高考数学①轮课件指数和指数函数
合集下载
2022版高考数学一轮复习第3章函数第5讲指数与指数函数课件

(2)指数函数的图象与性质:
a>1
0<a<1
图象
第七页,编辑于星期六:四点 六分。
定义域 值域
性质
a>1
0<a<1
①___R_____ ②_(_0_,__+__∞_)
③过定点___(0_,_1_) __,即x=0时,y=1
④当x>0时,__y_>__1__;
⑤当x<0时,___y>__1__;
当x<0时,_0_<__y_<_1_
×-25
×23
-32313
-1=52-32-1=0.
(2)原式=
1
a3
1
a3
1
a3
3-2b31
3
2+a31
1
·2b3
+2b13
1
a3 ÷
2
1
-2b3 a
2 1
·a·a3
1
1
2
1
a2
·a3
5
5
1
=a3
1
a3
1
-2b3
·1 a3
a
1
-2b3
·a61
1
=a3
a6
2
·a·a3
=a2.
第二十二页,编辑于星期六:四点 六分。
当x>0时,_0_<__y<__1_
⑥在(-∞,+∞)内是 __增_____函数
⑦在(-∞,+∞)内是 ___减____函数
第八页,编辑于星期六:四点 六分。
【特别提醒】 1.在进行指数幂的运算时,一般用分数指数幂的形式表示,并且 结果不能同时含有根号和分数指数幂,也不能既含有分母又含有负指 数. 2.指数函数y=ax(a>0,a≠1)的图像和性质跟a的取值有关,要特 别注意区分a>1或0<a<1.
高考总复习一轮数学精品课件 第三章 函数与基本初等函数 第五节 指数与指数函数

∴e2a-ea+b+eb+c-ea+b=ea(ea-eb)+eb(ec-ea)=0,其中ea>1,eb>1,ec>1,对于A,若
a=b=c,则ea-eb=ec-ea=0,满足题意;对于B,若a>b>c,则ea-eb>0,ec-ea<0,满足
题意;对于C,若b>c>a,则ea-eb<0,ec-ea>0,满足题意;对于D,若b>a>c,则
(3)0的正分数指数幂等于0,0的负分数指数幂没有意义.
微点拨在进行指数幂的运算时,一般用分数指数幂的形式表示,并且结果不
能同时含有根号和分数指数幂,也不能既有分母又有负指数.
3.有理指数幂的运算性质
(1)aras= ar+s (a>0,r,s∈Q);
(2)(ar)s= ars
(a>0,r,s∈Q);
3.f(x)=ax与g(x)=a-x=
1
x(a>0,且a≠1)的图象关于y轴对称.
4.指数函数的图象以x轴为渐近线.
5.函数y=
-1
+ 1
(a>0,且a≠1),y=ax-a-x(a>0,且a≠1)均为奇函数,函数
y=ax+a-x(a>0,且a≠1)为偶函数.
6.若函数g(x)=af(x)(a>0,且a≠1)的值域为(0,+∞),则f(x)的值域必为R.
根式的概念
n=a
x
如果
,那么x叫做a的n次方根
符号表示
—
当n是奇数时,正数的n次方根是一个
正数 ,负数的n次方根是一个 负数
当n是偶数时,正数的n次方根有两个,这
a=b=c,则ea-eb=ec-ea=0,满足题意;对于B,若a>b>c,则ea-eb>0,ec-ea<0,满足
题意;对于C,若b>c>a,则ea-eb<0,ec-ea>0,满足题意;对于D,若b>a>c,则
(3)0的正分数指数幂等于0,0的负分数指数幂没有意义.
微点拨在进行指数幂的运算时,一般用分数指数幂的形式表示,并且结果不
能同时含有根号和分数指数幂,也不能既有分母又有负指数.
3.有理指数幂的运算性质
(1)aras= ar+s (a>0,r,s∈Q);
(2)(ar)s= ars
(a>0,r,s∈Q);
3.f(x)=ax与g(x)=a-x=
1
x(a>0,且a≠1)的图象关于y轴对称.
4.指数函数的图象以x轴为渐近线.
5.函数y=
-1
+ 1
(a>0,且a≠1),y=ax-a-x(a>0,且a≠1)均为奇函数,函数
y=ax+a-x(a>0,且a≠1)为偶函数.
6.若函数g(x)=af(x)(a>0,且a≠1)的值域为(0,+∞),则f(x)的值域必为R.
根式的概念
n=a
x
如果
,那么x叫做a的n次方根
符号表示
—
当n是奇数时,正数的n次方根是一个
正数 ,负数的n次方根是一个 负数
当n是偶数时,正数的n次方根有两个,这
新高考2023版高考数学一轮总复习第2章第5讲指数与指数函数课件

1
2
D,左边=a3 ÷a-3 =a1=a,左边=右边.故选 D.
3.(必修 1P107T2 改编)设 a>0,将
a2 表示成分数指数幂,其结
3
a·
a2
果是
( C)
A.a12
B.a56
C.a76
D.a32
[解析] 由题意得
a2
=a2-12
-1 3
=a67
,故选 C.
3
a·
a2
4.(必修 1P109T4 改编)化简4 16x8y4(x<0,y<0)=__-__2_x_2y___.
当 n 为偶数时,正数的 n 次方根有__两__个___,
它们互为__相__反__数___
±n a
零的 n 次方根是零
负数没有偶次方 根
(2)两个重要公式 __a__,n为奇数,
①n an=|a|=____-a____a_a_≥a<00,, n为偶数.
②(n a)n=__a__(注意 a 必须使n a有意义).
3.f(x)=ax 与 g(x)=1ax(a>0 且 a≠1)的图象关于 y 轴对称.
题组一 走出误区
1.判断下列结论是否正确(请在括号中打“√”或“×”)
4
(1)
-44=-4.
m
(2)分数指数幂 an
可以理解为mn 个 a 相乘.
m
m
(3)a-n =-an (n,m∈N*).
(× ) (× ) (× )
考点突破·互动探究
考点一
例1
指数与指数运算——自主练透 (1)(多选题)下列命题中不正确的是
A.n an=a
B.a∈R,则(a2-a+1)0=1
高考数学一轮总复习课件:指数函数

(2)(2021·西安质检)若偶函数f(x)满足f(x)=2x-4(x≥0),则 不等式f(x-2)>0的解集为_{_x_|x_>_4_或_x_<_0_}____.
【解析】 ∵f(x)为偶函数, 当x<0时,-x>0,则f(x)=f(-x)=2-x-4. ∴f(x)=22x--x-4,4,x≥x<00,, 当f(x-2)>0时,有x2- x-22-≥40>,0 或x2- -x+22<-0,4>0, 解得x>4或x<0. ∴不等式的解集为{x|x>4或x<0}.
授人以渔
题型一 指数式的计算(自主学习)
例1 计算: (1)-338-23+(0.002)-12-10( 5-2)-1+( 2- 3)0; (2)2 3×3 1.5×6 12; (3)(a14ba123)b243a-ab132 b13(a>0,b>0).
【解析】
(1)原式=(-1)-
2 3
×
3 38
根式的运算性质 (1)当 n 为奇数时,有n an=__a___; 当 n 为偶数时,有n an=_|_a|___. (2)负数的偶次方根_无__意_义__. (3)零的任何次方根__都__等_于__零__.
指数函数的概念、图象和性质 (1)形如___y_=_a_x__ (a>0 且 a≠1)的函数叫做指数函数. (2)定义域为 R,值域为__(_0_,_+__∞_)___. (3)当 0<a<1 时,y=ax 在定义域内是__减_函__数__;当 a>1 时,y =ax 在定义域内是_增__函__数_ (单调性);y=ax 的图象恒过定点_(0_,__1_) . (4)当 0<a<1 时,若 x>0,则 ax∈__(0_,__1)__; 若 x<0,则 ax∈_(_1,__+__∞_) _; 当 a>1 时,若 x>0,则 ax∈__(1_,__+_∞_)__; 若 x<0,则 ax∈__(_0,__1_) __.
高考数学一轮复习:2.5指数与指数函数课件(文) (共39张PPT)

知识梳理
2.有理数指数幂 (1)幂的有关概念 ①正分数指数幂:a ②负分数指数幂:a
m n
n
=________(a>0,m,n∈N*,且 n>1);
1
m
am
1
m - n
am a>0,m,n∈N*,且 n>1); =________ =________( a n
n
0 无意义. ③0 的正分数指数幂等于________ ,0 的负分数指数幂________
5 3 -1=2-2-1=0.
1 3 3 1 3 1 3 2 3 1 2 1 5
(2)原式=
a -2b a×a ÷ × 1 1 1 1 1 1 a 3 2 3 3 3 2 2 3 a +a ×2b +2b a ×a a
1 3
1 3
[a -2b ]
1 3 3
=a
易错剖析
n n 根式化简与指数运算的误区:混淆“ an”与“( a)n”;误用性质. 4 (1) a-b4=____________________________;
7 (2)化简[(-2) ] -(-1)0 的结果为________ .
1 6 2
a-ba≥b, |a-b |= b-aa<b
1 3
a 3 3 2 (a -2b )× 1 1 × 1 =a ×a×a =a . a 3 -2b 3 a 6
1 3
a
5 6
1
2
归纳小结
[点石成金] 指数幂的运算规律 (1)有括号的先算括号里的,无括号的先算指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数. (3)底数是负数,先确定符号,底数是小数,先化成分数,底数是 带分数的,先化成假分数. (4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用 指数幂的运算性质来解答. 易错提醒:运算结果不能同时含有根号和分数指数,也不能既有 分母又含有负指数,形式力求统一.
(新课标)高考数学一轮复习-第二章 函数、导数及其应用 第4讲 指数与指数函数课件

[答案] (1)A (2)b∈[-1,1] [解析] (1)由已知得0<a<1,b<-1,故选A. (2)曲线|y|=2x+1与直线y=b的图 象如图所示,由图象可知:如果|y|=2x +1与直线y=b没有公共点,则b应满 足的条件是b∈[-1,1].
指数函数的性质及应用
(1)(2015·山东)设 a=0. 60. 6,b=0. 61. 5,c=1. 50.
m
an
=___n _a____(a>0,m,n∈N+,n>1).
②正数的负分数指数幂的意义是
1
m
a- n
m
=___a_n____= n
1 (a>0,m,n∈N+,n>1). am
③0 的正分数指数幂是___0_____,0 的负分数指数幂无意义.
(2)有理指数幂的运算性质 ①aras=ar+__s ________(a>0,r,s∈Q); ②(ar)sa=rs__________(a>0,r,s∈Q); ③(ab)ra=rb_r _________(a>0,b>0,r∈Q). (3)无理指数幂 一般地,无理指数幂aα(a>0,α是无理数)是一个___确__定_的 实数,有理指数幂的运算法则____同__样__适__用于无理指数幂.
(1)(2015·安庆模拟)已知函数 f(x)= (x-a)·(x-b)(其中 a>b),若 f(x)的图象 如图所示,则函数 g(x)=ax+b 的图象是 导学号 25400269 ( )
(2)若曲线|y|=2x+1 与直线 y=b 没有公共点,则 b 的取值 范围是________. 导学号 25400270
值域
_(_0_,__+__∞_)__
性 单调性 在R上_____递__减___
在R上____递__增____
指数函数的性质及应用
(1)(2015·山东)设 a=0. 60. 6,b=0. 61. 5,c=1. 50.
m
an
=___n _a____(a>0,m,n∈N+,n>1).
②正数的负分数指数幂的意义是
1
m
a- n
m
=___a_n____= n
1 (a>0,m,n∈N+,n>1). am
③0 的正分数指数幂是___0_____,0 的负分数指数幂无意义.
(2)有理指数幂的运算性质 ①aras=ar+__s ________(a>0,r,s∈Q); ②(ar)sa=rs__________(a>0,r,s∈Q); ③(ab)ra=rb_r _________(a>0,b>0,r∈Q). (3)无理指数幂 一般地,无理指数幂aα(a>0,α是无理数)是一个___确__定_的 实数,有理指数幂的运算法则____同__样__适__用于无理指数幂.
(1)(2015·安庆模拟)已知函数 f(x)= (x-a)·(x-b)(其中 a>b),若 f(x)的图象 如图所示,则函数 g(x)=ax+b 的图象是 导学号 25400269 ( )
(2)若曲线|y|=2x+1 与直线 y=b 没有公共点,则 b 的取值 范围是________. 导学号 25400270
值域
_(_0_,__+__∞_)__
性 单调性 在R上_____递__减___
在R上____递__增____
高考数学一轮总复习 第二章 函数 第9讲 指数与指数函数课件

[答案] (0,4]
12/13/2021
第二十五页,共四十七页。
指数函数的性质及应用 例 3 (1)已知 a,b∈(0,1)∪(1,+∞),当 x >0 时,1<bx<ax,则( ) A.0<b<a<1 B.0<a<b<1 C.1<b<a D.1<a<b
[解析] ∵x>0 时,1<bx,∴b>1. ∵x>0 时,bx<ax,∴x>0 时,bax>1. ∴ba>1,∴a>b,∴1<b<a,故选 C.
(3)指数函数 y=ax(a>0,a≠1)的图象和性质跟 a 的取值有关,要特别注意应分 a>1 与 0<a<1 来研究.
12/13/2021
第十二页,共四十七页。
指数幂的运算
例 1 求值与化简:
2 1 1 1 1 5
(1)
2a
3b
2
6a
2
b
3
3a
6
b
6
;
(2)(1.5)
-
2
当 0<a<1 时,如图②所示,需满足12·12≤a1,即12
≤a<1;当 a=1 时,y=12x2 与 y=1 在[1,2]上有交点
( 122/,13/[12答0)2,1案满] B足条件.综上第可十八页知,共四十,七页。a∈12,
2.
(3)( 多 选 ) 已 知 函 数 f(x) = |2x - 1| , a<b<c 且 f(a)>f(c)>f(b),则下列结论中,一定成立的是( )
m
意义相仿,我们规定 a n =
1
m
an
(a>0,m,n∈N*,且
n>1).0 的正分数指数幂等于_0___;0 的负分数指数幂
__没__有__(m_é_i y_ǒ_u)_意_.义
12/13/2021
第二十五页,共四十七页。
指数函数的性质及应用 例 3 (1)已知 a,b∈(0,1)∪(1,+∞),当 x >0 时,1<bx<ax,则( ) A.0<b<a<1 B.0<a<b<1 C.1<b<a D.1<a<b
[解析] ∵x>0 时,1<bx,∴b>1. ∵x>0 时,bx<ax,∴x>0 时,bax>1. ∴ba>1,∴a>b,∴1<b<a,故选 C.
(3)指数函数 y=ax(a>0,a≠1)的图象和性质跟 a 的取值有关,要特别注意应分 a>1 与 0<a<1 来研究.
12/13/2021
第十二页,共四十七页。
指数幂的运算
例 1 求值与化简:
2 1 1 1 1 5
(1)
2a
3b
2
6a
2
b
3
3a
6
b
6
;
(2)(1.5)
-
2
当 0<a<1 时,如图②所示,需满足12·12≤a1,即12
≤a<1;当 a=1 时,y=12x2 与 y=1 在[1,2]上有交点
( 122/,13/[12答0)2,1案满] B足条件.综上第可十八页知,共四十,七页。a∈12,
2.
(3)( 多 选 ) 已 知 函 数 f(x) = |2x - 1| , a<b<c 且 f(a)>f(c)>f(b),则下列结论中,一定成立的是( )
m
意义相仿,我们规定 a n =
1
m
an
(a>0,m,n∈N*,且
n>1).0 的正分数指数幂等于_0___;0 的负分数指数幂
__没__有__(m_é_i y_ǒ_u)_意_.义
高三数学一轮复习 第2章 函数、导数及其应用第5课时 指数与指数函数精品课件 理 北师大

• ③(ab)r= arbr(a>0,b>0,r∈Q).
• 3.指数函数的图象和性质
函数
y=ax(a>0,且a≠1)
0<a<1
a>1
图象
图象特征
在x轴 上方,过定点 (0,1)
当x逐渐增大时, 图象逐渐下降
当x逐渐增大时, 图象逐渐上升
函数
定义域
值域
性 单调性 质
函数 值变 化规律
y=ax(a>0,且a≠1)
D.f(-2)>f(2)
解析: 由a-2=4,a>0,得a=12, ∴f(x)=21-|x|=2|x|. 又∵|-2|>|-1|,∴2|-2|>2|-1|,即f(-2)>f(-1). 答案: A
4.方程3x-1=19的解是________. • 答案: -1
5.函数y=121-x的值域是________. 解析: 函数的定义域为R,令u=1-x∈R, ∴y=21u>0. 答案: (0,+∞)
• (2)由图象知函数在(-∞,-1]上是增函数,在[-1,+∞)上是减函 数.
• 1.与指数函数有关的复合函数的定义域、值域的求法
• (1)函数y=af(x)的定义域与y=f(x)的定义域相同; • (2)先确定f(x)的值域,再根据指数函数的值域、单调性,可确定y=
af(x)的值域. • 2.与指数函数有关的复合函数的单调性的求解步骤 • (1)求复合函数的定义域; • (2)弄清函数是由哪些基本函数复合而成的; • (3)分层逐一求解函数的单调性; • (4)求出复合函数的单调区间(注意“同增异减”).
【变式训练】 1.计算下列各式:
• 1.与指数函数有关的函数的图象的研究,往往利用相应指数函数的 图象,通过平移、对称变换得到其图象.
• 3.指数函数的图象和性质
函数
y=ax(a>0,且a≠1)
0<a<1
a>1
图象
图象特征
在x轴 上方,过定点 (0,1)
当x逐渐增大时, 图象逐渐下降
当x逐渐增大时, 图象逐渐上升
函数
定义域
值域
性 单调性 质
函数 值变 化规律
y=ax(a>0,且a≠1)
D.f(-2)>f(2)
解析: 由a-2=4,a>0,得a=12, ∴f(x)=21-|x|=2|x|. 又∵|-2|>|-1|,∴2|-2|>2|-1|,即f(-2)>f(-1). 答案: A
4.方程3x-1=19的解是________. • 答案: -1
5.函数y=121-x的值域是________. 解析: 函数的定义域为R,令u=1-x∈R, ∴y=21u>0. 答案: (0,+∞)
• (2)由图象知函数在(-∞,-1]上是增函数,在[-1,+∞)上是减函 数.
• 1.与指数函数有关的复合函数的定义域、值域的求法
• (1)函数y=af(x)的定义域与y=f(x)的定义域相同; • (2)先确定f(x)的值域,再根据指数函数的值域、单调性,可确定y=
af(x)的值域. • 2.与指数函数有关的复合函数的单调性的求解步骤 • (1)求复合函数的定义域; • (2)弄清函数是由哪些基本函数复合而成的; • (3)分层逐一求解函数的单调性; • (4)求出复合函数的单调区间(注意“同增异减”).
【变式训练】 1.计算下列各式:
• 1.与指数函数有关的函数的图象的研究,往往利用相应指数函数的 图象,通过平移、对称变换得到其图象.