九年级数学毕业复习综合练习题2
人教版数学九年级中考复习训练专题二 计算求解题 附答案

专题二 计算求解题(必考)类型一 简便运算1. (2020唐山路北区三模)如图,是小明完成的一道作业题,请你参考小明的方法解答下面的问题:第1题图(1)计算:① 42020×(-0.25)2020;②(125)11×(-56)13×(12)12. (2)若2×4n ×16n =219,直接写出n 的值.2. 嘉琪研究了“十位数字相加等于10,个位数字相等”的两位数乘法的口算技巧:如34×74=2516.结果中的前两位数是用3×7+4得25,后两位数是用4×4=16,经过直接组合就可以得到正确结果2516.(1)请用上述方法直接计算45×65=________;56×56=________;(2)请用合适的数学知识解释上述方法的合理性.类型二 计算过程纠错1. 小杨对算式“(-24)×(18-13+14)+4÷(12-13)”进行计算时的过程如下: 解:原式=(-24)×18+(-24)×(-13)+(-24)×14+4÷(12-13)……① =-3+8-6+4×(2-3)……②=-1-4……③=-5④根据小杨的计算过程,回答下列问题:(1)小杨在进行第①步时,运用了__________律;(2)他在计算中出现了错误,其中你认为第________步出错了(只填写序号);(3)请你给出正确的解答过程.2. (2020石家庄模拟)已知多项式A =(x +2)2+x (1-x )-9.(1)化简多项式A 时,小明的结果与其他同学的不同,请你检查小明同学的解题过程,在标出①②③④的几项中出现错误的是________,并写出正确的解答过程;(2)小亮说:“只要给出x 2-2x +1的合理的值,即可求出多项式A 的值.”小明给出x 2-2x +1的值为4,请你求出此时A 的值.第2题图类型三 缺 项1. (2020邢台一模)嘉淇在解一道运算题时,发现一个数被污染,这道题是:计算:(-1)2020+÷(-4)×8. (1)若被污染的数为0,请计算(-1)2020+0÷(-4)×8;(2)若被污染的数是不等式组⎩⎪⎨⎪⎧2x +1>3,7-3x ≥1的整数解,求原式的值.2. (2020石家庄模拟)小丽同学准备化简:(3x 2-6x -8)-(x 2-2x □6),算式中“□”是“+,-,×,÷”中的某一种运算符号.(1)如果“□”是“×”,请你化简:(3x 2-6x -8)-(x 2-2x ×6);(2)若x 2-2x -3=0,求(3x 2-6x -8)-(x 2-2x -6)的值;(3)当x =1时,(3x 2-6x -8)-(x 2-2x □6)的结果是-4,请你通过计算说明“□”所代表的运算符号.类型四新定义1.仔细观察下列有理数的运算,回答问题.(+2)∅(+3)=+5,(-2)∅(-3)=+5,(+2)∅(-3)=-5,(-2)∅(+3)=-5,0∅(+3)=(+3)∅0=+3,0∅(-3)=(-3)∅0=+3.(1)“∅”的运算法则为:_______________________________________________________________;(2)计算:(-4)∅[0∅(-5)];(3)若(-2)∅a=a+3,求a的值.2. (2020邢台桥西区二模)如果a,b都是非零整数,且a=4b,那么就称a是“4倍数”.(1)30到35之间的“4倍数”是________,小明说:232-212是“4倍数”,嘉淇说:122-6×12+9也是“4倍数”,他们谁说的对?________.(2)设x是不为零的整数.①x(x+1)是________的倍数;②任意两个连续的“4倍数”的积可表示为________,它________(填“是”或“不是”)32的倍数.(3)设三个连续偶数的中间一个数是2n(n是整数),写出它们的平方和,并说明它们的平方和是“4倍数”.类型五与数轴结合1. (2020石家庄教学质量检测)如图①,点A,B,C是数轴上从左到右排列的三个点,分别对应的数为-5,b,4.某同学将刻度尺如图②放置,使刻度尺上的数字0对齐数轴上的点A,发现点B对齐刻度1.8 cm,点C对齐刻度5.4 cm.图①图②第1题图(1)在图①的数轴上,AC=________个单位长度;数轴上的一个单位长度对应刻度尺上的________cm;(2)求数轴上点B所对应的数b;(3)在图①的数轴上,点Q是线段AB上一点,满足AQ=2QB,求点Q所表示的数.2. (2020张家口一模)如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①、②、③、④四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)请说明原点在第几部分;(2)若AC=5,BC=3,b=-1,求a;(3)若点B到表示1的点的距离与点C到表示1的点的距离相等,且a-b-c=-3,求-a+3b-(b-2c)的值.第2题图3. (2020河北黑马卷)已知:在一条数轴上,从左到右依次排列n(n>1)个点,在数轴上取一点P,使点P到各点的距离之和最小.如图①,若数轴上依次有A1、A2两个点,则点P可以在A1A2之间的任意位置,距离之和为A1A2;图①图②第3题图如图②,若数轴上依次有A1、A2、A3三个点,则点P在A2的位置,距离之和为A1A2+A2A3;如图③,若数轴上依次有A1、A2、A3、A4四个点,则点P可以在A2A3之间的任意位置,距离之和为A1P+A2P+A3P+A4P;第3题图③探究若数轴上依次有A1、A2、A3、A4、A5五个点,判断点P所处的位置;归纳若数轴上依次有n个点,判断点P所处的位置;应用在一条直线上有依次排列的39个工位在工作,每个工位间隔1米,我们需要设置供应站P,使这39个工位到供应站P的距离总和最小,求供应站P的位置和最小距离之和.专题二 计算求解题类型一 简便运算1. 解:(1)①原式=(-4×0.25)2020=(-1)2020=1;②原式=(-125×56×12)11×12×(-56)2 =-12×2536=-2572; (2)n =3.2. 解:(1)2925;3136;类型二 计算过程纠错1. 解:(1)乘法分配:(2)②;(3)原式=(-24)×18+(-24)×(-13)+(-24)×14+4÷(12-13) =-3+8-6+4÷16=-1+24=23.2. 解:(1)①;正确的解答过程为:A =x 2+4x +4+x -x 2-9=5x -5;(2)∵x 2-2x +1=4,即(x -1)2=4,∴x -1=±2,则A =5x -5=5(x -1)=±10.类型三 缺 项1. 解:(1)(-1)2020+0÷(-4)×8=1+0=1;(2)解不等式组⎩⎪⎨⎪⎧2x +1>37-3x ≥1,得1<x ≤2,其整数解为2. 原式=(-1)2020+2÷(-4)×8=1-4=-3.2. 解:(1)(3x 2-6x -8)-(x 2-2x ×6)=3x 2-6x -8-(x 2-12x )=3x 2-6x -8-x 2+12x=2x 2+6x -8;(2)(3x 2-6x -8)-(x 2-2x -6)=3x 2-6x -8-x 2+2x +6=2x 2-4x -2,∵x 2-2x -3=0,∴x 2-2x =3∴2x 2-4x -2=2(x 2-2x )-2=2×3-2=4;(3)当x =1时,原式=(3-6-8)-(1-2□6)=-4,整理得-11-(1-2□6)=-4,1-2□6=-7,-2□6=-8,∴□处应为“-”.类型四 新定义1. 解:(1)运算时两数同号则绝对值相加,两数异号则为绝对值相加的相反数,0与任何数进行运算,结果为该数的绝对值;(2)(-4)∅[0∅(-5)]=(-4)∅(+5)=-9;(3)当a >0时,等式可化为(-2)-a =a +3,解得a =-52,与a >0矛盾,不合题意; 当a =0时,等式可化为2=a +3,解得a =-1,与a =0矛盾,不合题意;当a <0时,等式可化为2-a =a +3,解得a =-12,符合题意. 综上所述,a 的值为-12. 2. 解:(1)32;小明;(2)①2;②16x (x +1)或16x 2+16x ,是;(3)三个连续偶数为2n -2,2n ,2n +2,∴(2n -2)2+(2n )2+(2n +2)2=4n 2-8n +4+4n 2+4n 2+8n +4=12n 2+8=4(3n 2+2),∵n 为整数,∴4(3n 2+2)是“4倍数”.类型五 与数轴结合1. 解:(1)9;0.6;2. 解:(1)∵bc <0,∴b ,c 异号.∴原点在第③部分;(2)若AC =5,BC =3,则AB =2.∵b =-1,∴a =-1-2=-3;(3)设点B 到表示1的点的距离为m (m >0),则b =1-m ,c =1+m .∴b +c =2.∵a -b -c =-3,即a -(b +c )=-3,∴a =-1.∴-a +3b -(b -2c )=-a +3b -b +2c =-a +2b +2c =-a +2(b +c )=-(-1)+2×2=5.3. 解:探究 数轴上依次有A 1、A 2、A 3、A 4、A 5五个点,当点P 的位置在A 3处时,距离总和最小;归纳 当n 为偶数时,点P 在第n 2和第n 2+1个点之间的任意位置; 当n 为奇数时,点P 在第n +12个点的位置; 应用 设点P 在数轴上表示的数为x ,距离之和为M ,则M =||x -1+||x -2+…+||x -39, ∵39+12=20, ∴当x =20时,代数式M 取到最小值,∵每个工位间隔1米,∴M=19+18+…+0+1+2+…+19=(19+1)×19=380(米). 答:供应站P的位置在第20个工位,最小距离之和为380米.。
精品 九年级数学上册 期末综合复习题2

1 的图像上有一点 P,过点 P 分别作 x 轴和 y 轴的垂线,垂足分别为 A、B,使四 x
边形 OAPB 为正方形。又在反比例函数的图像上有一点 P1,过点 P1 分别作 BP 和 y 轴的垂线,垂足分别为 A1、B1, 使四边形 BA1P1B1 为正方形,则点 P1 的坐标是 13.如图,大圆和圆的半径都分别是 4cm 和 2cm,两圆外切于点 C,一只蚂蚁由点 A 开始 ABCDEFCGA 的顺序沿着两 圆圆周不断地爬行,其中各点分别是两圆周的四等分点,蚂蚁直到行走 2 010πcm 后才停下来.则这只蚂蚁停在 点_______ 14.如图,△AOB 以 O 为位似中心,扩大到△COD,各点坐标分别为:A(1,2),B(3,0),D(4,0),则点 C 坐标为 15.已知 x 2 5, y 2 5, 求x y 的值.
⑴在此期间该养殖场每天的捕捞量与前一天的捕捞量相比是如何变化的? ⑵假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第 x 天的收入 y (元)与 x (天) 之间的函数关系式?(当天收入=日销售额—日捕捞成本) (3)试说明⑵中的函数 y 随 x 的变化情况,并指出在第几天 y 取得最大值,最大值是多少?
9.如图,四边形 ABCD 是矩形,以 BC 为直径的半圆与 AD 边只有一个交点,且 AB=x,则阴影部分的面积为 10.先将一矩形 ABCD 置于直角坐标系中, 使点 A 与坐标系的原点重合, 边 AB、 AD 分别落在 x 轴、 y 轴上(如图 5), 再将此矩形在坐标平面内按逆时针方向绕原点旋转 30°(如图 6),若 AB=4,BC=3,则图 5 和图 6 中点 C 的坐 标分别为
九年级数学 上期末复习
1.袋子中有两种颜色同样大小的 4 个小球,其中 3 个红球,1 个白球,从袋中任意地同时摸出两个小球,则这两 个小球颜色相同的概率是( ) A.
2022年人教版中考数学一轮复习:四边形综合 专项练习题2(Word版,含答案)

2022年人教版中考数学一轮复习:四边形综合专项练习题21.如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC=BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是(限填序号).2.如图1,平行四边形纸片ABCD的面积为120,AD=15.今沿两对角线将四边形ABCD剪成甲、乙.丙、丁四个三角形纸片.若将甲、丙合并(AD、CB重合)形成一个对称图形戊,如图2所示.则图形戊的两条对角线长度之和为.3.如图,菱形ABCD的两条对角线AC,BD交于点O,BE⊥AD于点E,若AC=8,BD=6,则BE的长为.4.如图,在▱ABCD中,∠A=70°,DB=DC,CE⊥BD于E,则∠BCE=.5.如图,在菱形ABCD中,AB=BD,点E、F分别在AB、AD上,且AE=DF,连接BF与DE交于点H,若CG=1,则S=.四边形BCDG6.如图,正方形瓷砖图案是四个全等且顶角为45°的等腰三角形.已知该瓷砖的面积是1m2,则中间小正方形的面积为m2.7.如图所示,在Rt△ABC外作等边△ADE,点E在AB边上,AC=5,∠ABC=30°,AD=3.将△ADE沿AB方向平移,得到△A′D′E′,连接BD′.给出下列结论:①AB=10;②四边形ADD′A′为平行四边形;③AB平分∠D′BC;④当平移的距离为4时,BD′=3.其中正确的是(填上所有正确结论的序号).8.如图,菱形ABCD的对角线AC,BD相交于点O,P为AB边上一动点(不与点A,B重合),PE⊥OA于点E,PF⊥OB于点F,若AB=4,∠BAD=60°,则EF的最小值为.9.如图,在正方形ABCD中,点E为BC边上一点,且CE=2BE,点F为对角线BD上一点,且BF=2DF,连接AE交BD于点G,过点F作FH⊥AE于点H,若HG=2cm,则正方形ABCD 的边长为cm.10.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为.11.如图,在正方形ABCD内有一点P,若AP=4,BP=7,DP=9,则∠APB的度数为.12.如图是两个边长分别为2a,a的正方形,则△ABC的面积是.13.如图,点P是正方形ABCD内一点,连接AP、BP、DP,若AP=1,PD=,∠APB=135°,则正方形ABCD的面积为.14.如图,正三角形ABC与正方形CDEF的顶点B,C,D三点共线,动点P沿着CA由C向A 运动.连接EP,若AC=10,CF=8.则EP的最小值是.15.如图,正方形ABCD中,H为CD上一动点(不含C、D),连接AH交BD于G,过点G作GE⊥AH交BC于E,过E作EF⊥BD于F,连接AE,EH.下列结论:①AG=EG;②∠EAH=45°;③BD=2GF;④GE平分∠FEC.正确的是(填序号).16.如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是.17.如图,在正方形ABCD中,点E在对角线AC上,EF⊥AB于点F,EG⊥BC于点G,连接FG,若AB=8,则FG的最小值为.18.如图,正方形ABCD的边长为2,点E是BC的中点,连接AE与对角线BD交于点G,连接CG并延长,交AB于点F,连接DE交CF于点H,连接AH.以下结论:①CF⊥DE;②=;③GH=;④AD=AH,其中正确结论的序号是.19.如图,矩形ABCD中,对角线AC、BD交于点O,AE⊥BD于E,若∠DAE=3∠BAE.则的值为.20.将矩形ABCD按如图所示的方式折叠,BE、EG、FG为折痕,若顶点A、C、D都落在点O 处,且点B、O、G在同一条直线上,同时点E、O、F在另一条直线上.(1)的值为.(2)若AD=4,则四边形BEGF的面积为.参考答案1.解:①∵四边形ABCD是平行四边形,AB=AD,∴平行四边形ABCD是菱形;②∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形;③∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,因此∠ABC=∠ADC时,四边形ABCD还是平行四边形;故答案为:①.2.解:如图,连接AD、EF,则可得对角线EF⊥AD,且EF与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=1520,∴BC=AD=15,EF×AD=×120,∴EF=8,又BC=15,∴则图形戊中的四边形两对角线之和为20+3=23,故答案为23.3.解:∵四边形ABCD是菱形,∴AO=CO=4,BO=DO=3,AC⊥BD,∴AD===5,=AD×BE=×AC×BD,∵S菱形ABCD∴BE=,故答案为:.4.解:∵四边形ABCD是平行四边形,∴∠BCD=∠A=70°,∵DB=DC,∴∠DBC=∠BCD=70°,∵CE⊥BD,∴∠CEB=90°,∴∠BCE=20°.故答案为:20°.5.解:过点C作CM⊥GB于M,CN⊥GD,交GD的延长线于N.∵四边形ABCD为菱形,∴AB=AD=CD=BC,∵AB=BD,∴AB=BD=AD=CD=BC,∴△ABD为等边三角形,△BCD是等边三角形,∴∠A=∠BDF=60°,∠ADC=60°,在△ADE和△DBF中,,∴△ADE≌△DBF(SAS),∴∠ADE=∠DBF,∵∠FBC =60°+∠DBF ,∠NDC =180°﹣(120°﹣∠ADE )=60°+∠ADE ,∴∠NDC =∠FBC ,在△CDN 和△CBM 中,,∴△CDN ≌△CBM (AAS ),∴CM =CN ,在Rt △CBM 与Rt △CDN 中,,∴Rt △CBM ≌Rt △CDN (HL ),∴S 四边形BCDG =S 四边形CMGN .S 四边形CMGN =2S △CMG ,∵∠CGM =60°,∴GM =CG =,CM =CG =,∴S 四边形BCDG =S 四边形CMGN =2S △CMG =2×××=, 故答案为:.6.解:如图,作大正方形的对角线,作小正方形的对角线并延长交大正方形各边于中点, 设小正方形的边长为xm , 则大正方形的边长为x +x x =(1)xm , ∵瓷砖的面积是1m 2,∴大正方形的边长为1m ,即(1)x =1, 解得x =﹣1, ∴中间小正方形的面积为()2=3﹣2, 故答案为:3﹣2.7.解:∵∠ACB=90°,AC=5,∠ABC=30°,∴AB=2AC=10,故①正确;由平移的性质得:A'D'=AD,A'D'∥AD,∴四边形ADD′A′为平行四边形,故②正确;当平移的距离为4时,EE'=4,∴BE'=AB﹣AE﹣EE'=10﹣3﹣4=3,由平移的性质得:∠A'D'E'=∠A'E'D'=∠AED=60°,A'D'=D'E'=DE=AD=3,∴BE'=D'E',∴∠E'BD'=∠E'D'B=∠A'E'D'=30°,∴∠A'D'B=60°+30°=90°,∴BD'=A'D'=3,故④正确;由④得:当平移的距离为4时,∠E'BD'=∠ABC=30°,故③错误;故答案为:①②④.8.解:连接OP,∵四边形ABCD是菱形,∴AC⊥BD,∠CAB=DAB=30°,∵PE⊥OA于点E,PF⊥OB于点F,∴∠EOF=∠OEP=∠OFP=90°,∴四边形OEPF是矩形,∴EF=OP,∵当OP取最小值时,EF的值最小,∴当OP⊥AB时,OP最小,∵AB=4,∴OB=AB=2,OA=AB=2,∴S=OA•OB=AB•OP,△ABO∴OP==,∴EF的最小值为,故答案为:.9.解:如图,过F作FI⊥BC于I,连接FE,FA,∴FI∥CD,∵CE=2BE,BF=2DF,∴设BE=EI=IC=a,CE=FI=2a,AB=3a,∴则FE=FC=FA=a,∴H为AE的中点,∴AH=HE=AE=a,∴AG=AH+GH=a+2,∵四边形ABCD是正方形,∴BE∥AD,∴==,∴GE=AG=(a+2),∵GE=HE﹣GH=a﹣2,∴(a+2)=a﹣2,解得,a=,∴AB=3a=.故答案为:.10.解:设图1中分成的直角三角形的长直角边为a,短直角边为b,,得,∴图1中菱形的面积为:×4=48,故答案为48.11.解:∵四边形ABCD为正方形,∴∠ABC=90°,BA=BC,∴△BAP绕点A逆时针旋转90°可得△ADE,连接PE,由旋转的性质得,ED=BP=7,AE=AP=4,∠PBE=90°,∠AED=∠APB,∴△APE为等腰直角三角形,∴PE=AP=4,∠AEP=45°,在△PED中,∵PD=9,ED=7,PE=4,∴DE2+PE2=DP2,∴△PED为直角三角形,∠PED=90°,∴∠AED=90°+45°=135°,∴∠APB=135°,故答案为:135°.12.解:∵两个正方形的边长分别为2a,a,∴△ABC的的高为:2a+a,底边为:BC=a,∴△ABC的面积是:(2a+a)•a=a2.故答案为:a2.13.解:如图,将△APB绕点A逆时针旋转90°得到△AHD,连接PH,过点A作AE⊥DH交DH的延长线于E,∴△APB≌△AHD,∠PAH=90°,∴PB=DH,AP=AH=1,∠APB=∠AHD=135°,∴PH=AP=,∠APH=∠AHP=45°,∴∠PHD=90°,∴DH===2,∵∠AHD=135°,∴∠AHE=45°,∵AE⊥DH,∴∠AHE=∠HAE=45°,∴AE=EH,AH=AE,∴AE=EH=,∴DE=,∵AD2=AE2+DE2=13,∴正方形的面积为13,故答案为:13.14.解:如图,过点E作EP⊥AC,交FC于点G,当EP⊥AC时,EP取得最小值,∵正三角形ABC与正方形CDEF的顶点B,C,D三点共线,∴∠ACB=60°,∠FCD=90°,∴∠ACF=30°,∴∠CGP=∠EGF=60°,∵∠F=90°,∴∠FEG=30°,设PG=x,则CG=2x,∴FG=CF﹣CG=8﹣2x,∴EG=2FG=2(8﹣2x),∵FG=EF,∴8﹣2x=8×,∴x=4﹣,∴EP=EG+PG=2(8﹣2x)+x=16﹣3x=4+4.故答案为:4+4.15.解:连接GC,延长EG交AD于点L,∵四边形ABCD为正方形,∴AD∥CB,AD=CD,∠ADG=∠CDG=45°,∵DG=DG,∴△ADG≌△CDG(SAS),∴AG=GC,∠HCG=∠DAG,∵∠HCG+∠GCB=90°,∴∠DAG+∠GCB=90°,∵GE⊥AH,∴∠AGL=90°,∴∠ALG+∠LAG=90°,∵AD∥CB,∴∠ALG=∠GEC,∴∠GEC+∠LAG=90°,∴∠GEC=∠GCE,∴GE=GC,∴AG=EG,故①正确;∵GE⊥AH,∴∠AGE=90°,∵AG=EG,∴∠EAH=45°,故②正确;连接AC交BD于点O,则BD=2OA,∵∠AGF+∠FGE=∠GEF+∠EGF=90°,∴∠AGF=∠GEF,∵AG=GE,∠AOG=∠EFG=90°,∴△AOG≌△GFE(AAS),∴OA=GF,∵BD=2OA,∴BD=2GF,故③正确.过点G作MN⊥BC于点N,交AD于点M,交BC于点N,∵G是动点,∴GN的长度不确定,而FG=OA是定值,∴GE不一定平分∠FEC,故④错误;故答案为:①②③.16.解:将△ABD绕点D顺时针旋转90°,得△MCD,如图:由旋转不变性可得:CM=AB=4,AD=MD,且∠ADM=90°,∴△ADM是等腰直角三角形,∴AD=AM,AD最大,只需AM最大,而在△ACM中,AM<AC+CM,∴当且仅当A、C、M在一条直线上,即不能构成△ACM时,AM最大,且最大值为AC+CM =AC+AB=7,此时AD=AM=,故答案为:.17.解:连接BE,如图:∵四边形ABCD是正方形,∴∠ABC=90°,又EF⊥AB于点F,EG⊥BC,∴四边形FBGE是矩形,∴FG=BE,所以当BE最小时,FG就最小,根据垂线段最短,可知当BE⊥AC时,BE最小,当BE⊥AC时,在正方形ABCD中,△AEB是等腰直角三角形,在Rt△ABE中,根据勾股定理可得2BE2=AB2=64,解得BE=4,∴FG最小为4;故答案为4.18.解:∵四边形ABCD是边长为2的正方形,点E是BC的中点,∴AB=AD=BC=CD=2,BE=CE=,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,∴△ABE≌△DCE(SAS),∴∠CDE=∠BAE,DE=AE,∵AB=BC,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS),∴∠BAE=∠BCF,∴∠BCF=∠CDE,又∵∠CDE+∠CED=90°,∴∠BCF+∠CED=90°,∴∠CHE=90°,∴CF⊥DE,故①正确;∵CD=2,CE=,由勾股定理得,DE===5,=CD×CE=DE×CH,∵S△DCE∴CH=2,∵∠CHE=∠CBF,∠BCF=∠ECH,∴△ECH∽△FCB,∴=,∴=,∴CF=5,∴HF=CF﹣CH=3,∴=,故②正确;如图,过点A作AM⊥DE于点M,∵DC=2,CH=2,由勾股定理得,DH===4,∵∠CDH+∠ADM=90°,∠DAM+∠ADM=90°,∴∠CDH=∠DAM,又∵AD=CD,∠CHD=∠AMD=90°,∴△ADM≌△DCH(AAS),∴CH=DM=2,AM=DH=4,∴MH=DM=2,又∵AM⊥DH,∴AD=AH,故④正确;∵DE=5,DH=4,∴HE=1,∴ME=HE+MH=3,∵AM⊥DE,CF⊥DE,∴∠AME=∠GHE,∵∠HEG=∠MEA,∴△MEA∽△HEG,∴=,∴=,∴HG=,故③错误.综上,正确的有:①②④.故答案为:①②④.19.解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∴∠OAB=∠OBA,∵∠DAE=3∠BAE,∴∠BAE=×90°=22.5°,∵AE⊥BD,∴∠OAB=∠OBA=90°﹣22.5°=67.5°,∴∠OAE=67.5°﹣22.5°=45°,∴△AOE是等腰直角三角形,∴OA=OE,设OE=a,则OB=OA=a,∴BE=OB﹣OE=(﹣1)a,BD=2OB=2a,∴DE=BD﹣BE=2a﹣(﹣1)a=(+1)a,∴==,故答案为:.20.解:(1)由折叠可得,AE=OE=DE,CG=OG=DG,∴E,G分别为AD,CD的中点,设CD=2a,AD=2b,则AB=OB=2a,DG=OG=CG=a,BG=3a,BC=AD=2b,∵∠C=90°,在Rt△BCG中,CG2+BC2=BG2,∴a2+(2b)2=(3a)2,∴b=a,∴===,由折叠可得:∠ABE=∠EBG,∠AEB=∠BEO,∠DEG=∠GEO,∵∠AEB=∠BEO+∠DEG=∠GEO=180°,∴∠BEG=90°,∵∠A=∠BEG=90°,∠ABE=∠EBG,∴△ABE∽△EBG,∴==,故答案为:;(2)∵AD=BC=2b=4,∴b=2,a=2,∴AB=OB=4,CG=2,AE=OE=2,∴BG=6,∵∠OBF =∠CBG ,由折叠可得∠BOF =∠BCG =90°, ∴△BOF ∽△BCG , ∴=, 即=,∴OF =,∴S 四边形EBFG =S △BEG +S △BFG =×6×2+×6×=9. 故答案为:9.。
2021年九年级中考数学复习专题-【菱形及其性质】选择题考点专练(二)(解析版)

2021年中考数学复习专题-【菱形及其性质】选择题考点专练(二)1.如图,在菱形ABCD中,对角线AC、BD相交于点O.下列结论中不一定成立的是()A.AB=AD B.AC=BD C.AC⊥BD D.OA=OC 2.如图,菱形ABCD中,对角线AC,BD相交于点O,E是AD边的中点,菱形ABCD 的周长为32,则OE的长等于()A.4 B.8 C.16 D.183.如图,平行四边形ABCD中,对角线AC、BD相交于O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②EG=GF;③△EFG≌△GBE;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是()A.①②③B.①③④C.①②⑤D.②③⑤4.将等腰△ABC沿对称轴折叠,使点B与C重合,展开后得到折痕AF,再沿DE折叠,使点A与F重合,展开后得到折痕DE,则四边形ADFE是()A.平行四边形B.菱形C.矩形D.等腰梯形5.如图,▱ABCD的对角线AC、BD相交于点O,那么下列条件中,能判断▱ABCD是菱形的为()A.AO=CO B.AO=BO C.∠AOB=∠BOC D.∠BAD=∠ABC 6.如图,在四边形ABCD中,AB=1,则四边形ABCD的周长为()A.1 B.4 C.D.7.如图,两条宽度都为1的纸条,交叉重叠放在一起,它们的夹角为锐角α,它们重叠部分(图中阴影部分)的面积是,那么sinα的值为()A.B.C.D.8.如图,在∠AOB中,以点O为圆心,任意长为半径作弧,交射线OA于点C,交射线OB于点D,再分别以C、D为圆心,OC的长为半径,两弧在∠AOB的内部交于点E,作射线OE,若OC=10,OE=16,则C、D两点之间距离为()A.10 B.12 C.13 D.9.如图,AC、BD是菱形ABCD的对角线,E、F分别是边AB、AD的中点,连接EF,EO,FO,则下列结论错误的是()A.EF=DO B.EF⊥AOC.四边形EOFA是菱形D.四边形EBOF是菱形10.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为()A.2 B.3 C.4 D.511.如图,一个菱形被分割成4个直角三角形和1个矩形后仍是中心对称图形.若只知道下列选项中的一个角度,就一定能算出这个矩形的长与宽之比的是()A.∠BAF B.∠CBGC.∠BAD D.以上选项都不可以12.如图是以KL所在的直线为对称轴的轴对称图形,六边形EFGHLK的各个内角相等,记四边形HCH′L、四边形EKE′A、△BGF的周长分别为C1、C2、C3,且C1=2C2=4C3,已知FG=LK,EF=6,则AB的长是()A.9.5 B.10 C.10.5 D.1113.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm14.如图,在直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是﹣1,则菱形OACB的边长为()A.3 B.C.5 D.15.如图,在菱形ABCD中,∠ABC=60°,点P在对角线BD上(不与点B,D重合),PE∥BC,PF∥DC.设AB=m,AP=a,PF=b,PE=c,下列表述正确的是()A.c2+b2=a2B.a+b=c+mC.c2+b2﹣bc=a2D.a+b+c≥2m16.如图,在平面直角坐标系中,四边形OBCD是菱形,OB=OD=1,∠BOD=60°将菱形OBCD绕点O旋转任意角度,得到菱形OB1C1D1,则点C1的纵坐标的最小值为()A.B.﹣1 C.﹣D.117.如图,在菱形ABCD中,∠A=60°,AD=8.P是AB边上的一点,E,F分别是DP,BP的中点,则线段EF的长为()A.8 B.2C.4 D.218.如图,△ABC是边长为2的等边三角形,将△ABC沿射线BC向右平移到△DCE,连接AD、BD,下列结论错误的是()A.AD=BC B.BD⊥DEC.四边形ACED是菱形D.四边形ABCD的面积为419.如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE.其中正确的个数是()A.1 B.2 C.3 D.420.在小正方形组成网格图中,四边形ABCD的顶点都在格点上,如图所示.则下列结论错误的是()A.AD∥BCB.DC=ABC.四边形ABCD是菱形D.将边AD向右平移3格,再向上平移7格就与边BC重合参考答案1.解:∵四边形ABCD是菱形,∴AB=AD,OA=OC,AC⊥BD,无法得出AC=BD,故选项B符合题意,选项A、C、D不符合题意,故选:B.2.解:∵菱形ABCD的周长为32,∴AB=8,∵E为AD边中点,O为BD的中点∴OE=AB=4.故选:A.3.解:∵四边形ABCD是平行四边形∴BO=DO=BD,AD=BC,AB=CD,AB∥BC,又∵BD=2AD,∴OB=BC=OD=DA,且点E是OC中点,∴BE⊥AC,故①正确,∵E、F分别是OC、OD的中点,∴EF∥CD,EF=CD,∵点G是Rt△ABE斜边AB上的中点,∴GE=AB=AG=BG∴EG=EF=AG=BG,无法证明GE=GF,故②错误,∵BG=EF,AB∥CD∥EF∴四边形BGFE是平行四边形,∴GF=BE,且BG=EF,GE=GE,∴△BGE≌△FEG(SSS)故③正确∵EF∥CD∥AB,∴∠BAC=∠ACD=∠AEF,∵AG=GE,∴∠GAE=∠AEG,∴∠AEG=∠AEF,∴AE平分∠GEF,故④正确,若四边形BEFG是菱形∴BE=BG=AB,∴∠BAC=30°与题意不符合故⑤错误故选:B.4.解:∵等腰△ABC沿对称轴折叠后点B与C重合,∴AF⊥BC∵沿DE折叠,使点A与F重合,∴ED∥CB∴AF⊥DE又∵点A与F重合,点B与C重合,∴AF与DE互相平分,∵AF与DE是四边形AEFD的对角线,AF与DE垂直且平分,∴四边形AEFD是菱形.故选:B.5.解:选项A,由平行四边形的性质可知,对角线互相平分,故A不符合题意;选项B,由▱ABCD中AO=BO可推得AC=BD,可以证明▱ABCD为矩形,但不能判定▱ABCD为菱形,故B不符合题意;选项C,当∠AOB=∠BOC时,由于∠AOB+∠BOC=180°,故∠AOB=∠BOC=90°,而对角线互相垂直的平行四边形是菱形,故C符合题意;选项D,由平行四边形的性质可知,∠BAD+∠ABC=180°,故当∠BAD=∠ABC时,∠BAD=∠ABC=90°,从而可判定▱ABCD为矩形,故D不符合题意.综上,只有选项C可以判定▱ABCD是菱形.故选:C.6.解:由图可知:AB∥CD,BC∥AD,∴四边形ABCD是平行四边形,∵AB=BC,∴平行四边形ABCD是菱形,∴四边形ABCD的周长=4×1=4,故选:B.7.解:如图,过点A作AE⊥BC,AF⊥CD,∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵四边形ABCD的面积是1.5,∴BC×AE=CD×AF,且AE=AF=1,∴BC=CD,∴四边形ABCD是菱形,∴AD=CD,∵1.5=CD×AF,∴CD=,∴AD=CD=,∴sinα==,故选:B.8.解:由作图过程可知:OC=OD,OC=CE=DE,∵OC=OD=DE=CE,∴四边形ODEC是菱形.如图,连接CD交OE于点F,∵四边形OCED是菱形,∴OE⊥CD,OF=FE=OE=8,OC=10,∴CF=DF=6,∴CD=12.故选:B.9.解:∵菱形ABCD,∴BO=OD,BD⊥AC,∵E、F分别是边AB、AD的中点,∴2EF=BD=BO+OD,EF∥BD,∴EF=DO,EF⊥AO,∵E是AB的中点,O是BD的中点,∴2EO=AD,同理可得:2FO=AB,∵AB=AD,∴AE=OE=OF=AF,∴四边形EOFA是菱形,∵AB≠BD,∴四边形EBOF是平行四边形,不是菱形,故选:D.10.解:根据作图,AC=BC=OA,∵OA=OB,∴OA=OB=BC=AC,∴四边形OACB是菱形,∵AB=2cm,四边形OACB的面积为4cm2,∴AB•OC=×2×OC=4,解得OC=4cm.故选:C.11.解:如图,连接AC,BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°,连接EG,FH,∵一个菱形被分割成4个直角三角形和1个矩形后仍是中心对称图形,∴EG与FH的交点也是点O,∵四边形EFGH是矩形,∴∠HEF=∠AFB=∠EFG=90°,∴∠AOB=∠AFB=90°,∴点A,O,F,B共圆,∴∠AFO=∠ABO,∵∠AOB=∠HEF=90°,∴△AOB∽△HEF,∴,∴,在Rt△AOB中,tan∠BAO=,∵AC是菱形的对角线,∴∠BAO=,∴=tan,故选:C.12.解:∵六边形EFGHLK的各个内角相等,∴该六边形的每个内角为120°,每个外角都是60°,∴△BFG,△AEK,△CHL都是等边三角形,∴∠B=∠BAC=∠ACB=60°,BF=FG,AE=AK,CL=HL,∴△ABC是等边三角形,∴AB=AC,即BF+FE+AE=AK+KL+CL,又∵BF=FG=KL,∴EF=CL=6=CH,由轴对称可得,四边形HCH′L、四边形EKE′A都是菱形,∵C1=2C2,∴AE=CH=3,又∵2C2=4C3,∴C3=C2=×12=6,∴BF=×6=2,∴AB=BF+EF+AE=2+6+3=11,故选:D.13.解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8.故选:A.14.解:连接AB交OC于点D,∵四边形ABCD是菱形,∴AB⊥OC,OD=CD,AD=BD,∵点C的坐标是(4,0),点B的纵坐标是﹣1,∴OC=4,BD=AD=1,∴OD=CD=2,∴菱形OACB的边长为=.故选:D.15.解:如图,连接PC,过点P作PH⊥BC,交BC延长线于点H,∵四边形ABCD是菱形,∴AD=CD,∠ADP=∠CDP,且PD=PD,∴△APD≌△CPD(SAS),∴AP=CP=a,∵PE∥BC,PF∥DC,∴四边形PECF是平行四边形,∴PE=CF=c,∵PF∥DC∥AB,∴∠PFC=∠ABC=60°,∵PH⊥BC,∴∠FPH=30°,∴FH=,PH=FH=b,∴CH=﹣c,∵PC2=CH2+PH2,∴a2=(﹣c)2+(b)2,∴c2+b2﹣bc=a2,故选:C.16.解:如图,连接OC,过点C作CE⊥x轴,∵四边形OBCD是菱形,∴OD∥BC,∴∠BOD=∠CBE=60°,且CE⊥OB于E,∴BE=BC=,CE=,∴OC===∴当点C1在y轴上时,点C1的纵坐标有最小值为﹣,故选:C.17.解:如图连接BD.∵四边形ABCD是菱形,∴AD=AB=8,∵∠A=60°,∴△ABD是等边三角形,∴BA=AD=8,∵PE=ED,PF=FB,∴EF=BD=4.故选:C.18.解:∵△ABC沿射线BC向右平移到△DCE,∴AD=BC,AD∥BC,故选项A正确;∴四边形ABCD为平行四边形,又△ABC为等边三角形,∴AB=BC,∴四边形ABCD为菱形,∴AC⊥BD,由平移可知:AC∥DE,则DE⊥BD,故选项B正确;∵△ABC沿射线BC向右平移到△DCE,∴AD=CE,AD∥CE,∴四边形ACED为平行四边形,由平移可得△DCE也为等边三角形,∴DE=CE,∴四边形ACED为菱形,选项C正确;过A作AF⊥BC,如图所示:∵△ABC为边长为2的等边三角形,∴BF=CF=BC=1,在Rt△ABF中,AB=2,BF=1,根据勾股定理得:AF==,则S 菱形ABCD=BC•AF=2,选项D错误,则原题结论错误的选项为D.故选:D.19.解:∵△ABC、△DCE是等边三角形,∴∠ACB=∠DCE=60°,AC=CD,∴∠ACD=180°﹣∠ACB﹣∠DCE=60°,∴△ACD是等边三角形,∴AD=AC=BC,故①正确;由①可得AD=BC,∵AB=CD,∴四边形ABCD是平行四边形,∴BD、AC互相平分,故②正确;由①可得AD=AC=CE=DE,故四边形ACED是菱形,即③正确.∵四边形ABCD是平行四边形,BA=BC,∵四边形ABCD是菱形,∴AC⊥BD,∵AC∥DE,∴∠BDE=∠COD=90°,∴BD⊥DE,故④正确,综上可得①②③④正确,共4个.故选:D.20.解:A、由图形可知:BC和AD是连接7×2的图形的对角线,即AD∥BC,故本选项错误;B、设小正方形的边长是1,由勾股定理得:DC==,AB=,即AB=CD,故本选项错误;C、由图形可知:AD∥BC,CD∥AB,即四边形ABCD是菱形,但BC==≠AB,故本选项正确;D、将边AD向右平移3格,再向上平移7格就与边BC重合,正确,故本选项错误;故选:C.。
人教版九年级数学第二十二章二次函数解答题专题复习 2含解析.docx

第二十二章《二次函数》解答题专题复习(2)一、解答题1.如图,在平面直角坐标系中,以点M (0, 3)为圆心、5为半径的圆与x轴交于点A、B (点A在点B的左侧),与y轴交于点C、D (点C在点D的上方),经过B、C两点的抛物线的顶点E在第二象限.(1)求点A、B两点的坐标.(2)当抛物线的对称轴与(DM相切时,求此时抛物线的解析式.(3)连结AE、AC、CE,若tanZCA£ = .①求点E坐标;②在直线BC上是否存在点P,使得以点B、M、P为顶点的三角形和AACE相似?若存在,直接写出点P的坐标;若不存在,请说明理由.2.抛物线y=ax2—2ax—3a (a<0)交x轴于点4、B,交y轴于点C,它的对称轴交x轴于点E.(1)直接写出点E的坐标为⑵如图,直线y=x与抛物线交于点/W、N,求OM ON的值.(3)如图2,过点C作CD//X轴交抛物线于点D,连接DE并延长交y轴于点F,交抛物线于点G.直线AF交CD于点交抛物线于点K,连接HE、GK,求证:HE//GK.3.如图,已知顶点为C(0,—3 )的抛物线y^ax2+b(a^Q)与工轴交于A, 3两点,直线y = x + m过顶点C和点3.(1)求m的值;(2)求函数_y = ax2 + b(a 0)的解析式;(3)抛物线上是否存在点肱,使得ZMCB = 15。
?若存在,求出点肱的坐标;若不存在,请说明理由.4.如图,已知在平面直角坐标系xOy中,抛物线y=ax2 - 2x+c与x轴交于点A和点B (1, 0),与y轴相交于点C (0, 3).(1)求抛物线的解析式和顶点D的坐标;(2)求证:ZDAB=ZACB;(3)点Q在抛物线上,且AADQ是以AD为底的等腰三角形,求Q点的坐标.5.如图,抛物线y=mx2-2mx-3m (m>0)与x轴交于A、B两点,与y轴交于点C,点M 为抛物线的顶点,且OC=OB.(1)求抛物线的解析式.(2)若抛物线上有一点P,连PC交线段BM于Q点,且S ABPQ=S ACMQ,求P点的坐标.(3)把抛物线沿x轴正半轴平移n个单位,使平移后的抛物线交直线BC于E、F两点,且E、F关于点B对称,求n的值.6.用配方法说明:无论x取何值,代数式x2-4x+5的值总大于0,再求出当x取何值时, 代数式x2 - 4X+5的值最小?最小值是多少?7.如图,抛物线y = x2-2x-3与x轴交于A、B两点,与y轴交于点C.(1)分别求出点A、B、C的坐标;(2)设抛物线y = x2-2x-3的顶点为虬求四边形ABMC的面积.8.已知抛物线y=ax,经过点A (-2, 4).(1)求该抛物线的函数关系式;(2)判断点B (一后,-3)是否在此抛物线上;(3)若图像上有两点M (xi, yi)、N (x2, y2),其中闭<|芍|,则小事(在横线上填“〈,," = 或., 39.已知抛物线y = ax-+x + -与x轴交于点4、点B点力在点B的左边交y轴于点COB=20。
2023-2024学年苏科版九年级数学上册第2章综合训练卷附答案解析

2023-2024学年九年级数学上册第2章综合训练卷对称图形-圆(满分120分)一、选择题(本大题共有10个小题,每小题3分,共30分)1.如图,AB 是O 的直径,C 是O 上一点.若66BOC ∠=︒,则A ∠=()A.66︒B.33︒C.24︒D.30︒2.如图,O 的半径为5,弦8AB =,OC AB ⊥,垂足为点P ,则CP 的长等于()A.2B.2.5C.3D.43.下列说法中,正确的是()A.经过半径的端点并且垂直于这条半径的直线是这个圆的切线B.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.90°的圆周角所对的弦是直径D.如果两个圆周角相等,那么它们所对的弦相等.4.如图,AB 、BC 为O 的两条弦,连接OA 、OC ,点D 为AB 的延长线上一点,若61CBD ∠= ,则AOC ∠的度数为()A.110 B.119 C.122 D.132o5.如图,CD 是O 的直径,A 、B 是O 上的两点,若40ACD ∠=︒,则ABC ∠的度数为()A.50︒B.40︒C.20︒D.140︒6.如图,在O 中,25CDB ∠=︒,过点C 作O 的切线交AB 的延长线于点E ,则E ∠的度数为()A.40︒B.50︒C.55︒D.60︒7.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点M 表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O 为圆心,5m 为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB 长为8m ,则筒车工作时,盛水桶在水面以下的最大深度为()A.1米B.2米C.3米D.4米8.如图,BC 是O 的直径,点,A D 在O 上,若30,ADC ∠=︒则ACB ∠的度数为()A.30°B.40°C.50°D.60°9.如图1是一块弘扬“社会主义核心价值观”的扇面宜传展板,该展板的部分示意图如图2所示,它是以O 为圆心,,OA OB 长分别为半径,圆心角120O ∠=︒形成的扇面,若3m, 1.5m OA OB ==,则阴影部分的面愁为()A.24.25m πB.225m πC.23m πD.22.25m π10.如图,将含60︒角的直角三角板ABC 绕顶点A 顺时针旋转45︒后得到AB C ''△,点B 经过的路径为弧BB ',若60BAC ∠=︒,3AC =,则图中阴影部分的面积是()A.3π4B.3π2C.9π2D.3π二、填空题(本大题共有8个小题,每小题3分,共24分)11.已知圆柱的母线长是10cm ,侧面积是240cm π,则这个圆柱的底面半径是cm .12.某排水管的截面如图,已知截面圆半径OB=10cm,水面宽AB 是16cm,则截面水深CD 为.13.如图,在正六边形ABCDEF 中,分别以B ,E 为圆心,以边长为半径作弧,图中阴影部分的面积为12π,则正六边形的边长为_______14.如图,AB 是⊙O 的直径,点C 为圆上一点,3,AC ABC =∠的平分线交AC 于点D ,1CD =,则⊙O 的直径为________15.如图,⊙C 过原点,与x 轴、y 轴分别交于A、D 两点.已知∠OBA=30°,点D 的坐标为(0,3半径是16.如图,PA、PB是⊙O的两条切线,A、B是切点,PA3,阴影部分的面积为6π,则⊙O的半径长为.17.如图,圆锥底面圆的半径2AB=,高42BC=18.在中国书画艺术中,扇面书画是一种特殊的形式.如图扇面书法作品的形状是同心圆作出的扇面,扇面弧所对的圆心角是120︒,大圆半径是20cm,小圆半径是10cm,则此书法作品的扇面面积是______三、解答题(本大题共有6个小题,共46分)19.如图,BE是O的直径,点A和点D是⨀0上的两点,过点A作⊙O的切线交BE延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AC=4,CE=2,求⊙O半径的长.20.已知:如图,在ABC 中,AB AC =,以AB 为直径的O 交BC 于点D ,过点D 作DE AC ⊥于点E .求证:DE 是O 的切线.21.如图,⊙O 的直径CD 垂直于弦AB,垂足为E,F 为DC 延长线上一点,且∠CBF=∠CDB.(1)求证:FB 为⊙O 的切线;(2)若AB=8,CE=2,求⊙O 的半径.22.已知AB 是⊙O 的直径,弦CD 与AB 相交,∠BAC=40°.(1)如图1,若D 为弧AB 的中点,求∠ABC 和∠ABD 的度数;(2)如图2,过点D 作⊙O 的切线,与AB 的延长线交于点P,若DP∥AC,求∠OCD 的度数.23.如图,BC 是O 的直径,CE 是O 的弦,过点E 作O 的切线,交CB 的延长线于点G ,过点B 作BF GE ⊥于点F ,交CE 的延长线于点A .(1)求证:2ABG C ∠=∠;(2)若33GF =6GB =,求O 的半径.24.如图,在Rt △ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,点O 在AB 上,以点O 为圆心,OB 为半径的圆经过点D ,交BC 于点E .(1)求证:AC 是⊙O 的切线;(2)若OB =10,CD =8,求CE 的长.(解答卷)二、选择题(本大题共有10个小题,每小题3分,共30分)1.如图,AB 是O 的直径,C 是O 上一点.若66BOC ∠=︒,则A ∠=()A.66︒B.33︒C.24︒D.30︒【答案】B2.如图,O 的半径为5,弦8AB =,OC AB ⊥,垂足为点P ,则CP 的长等于()A.2B.2.5C.3D.4【答案】A3.下列说法中,正确的是()A.经过半径的端点并且垂直于这条半径的直线是这个圆的切线B.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.90°的圆周角所对的弦是直径D.如果两个圆周角相等,那么它们所对的弦相等.【答案】C7.如图,AB 、BC 为O 的两条弦,连接OA 、OC ,点D 为AB 的延长线上一点,若61CBD ∠= ,则AOC ∠的度数为()A.110 B.119 C.122 D.132o【答案】C8.如图,CD 是O 的直径,A 、B 是O 上的两点,若40ACD ∠=︒,则ABC ∠的度数为()A.50︒B.40︒C.20︒D.140︒【答案】A9.如图,在O 中,25CDB ∠=︒,过点C 作O 的切线交AB 的延长线于点E ,则E ∠的度数为()A.40︒B.50︒C.55︒D.60︒【答案】A7.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点M 表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O 为圆心,5m 为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB 长为8m ,则筒车工作时,盛水桶在水面以下的最大深度为()A.1米B.2米C.3米D.4米【答案】B8.如图,BC 是O 的直径,点,A D 在O 上,若30,ADC ∠=︒则ACB ∠的度数为()A.30°B.40°C.50°D.60°【答案】D9.如图1是一块弘扬“社会主义核心价值观”的扇面宜传展板,该展板的部分示意图如图2所示,它是以O 为圆心,,OA OB 长分别为半径,圆心角120O ∠=︒形成的扇面,若3m, 1.5m OA OB ==,则阴影部分的面愁为()A.24.25m πB.225m πC.23m πD.22.25m π【答案】D11.如图,将含60︒角的直角三角板ABC 绕顶点A 顺时针旋转45︒后得到AB C ''△,点B 经过的路径为弧BB ',若60BAC ∠=︒,3AC =,则图中阴影部分的面积是()A.3π4B.3π2C.9π2D.3π【答案】C三、填空题(本大题共有8个小题,每小题3分,共24分)11.已知圆柱的母线长是10cm ,侧面积是240cm π,则这个圆柱的底面半径是cm .【答案】212.某排水管的截面如图,已知截面圆半径OB=10cm,水面宽AB 是16cm,则截面水深CD 为.【答案】4cm.13.如图,在正六边形ABCDEF 中,分别以B ,E 为圆心,以边长为半径作弧,图中阴影部分的面积为12π,则正六边形的边长为_______【答案】3214.如图,AB 是⊙O 的直径,点C 为圆上一点,3,AC ABC =∠的平分线交AC 于点D ,1CD =,则⊙O 的直径为________【答案】2317.如图,⊙C 过原点,与x 轴、y 轴分别交于A、D 两点.已知∠OBA=30°,点D 的坐标为(0,3半径是【答案】418.如图,PA、PB是⊙O的两条切线,A、B是切点,PA3,阴影部分的面积为6π,则⊙O的半径长为.【答案】317.如图,圆锥底面圆的半径2AB=,高42BC=【答案】12π19.在中国书画艺术中,扇面书画是一种特殊的形式.如图扇面书法作品的形状是同心圆作出的扇面,扇面弧所对的圆心角是120︒,大圆半径是20cm,小圆半径是10cm,则此书法作品的扇面面积是______【答案】100πcm2三、解答题(本大题共有6个小题,共46分)19.如图,BE是O的直径,点A和点D是⨀0上的两点,过点A作⊙O的切线交BE延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AC=4,CE=2,求⊙O半径的长.解:(1)连接OA,∵∠ADE=25°,由圆周角定理得:∠A0C=2∠ADE=50°,∵AC 切⨀O 于A,∴∠OAC=90°,∴∠C=180°-∠AOC-∠OAC=180°-50°-90°=40°;(2)设OA OE r ==,在Rt OAC 中,由勾股定理得:222OA AC OC +=,即()22242r r +=+,解得:r=3,答:⨀O 半径的长是3.20.已知:如图,在ABC 中,AB AC =,以AB 为直径的O 交BC 于点D ,过点D 作DE AC ⊥于点E .求证:DE 是O 的切线.证明:连接OD .∵OD =OB ,∴∠B =∠ODB .∵AB =AC ,∴∠B =∠C ,∴∠C =∠ODB ,∴OD ∥AC ,∴∠ODE =∠DEC ;∵DE ⊥AC ,∴∠DEC=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线.21.如图,⊙O的直径CD垂直于弦AB,垂足为E,F为DC延长线上一点,且∠CBF=∠CDB.(1)求证:FB为⊙O的切线;(2)若AB=8,CE=2,求⊙O的半径.解:(1)证明:连接O B.∵CD是直径,∴∠CBD=90°,又∵OB=OD,∴∠OBD=∠D,又∠CBF=∠D,∴∠CBF=∠OBD,∴∠CBF+∠OBC=∠OBD+∠OBC,∴∠OBF=∠CBD=90°,即OB⊥BF,∴FB是圆的切线;(2)∵CD是圆的直径,CD⊥AB,∴BE=AB=4,设圆的半径是R,在直角△OEB 中,根据勾股定理得:R 2=(R ﹣2)2+42,解得:R =5.22.已知AB 是⊙O 的直径,弦CD 与AB 相交,∠BAC=40°.(1)如图1,若D 为弧AB 的中点,求∠ABC 和∠ABD 的度数;(2)如图2,过点D 作⊙O 的切线,与AB 的延长线交于点P,若DP∥AC,求∠OCD 的度数.解:(1)∵AB 是⊙O 的直径,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D 为弧AB 的中点,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)连接OD,∵DP 切⊙O 于点D,∴OD⊥DP,即∠ODP=90°,∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD 是△ODP 的一个外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.24.如图,BC 是O 的直径,CE 是O 的弦,过点E 作O 的切线,交CB 的延长线于点G ,过点B 作BF GE ⊥于点F ,交CE 的延长线于点A .(1)求证:2ABG C ∠=∠;(2)若33GF =6GB =,求O 的半径.解:(1)证明:连接OE ,∵EG 是O 的切线,∴OE EG ⊥,∵BF GE ⊥,∴OE AB ,∴A OEC ∠=∠,∵OE OC =,∴OEC C ∠=∠,∴A C ∠=∠,∵ABG A C ∠=∠+∠,∴2ABG C ∠=∠;(2)∵BF GE ⊥,∴90BFG ∠=︒,∵33GF =6GB =,∴223BF BG GF =-=,∵BF OE ∥,∴BGF OGE ∆∆ ,∴BFBG OE OG =,∴366OE OE =+,∴6OE =,∴O 的半径为6.24.如图,在Rt △ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,点O 在AB 上,以点O 为圆心,OB 为半径的圆经过点D ,交BC 于点E .(1)求证:AC 是⊙O 的切线;(2)若OB =10,CD =8,求CE 的长.解:(1)证明:连接OD ,∵OB=OD ,∴∠ODB =∠OBD .∵BD 平分∠ABC ,∴∠OBD =∠CBD ,∴∠ODB =∠CBD .∴∥OD BC ,∴∠ODA =∠C =90°,∵以点O 为圆心,OB 为半径的圆经过点D ,∴AC 是⊙O 的切线;(2)解:过点O 作OF ⊥BC 于F ,∴∠OFC =∠ODC =∠C =90°,∴四边形ODCF 是矩形,∴OF=CD =8,CF=OD =10.在Rt △OBF 中,222OF BF OB +=,∴22221086BF OB OF =--=,∵OF ⊥BC ,∴EF=BF =6,∴CE=CF-EF =10-6=4.。
湘教版九年级上册数学教材习题课件-复习题2

+ 2 = 0. (x – a)(x
解得 x1 + 2a) =
= 0.
所以 x – a = 0 或 x + 2a = 0. 解得 x1 = a,x2 = பைடு நூலகம்2a.
14. 已知 a,b,c 分别是 △ABC 的三边,其中 a = 1,c = 4,且关于 x 的方程 x2 – 4x + b = 0 有两 个相等的实数根,试判断 △ABC 的形状. 解:∵ 关于 x 的方程 x2 – 4x + b = 0 有两个相等 的实数根,
22
2
∴
原方程的根为
x1
=
3 2 15 ,x2
=
3 15 2
.
3. 解下列方程: (2)x(x + 5) = 24; 解:将原方程化简,整理,得 x2 + 5x – 24 = 0.
把方程左边因式分解,得 (x – 3)(x + 8) = 0. 由此得 x – 3 = 0 或 x + 8 = 0. 解得 x1 = 3,x2 = –8.
平方根的意义,得 x – 2 = 8 或 x – 2 = –8. 解得 x1 = 10,x2 = –6.
3. 解下列方程: (1)2x2 – 6x – 3 = 0;
解:这里 a = 2,b = –6,c = –3.
因而 b2 – 4ac = (–6)2 – 4×2×(–3) = 60 > 0,
∴ x =6 60 =3 15 .
∴ Δ = (–4)2 – 4b = 0,解得 b = 4. 又∵ a = 1,c = 4, ∴ b = c,即 △ABC 为等腰三角形.
*15. 设 x1,x2 是关于 x 的方程 x2 – 4x + k + 1 = 0 的两个实数根. 请问:是否存在实数 k,使得x1·x2 > x1 + x2 成立?试说明理由. 解:不存在. 理由如下:由方程有实数根,可得
九年级数学反比例函数与一次函数的综合练习题(2)

y x 0反比例函数与一次函数的综合练习题(2)1.如图是反比例函数 y=m+2x 的图象的一支,根据图象回答下列问题: (1)图象的另一支在哪个象限?常数m 的取值范围是什么? (2)已知点(-3,y 1), (-1,y 2), (2,y 3), 则函数值y 1、y 2、y 3的大小关系怎样?2.如图所示,正比例函数y=k 1x 的图象与反比例函数y= k x的图象交于A 、B 两点,其中点A 的坐标为( 3 ,2 3 )⑴分别写出这两个函数的表达式。
⑵你能求出点B 的坐标吗?⑶若点C 坐标是(–4,0).请求△BOC 的面积。
⑷试着在坐标轴上找点D,使△AOD ≌△BOC 。
3.已知反经例函数y= k 2x和一次函数y=2x —1,其中一次函数的图象经过点(2,1+k ) ⑴求反比例函数的解析式⑵已知点A 在第一象限,且同时在两个函数的图象上,求点A 的坐标。
⑶利用⑵的结果,在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由。
4.已知反比例函数y=k x(k≠0)和一次函数y=-x-6. ⑴若一次函数和反比例函数的图象交于点(-3,m ),求m 和k 的值;⑵当k =-2时,设⑵中的两个函数图象的交点分别为A 、B ,试判断此时A 、B 两点分别在第几象限?∠AOB 是锐角还是钝角(只要求直接写出结论)?5.如图,一次函数的图象与x 轴、y 轴分别交于A 、B 两点,与反比例函数的图象交于C 、D 两点。
如果A 点的坐标为(2,0),点C 、D 分别在第一、三象限,且OA=OB=AC=BD ;试求一次函数和反比例函数的解析式。
6.如图,直线y=12x+1分别交轴,y轴于点A,C,点P是直线AC与双曲线y=kx在第一象限内的交点,P B⊥x轴,垂足为点B,△APB的面积为4.⑴求点P的坐标;⑵求双曲线的解析式及直线与双曲线另一交点Q的坐标.7.如下图,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y= mx(m≠0)的图象在第一象限交于点C,CD⊥x轴,垂足为D,若OA=OB=OD=1⑴求点A、B、D的坐标⑵求一次函数和反比例函数的解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学毕业复习综合练习题(二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至6页.共120分.时间120分钟.第Ⅰ卷(选择题 共48分)一、选择题:本大题共12个小题.每小题4分; 共48分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.如图,数轴上A 、B 两点所表示的两数的( )A. 和为正数C. 积为正数D. 积为负数2.2008年北京奥运会圣火在全球传递的里程约为137000km ,用科学记数法表示为( )A .31.3710⨯kmB .313710⨯kmC .51.3710⨯kmD .513710⨯km3.如图,已知AB∥CD,∠A=70°,则∠1度数是( ) A.70° B.100°C.110°D.130°4.若分式 x -1x +2的值为零,则x 的值是( )A. 0B. 1C. -1D. -25.下列运算正确的是( )O -3AC1第3题图A .651a a -=B .235()a a =C .235325a a a +=D .235236a a a ⋅=6.若点P (a ,a -4)是第二象限的点,则a 必须满足( )A. a <0B.a >4C. a <4D.0<a <47.下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .8.在下列命题中,正确的是( )A .一组对边平行的四边形是平行四边形B .有一个角是直角的四边形是矩形C .有一组邻边相等的平行四边形是菱形D .对角线互相垂直平分的四边形是正方形9.一次函数y kx b =+的图象如图所示,当0y <值范围是( ) A .0x > B .0x < C .2x > D .2x <10.如图是一个中心对称图形,ABC =1,则BB ′的长为( )xD CBA PA .4 BCD11.如图,矩形ABCD 中,1AB =,2AD =,M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM △的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的( )12.二次函数()20y ax bx c a =++≠的图象如图所示.有下列结论:①240b ac -<;②0ab >;③0a b c -+=;④40a b +=;⑤当2y =时,x 只能等于0.其中正确的是( )A.①④ B.③④ C.②⑤ D.③⑤0 2 5 x2yC.第16题第Ⅱ卷(非选择题 共72分)注意事项:1.第Ⅱ卷共4页.用蓝、黑钢笔或圆珠笔直接答在考试卷上.2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共5个小题.每小题3分;共15分.把答案填在题中横线上. 13.-13的绝对值是________,9的平方根是 .14.分解因式:222a ab -= . 15.如图,点D E ,分别在线段AB AC ,上,BE CD ,相交于点O AE AD =,,要使ABE ACD △≌△,需添加一个 条件是 (只要写一个条件). 16.如图,在平面直角坐标系中,函数ky x=(0x >常数0k >)的图象经过点(12)A ,,()B m n ,,(1m >),过点B 作y 轴的垂线,垂足为C .若ABC △的面积为2,则点B 的坐标 为 . 17.观察下面两行数:OCEADB第15题2, 4, 8, 16, 32, 64, … ①根据你发现的规律,取每行数的第10个数,求得它们的和是(要求写出最后的计算结果) .三、解答题:本大题共7个小题.共57分.解答应写出文字说明、证明过程或演算步骤.18.(本小题满分7分)计算化简:(1)(1-)2008-(π-3)0+4 (2)221111121x x x x x +-÷+--+19.(本小题满分7分)解方程或不等式组: (1)解方程:1x121x x 3=--- (2)解不等式组 ()⎪⎩⎪⎨⎧->+≤-.214,121x x x20.(本小题满分8分)根据北京奥运票务网站公布的女子双人3米跳板跳水决赛的门票价格(如表1),小明预定了B等级、C等级门票共7张,他发现这7张门票的费用恰好可以预订3张A等级门票.问小明预定了B等级、C等级门票各多少张?21.(本小题满分8分)如图△ABC与△CDE 都是等边三角形,点E、F分别在AC、BC上,且EF∥AB. 表1:(1)求证:四边形EFCD是菱形;(2)设CD=4,求D、F两点间的距离.22.(本小题满分9分)气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点O)的南偏东45°方向的点B生成,测得OB.台风中心从点B以40km/h的速度向正北方向移动,(1)台风中心生成点B的坐标为,台风中心转折点C的坐标为;(结果保留根号)(2)已知距台风中心20km的范围内均会受到台风的侵袭.如果某城市(设为点A)位于点O动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?23.(本小题满分9分)一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;(2)求支柱EF的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.x图1图224.(本小题满分9分)如图,在Rt△ABC中,AB=AC,P是边AB(含端点)上的动点.过P作BC的垂线PR,R为垂足,∠PRB的平分线与AB相交于点S,在线段RS上存在一点T,若以线段PT为一边作正方形PTEF,其顶点E,F恰好分别在边BC,AC上.(1)△ABC与△SBR是否相似,说明理由;(2)请你探索线段TS与PA的长度之间的关系;(3)设边AB=1,当P在边AB(含端点)上运动时,请你探索正方形PTEF的面积y的最小值和最大值.二OO九年初中毕业复习数学综合练习(二)参考答案第24题TPSREABC F一、选择题:D C C B D A B C C D A B二、填空题:13. 13,±3; 14.2a (1+b )(1-b ) 15. ∠B =∠C、 ∠AEB = ∠ADC、 ∠CEO = ∠BDO、AB = AC 、BD = CE (任选一个即可). 16.(3,23) 17. 2051三、解答题:18.(1)(1-)2008-(π-3)0+4=1-1+2……………………..2分 =2………………………….3分(2)原式211(1)1(1)(1)1x x x x x -=-++-+----------------------------------------------2分2111(1)x x x -=-++-------------------------------------------------------------3分22(1)x =+=2221x x ++---------------------------------------------------------4分 19.(1)解:原方程可化为32111x x x +=--…………………………………….1分方程两边都乘以)1(-x ,得:123-=+x x (2)分 解得:23-=x ……………………………………………………………….3分 经检验:23-=x 是原方程的根;…………………………………………..4分 (2)解:解不等式①,得3≤x .………………………………………1分解不等式②,得 244->+x x , 即 2->x . (2)分∴原不等式组的解集为32≤<-x . ………………………………3分20.设小明预订了B 等级,C 等级门票分别为x 张和y 张. ……………………1分依题意,得⎩⎨⎧⨯=+=+.3500150300,7y x y x ……………………………..4分解这个方程组得⎩⎨⎧==.4,3y x …………………………..…7分答:小明预订了B 等级门票3张,C 等级门票4张. …………………………8分21.(1)证明:∵△ABC 与△CDE 都是等边三角形∴∠ACB=∠DEC=∠A=∠DCE=60°……………………………….1分∴DE∥FC,CD∥AB………………………………………………………2分 ∵EF∥AB∴EF∥CD……………………………………………………………………3分 ∴四边形是EFCD平行四边形…………………………………………….4分 又∵DE=DC ∴平行四边形EFCD是菱形………………………………………………..5分 (2)解:连接DF ,交EC 于点O ,则DF⊥EC,且OE =OC,OF=OD,∠CDO=30°..6分 ∵CD=4,∴OD=分 ∴DF=分22.解:(1)B -,C -;………………..4分(2)过点C 作CD OA ⊥于点D ,如图2,则13CD =.……………..5分 在Rt ACD △中,30ACD ∠=,CD =,cos30CD CA ∴==200CA ∴=.……………20020630-=,5611+=, ∴台风从生成到最初侵袭该城要经过11小时.……….9分23.解:(1)根据题目条件,A B C ,,的坐标分别是(100)(100)(06)-,,,,,.O/k²²²²²²²²²²²²²²²²²²²²²²²²²²² 1分设抛物线的解析式为2y ax c =+, ²²²²²²²²²²² 2分 将B C ,的坐标代入2y ax c =+,得60100c a c =⎧⎨=+⎩,………….3分解得3650a c =-=,. 所以抛物线的表达式是23650y x =-+. 4分 (2)可设(5)F F y ,,于是2356 4.550F y =-⨯+= ²²²²²²²²²²²²²²²²² 5分 从而支柱MN 的长度是10 4.5 5.5-=米. ²²²²²²²²² 6分 (3)设DN 是隔离带的宽,NG 是三辆车的宽度和,则G 点坐标是(70),. ²²²²²²²²²²²²²²²² 7分 过G 点作GH 垂直AB 交抛物线于H ,则2376 3.06350H y =-⨯+>≈. ²²²²²²²²²²²²²²²²²²²²²²²²²²² 8分根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车. ²²²²²²²²²²²²²²²²²²²²²²²²² 9分 24.解:(1)∵RS 是直角∠PRB 的平分线,∴∠PRS =∠BRS =45°. 在△ABC 与△SBR 中,∠C =∠BRS =45°,∠B 是公共角, ∴△ABC ∽△SBR ………………………….1分(2)线段TS 的长度与PA 相等 (2)分 ∵四边形PTEF 是正方形,∴PF =PT ,∠SPT +∠FPA =180°-∠TPF =90°, 在Rt△PFA 中,∠PFA +∠FPA =90°, ∴∠PFA =∠TPS ,(第24题图1)TP SREABC Fx∴R t △PAF ≌Rt△TSP ,∴PA =TS ……………….3分当点P 运动到使得T 与R 重合时,这时△PFA 与△TSP 都是等腰直角三角形且底边相等,即有PA =TS . 由以上可知,线段ST 的长度与PA 相等.(3)由题意,RS 是等腰Rt△PRB 的底边PB 上的高,∴PS =BS , ∴BS +PS +PA =1, ∴PS =12PA - (4)分设PA 的长为x ,易知AF =PS , 则y =PF 2=PA 2+PS 2,得y =x 2+(12x -)2, 即y =2511424x x -+,…………………………5分根据二次函数的性质,当x =15时,y 有最小值为15……..6分如图2,当点P 运动使得T 与R 重合时,PA =TS 为最大.易证等腰Rt△PAF ≌等腰Rt△PSR ≌等腰Rt△,∴PA =13.如图3,当P 与A 重合时,得x =0.∴x 的取值范围是0≤x ≤13……………………7分 (此处为独立得分点,只要求出x ≤13即可得1分)∴①当x 的值由0增大到15时,y 的值由14减小到15……..8分∴②当x 的值由15增大到13时,y 的值由15增大到29……..8分(说明:①②任做对一处评1分,两处全对也只评一分) ∵15≤29≤14,∴在点P 的运动过程中,正方形PTEF 面积y 的最小值是15,y 的最大值是14(第24题图2)(第24题图3)(T )PSR EAB C (T )(P )S E (R )A BC F。