课改 教材 复习 函数单调性

合集下载

高中 必修一 函数单调性 知识点+例题 全面

高中 必修一 函数单调性 知识点+例题 全面

学科教师辅导教案―函数单调性教学内容1、概念: 单调增函数:一般地,设函数y=f(x)的定义域为A ,区间I ⊆ A.如果对于区间I 内的任意两个值x 1, x 2,当x 1< x 2时,都有f(x 1) < f(x 2),那么就说y=f(x)在区间I 上是单调增函数,I 称为y=f(x)的单调增区间.单调减函数:一般地,设函数y=f(x)的定义域为A ,区间I ⊆ A.如果对于区间I 内的任意两个值x 1, x 2,当x 1< x 2时,都有f(x 1) > f(x 2),那么就说y=f(x)在区间I 上是单调减函数,I 称为y=f(x)的单调减区间.2、函数单调性的几何意义:函数的单调性在图像上的反映是:若f(x)在区间I 上是单调增函数,则它的图像在I 上的部分从左到右是上升的;若f(x)在区间I 上是单调减函数,则它的图像在I 上的部分从左到右是下降的;3、单调区间:如果函数y=f(x)在区间I 上是单调增函数或者单调减函数,那么就说函数y=f(x)在区间I 上具有单调性.单调增区间 和单调减区间统称为单调区间.【注意点】1、在函数的单调性定义中,x 1,x 2有三个特征:一是任意:即区间内任意取两个值x 1,x 2;二是有大小:一般设x 1< x 2;三是同属于一个单调区间:任意x 1,x 2∈I.2、理解函数单调区间应注意的问题:①函数的单调区间是函数定义域的子集,求函数的单调区间必须先求函数的定义域;②单调区间可以是开区间,也可以是闭区间.但对于某些点无意义时,单调区间就不包括这些点,要用开区间;③一个函数出现两个或两个以上单调区间时,不能用“∪”,而应用“,”或“和”连接;如xy 1=在(-∞,0)和(0,+∞)上为减函数,而不能说在(-∞,0)∪(0,+∞)上是减函数; ④函数的单调性是一个局部性质,介绍函数单调性时,一定要指出在哪一个区间上,而不能笼统说函数是单调的;⑤单调性与单调函数的区别:单调性是指在函数定义域的子区间上具有单调性,但在整个定义域上不一定具有单调性,如xy 1=在(-∞,0)和(0,+∞)上分别具有单调性,但是它不是单调函数;函数y=3x+1在整个定义域上是单调递增的,具有单调性,是单调函数.域上是单调递增的,具有单调性,是单调函数.知识模块1函数单调性的概念y 2y 1 x y =x 2 x 2 0 x 2 x 1 x y y =x 2 0 y 1 x y y 2x 1[例1]根据下图说出函数在每个单调区间上是增函数还是减函数?[巩固1]下图是定义在(-5,5)上的函数y=f(x)的图像,根据图像说出函数y=f(x)的单调区间以及在每一个区间上y=f(x)是单调增函数还是单调减函数.[例2] 说出下列函数的单调区间及在各个单调区间上的单调性.(1)xy1=(2)11-=xy(3)32+=xy(4)322-+=xxy[巩固2]下列说法不正确的是____________①若x1,x2∈I,当x1<x2时,f(x1) < f(x2),则y=f(x)在I上是单调增函数②函数y=x2在R上是单调增函数③函数xy1-=在定义域上是单调增函数④函数xy1=的单调减区间是(-∞,0)∪(0,+∞)思考:一次函数、二次函数、反比例函数的单调性是怎样的?1、定义法:(1)取值:在区间内任取x1,x2,且x1< x2;(2)比较大小:比较f(x1) 和f(x2)的大小(作差或作商),并通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变形;(3)根据定义,得出结论.当符号不确定时,可以进行分类讨论,在确定差的符号.[例1] 证明函数322-+=xxy在(-1,+∞)上的单调性.知识模块2函数单调性的判定与证明精典例题透析。

函数单调性高三复习知识点

函数单调性高三复习知识点

函数单调性高三复习知识点函数单调性是高中数学中的重要知识点之一,它在数学分析、代数学等学科中有着广泛的应用。

本文将就函数单调性的定义、性质、证明方法等方面进行高中复习知识点的总结。

一、函数单调性的定义与性质在数学中,函数单调性是指函数对于定义域内的任意两个不同的自变量取值,其函数值的变化关系。

具体而言,若函数在定义域D上满足对于任意的x_1,x_2∈D,且x_1 < x_2,都有f(x_1) < f(x_2),则称该函数在D上为递增函数;若对于任意的x_1,x_2∈D,且x_1 < x_2,都有f(x_1) > f(x_2),则称该函数在D 上为递减函数。

函数的单调性可以用图像直观地表示出来。

对于递增函数,其图像从左往右呈上升趋势;对于递减函数,其图像从左往右呈下降趋势。

而对于函数的单调性来说,如果一个函数既是递增函数又是递减函数,那么它在整个定义域上是无单调性的。

二、函数单调性的证明方法1. 利用导数的符号进行证明函数的单调性与函数的导数有着密切的关系。

对于给定的函数,如果在定义域内的某个区间上导数的取值恒为正值,则函数在该区间上为递增函数;如果导数的取值恒为负值,则函数在该区间上为递减函数。

证明函数单调性的关键是分析函数的导数符号。

可以通过导数的定义及相关的数学推理,找出导数在某个区间上的符号,从而得出函数在该区间上的单调性。

2. 利用函数的增减性进行证明对于函数f(x),若在定义域内的任意两个不同的自变量取值x_1和x_2,若有f(x_1) < f(x_2),则函数在x_1和x_2之间取任意值时均满足f(x_1) < f(x) < f(x_2),则称函数在x_1和x_2之间是递增的。

反之,如果有f(x_1) > f(x_2),则称函数在x_1和x_2之间是递减的。

基于这个性质,可以通过选择不同的x_1和x_2来判断函数的单调性。

如果对于所有的x_1 < x_2,都有f(x_1) < f(x_2),则函数为递增函数;如果对于所有的x_1 < x_2,都有f(x_1) > f(x_2),则函数为递减函数。

《函数单调性教案》

《函数单调性教案》

《函数单调性教案》一、教学目标:1. 理解函数单调性的概念,掌握函数单调增和单调减的定义。

2. 学会利用单调性判断函数的性质,如极值、最值等。

3. 能够运用单调性解决实际问题,如求函数的极值、最值等。

二、教学内容:1. 函数单调性的概念及单调增、单调减的定义。

2. 单调性的判断方法及应用。

3. 实际问题中的单调性应用。

三、教学重点与难点:1. 函数单调性的概念及判断方法。

2. 单调性在实际问题中的应用。

四、教学方法:1. 讲授法:讲解函数单调性的概念、判断方法及应用。

2. 案例分析法:分析实际问题,引导学生运用单调性解决问题。

3. 互动教学法:提问、讨论,激发学生的思考。

五、教学过程:1. 导入:复习函数的概念,引导学生思考函数的性质。

2. 讲解:讲解函数单调性的概念,引导学生理解单调增、单调减的定义。

3. 举例:分析具体函数的单调性,让学生学会判断。

4. 练习:布置练习题,让学生巩固单调性的判断方法。

5. 案例分析:分析实际问题,引导学生运用单调性解决问题。

6. 总结:回顾本节课的内容,强调单调性的重要性。

7. 作业布置:布置课后作业,巩固所学内容。

六、教学评估:1. 课堂提问:通过提问了解学生对函数单调性的理解和掌握程度。

2. 练习题:收集学生练习题的答案,评估学生对单调性判断方法的掌握。

3. 案例分析:评估学生在实际问题中运用单调性的能力。

七、教学拓展:1. 引导学生思考函数单调性在实际生活中的应用,如经济学中的需求曲线、供给曲线等。

2. 介绍函数单调性在数学其他领域的应用,如微分、积分等。

八、教学资源:1. 教材:提供相关教材,为学生提供系统性的学习材料。

2. 课件:制作课件,辅助教学,提高课堂效果。

3. 练习题:准备练习题,巩固所学内容。

4. 实际问题案例:收集实际问题案例,用于教学实践。

九、教学建议:1. 注重概念的理解:在教学过程中,要强调函数单调性概念的理解,让学生明白单调性是什么。

2020年高考数学一轮复习(新课改)第1课时系统知识——函数的单调性与最值、奇偶性、周期性

2020年高考数学一轮复习(新课改)第1课时系统知识——函数的单调性与最值、奇偶性、周期性

第二节函数的性质第1课时系统知识一一函数的单调性与最值、奇偶性、周期性若函数y= f(x)在区间D上是增函数或减函数,则称函数y= f(x)在这一区间上具有(严格的)单调性,区间D叫做函数y= f(x)的单调区间.[点拨](1)函数单调性定义中的X i , X2具有以下三个特征:一是任意性,即任意两数X i, D ”,任意”两字决不能丢;二是有大小,即X i VX2(或X1>X2);三是同属一个单调区间,三者缺一不可.⑵若函数在区间D上单调递增(或递减),则对D内任意的两个不等自变量X1, X2的值, 都有fXL二竺或fXk 4竺<。

.X1 —X2 X1—X2 /(3)函数f(X)在给定区间上的单调性,是函数在此区间上的整体性质,不一定代表在整个定义域上有此性质.[谨记常用结论](1) 函数f(X)与f(x)+ c(c为常数)具有相同的单调性.(2) k>0时,函数f(x)与kf(x)单调性相同;k<0时,函数f(x)与kf(x)单调性相反.1⑶若f(x)恒为正值或恒为负值,贝y f(x)与具有相反的单调性.⑷若f(x), g(x)都是增(减)函数,则当两者都恒大于零时,f(x) •(x)是增(减)函数;当两者都恒小于零时,f(x) g(x)是减(增)函数.(5)在公共定义域内,增+增=增,减+减=减,增—减=增,减—增=减.[小题练通]1. [人教A版教材P39B组T1]函数f(x)= x2—2x的单调递增区间是______ .答案:[1 ,+^ )2. [教材改编题]如果二次函数f(x)= x2—(a—1)x + 5在区间2, 1上是增函数,则实数a的取值范围为_________ .解析:T函数f(x) = x2—(a —1)x+ 5的对称轴为x =旦^1且在区间2,1上是增函数,a —1答案:(—R, 2]3. [教材改编题]函数f(x)= log1 (x2—4)的单调递增区间为________ .2解析:由x2—4>0得x<—2或x>2.又u = x2—4在(一a,—2)上为减函数,在(2, + a)上为增函数,y= log 1 u为减函数,2故f(x)的单调递增区间为(一a,—2).答案:(一a,—2)4. [易错题]设定义在[—1,7]上的函数y= f(x)的图象如图所示,则函数y= f(x)的增区间为________ .答案:[—1,1], [5,7]2x + k5.若函数y= 与y= log3(x—2)在(3, +a )上具有相同的单调性,贝U实数k的取值x—2范围是_________ .解析:由于y= lOg3(x—2)的定义域为(2 , + a ), 且为增函数,故函数y=空土^ = 2x —2+ 4+ k= 2 + 也在(3, + a)上也是增函数,则有4+ k v 0, x —2 x —2 x —2得k v — 4.f(X)Vf —的实数x的取值范答案:(—a, —4)6•已知函数f(x)为定义在区间[—1,1]上的增函数,则满足围为________ .—1W x W1,解析:由题设得1x<2解得—1W x<1.答案:—1,—前提设函数f(x)的定义域为1,如果存在实数M满足条件对于任意x€ I,都有f(x)W M ;存在X o€ I,使得f(X o)= M对于任意x € I,都有f(x)》M ;存在x°€ I,使得f(x^)= M结论M为最大值M为最小值1.函数的最值2.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值•当函数在闭区间上单调时最值一定在端点处取到.(2)开区间上的“单峰”函数一定存在最大值或最小值.[点拨](1)对于单调函数,最大(小)值出现在定义域的边界处;(2) 对于非单调函数求最值,通常借助图象求解更方便;(3) 一般地,恒成立问题可以用求最值的方法来解决,而利用单调性是求最值的常用方法•注意以下关系:f(x)> a恒成立?f(x)min> a ;f(x) W a恒成立?f(x)max <乱解题时,要务必注意“=”的取舍.[小题练通]21. __________________________________________________________ [人教A版教材P31例4]函数f(x)=二二在[2,6]上的最大值是___________________________ •答案:22. [教材改编题]设函数f(x)= 2~在区间[3,4]上的最大值和最小值分别为M ,m,则晋=x—2 M 解析:易知f(x)= x—2 = 2+七,所以f(x)在区间[3,4]上单调递减,4所以M = f(3) = 2 + ---- =6,3 —2 所以m!_ 16_ 8M —6 —3.答案:3.[教材改编题喏函数f(x)=—;+ b(a>0)在;,2上的值域为••• f(X )min = f 2 = 2 , f(x)max = f(2) = 2.1—2a 十 b = 1, 即 -1+b = 2,答案:1 54.[易错题]函数y =~22 i解析:由 y = X ^ ,可得 x 2 = —-^.由 x 2>0,知—0,解得—1 w y<1,x 十 1 1 — y 1 — y故所求函数的值域为[—1,1). 答案:[—1,1) 5.函数f(x) = x ,x> 1,的最大值为x 2 + 2, x<11解析:当x > 1时,函数f(x)= -为减函数,所以f(x)在x = 1处取得最大值,为 f(1) = 1; 当x<1时,易知函数f(x) = — x 2+ 2在x = 0处取得最大值,为 f(0) = 2.故函数f(x)的最大值 为2.答案:26.已知函数 f(x)=— x 2 + 4x 十a , x € [0,1],若f(x)有最小值一2,贝V f(x)的最大值为解析:函数 f(x)=— x 2 + 4x 十 a =— (x — 2)2+ 4+ a , x € [0,1],且函数 f(x)有最小值—2. 故当x = 0时,函数f(x)有最小值,当 x = 1时,函数f(x)有最大值•当 x = 0时,f(0) = a =—2,.・. f(x)=— x 2+ 4x — 2, •当 x = 1 时,f(x)max = f(1)=—十十 4X 1 — 2 = 1.答案:1[谨记常用结论]1. 函数奇偶性的几个重要结论-1解析:•/ f(x)=-三+ b(a>0)在 1,2 是增函数,a = 1, 解得 5b = 5.⑴如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0) = 0.⑵如果函数f(x)是偶函数,那么f(x) = f(|x|).(3) 既是奇函数又是偶函数的函数只有一种类型,即f(x)= 0, x€ D,其中定义域D是关于原点对称的非空数集.(4) 奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.2. 有关对称性的结论(1) 若函数y= f(x + a)为偶函数,则函数y= f(x)关于x = a对称.若函数y= f(x+ a)为奇函数,则函数y= f(x)关于点(a,0)对称.(2) 若f(x)= f(2a—x),则函数f(x)关于x = a 对称;若f(x) + f(2a—x) = 2b,则函数f(x) 关于点(a, b)对称.[小题练通]1. ________________ [人教A版教材P39A组T6]已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)= x(1 + x),贝U f( —1) = .答案:—22. [教材改编题]设f(x)是定义在R上的奇函数,当x>0时,f(x) = x1 2 3+ 1,则f( —2)+ f(0)解析:由题意知f( —2) =—f(2) = —(22+ 1) =—5, f(0) = 0,••• f(—2) + f(0) = — 5.答案:—53. [教材改编题]已知函数f(x)为偶函数,且当x<0时,f(x)= x + 1,则当x>0时,f(x)=解析:当x>0 时,一xv0,「. f(—x)=—x + 1,又f(x)为偶函数,• f(x)=—x+ 1.答案:—x+ 14. [易错题]已知f(x) = ax2+ bx是定义在[a —1,2 a]上的偶函数,那么 a + b的值是2 1解析:T f(x)= ax2+ bx是定义在[a —1,2 a]上的偶函数,• a—1 + 2a = 0,二a=;. 31又f( —x)= f(x) ,• b= 0,二a+ b= 3.3答案:5.在函数y= xcosx, y= e x+ x2, y= lg . x2—2, y= xsin x 中,偶函数的个数是___________ 解析:y= xcos x是奇函数,y= lg x2—2和y= xsin x是偶函数,y= e x+ x2是非奇非偶函数,所以偶函数的个数是 2.答案:26.已知函数 f(x)= asin x + bln*^ +1,若 f 1 + f — 2 =6,则实数 t=________________ ,解析:令g(x)= asin x + bln 齐,则易知g(x)为奇函数,所以gg g J — 2戶0,则由 f(x)= g(x)+1,得 f 1 + f —1 = g 1 + g —1 + 2t = 2t = 6,解得 t = 3.答案:31. 周期函数对于函数y = f(x),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f(x + T) = f(x),那么就称函数 y = f(x)为周期函数,称T 为这个函数的周期.2. 最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做 f(x)的最小正周期.[谨记常用结论]定义式f(x + T)= f(x)对定义域内的x 是恒成立的.(1)若 f(x + a) = f(x + b),则函数 f(x)的周期为 T = |a — b|; 1 1f(x + a) = — f(x), f(x + a)=,f(x + a)=—匚何>0),则 f(x)为周期函数,且T = 2a 为它的一个周期.[小题练通]1.[教材改编题]设f(x)是定义在 R 上的周期为 2的函数,当 x € (— 1,1)时,f(x)= 「4x + 2,—1<x <0,则虑 L __________________ .x , 0< x<1, 2答案:12.[教材改编题]若f(x)是R 上周期为2的函数,且满足 f(1) = 1, f(2) = 2,贝U f(3) — f(4)解析:由 f(x)是 R 上周期为 2 的函数知,f(3) = f(1) = 1, f(4) = f(2) = 2,••• f(3) — f(4) =— 1.答案:—1=x ,贝y f(2 019) = __________(2)若在定义域内满足3.[教材改编题]已知f(x)是定义在R 上的函数,并且 1f(x + 2)= f x ,f(x)1 1解析:由已知,可得f(x + 4) = f[(x + 2) + 2]= —— =-—=f(x),故函数f(x)的周期为f (X + 2)4.A f(2 019) = f(4X 504+ 3) = f(3)= 3.答案:34. [易错题]函数f(x)的周期为4,且x€ (-2,2], f(x) = 2x- x2,则f(2 018) + f(2 019) + f(2 020)的值为________ .解析:由f(x)= 2x-x2, x€ (-2,2],知f(- 1)=- 3, f(0)= 0, f(2) = 0,又f(x)的周期为4,所以f(2 018) + f(2 019) + f(2 020) = f(2) + f( - 1)+ f(0) = 0 - 3+ 0=- 3.答案:—35. 已知f(x)是R上的奇函数,且对任意x€ R都有f(x+ 6)= f(x) + f(3)成立,则f(2 019)解析:•/ f(x)是R上的奇函数,••• f(0) = 0,又对任意x€ R都有f(x + 6) = f(x) + f(3),二当x=- 3 时,有f(3) = f( - 3) + f(3) = 0, • f( - 3) = 0 , f(3) = 0 , • f(x+ 6) = f(x),周期为6. 故f(2 019) = f(3) = 0.答案:06.偶函数y= f(x)的图象关于直线x= 2对称,f(3) = 3,则f( - 1) = __________ .解析:因为f(x)的图象关于直线x= 2对称,所以f(x) = f(4- x) , f( - x) = f(4 + x),又f(- x) = f(x),所以f(x) = f(4 + x),则f( - 1) = f(4 - 1) = f(3) = 3.答案:3。

高三函数单调性知识点归纳

高三函数单调性知识点归纳

高三函数单调性知识点归纳函数是高中数学中的重要概念之一,而了解函数的单调性则是学好高中数学的基础。

函数的单调性描述了函数在定义域上值的增减情况,它对于研究函数图像的走势、解函数方程等问题具有重要作用。

本文将对高三函数单调性的知识点进行归纳总结。

一、单调递增与单调递减函数的单调性分为单调递增和单调递减。

如果在函数的定义域上,对于任意的x1和x2(x1<x2),有f(x1)≤f(x2),则称函数f(x)为单调递增函数;如果对于任意的x1和x2(x1<x2),有f(x1)≥f(x2),则称函数f(x)为单调递减函数。

二、导数与函数单调性的关系函数的导数与函数的单调性之间有密切的联系。

对于可导函数f(x),以下两个定理对于函数的单调性给出了重要的结果:1. 定理1:若在[a,b]上,函数f(x)的导数f'(x)≥0(或f'(x)≤0),则f(x)在[a,b]上单调递增(或单调递减)。

2. 定理2:若在(a,b)上,函数f(x)的导数f'(x)>0(或f'(x)<0),则f(x)在(a,b)上单调递增(或单调递减)。

这两个定理可以帮助我们通过导数的正负来推测函数的单调性。

三、函数图像与单调性通过观察函数的图像,我们也可以判断函数的单调性。

对于函数f(x),以下两个规律可以帮助我们了解函数图像与单调性之间的关系:1. 规律1:若函数f(x)在[a,b]上的增量f(x2)-f(x1)>0(或<0),则f(x)在[a,b]上单调递增(或单调递减)。

2. 规律2:若函数f(x)在(a,b)上的增量f(x2)-f(x1)>0(或<0),则f(x)在(a,b)上单调递增(或单调递减)。

通过观察函数图像上的增量的正负,我们可以推测函数的单调性。

四、函数零点与单调性函数的零点(也叫根)与函数的单调性也有一定的联系。

对于函数f(x),以下定理给出了函数的零点与单调性之间的关系:定理3:若函数f(x)在[a,b]上单调递增(或单调递减),且[a,b]上有一个零点c,则c是f(x)在[a,b]上的唯一零点。

函数的单调性及单调区间

函数的单调性及单调区间

函数的单调性及单调区间1.函数的单调性及单调区间【知识点的认识】一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2, 当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数;当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数.若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.【解题方法点拨】判断函数的单调性,有四种方法:定义法;导数法;函数图象法;基本函数的单调性的应用;复合函数遵循“同增异减”;证明方法有定义法;导数法.单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用符号“∪”联结,也不能用“或”联结,只能用“和”或“,”连结.设任意x 1,x 2∈[a ,b ]且x 1≠x 2,那么①f(x 1)−f(x 2)x 1−x 2>0⇔f (x )在[a ,b ]上是增函数;f(x 1)−f(x 2)x 1−x 2<0⇔f (x )在[a ,b ]上是减函数.②(x 1﹣x 2)[f (x 1)﹣f (x 2)]>0⇔f (x )在[a ,b ]上是增函数;(x 1﹣x 2)[f (x 1)﹣f (x 2)]<0⇔f (x )在[a ,b ]上是减函数.函数的单调区间,定义求解求解一般包括端点值,导数一般是开区间.【命题方向】函数的单调性及单调区间.是高考的重点内容,一般是压轴题,常与函数的导数相结合,课改地区单调性定义证明考查大题的可能性比较小.从近三年的高考试题来看,函数单调性的判断和应用以及函数的最值问题是高考的热点,题型既有选择题、填空题,又有解答题,难度中等偏高;客观题主要考查函数的单调性、最值的灵活确定与简单应用,主观题在考查基本概念、重要方法的基础上,又注重考查函数方程、等价转化、数形结合、分类讨论的思想方法.预测明年高考仍将以利用导数求函数的单调区间,研究单调性及利用单调性求最值或求参数的取值范围为主要考点,重点考查转化与化归思想及逻辑推理能力.。

最新人教版高一数学必修1第一章《函数的单调性》夯实基础

最新人教版高一数学必修1第一章《函数的单调性》夯实基础

最新人教版高一数学必修1第一章《函数的单调性》夯实基础2.3 函数的单调性巩固·夯实基础一、自主梳理1.单调性的定义设函数f(x)的定义域为I:如果对于属于定义域I 内某个区间上的任意两个自变量x 1、x 2,当 x 1f(x 2),那么就说f(x)在这个区间上是减函数.2.判断函数单调性的方法(1)定义法.(2)利用基本函数的单调性,如:二次函数y=x 2-2x 在(-∞,1)上是减函数.(3)利用复合函数同增异减这个结论判断.(4)利用函数图象上升增下降减进行判断.另外利用导数值的符号也能判断函数的单调性.二、点击双基1.下列函数中,在区间(0,2)上为增函数的是( ) A.y=-x+1B.y=xC.y=x 2-4x+5D.y=x2 答案:B2.函数y=log a (x 2+2x-3),当x=2时,y >0,则此函数的单调递减区间是( )A.(-∞,-3)B.(1,+∞)C.(-∞,-1)D.(-1,+∞)解析:当x=2时,y=log a 5>0,∴A >1.由x 2+2x-3>0?x <-3或x >1,易见函数t=x 2+2x-3在(-∞,-3)上递减,故函数y=log a (x 2+2x-3)(其中a >1)也在(-∞,-3)上递减.答案:A3.(2005上海高考)若函数f(x)=121+x ,则该函数在(-∞,+∞)上是( ) A.单调递减无最小值B.单调递减有最小值C.单调递增无最大值D.单调递增有最大值解析:由于u(x)=2x +1在R 上递增且大于1,则f(x)=121+x 在R 上递减,无最小值,选A. 答案:A 4.(2006北京海淀模拟)函数y=lgsin(4π-2x)的单调增区间是( ) A.(k π-85π,k π-8π)(k ∈Z) B.[k π-8π,k π+8π](k ∈Z) C.(k π-83π,k π-8π)(k ∈Z) D.[k π-8π,k π+83π](k ∈Z) 解析:令y=lg μ,μ=sin(4π-2x). 根据复合函数单调区间的求法,只需使2k π+2π≤4π-2x<2k π+π即可. ∴-k π-83π<="" ≤-k="">答案:C诱思·实例点拨【例1】如果二次函数f(x)=x 2-(a-1)x+5在区间(21,1)上是增函数,求f(2)的取值范围. 剖析:由于f(2)=22-(a-1)×2+5=-2a+11,求f(2)的取值范围就是求一次函数y=-2a+11的值域,当然就应先求其定义域.解:二次函数f(x)在区间(21,1)上是增函数,由于其图象(抛物线)开口向上,故其对称轴x=21-a 或与直线x=21重合或位于直线x=21的左侧,于是21-a ≤21,解之得a ≤2,故f(2)≥-2×2+11=7,即f(2)≥7.【例2】讨论函数f(x)=12-x ax (a>0)在x ∈(-1,1)上的单调性. 解:设-1<1,<=""bdsfid="108" p="">则f(x 1)-f(x 2)=11222211---x ax x ax =)1)(1(222122121221--+--x x ax x ax ax x ax =)1)(1()1)((22212112--+-x x x x x x a . ∵-1<1,<="" bdsfid="113" p="">∴x 2-x 1>0,x 1x 2+1>0,(x 12-1)(x 22-1)>0.又a>0,∴f(x 1)-f(x 2)>0,函数f(x)在(-1,1)上为减函数.【例3】求函数y=x+x1的单调区间. 剖析:求函数的单调区间(亦即判断函数的单调性),一般有三种方法:(1)图象法;(2)定义法;(3)利用已知函数的单调性.但本题图象不易作,利用y=x 与y=x1的单调性(一增一减)也难以确定,故只有用单调性定义来确定,即判断f(x 2)-f(x 1)的正负.解:首先确定定义域:{x|x ≠0},∴在(-∞,0)和(0,+∞)两个区间上分别讨论.任取x 1、x 2∈(0,+∞)且x 1<="" 1-11x="(x" 2)-f(x="" 2+21x="" 2,则f(x="" 2-x="" bdsfid="123" p="">121x x x x -=(x 2-x 1)(1-211x x ),要确定此式的正负只要确定1-211x x 的正负即可.这样,又需要判断211x x 大于1,还是小于1.由于x 1、x 2的任意性,考虑到要将(0,+∞)分为(0,1)与(1,+∞)(这是本题的关键).(1)当x 1、x 2∈(0,1)时,1-211x x <0, ∴f(x 2)-f(x 1)<0为减函数.(2)当x 1、x 2∈(1,+∞)时,1-211x x >0, ∴f(x 2)-f(x 1)>0为增函数.同理可求(3)当x 1、x 2∈(-1,0)时,为减函数;(4)当x 1、x 2∈(-∞,-1)时,为增函数. 讲评:解答本题易出现以下错误结论:f(x)在(-1,0)∪(0,1)上是减函数,在(-∞,-1)∪(1,+∞)上是增函数,或说f(x)在(-∞,0)∪(0,+∞)上是单调函数.避免错误的关键是要正确理解函数的单调性概念:函数的单调性是对某个区间而言的,而不是两个或两个以上不相交区间的并.链接·拓展求函数y=x+xa (a>0)的单调区间. 提示:函数定义域x ≠0,可先考虑在(0,+∞)上函数的单调性,再根据奇偶性与单调性的关系得到在(-∞,0)上的单调性.答案:在(-∞,-a ),(a ,+∞)上是增函数,在(0,a ),(-a ,0)上是减函数.【例4】(2004北京东城模拟)已知定义在R 上的函数f(x)对任意的实数x 1、x 2满足关系f(x 1+x 2) =f(x 1)+f(x 2)+2.(1)证明f(x)的图象关于点(0,-2)成中心对称图形;(2)若x>0,则有f(x)>-2,求证:f(x)在(-∞,+∞)上是增函数.剖析:对于(1),只要证明2)()(x f x f -+=-2即可;对于(2),注意到f(x)是抽象函数,欲证单调性,需对f(x)进行适当的变形.证明:(1)令x 1=x 2=0,则f(0+0)=f(0)+f(0)+2,所以f(0)=-2.对任意实数x,令x 1=x,x 2=-x,有f(x-x)=f(x)+f(-x)+2,即f(0)-2=f(x)+f(-x),得2)()(x f x f -+=-2. 又2)(x x -+=0, 这表明点M(x,f(x))与点N(-x,f(-x))的中点是(0,-2),即点M 1N 关于点(0,-2)成中心对称.由点M 的任意性知:函数f(x)的图象关于点(0,-2)成中心对称.(2)对任意实数x 1、x 2,且x 1<="" bdsfid="150" p="">由x 2-x 1>0,有f(x 2-x 1)>-2.于是f(x 2)=f [(x 2-x 1)+x 1]=f(x 2-x 1)+f(x 1)+2.所以f(x2)-f(x1)=f(x2-x1)+2>-2+2=0,即f(x2)>f(x1).所以f(x)在(-∞,+∞)上是增函数.讲评:对于(1),求出f(0)=-2是解题的关键;对于(2),变形f(x2)=f [(x2-x1)+x1]=f(x2-x1)+f(x1)+2是解题的关键.。

复习函数的单调性课件教案

复习函数的单调性课件教案

复习函数的单调性义马市第一高级中学授课人:黄海鹏✧ 教学目标:1、掌握函数单调性的定义2、了解并识记常用函数的单调性3、掌握复合函数的单调性原则4、掌握证明判断函数单调性的方法5、会求函数的单调区间✧ 教学重点:常用函数的单调性及判断函数单调性的方法✧ 教学难点:复合函数的单调性原则及求单调区间✧ 教学方法:归纳、总结一. 函数单调性的定义一般地,设函数)(x f 的定义域为I :(1)增函数:如果对于属于定义域I 内某个区间上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f <,那么就说)(x f 在这个区间上是增函数. (1)减函数:如果对于属于定义域I 内某个区间上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f >,那么就说)(x f 在这个区间上是减函数.二、常用函数的单调性(1)一次函数图像的函数解析式是)0(≠+=k b kx y ,当0>k 时,此函数是增函数,函数的单调区间为),(+∞-∞,当0<k 时此函数为减函数,函数的单调区间为),(+∞-∞. (2)反比例函数 图像的函数解析式是)0(≠=k xk y ,当0>k 时,函数在),0(+∞上为减函数,在)0,(-∞上也为减函数;当0<k 时,函数在),0(+∞上为增函数,在)0,(-∞上也为增函数。

(3)二次函数图像的函数解析式是)0(2≠++=a c bx ax y 当0>a 时,函数在]2,(a b --∞上为减函数,在),2[+∞-a b 上为增函数;当0<a 时,函数在]2,(a b --∞上为增函数,在),2[+∞-a b 上为减函数.(4)指数函数图像的函数解析式是0(>=a a y x 且)1≠a ,当1>a 时,函数在),(+∞-∞上为增函数,当10<<a 时,函数在),(+∞-∞上为减函数.(5)对数函数图像的函数解析式是0(log >=a x y a 且)1≠a ,当1>a 时,函数在),0(+∞上为增函数,当10<<a 时,函数在),0(+∞上为减函数.三、复合函数单调性对于复合函数)]([x g f y =的单调性,必须考虑外函数与内函数的单调性即)(u f y =与)(x g u =的单调性,从而得出)]([x g f y = 的单调性.注意:在研究函数的单调性,首先考虑函数的定义域,要注意函数的单调区间是函数定义域内的某个区间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7月11日
知识点:
单调性的证明
求函数单调性
利用单调性
奇偶性
1. 证明函数上单调递增在R x x f 1)(3+-=
2. 函数的单调区间x
x x f 1)(+=
3. )(x f 在定义域(0,∞+)上是减函数,解不等式)(x f )32(-<x f
4. 已知函数的取值范围)单调递增,求,在(m mx x x f 2--14)(2∞+-=
5. 求函数的单调区间是x x y -1-2+=
6. 当[]的值域。

求函数x x y x --+=∈11,1,0
7. 下列说法正确的有
单调递增单调递减,则调递增单调递增
单调递减,则单调递增是单调函数,
)()()(,)()(-)()(,)()(),(x g x f x g x f x g x f x g x f x g x f +
8. 下列函数在指定区间上为单调函数的是( )
A.y=2x
,x∈(-∞,0)∪(0,+∞) B.y=2x-1
,x∈(1,+∞) C.y=x 2,x∈R
D.y=|x|,x∈R
9.下面四个结论:①偶函数的图象一定与y 轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y 轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x ∈R),其中正确命题的个数是 ( )A .1 B .2 C .3 D .4
10.设偶函数)(x f 的定义域为R ,当),0(+∞∈x 时,)(x f 是增函数,则),2(-f )(πf ,)3(-f 的大小关系是 ( )
A ()(3)(2)f f f p >->-
B ()(2)(3)f f f p >->-
C ()(3)(2)f f f p <-<-
D ()(2)(3)f f f p <-<-
11.已知偶函数()f x 在区间[0,)+∞单调递增,则满足(21)f x -<1()3
f 的x 取值范围是
12.求单调区间
932+-=x x y 932+-=x x y (83<<-x )
1
2--=x x y
13.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是
已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于
14.若y =(m -1)x 2+2mx +3是偶函数,则m =_________. .
15.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( )
A .-26
B .-18
C .-10
D .10
16.已知f (x )=x 4+ax 3+bx -8,且f (-2)=10,则f (2)=________
17.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R上的表达
18.判断奇偶性
f (x )=
111
122+++-++x x x x ()(f x x =-
作业:
1. 证明函数)上是单调增函数。

,在区间(0-11)(∞--=x
x f 2. 设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围.
3. 函数f(x)在R 上是减函数,则有( )
A.f(3)>f(5) B.f(3)≤f(5)
C.f(3)<f(5) D.f(3)≥f(5)
4.f (x )是定义在(-∞,-5] [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明.
5. 判断奇偶性
1)(2
3--=x x x x f
6. 求单调区间
7.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间 (-∞,-2)上是减函数,则f (1)等于
8.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间
9.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,
则实数a 的取值范围是
10.已知函数f (x )是偶函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.
12.函数y=f(x)的图象如上图所示,其增区间是( )
A.[-4,4] B.[-4,-3]∪[1,4]
C .[-3,1]
D .[-3,4]。

相关文档
最新文档