮.故答案为:第100个同学拉之前,灯不可能全灭.应该是总次数1+2+3+.+100=5050 5050÷4=1262.2就是第二次的状态,红灯和黄灯亮.【分析】把按4次看成一次操作,这一次操作中按第一次第一盏灯亮,按两次第二盏灯亮,按三次两盏灯全亮,再按一次两盏灯全灭;求出100里面有几个这样的操作,还余几,然后根据余数推算.12、【答案】D【考点】百分数的实际应用【解析】【解答】解:设两本书的原价分别为x元,y元则:x(1+20%)=60y(1﹣20%)=60解得:x=50y=75所以两本书的原价和为:x+y=125元而售价为2×60=120元所以她亏了5元【分析】两本每本卖60元,一本赚20%,一本亏20%,要求出两本书的原价.13、【答案】1950【考点】比例尺【解析】【解答】解:6.5÷ =195000000(厘米),195000000厘米=1950千米;答:实际距离是19500千米.故答案为:1950.【分析】要求实际距离是多少千米,根据“图上距离÷比例尺=实际距离”,代入数值计算即可.14、【答案】解:因为160=1×160=2×80=4×40=5×32=8×20=16×10,所以这个长方形的长与宽有6种可能.答:面积是160有6种可能.【考点】长方形、正方形的面积【解析】【分析】根据长方形的面积公式S=长×宽,长×宽=160,根据160=1×160=2×80=4×40=5×32=8×20=16×10,据此即可解答问题.15、【答案】解:400÷(6+4)=400÷10=40(秒)40×4×11÷400=160×11÷400=1760÷400=4(圈)…160(米)答:第11次相遇时离起点160米.【考点】相遇问题【解析】【分析】根据题意可知小合一直是沿同一方向前进,每一次相遇用的时间根据时间=路程÷速度和可求出,再乘小合的速度信相遇次数,可知小合共行的路程,再除以环形跑道的长度,看余数可求出离起点的距离,据此解答.16、【答案】解:× ÷4 = ÷4= ,×3= ,×2= ,4+2+3+[1﹣﹣×(2+3)﹣×3﹣×2]÷(+ + )=9+[1﹣﹣﹣﹣]÷=9+5=14(天)答:完成这项工程前后需要14天【考点】工程问题【解析】【分析】由于甲的效率是丙的3倍,乙的效率是丙的2倍,将丙的工作效率当作单位“1”,则甲、乙、丙三人的效率比是3:2:1,又4天干了整个工程的,则丙完成了这4天内所做工程的= ,即完成了全部工程的× = ,所以丙每天能完成全部工作的÷4= ,则甲每天完成全部工程的×3= ,丙每天完成全部工程的×2= .又然后除丙外,甲休息了2天,乙休息了3天,则这2+3=5天内,丙完成了全部工程的×5= ,甲完成了全部工程的×3= ,乙完成全部工作的×2= ,此时还剩下全部的1﹣﹣﹣﹣,三人的效率和是+ + ,所以此后三人合作还需要(1﹣﹣﹣﹣)÷(+ + )天完成,则将此工程前后共用了4+2+3+(1﹣﹣﹣﹣)÷(+ + )天.17、【答案】解:CD边上的高与BD边上的高的比是:14:20= ;平行四边形的底CD为:102÷(1 )÷2=102=102×=30(厘米);平行四边形的面积为:30×14=420(平方厘米);答:平行四边形的面积是420平方厘米【考点】组合图形的面积【解析】【分析】平行四边形的对边平行且相等,平行四边形的面积=底×高,由CD边上的高与BD边上的高的比等于CD与BD的反比,已知周长求出平行四边形的底,再利用面积公式解答.18、【答案】解:(33÷9)×3÷5+(33÷9)×6÷55 = += (小时)答:最快要小时到目的地【考点】简单的行程问题【解析】【分析】如图:AB是两地距离33公里,100个人被分成4组,每组是25人,第一组直接从A开始上车被放在P1点;汽车回到C2接到第2组放在了P2点;下面都是一样,最后一组是在C4接到的,直接送到B点;我们知道,这4组都是同时达到B点,时间才会最短;那么其4个组步行的距离都是一样的;当第一组被送到P1点时,回到C2点这段时间,另外三个组都步行到了C2,根据速度比=路程之比=55:5=11:1;我们把接到每组之间的步行距离看作单位1,那么汽车从出发到返回P2就是11个单位;那么出发点A到P1就是(11+1)÷2=6个单位;因为步行的距离相等,所以2段对称;(例如第一组:步行的距离是P1到B点3份,最后一组是A到C4也是三段距离是3份);所以以第一组为例,它步行了后面的3份,乘车行了前面的6份,可见全程被分为9份,每份是33÷9=千米,步行速度是5千米每小时,时间就是(3×)÷5=小时;乘车速度是55千米每小时,时间就是(6× )÷55= 小时;合计就是小时.19、【答案】解:A、B、C、D四个数的和的3倍:29×3+28×3+32×3+36×3=87+84+96+108=375A、B、C、D四个数的和:375÷3=125;四个数的平均数:125÷4=31.25.答:4个数的平均数是31.25【考点】平均数问题【解析】【分析】根据余下的三个数的平均数:29、28、32、36,可求出A、B、C、D四个数的和的3倍,再除以3得A、B、C、D四个数的和,再用和除以4即得4个数的平均数.20、【答案】解:设这根竹竿长x米.则有x﹣1.2×2=﹣=2,则x=4,没浸湿的部分是:4÷2﹣0.4=1.6(米);答:这根竹竿没有浸湿的部分长1.6米【考点】整数、小数复合应用题【解析】【分析】设这根竹竿长x米,则两次浸湿部分都应是1.2米,两次共浸湿了1.2×2=2.4米,没浸湿的部分是(x﹣2.4)米;再由“没有浸湿的部分比全长的一半还少0.4米”可知,没浸湿的部分是(﹣0.4)米,没浸湿的部分是相等的,据此可得等式:x﹣2.4=﹣0.4,解出此方程,问题就得解.21、【答案】解:客车从甲地出发到达乙地后再停留半小时,共用的时间:360÷60+0.5=6+0.5=6.5(小时)(360﹣40×6.5)÷(60+40)=(360﹣260)÷100=100÷100=1(小时)6.5+1=7.5(小时)答:从甲地出发后7.5小时两车相遇。
【3套打包】韶关市小升初模拟考试数学试卷含答案

【数学】小升初数学试卷及答案(人教版 )数学小升初连接培优训练二:数的整除一、填空题(共 6 题;共 27 分)1.有一张长 48 厘米,宽 36 厘米的长方形纸,假如要裁成若干相同大小的正方形而无节余,裁成的小正方形的边长最大是 ____ ____厘米.2.A=2 ×3×5,B=3×5×7,A 和 B 的最大公因数是 ________,最小公倍数是 ________.3.假如 a÷b=10,(a、b 都是非 0 自然数),则 a 和 b 的最大条约数是 ________,最小公倍数是 ________A. a B.b C.10 D.1.4.一个五位数 8□ 35△,假如这个数能同时被2、 3、5 整除,那么□代表的数字是________ ,△代表的数字是 ________ .5.有一个四位数3AA1 能被 9 整除, A 是________ .6.有三个连续的自然数,此中最小的能被 3 整除,中间的能被 5 整除,最大的能被 7 整除,请写出一组切合条件的数 ________ .(答案不独一)二、单项选择题(共 5 题;共 15 分)7.用大小相等的长方形纸,每张长 12 厘米,宽 8 厘米.要拼成一个正方形,最少需要这类长方形纸()A.4张B.6张C.8张8.甲每 3 天去少年宫一次,乙每 4 天去一次,丙每 6 天去一次,假如 6 月 1 日甲、乙、丙同时去少年宫,则下次同去少年宫应是()A. 6月12 日B.6月13 日C.6月24 日D.6月25日9.以下各组数中,第二个数能被第一个数整除的是()A. 2.5和5B. 4和10C. 0.4和251.2 D. 5和10.车库里面有8 间车房,次序编号为1,2,3,4,5,6,7,8.这车房里所停的8 辆汽车的车号均为三位数且恰巧是8 个连续整数.已知每辆车的车房号都能被自己的车号整除,车号尾数是 3 的汽车车号为()A. 853B. 843C. 86311.有 5 卡片上边的数字分是0,4,5,6,7,从中抽出 3 成所有三位数中能被 4 整除的有()A. 11B. 12C. 10D. 15三、合(共9 ;共58 分)12.四位数A752 是24 的倍数, A最大是几?13.若“ AB59A”能被198 整除,求(A+B )的和.14.食品店来85 个面包,假如每 2 个装一袋,能正好装完?假如每 5 个装一袋,能正好装完?什么?15.小和在中心广,跑一圈用 6 分,小跑一圈用8 分.她同从起点出,他几分后能够在起点第一次相遇?16.如, 7 个小朋友成一圈挨次数,小 1,小兵 2,小 3⋯照最初到 7 的倍数?其余小朋友有可能出 7 的倍数?17.两根筋分24 米和 18 米,把它截成同的小段,且无节余,每段最可截成多少米?一共可截成多少段?18.老回一些学用品(数目相同).老付100 元,找回 28 元,找回的不,你是怎么判断出来的?19.有 7 袋米,它们的重量分别是12、15、17、20、22、24、26 公斤.甲先取走一袋,剩下的由乙、丙、丁取走.已知乙和丙取走的重量恰巧相同多,并且都是丁取走重量的 2 倍.那么甲先取走的那一袋的重量是多少公斤?20.一个房间的长是 3.6 米,宽是 2.4 米.此刻要在这个房间铺上相同的方砖.(1)每块方砖的边长最大是多少分米?(2)这间房间一共需要多少块这样的方砖?答案分析部分一、填空题1.【答案】 12【考点】公因数和公倍数应用题【分析】【解答】解:把 48 和 36 分解质因数:48=2×2×2×2×3,36=2×2×3×3,48 和 36 的最大公因数是2×2×3=12;答:裁成的小正方形的边长最大是12 厘米;故答案为: 12.【剖析】依据题意可知,求剪出的小正方形的边长最大是几厘米.也就是求48和 36 的最大公因数,先把这两个数分解质因数,它们公有质因数的乘积就是它们的最大公因数.由此解答.2.【答案】 15;210【考点】求几个数的最大公因数的方法,求几个数的最小公倍数的方法【分析】【解答】解:A=2×3×5,B=3×5×7,A 和 B 的最大公因数是: 3×5=15;A 和B 的最小公倍数是: 3×5×2×7=210.故答案为: 15, 210.【剖析】求两个数的最大公因数和最小公倍数,第一把这两个数分解质因数,公有质因数的乘积就是这两个数的最大公因数;最小公倍数是公有质数与各自独有质因数的连乘积;所以解答.3.【答案】 B; A【考点】求几个数的最大公因数的方法,求几个数的最小公倍数的方法【分析】【解答】解: a÷b=10,( a、 b 都是非 0 自然数),据此可知 ab 是倍数关系, a 为较大数, b 为较小数,所以 a 和 b 的最大条约数是b,最小公倍数是a;应选: B,A.【剖析】假如 a÷b=10,(a、b 都是非 0 自然数),据此可知 a、b 是倍数关系,根据倍数关系的两个数的最大条约数是较小数,最小公倍数是较大数,即可解答.解答本题重点是由a÷b=10,( a、b 都是非 0 自然数),知 ab 是倍数关系,而后依据被关系的最大公因数和最小公倍数的求法解答.4.【答案】 2 或 5 或 8;0【考点】整除的性及用【分析】【解答】解: 8+3+5=16;三角形代表的数字在个位数,必是0;□代表的数字能够是2 或 5 或 8,才能被 3 整除;故答案: 2 或 5 或 8,0.【剖析】能同被 2、3、5 整除的数,必具:被 2、5 整除个位上的数只好是 0,各个数位上的数的和能被 3 整除;在 8+3+5=16,代表的数字能够是 2 或 5 或 8,切合条件.此属于考能同被 2、3、5 整除的数的特点,住特点,灵巧解答.5.【答案】 7【考点】数的整除特点【分析】【解答】解:依据意可得:四位数 3AA1 ,它能被 9 整除,那么它的数字和( 3+A+A+1 )必定是 9 的倍数;因 A 是一个数字,只好是 0、1、2、3、⋯、9 中的某一个整数,最大只好是 9;若 A=9 ,那么 3+A+A+1=3+9+9+1=22 ,22<27,所以, 3AA1 的各位数字和只好是 9的1倍或2倍,即 9或18;当3+A+A+1=9 ,A=2.5,不合意;当3+A+A+1=18 , A=7 ,切合意;所以, A代表 7,个四位数是 3771.答:A 是 7,故答案: 7.【剖析】已知四位数 3AA1 能被 9 整除,那么它的数字和( 3+A+A+1 )必定是 9的倍数而后再依据意一步解答即可.因 A 是一个数字,只好是 0、1、2、3、⋯、9 中的某一个整数,最大只好是 9.若 A=9,那么 3+A+A+1=22 ,22< 27,所以 3AA1 的各位数字和只好是9 的 1 倍或 2 倍,即 9 或 18.6.【答案】 159, 160,161【考点】数的整除特点【分析】【解答】解:这三个连续整数在100﹣200 之间,故其百位数字确立为1.由于中间数能被 5 整除,故其末位数为0 或 5,所以,最小数的百位数字为1,个位数字为 9 或 4;若最小数的个位数字为9,由其能被 3 整除,故其十位数字为2、 5、 8;若最小数的个位数字围,由其能被三整除,其十位数字为1,4,7;从而,最小数只可能是 129,159,189,114,144,174 中的某几个数 130,160,190,115,145,175 已能被5 整除,故只须从131,161,191,116,146,176 中挑选出能被 7 整除的数,即:上述六数中只有161=7×23 知足要求;所以所求连续三数为159, 160,161;故答案为: 159,160,161.【剖析】三个自然数的百位数字都是 1,因为中间的数能被 5 整除,故中间数的个位数字只好是 0 或 5,从而最小的数的末位数字只好是 9 或 4(即 10﹣ 1=9,5﹣1=4);下一步可利用被 3 整除的数的特点确立其十位数字,最后再用牧举法确立这 3 个连续整数即可.二、单项选择题7.【答案】 B【考点】求几个数的最小公倍数的方法,图形的拼组【分析】【解答】解:(24÷12)×(24÷8)=2×3=6(张)答:需要 6 张.应选: B.【剖析】 12 和 8 的最小公倍数是 24,所以拼成后正方形边长是 24 厘米,需要小长方形的长的个数是 24÷12,需要小长方形宽的个数是 24÷8.需要这类纸的张数就是( 24÷12)×(24÷8).据此解答.8.【答案】 B【考点】公因数和公倍数应用题【分析】【解答】解:把 4、6 分解质因数:4=2×2;6=2×3;~4、6 的最小公倍数是: 2×2×3=12;他再 12 天同去少年;1+12=13(日),即 6 月 13 日.故: B.【剖析】依据意,是求 3、4、6 的最小公倍数,就是求 4、6 的最小公倍数,第一把两个数分解因数,它的公有因数和各自独有因数的乘就是它的最小公倍数,而后行计算日期即可.此属于求最小公倍数,求 3 个数的最小公倍数,利用分解因数的方法,它的公有因数和各自独有因数的乘就是它的最小公倍数.9.【答案】 D【考点】整除的性及用【分析】【解答】解: A 、2.5 和 5;2.5 是小数,只好 5 能被 2.5 除尽;B、4 和 10;10÷ 4=2⋯2,有余数, 10 不可以被 4 整除;C、 0.4 和 1.2;0.4,1.2 都是小数,只好 1.2 能被 0.4 除尽;D、5 和 25;25÷5=5, 25 能被 5 整除;故: D.【剖析】整除就是指:若整数“a除”以大于 0 的整数“b,”商整数,且余数零,我就 a 能被 b 整除;整除都是于整数而言的.10.【答案】 B【考点】整除性【分析】【解答】解: 1, 2, 3, 4, 5, 6, 7, 8 的最小公倍数是840,因 840 加上 1~ 8 中的某个数后必能被个数整除,所以8 汽的号挨次841~848.故车号尾数是 3 的汽车车号是 843.答:尾数是 3 的汽车车号是 843.应选: B.【剖析】 1, 2, 3,4,5,6,7,8 的最小公倍数是840,840 加上 1~ 8 中的某个数后必能被这个数整除,所以8 辆汽车的车号挨次为841~848.据此即可解答问题.11.【答案】 D【考点】整除的性质及应用,条约数与公倍数问题【分析】【解答】解:能被 4 整除,那么最后两位数能被 4 整除(因为 100 的倍数都能被 4 整除),这样,最后两位只好是: 04,40,56, 60,64、76 六种.当最后两位数为 04 时:百位在 5,6,7 选一个,三种;当最后两位数 40 时:百位在 5,6,7 选一个,三种;当最后两位数 56 时:百位在 4,7 选一个,两种;当最后两位数为 60 时:百位在 4,5,7 选一个,三种(因为百位数不为 0);当最后两位数为 64 时:百位在 5,7 选一个,两种(因为百位数不为 0);当最后两位数 76 时:百位在 5,4 选一个,两种;所以共有 3+3+2+3+2+2=15 种.应选: D.【剖析】利用被 4 整除的特点:当一个数的末两位能被 4 整除,这个数就能被4整除,由此特点分类议论即可解决问题.三、综合题12.【答案】解: 24=3×2×2×2,A752 应当能被 3 整除.四位数 A752 是 24 的倍数,A+7+5+2=14+A 能被 3 整除.那 A 只可能是: 7、 4、 1,因为 A 在千位上,所以 A 最大是 7.【考点】整除的性质及应用【分析】【剖析】 24 分解成: 3×2×2×2 所以: A752 应当能被 3 整除.也就是A+7+5+2=14+A 能被 3 整除.那 A 只可能是: 7、4、1 所以,试算一下可得,A 最大为 7.13.【答案】解: A+B+5+9+A=2A+B+5=9(A+5+A )﹣( B+9)=2A﹣ B﹣4=0解得 A=2 B=0那么 A+B=2+0=2【考点】数的整除特点【分析】【剖析】 198=2×9×11,假如能被 9 整除,则A+B+5+9+A 是 9 的倍数,2A+B+5 是 9 的倍数;能被 11 整除,那么(A+5+A)﹣(B+9)=2A﹣B﹣4是11的倍数14.【答案】解: 85 个面包,假如每 2 个装一袋,不可以正好装完,因为 85 的个位上是 5,所以 85 不可以被 2 整除;假如每 5 个装一袋,能正好装完,因为 85 的个位上是 5,所以 85 能被 5 整除;答:假如每 2 个装一袋,不可以正好装完;假如每 5 个装一袋,能正好装完.【考点】整除的性质及应用【分析】【剖析】能被 2 整除的数的特点:个位上是0、2、4、6、8 的数;能被5 整除的数的特点:个位上是0 或 5 的数;再依据能被2、5 整除的数的特点进行判断可否正好装完.本题考察能被2、 5 整除的数的特点及其运用.15.【答案】解: 6=2×3,8=2×2×2,所以 6 和 8 的最小公倍数是: 2×3×2×2=24(分钟),答:他们 24 分钟后能够在起点第一次相遇【考点】公因数和公倍数应用题【分析】【剖析】妈妈回到起点用的时间是6 分钟的整数倍,小红回到原地是8 分钟的整数倍,则第一次同时回到起点就是6 和8 的最小公倍数分钟,所以得解.16.【答案】解:小红最初报到 7 的倍数.因为只有 7 个小朋友,像这样向来进行下去,只有小红能报到 7 的倍数,其余小朋友报的数不行能是 7 的倍数.【考点】整除的性质及应用【分析】【剖析】一共是7 个小朋友,依据报数方法,可知小红最初报到7 的倍数.由题意可知7 个数字一循环,依此即可作出判断.17.【答案】解: 24=2×2×2×318=2×3×324 和 18 的最大公因数是2×3=624÷6=418÷6=34+3=7(段).答:每段最长可截成 6 米,一共可截成7 段【考点】公因数和公倍数应用题【分析】【剖析】依据题意,可计算出 18 与 24 的最大条约数,即是每根小段的最长,而后再用 18 除以最大条约数加上 24 除以最大条约数的商,即是一共截成的段数,列式解答即可获取答案.解答本题的重点是利用求最大条约数的方法计算出每小段的长度,而后再计算每根钢筋能够截成的段数,再相加即可.18.【答案】解:花了:100﹣28=72(元),因为学惯用品的数目都相同,所以花的钱数应是10+5+3=18 的倍数,72 是18 的4 倍,即买回的一些学惯用品的数目都是4,所以,找回的钱对.答:找回的钱对.【考点】找一个数的倍数的方法,求几个数的最小公倍数的方法【分析】【剖析】依据题意可知,花了100﹣28=72 元,因为学惯用品的数目都相同,所以花的钱数应是10+5+3=18 的倍数,所以判断 72 是不是 18 的倍数即可.本题主要考察求一个数的倍数是方法.找出花的钱数是不是18 的倍数是解答本题的重点.19.【答案】解:因为剩下的由乙、丙、丁三人买走,乙和丙买走的重量恰巧相等,都是丁的 2 倍,即乙,丙,丁三人买走的重量比为2:2:1,所以,甲买走一袋后剩下的重量应是2+2+1=5 的倍数.而总重量为: 12+15+17+20+22+24+26=136千克,从 136 中减去一个数后和得数能被 5 整除,则这个这个数的个位数字必定是 1 或许6,这 7 袋大米的重量中只有 26 的个位是 6,所以,甲买走的那一袋大米的重量是 26 千克.答:甲买走的那一袋大米的重量是26 千克.【考点】数的整除特点【分析】【剖析】因为乙和丙买走的重量相同多,且都是丁的 2 倍,所以乙丙丁三人买走的重量是丁的 5倍;而 7 袋大米的总重量是 12+15+17+20+22+24+26=136 千克,从 136 千克里减去 5 的倍数,剩下的就是甲买走的重量.反过来说,从136千克里减去甲买走的那一袋大米的重量,剩下的重量必定是 5 的倍数,要使136减去一个数后和得数能被 5 整除,这个数的个位数字必定是 1 或许 6,而这7 袋大米的重量中只有 26 的个位是 6,所以甲买走的那一袋大米的重量是26 千克20.【答案】(1)解: 3.6 米 =36 分米, 2.4 米=24 分米,36=2×2×3×3,24=2×2×2×3,36 和 24 的最大条约数是2×2×3=12,答:每块方砖的边长最大是12 分米( 2)解:(36×24)÷( 12×12)=864÷144=6(块)答:这间房间一共需要 6 块这样的方砖【考点】公因数和公倍数应用题【分析】【剖析】(1)3.6 米=36 分米,2.4 米=24 分米,要求每块方砖的边长最大是多少分米,就是求36 和24 的最大条约数;(2)要求这间房间一共需要多少块这样的方砖,用房间的面积除以每块方砖的面积即可.解答本题的重点是运用求最小公倍数的方法求出每块方砖边长,从而解决问题.新小学六年级下册数学试题及答案(1)一.填空题(共11 小题,满分18 分)1.( 2 分)时=15分0.68 吨=千克.2.( 4 分)察看如图,将暗影部分与整个图形面积的关系分别用最简分数、最简整数比、百分数和除法算式表示:=:=%=÷243.( 1分)小明做了 20道口算题,错了 1 道,他此次口算的正确率是.4.( 2分)一辆汽车行千米用汽油升.行 1 千米用汽油升, 1 升汽油能够行千米.5.( 2 分)求半圆的周长和面积( 1)周长=dm.(结果用小数表示)( 2)面积=dm 2.(结果用小数表示)6.( 2分)比 25m 长m 是m,18dm 3的是cm3,kg 的是 18kg.7.(1分)有一个等腰三角形,它的两个角的度数比是1: 2,这个三角形按角分类可能是什么三角形?8.(1 分)学校新买了 2 个篮球和 6 个足球,正好用去了360 元.足球的单价是篮球单价的.篮球的单价是元.足球的单价是元.9.(1 分)比 40 米多 25%是米. 40 米比米少 20%.10.( 1 分)一根绳索长 10 米,用去 25%,剩米.11.( 1 分)在 A 地植树 1000棵, B 地植树 1250 棵,甲、乙、丙每日赋别能植树28、 32、30棵,甲在 A 地,乙在 B 地,丙在 A 与 B 两地之间来回帮忙,同时开始,同时结束,丙在 A地植树棵.二.判断题(共 5 小题,满分 5 分,每题 1 分)12.( 1 分)一件原价 200 元的商品,先抬价 20%,再八折销售,仍卖 200 元..(判断对错)13.( 1 分)一个圆的半径扩大到本来的 2 倍,它的面积也扩大到本来的 2 倍.(判断对错)14.(1分) 1米与 1 厘米的比是 1: 1.(判断对错)15.(1分)边长为 2 厘米的正方形,周长和面积相等..(判断对错)16.(1分)和的大小相等它们的分数单位也相等.(判断对错)三.选择题(共 5 小题,满分 10 分,每题 2 分)17.(2分)在一个钟面上,时针长 2 厘米,分针长 3厘米,从8:00 到 10:00,分针扫过的面积是()A .28.26cm 2B .37.68cm2C. 56.52cm218.(2分)某小学组织学生春游,学校买了182 瓶汽水送给每个学生,假如 5 个空瓶能够换得一瓶汽水,这些汽水瓶最多能够换得()瓶汽水.A .36B .38C. 15D. 4519.( 2 分)养鸡场养公鸡400 只,养的母鸡比公鸡的只数多.母鸡比公鸡多()只.A .400×(1﹣)B .400×C. 400×( 1+)20.(2分)下边图形不必定是轴对称图形的是()A .圆B .三角形C.长方形D.正方形21.( 2 分) 100 元钱买了100 只鸟,大鸟 3 元钱一只,小鸟 1 元钱 3 只.大鸟买了()只.A .30B .25C. 75D. 10四.计算题(共 3 小题,满分 27 分)22.(6分)直接写出下边各题的计算结果.(1)=(2)=(3) 15×=(4)9÷=( 5)÷15×=(6) + =( 7)× 0.6=(8)÷8=( 9)÷=( 10)×30+× 30=23.( 9 分)解方程.3x﹣8= 16x+0.7= 3.6 2.4× 5﹣ 2x= 6x+2.8x= 4.56( 100﹣ x)÷ 5= 45( x﹣ 1.8)= 1824.( 12分)能简算的要简算.2.4× 7.6+76 × 0.66+7.6﹣[﹣(+)]999× 99﹣+﹣+﹣+ ﹣+ ﹣五.解答题(共 2 小题,满分8 分,每题 4 分)25.( 4 分)直接得数.1+63% = 2.5× 40%=1﹣ 55%=8× 1.25%= 4.2÷ 60=× 320% =50%+=﹣ 25%=26.( 4 分)如图,三角形ABC 的面积为15 平方米, AF =FD , CD =BC,求暗影部分的面积.六.应用题(共8 小题,满分32 分,每题 4 分)27.( 4 分)某电器商场昨年销售了1800 台电脑,今年的销售量比昨年增添了,今年销售了多少台?28.( 4 分)如图是两个相互啮合的齿轮,它们在同时间内转动时,大齿轮和小齿轮转过的总齿数是相同的,大齿轮有36 个齿,小齿轮有20 个齿,假如小齿轮每分钟转90 圈,大齿轮每分钟转多少圈?29.( 4 分)一个圆形花坛,内直径是 4 米,假如在外面铺一层 1 米宽的石子路,石子路的面积是多少平方米?30.( 4 分)一种玉米种子经抽芽实验,抽芽率达96%,为了保证抽芽480 粒,起码应准备多少粒玉米种子?31.(4 分)一杯盐水的含盐率是25%,假如加入 20 克水,那么盐水的含盐率变成15%.这杯盐水本来含盐多少克?32.( 4 分)修一段公路,甲队独自修20 天能够达成,乙队独自修30 天能够达成,此刻两队合修,半途甲队歇息 2.5 天,乙队歇息若干天,这样一共14 天达成.问:乙队歇息了几日?33.( 4 分)在甲、乙两地间的公路上,规定从甲地向乙地方向行驶的车辆的速度为每小时50 千米,从乙地向甲地方向行驶的车辆的速度为每小时60 千米.今有A、B 两辆车,同时从甲、乙两地相向出发,在两地间来回行驶.在 A 车抵达乙地向甲地返回途中因故泊车,泊车地址距乙地 30 千米,在此处两车第二次相遇,这样两车相遇时间比原定第二次相遇时间晚了 1 小时 12 分.那么,甲、乙两地之间的距离是多少千米?34.( 4分)一根竹竿,第一次截去全长的,第二次截去的比第一次多96 厘米,这时剩下的长度占这根竹竿的.这根竹竿长多少厘米?参照答案与试题分析一.填空题(共11 小题,满分18 分)1.【解答】解:因为 1 小时= 60 分, 1 吨= 1000 千克,所以 15 分= 15×==0.25小时,0.68 吨= 0.68× 1000= 680 千克;故答案为: 0.25、 680.2.【解答】解:=3:8=37.5%=9÷ 24.故答案为:, 3, 8, 37.5, 9.3.【解答】解:( 20﹣ 1)÷ 20× 100%=19÷20× 100%=95%.答:他此次口算的正确率是 95%.故答案为: 95%.4.【解答】解:÷=(升)÷= 12(千米)答:行 1 千米用汽油升, 1 升汽油能够行12 千米.故答案为:, 12.5.【解答】解:( 1) 3.14×4+4 × 2=12.56+8=20.56(分米)答:周长是 20.56 分米.(2) 3.14× 42÷ 2=3.14× 16÷ 2=25.12(平方分米)答:面积是 50.24 平方分米.故答案为: 20.56; 25.12.6. 【解答】 解: 25+ = 25 ( m )18× = 15( dm 3)15dm 3= 15000( cm 3)18÷ = 24( kg )答:比 25m 长m 是 25 m , 18dm 3 的 是 15000cm 3, 24kg 的 是 18kg .故答案为: 25 , 15000.24.7. 【解答】 解: 1+1+2= 4,180× = 90(度), 该三角形是直角三角形;或: 1+2+2= 5,180× = 72(度),最大角为 72 度,是锐角,所以该三角形的三个角都是锐角,即该三角形是锐角三角形;答:该三角形是直角三角形或锐角三角形.8. 【解答】 解: 360÷( 2+6 × )= 360÷( 2+2 )= 360÷ 4= 90(元)90× = 30(元)答:篮球的单价是90 元.足球的单价是30 元.故答案为: 90,30.9. 【解答】 解:( 1) 40×( 1+25% )= 40×125%= 50(米)答:比 40 米多 25%是 50 米.( 2) 40÷( 1﹣20%)= 40÷80%答: 40 米比50 米少 20% .故答案为: 50,50.10.【解答】解: 10×( 1﹣25%)=10×0.75=7.5(米)答:剩 7.5 米.故答案为: 7.5.11.【解答】解: 28+32+30= 90(棵),(1000+1250 )÷ 90=2250÷ 90=25(天),1000﹣28× 25=100﹣ 700=300(棵),答:丙在 A 地植树 300 棵.故答案为: 300.二.判断题(共 5 小题,满分 5 分,每题 1 分)12.【解答】解: 200×( 1+20%)× 80%=200× 120%× 80%=192(元)答:打折后价钱是 192 元.故答案为:×.13.【解答】解:一个圆的半径扩大到本来的 2 倍,面积扩大到本来的2× 2= 4 倍,所以题干的说法是错误的.故答案为:×.14.【解答】解: 1 米: 1 厘米=100 厘米: 1 厘米=100: 11 米与 1 厘米的比是1: 1,计算错误;15.【解答】解:周2×4= 8(厘米);面 2× 2= 4(平方厘米);周与面的位不一样,不可以比大小.故答案:×.16.【解答】解:依据分数的性可知,=,可是的分母是10,所以它的分数位是;而的分母是5,所以它的分数位是;≠所以,原法;故答案:×.三.(共 5 小,分10 分,每小 2 分)17.【解答】解: 3.14× 32× 2,=3.14× 9× 2,=56.52(平方厘米),答:分的面是56.52 平方厘米.故: C.18.【解答】解:第一次:182÷ 5= 36(瓶)⋯ 2(瓶),即可得36 瓶汽水;第二次:36+2=38(瓶),38÷ 5=7(瓶)⋯3(瓶),即可得7 瓶汽水;第三次:7+3 =10(瓶),10÷ 5=2(瓶),即可得 2 瓶汽水;36+7+2 = 45(瓶);所以共能够得45 瓶汽水.故: D.19.【解答】解:母比公多的只数是:400×=250(只)答:母比公多250 只.故: B.20.【解答】解:依据称形的意可知,、方形、正方形是称形;三角形中的等腰三角形、正三角形是称形,一般的三角形不是.21.【解答】解:每只小鸟需要1÷ 3=(元),假定所有是大鸟,那么小鸟有:( 100× 3﹣ 100)÷( 3﹣)=200÷=75(只)100﹣ 75= 25(只)答:大鸟买了25 只.应选: B.四.计算题(共 3 小题,满分27 分)22.【解答】解:(1)=(2)=( 3) 15×= 5(4)9÷=12 ( 5)÷15×=(6)+=(7)×0.6=(8)÷8=(9)÷=(10)×30+× 30=30 23.【解答】解:( 1) 3x﹣ 8=163x﹣8+8 = 16+83x= 243x÷ 3= 24÷ 3x=8(2) x+0.7= 3.6x+0.7 ﹣0.7= 3.6﹣ 0.7x= 2.9(3) 2.4× 5﹣ 2x= 612﹣ 2x= 612﹣ 2x+2x= 6+2x2x+6= 122x+6﹣ 6= 12﹣ 62x= 62x÷ 2= 6÷2x= 3(4) x+2.8x= 4.563.8x=4.563.8x÷ 3.8=4.56÷ 3.8x= 1.2(5)( 100﹣ x)÷ 5= 4(100﹣ x)÷ 5× 5= 4× 5100﹣x= 20100﹣ x+x=20+xx+20= 100x+20 ﹣ 20=100﹣ 20x= 80(6) 5( x﹣ 1.8)= 185( x﹣ 1.8)÷ 5= 18÷ 5x﹣ 1.8= 3.6x﹣ 1.8+1.8 = 3.6+1.8x= 5.424.【解答】解:( 1) 2.4×7.6+76 × 0.66+7.6=2.4×7.6+7.6 ×6.6+7.6 ×1=( 2.4+6.6+1 )× 7.6=10×7.6=76( 2)﹣ [﹣(+ ) ]==﹣( 1﹣)==0(3) 999× 99=( 1000﹣ 1)× 99=1000× 99﹣ 1× 99=99000﹣ 99=98901(4)﹣+=====(5)﹣+﹣+﹣+ ﹣=()﹣()==2﹣1=1五.解答题(共 2 小题,满分 8 分,每题 4 分)25. 【解答】 解:1﹣ 55%= 0.45, 1+63% = 1.63, 2.5× 40%= 1,8× 1.25%= 0.1,4.2÷ 60= 0.07,× 320%=2,50%+ = 1.25, ﹣ 25%= 0.55.26. 【解答】 解:过 D 作 DM 平行于 BF 交 AC 于 M (如图)依据题意,作 DM 与 BE 平行,交 AC 于 M ,因为 AF =DF ,所以△ ABF 的面积与△ DBF 的面积相等所以暗影部分的面积为△DBF 的面积 +△ AEF 的面积DM 平行于 BE ,所以△ DMC 相像△ CBE ,所以 CM : CE =CD : CB = 1: 3 即 EM = CE 因为 EF 是△ ADM 的中位线, AE = ME ,所以 AE = AC所以△ ABE 的面积 15×= 6(平方厘米)即暗影部分的面积(即△ DBF 的面积加△ AEF 的面积)等于 6cm 2答:暗影部分的面积是 6cm 2.六.应用题(共 8 小题,满分 32 分,每题4 分)27. 【解答】 解: 1800×( 1+ )= 1800× 1.25= 2250(台)答:今年销售了 2250 台.28. 【解答】 解:设大齿轮每分钟转x 圈,得20× 90= 36× x36x =1800x = 50答:大齿轮每分钟转50 圈.29. 【解答】 解: 4÷ 2= 2(米)2+1 = 3(米)3.14×( 32﹣ 22)= 3.14×( 9﹣ 4)= 3.14× 5= 15.7(平方米)答:石子路的面积是 15.7 平方米.30. 【解答】 解:设起码要种 x 棵树苗,480÷ x × 100% = 96%x = 480÷ 0.96x = 500答:起码应准备 500 粒玉米种子.31. 【解答】 解:( 1﹣ 25%)÷ 25%= 75%÷ 25%= 3( 1﹣ 15%)÷ 15%= 85%÷ 15%=20÷( ﹣ 3)= 20÷= 7.5(克)答:这杯盐水本来含盐 7.5 克.32. 【解答】 解: 14﹣ [1﹣×( 14﹣ 2.5) ]=14﹣[1﹣]× 30=14﹣× 30=14﹣12.75=1.25(天)答:乙队歇息了 1.25 天.33.【解答】解:设两地的距离为x 千米.[x﹣(﹣)× 50﹣25﹣30]÷ 50﹣[x﹣(﹣)× 50﹣25﹣30]÷(50+60)=1( x﹣﹣55)÷ 50﹣(x﹣﹣55)÷ 110= 1(x﹣ 55)÷ 50﹣(x﹣ 55)÷ 110= 1新小升初数学试卷及参照答案(1)小升初模拟训练(二)一、选择题1.假如, b 是非0 的自然数,那么÷b÷的结果对比,( )。
2018年韶关市小学毕业小升初模拟数学试题(共4套)附详细答案附答案

小升初数学试卷57一、填空.(每空1分,共22分)1、一个九位数,最高位亿位上是最小的奇数,十万位上是最小的质数,万位上是最大的一位数,千位上是最小的合数,其余各位都是0,这个数写作________,改写成用“万”作单位的数是________.2、0.4=2:________=________ 5________%=________折3、如果3a=6b,那么a:b=________。
4、明年二月有________天.5、丽丽比亮亮多a张画片,丽丽给亮亮________张,两人画片张数相等.6、一个直角三角形的两个锐角的度数比是3:2.这两个锐角分别是________度和________度.7、红、黄、蓝三种颜色的球各8个,放到一个袋子里,至少摸________个球,才可以保证有两个颜色相同的球,若任意摸一个球,摸到黄色球的可能性是________.8、一个长为6cm,宽为4cm的长方形,以长为轴旋转一周,将会得到一个底面直径是________cm,高________cm的圆柱体.9、一个面积是________平方米的半圆的周长是15.42米.10、保定市某天中午的温度是零上5℃;记作+5℃;到了晚上气温比中午下降了7℃,这天晚上的气温记作________.11、假设你的计算器的一个键“4”坏了,你怎样计算49×76,用算式表示计算过程________.12、琳琳2014年把500元存入银行,年利率2.25%,2016年到期时可以从银行取出________元.13、甲数=2×2×2×3,乙数=2×2×3,这两个数的最小公倍数是________.14、小明每天上午8时到校,11时30分放学,下午2时到校,4时30分放学,她在校的时间占1天的________.15、如图,正方形的面积是20平方厘米,则圆的面积是________平方厘米.二、判断正误.16、两条永不相交的直线叫做平行线.________(判断对错)17、互为倒数的两个分数中,如果其中一个是真分数,那么另一个一定是假分数.________(判断对错)18、两个分数中,分数值大的那个分数单位也大.()19、平行四边形都可以画出对称轴________.20、一个不为0的数除以真分数,所得的商大于被除数.________三、认真选择.(将正确答案的序号填在括号内)21、两个数是互质数,那么它们的最大公因数是()A、较大数B、较小数C、1D、它们的乘积22、3.1与3. 相比()A、3.1 大B、3. 大C、一样大23、男生与女生的人数比是6:5,男生比女生多()A、B、C、24、给分数的分母乘以3,要使原分数大小不变,分子应加上()A、3B、7C、14D、2125、车轮的直径一定,所行驶的路程和车轮的转数()A、成正比例B、反比例C、不成比例四、仔细计算.(5+12+12+4=33分)26、直接写出得数=________ 7÷0.01=________﹣=________ 27、脱式计算(能简算的要简算)÷9+ ×12.69﹣4.12﹣5.880.6×3.3+ ×7.7﹣0.6(+ )×24× .28、解方程(比例)2x+3×0.9=24.73:(x+1)=4:7x+ x= .29、列式计算(1)一个数的是60的,求这个数?(2)乘的倒数,所得的积再减去3个,差是多少?五、操作题:(第2题的第(3)小题2分,其余的每题1分,共6分)30、利用﹣= ,﹣= ,﹣= ,﹣= ,这些规律,计算:1﹣+ ++ + =________.31、按要求答题:(1)三角形的一个顶点A的位置在________ .(2)三角形的另一个顶点B在顶点A正东方3厘米处,在图中标出B点的位置。
2018-2019韶关市小学毕业数学总复习小升初模拟训练试卷4-6(共3套)附详细试题答案

小升初数学综合模拟试卷4一、填空题:1.41.2×8.1+11×9.25+537×0.19=______.2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5.2.如图,把四边形ABCD的各边延长,使得AB=BA′,BC=CB′CD=DC′,DAAD′,得到一个大的四边形A′B′C′D′,若四边形ABCD的面积是1,求四边形A′B′C′D′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?答案一、填空题1.(537.5)原式=412×0.81+537×0.19+11×9.25=412×0.81+(412+125)×0.19+11×9.25=412×(0.81+0.19)+1.25×19+11×(1.25+8)=412+1.25×(19+11)+88=537.52.(5283)从*×9,尾数为7入手依次推进即可.3.(6年)爸爸比小惠大:6×5-6=24(岁),爸爸年龄是小惠的3倍,也就是比她多2倍,则一倍量为:24÷2=12(岁),12-6=6(年).4.(14厘米).2+2+5+5=14(厘米).5.(225,150)因450÷75=6,所以最大公约数为75,最小公倍数450的两整数有75×6,75×1和75×3,75×2两组,经比较后一种差较小,即225和150为所求.6.(45,15)假设60只全是鸡,脚总数为60×2=120.此时兔脚数为0,鸡脚比兔脚多120只,而实际只多30,因此差数比实际多了120-30=90(只).这因为把其中的兔换成了鸡.每把一只兔换成鸡.鸡的脚数将增加2只,兔的脚数减少4只,那么鸡脚与兔脚的差数增加了2+4=6(只),所以换成鸡的兔子有90÷6=15(只),鸡有60-15=45(只).7.(77,92)由师傅产量是徒弟产量的2倍,所以师傅产量数总是偶数.利用整数加法的奇偶性可知标明“77”的筐中的产品是徒弟制造的.利用“和倍问题”方法.徒弟加工零件是(78+94+86+77+92+80)÷(2+1)=169(只)∴169-77=92(只)8.(8分)紧邻两辆车间的距离不变,当一辆公共汽车超过步行人时,紧接着下一辆公汽与步行人间的距离,就是汽车间隔距离.当一辆汽车超过行人时,下一辆汽车要用10分才能追上步行人.即追及距离=(汽车速度-步行速度)×10.对汽车超过骑车人的情形作同样分析,再由倍速关系可得汽车间隔时间等于汽车间隔距离除以5倍的步行速度.即10×4×步行速度÷(5×步行速度)=8(分)9.(44)10.(16)满足条件的偶数和奇数的可能很多,要求的是使两个偶数之和最小的那仍为偶数,所求的这两个偶数之和一定是8的倍数.经试验,和不能是8,二、解答题:EC,则△CDE、△ACE,△ADB的面积比就是2∶3∶5.如图.2.(5)连结AC′,AC,A′C考虑△C′D′D的面积,由已知DA=D′A,所以S△C′D′D=2S△C′AD.同理S △C′D′D=2S△ACD,S△A′B′B=2S△ABC,而S四边形ABCD=S△ACD+S△ABC,所以S△C′D′D+SS△A′B′B=2S四边形ABCD.同样可得S△A′D′A+S△B′C′C=2S四边形ABCD,所以S四边形A′B′C′D′=5S 四边形ABCD.3.(14,10,35)用甲齿、乙齿、丙齿代表三个齿轮的齿数.甲乙丙三个齿轮转数比为5∶7∶2,根据齿数与转数成反比例的关系.甲齿∶乙齿=7∶5=14∶10,乙齿∶丙齿=2∶7=10∶35,所以甲齿∶乙齿∶丙齿=14∶10∶35由于14,10,35三个数互质,且齿数需是自然数,所以甲、乙、丙三个齿轮齿数最少应分别是14,10,35.4.(1)三面红色的小方块只能在立方体的角上,故共有8块.两面红色的小方块只能在立方体的棱上(除去八个角),故共有12块.一面红色的小方块只能在立方体的面内(除去靠边的那些小方格),故共有6块.(2)各面都没有颜色的小方块不可能在立方体的各面上.设大立方体被分成n3个小方块,除去位于表面上的(因而必有含红色的面)方块外,共有(n-2)3个各面均是白色的小方块.因为53=125>120,43=64<120,所以n-2=5,从而,n=7,因此,各面至少要切6刀.(3)由于一面为红色的小方块只能在表面上,且要除去边上的那些方块,设立方体被分成n3个小方块,则每一个表面含有n2个小方块,其中仅涂一面红色的小方块有(n-2)2块,6面共6×(n-2)2个仅涂一面红色的小方块.因为6×32=54>53,6×22=24<53,所以n-2=3,即n=5,故各面至少要切4刀.小升初数学综合模拟试卷5一、填空题:1.一个学生用计算器算题,在最后一步应除以10,错误的乘以10了,因此得出的错误答数500,正确答案应是______.2.把0,1,2,…,9十个数字填入下面的小方格中,使三个算式都成立:□+□=□□-□=□□×□=□□3.两个两位自然数,它们的最大公约数是8,最小公倍数是96,这两个自然数的和是______.4.一本数学辞典售价a元,利润是成本的20%,如果把利润提高到30%,那么应提高售价______元.5.图中有______个梯形.6.小莉8点整出门,步行去12千米远的同学家,她步行速度是每小时3千米,但她每走50分钟就要休息10分钟.则她______时到达.7.一天甲、乙、丙三个同学做数学题.已知甲比乙多做了6道,丙做的是甲的2倍,比乙多22道,则他们一共做了______道数学题.8.在右图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为______.9.有a、b两条绳,第一次剪去a的2/5,b的2/3;第二次剪去a绳剩下的2/3,b绳剩下的2/5;第三次剪去a绳剩下的2/5,b绳的剩下部分的2/3,最后a剩下的长度与b剩下的长度之比为2∶1,则原来两绳长度的比为______.10.有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子来,使得至少有两双袜子不同色,那么至少要取出______只袜子.二、解答题:1.字母A、B、C、D、E和数字1997分别按下列方式变动其次序:A B C D E 1 9 9 7B C D E A 9 9 7 1(第一次变动)C D E A B 9 7 1 9(第二次变动)D E A B C 7 1 9 9(第三次变动)……问最少经过几次变动后ABCDE1997将重新出现?2.把下面各循环小数化成分数:3.如图所示的四个圆形跑道,每个跑道的长都是1千米,A、B、C、D 四位运动员同时从交点O出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米,每小时12千米.问从出发到四人再次相遇,四人共跑了多少千米?4.某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?答案一、填空题:1.(5)500÷10÷10=52.(1+7=8,9-3=6,4×5=20)首先考虑0只能出现在乘积式中.即分析2×5,4×5,5×6,8×5几种情况.最后得以上结论.3.(56)96÷8=12=3×4,所以两个数为8×3=24,4×8=32,和为32+24=56.5.(210)梯形的总数为:BC上线段总数×BD上线段总数,即(4+3+2+1)×(6+5+4+3+2+1)=2106.(中午12点40分)3千米/小时=0.05千米/分,0.05×50=2.5千米,即每小时她走2.5千米.12÷2.5=4.8,即4小时后她走4×2.5=10千米.(12-10)÷0.05=40(分),最后不许休息,即共用4小时40分.7.(58)画图分析可得22-6=16为甲做题数,所以可得乙10道,丙16×2=32道,一共16+10+32=58(道).8.(36)长方形的宽是“一”与“二”两个正方形的边长之和.长方形的长是“一”、“二”、“三”三个正方形的边长之和.长-宽=30-22=8是“三”正方形的边长.宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=22-8×2=6,中间小正方形面积=6×6=36.9.(10∶9)10.(13)考虑最坏的情形,把某一种颜色的袜子全部先取出,然后,在剩下两色袜子中各取出一只,这时再任意取一只都必将有两双袜子不同色,即10+2+1=13(只).二、解答题:1.(20)由变动规律知,A、B、C、D、E经5次变动重新出现,而1997经过4次即重新出现,故要使ABCDE1997重新出现最少需20次(即4和5的最小公倍数.)3.(15千米)4.(56个)本题可列表解.除终点,我们将车站编号列表:共需座位:14+12+10+8+6+4+2=56(个)小升初数学综合模拟试卷6一、填空题:1.1997+199.7+19.97+1.997=______.3.如图,ABCD是长方形,长(AD)为8.4厘米,宽(AB)为5厘米,ABEF是平行四边形.如果DH长4厘米,那么图中阴影部分面积是______平方厘米.4.将一个三位数的个位数字与百位数字对调位置,得到一个新的三位数.已知这两个三位数的乘积等于52605,那么,这两个三位数的和等于______.5.如果一个整数,与l,2,3这三个数,通过加、减、乘、除运算(可以添加括号)组成算式,能使结果等于24,那么这个整数就称为可用的.在4,7,9,11,17,20,22,25,31,34这十个数中,可用的数有______个.6.将八个数从左到右列成一行,从第三个数开始,每个数都恰好等于它前面两个数之和,如果第7个数和第8个数分别是81,131,那么第一个数是______.7.用1~9这九个数码可以组成362880个没有重复数字的九位数.那么,这些数的最大公约数是______.8.在下面四个算式中,最大的得数是______.9.在右边四个算式的四个方框内,分别填上加、减、乘、除四种运算符号,使得到的四个算式的答数之和尽可能大,那么,这个6□0.3=0和等于______.10.小强从甲地到乙地,每小时走9千米,他先向乙地走1分,又调头反向走3分又调头走5分,再调头走7分,依次下去,如果甲、乙两地相距600米,小强过______.分可到达乙地.二、解答题:1.水结成冰后,体积增大它的十一分之一.问:冰化成水后,体积减少它的几分之几?辆和小卡车5辆一次恰好运完这批货物.问:只用一种卡车运这批货物,小卡车要比大卡车多用几辆?4.在一个神话故事中,有一只小兔子住在一个周长为1千米的神湖旁,A、B两点把这个神湖分成两部分(如图).已知小兔子从B点出发,沿逆休息,那么就会经过特别通道AB滑到B点,从B点继续跳.它每经过一次特别通道,神湖半径就扩大一倍.现知小兔子共休息了1000次,这时,神湖周长是多少千米?答案一、填空题:1.2218.667.2.423.3.31.平行四边形ABEF的底是长方形的宽,平行四边形的高是长方形的长,因此,平行四边形面积=长方形面积=8.4×5=42(平方厘米),三角形ABH的高是HA,它的长度是8.4—4=4.4(厘米),三角形ABH面积=5×4.4÷2=11(平方厘米),阴影部分面积=(平行四边形面积)-(三角形ABH面积)=42-11=31(平方厘米).4.606.所以,105+501=606.5.9.1×2×3×4=24;7×3+(2+1)=24;9×(2+1)-3=24;11×2+3-1=24;1+2×3+17=24;20+2+3-1=24;22+3+1-2=24;(25-1)×(3-2)=24;31-2×3-1=24;但是,1,2,3,34无法组成结果是24的算式.所以,4,7,9,11,17,20,22,25,31这九个数是可用的.由这排数的排列规则知:第8个数=第6个数+第7个数,所以,第6个数=第8个数-第7个数=131-81=50.同理,第5个数=第7个数-第6个数=81-50=31,第4个数=50—31= 19,第3个数=31—19=12,第2个数=19—12=7,第1个数=12—7=5.7.9.1+2+…+9=45,因而9是这些数的公约数,又因123456789和123456798这两个数只差9,这两个数的最大公约数是9.所以9是这些数的最大公约数.现在比较三个括号中的分数的大小.注意这些分数的特点,用同分子的要使四个算式答数尽可能大,除数和减数应取较小的数,乘数和加数应取较大的数.比较(6÷0.3)+(6—0.3)和(6—0.3)+(6÷0.3)的大小知,0.3前10.24.小强每分钟走150米,向乙地方向所走的距离(从甲地算起),依次是:第1分钟走150米;又3分钟反向,5分钟向乙地,其中3分钟向乙地与3分钟反向抵消,实际这8分钟只向乙地走了150×2=300(米),即有前9分钟向乙地走了150+300=450(米);反向走7分钟,只需再向乙地走8分钟,即再走15分钟,就可走完最后150米.二、解答题:2.9辆.3.1997.4.128千米.把周长为1千米的神湖8等分,每一等分算作一段,小兔子休息一次已跳3段,休息4次已跳12段,恰好一周半,第4次休息时正好在A点,于是经过特别通道到B点,此时神湖周长变成2千米;我们再把新的神湖分成16段,现在小兔子休息到8次,共跳了24段才在A点休息,……,如此继续下去,休息到16次,32次,64次,128次,小兔子才在A点休息.参看下表:因为:4+8+16+32+64+128+256=508<10004+8+16+32+64+128+256+512>1000所以小兔子休息1000次,有7次休息恰好在A点,此时神湖周长是128千米.所以休息1000次后,神湖周长是128千米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学综合模拟试卷3
一、填空题:
1.用简便方法计算下列各题:
(2)1997×19961996-1996×19971997=______;
(3)100+99-98-97+…+4+3-2-1=______.
2.右面算式中A代表______,B代表______,C代表______,D代表______(A、B、C、D各代表一个数字,且互不相同).
3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟______岁.
4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗______面,黄旗______面.
5.在乘积1×2×3×…×98×99×100中,末尾有______个零.
6.如图中,能看到的方砖有______块,看不到的方砖有______块.
7.右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.
8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考______次满分.
9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.
10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲
后又回头向乙跑去,……这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.
二、解答题:
1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸
(1)若P点在岸上,则A点在岸上还是水中?
(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点B,他脱鞋的
次数与穿鞋的次数和是奇数,那么B点在岸上还是水中?说明理由.
2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,简单说明理由.若办得到,写出正方框里的最大数和最小数.
3.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?
4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.
答案
一、填空题:
1.(1)(24)
(2)(0)
原式=1997×(19960000+1996)-1996×(19970000+1997)=1997×19960000+1997×1996-1996×19970000-1996×1997=0
(3)(100)
原式=(100-98)+(99-97)+…+(4-2)+(3-1)=2×50=100
2.(1、0、9、8)
由于被减数的千位是A,而减数与差的千位是0,所以A=1,“ABCD”至少是“ABC”的10倍,所以“CDC”至少是ABC的9倍.于是C=9.再从个位数字看出D=8,十位数字B=0.
3.(28)
(65-9)÷2=28
4.(50、150)
40O÷8=50,8÷2-1=3
3×50=150
5.(24)
由2×5=10,所以要计算末尾的零只需数清前100个自然数中含质因数2和5的个数,而其中2的个数远远大于5的个数,所以含5的因数个数等于末尾零的个数.
6.(36,55)
由图观察发现:第一层能看到:1块,第二层能看到:
2×2-1=3块,第三层:3×2-1=5块.上面六层共能看到方砖:1+3+5+7+9+11=36块.
而上面六层共有:1+4+9+16+25+36=91块,所以看不到的方砖有91-36=55块.
7.(25)
8.(5)
考虑已失分情况。
要使平均成绩达到95分以上,也就是每次平均失分不多于5分.
(100-90)×4÷5=8(次)8-4=4次,即再考4次满分平均分可达到95,要达到95以上即需4+1=5次.
9.(280)
第一堆中钱数必为5+2=7元的倍数;第二堆钱必为20元的倍数(因至少需5个贰元与2个伍元才能有相等的钱数).但两堆钱数相等,所以两堆钱数都应是7×20=140元的倍数.所以至少有2×140=280元.
10.(25)
转换一个角度思考:当甲、乙相会时,甲、乙和狗走路的时间都是一样的.
30÷(3.5+2.5)=5(小时)
5×5=25(千米)
二、解答题:
1.
(1)在水中.
连结AP,与曲线交点数是奇数.
(2)在岸上.
从水中经过一次岸进到水中,脱鞋与穿鞋次数和为2.由于A点在水中,所以不管怎么走,走在水中时,穿鞋、脱鞋次数和为偶数,则B点必在岸上.
2.1997不可能,2160不可能.2142能.
这样框出的九个数的和一定是被框出的九个数的中间的那个数的9倍,即九个数的和能被9整除.但1997数字和不能被9整除,所以(1)不可能.
又左右两边两列的数不能作为框出的九个数的中间一个数,即能被15整除或被15除余数是1的数,不能作为中间一个数.2160÷9=240,又240÷15=16,余数是零.所以(2)不可能.3.(0场)
四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场.若甲只胜一场,这时乙、丙各胜一场,说明丁胜三场,这与甲胜丁矛盾,所以只可能是甲、乙、丙各胜2场,此时丁三场全败.也就是胜0场.
4.只切两刀,分成三块重新拼合即可.
正方形面积为(2R)2=(2×3)2=36(cm2)。