【数学】2017学年山东省济南市市中区育英中学八年级下学期数学期末试卷带解析答案PDF
山东省济南市市中区八年级下期末考试数学试卷(含答案)

济南市市中区2017-2018学年第二学期期末考试八年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.若a >b ,则下列各式中一定成立的是( )A .a +2<b +2B .a 一2<b 一2C .a2>b 2D .-2a >-2b 2.下面式子从左边到右边豹变形是因式分解的是( )A .x 2-x -2=x (x 一1)-2B .x 2—4x +4=(x 一2)2C .(x +1)(x —1)=x 2 - 1D .x -1=x (1-1x) 3下列所培图形中·既是中心对称图形又是轴对称图形的是( )A B C D4.多项式x 2-1与多项式x 2一2x +1的公因式是( )A .x 一1B .x +1C .x 2一1D .(x -1)25己知一个多边形的内角和是360°,则这个多边形是( )A .四边形B .五边形C .六边形D .七边形6. 下列多项式能用完全平方公式分解因式的有 ( )A .m 2-mn +n 2B .x 2+4x – 4 C. x 2-4x +4 D. 4x 2-4x +47.如图,将一个含30°角的直角三角板ABC 绕点A 旋转,得点B ,A ,C ′,在同一条直线上,则旋转角∠BAB ′的度数是( )A .60° B.90° C.120° D.150° 30°B'C 'CBA 8.运用分式的性质,下列计算正确的是( )A .x 6x 2 =x 3B .-x +y x -y =-1C .a +x b +x =a bD .x +y x +y=0 9.如图,若平行四边形ABCD 的周长为40cm ,BC =23AB ,则BC =( ) A .16crn B .14cm C .12cm D .8cmOC B D10.若分式方程x -3x -1=m x -1有增根,则m 等于( ) A .-3 B .-2 C .3 D .211.如图,△ABC 中,AB =AC =15,AD 平分∠BAC ,点E 为AC 的中点,连接DE ,若△CDE 的周长为24,则BC的长为( )A.18 B.14 C.12 D.6EDB CA12.如图,己知直线y1=x+m与y2=kx—1相交于点P(一1,2),则关于x的不等式x+m<kx—1的解集在数轴上表示正确的是( )xy2-1POA.B.C.D.13.如图,在菱形ABCD中,对角线AC、BD相较于点O,BD=8,BC=5,AE⊥BC于点E,则AE的长为( )A.5 B.125C.245D.185A DOB CE14.定义一种新运算:当a>b时,a○+b=ab+b;当a<b时,a○+b=ab-b.若3○+(x+2)>0,则x的取值范围是()A.-1<x<1或x<-2 B.x<-2或1<x<2C.-2<x<1或x>1 D.x<-2或x>215.在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O……,依此规律,得到等腰直角三角形A2017OB2017.则点B2017的坐标( )A.(22017,-22017) B.(22016,-22016) C.(22017,22017) D.(22016,22016)xyB 2A 2B 1A 1A BO二、填空题(本大题共5小题,每小题4分,共20分)16.若分式1x -1有意义,则x 的取值范围是_______________. 17.若m =2,则m 2-4m +4的值是_________________.18.如图,已知∠AOB =30°,P 是∠AOB 平分线上一点,CP //OB ,交OA 于点C ,PD ⊥OB ,垂足为点D ,且PC =4,则PD 等于_____________.CD AOB P 19.不等式组⎩⎨⎧x >4x >m (m ≠4)的解集是x>4,那么m 的取值范围是_______________.20.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 方向平移2个单位后得到△DEF ,连接DC ,则DC 的长为________________.21.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG ≌△AFG ;②BG =CG ;③AG //CF ;④S △EFC =125.其中正确结论的是____________(只填序号).22.(本小题满分7分)(1)分解因式:ax 2-ay 2;(2)解不等式组⎩⎨⎧x -1<2 ①2x +3≥x -1 ②,并把不等式组的解集在数轴上表出.23(本小题满分7分)(1)如图,在〉ABCD 中,点E ,F 分别在AB ,CD 上,AE =CF .求证:DE =BF .(2)先化简,再求值:(1a +2-1a -2)÷1a -2,其中a =624.(本小题满分8分)在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长1个单位长度的正方形).(1)将△ABC 沿x 轴方向向左平移6个单位,画出平移后得到的△A 1B 1C 1;(2)将△ABC 绕着点A 顺时针旋转90°,画出旋转后得到的△AB 2C 2;(3)直接写出点B 2、C 2的坐标.25.(本小题满分8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么,最多可购买多少件甲种商品?26.(本小题满分9分)探索发现:11×2=1-12;12×3=12-13;13×4=13-14…… 根据你发现的规律,回答下列问题:(1) 14×5=___________,1n ×(n +1)=___________; (2)利用你发现的规律计算:11×2+12×3+13×4+……+1n ×(n +1)(3)灵活利用规律解方程:1x (x +2)+1(x +2)(x +4)+……+1(x +98)(x +100)=1x +100.27.(本小最满分9分)如图1,已知四边形ABCD 是正方形,对角线AC 、BD 相交于点E ,以点E 为顶点作正方形EFGH .(1)如图1,点A 、D 分别在EH 和EF 上,连接BH 、AF ,直接写出BH 和AF 的数量关系:(2)将正方形EFGH 绕点E 顺时针方向旋转①如图2,判断BH 和 AF 的数量关系,并说明理由;②如果四边形ABDH 是平行四边形,请在备用图中不劝图形;如果四方形ABCD 的边长为\R (,2),求正方形EFGH 的边长.28.(本小题满分9分)如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(一6,8).矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x轴分别交于点D、F.(1)直接写出线段BO的长:(2)求点D的坐标;(3)若点N是平面内任一点,在x轴上是否存在点M,使咀M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标:若不存在,请说明理由.。
山东省济南市八年级下学期数学期末考试试卷

山东省济南市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017八下·孝义期中) 下列式子中,属于最简二次根式的是()A .B .C .D .2. (2分)下列等式不一定成立的是()A . =(b≠0)B . a3•a﹣5=(a≠0)C . a2﹣4b2=(a+2b)(a﹣2b)D . (﹣2a3)2=4a63. (2分)下列一次函数中,y的值随着x值的增大而减小的是().A . y=xB . y=-xC . y=x+1D . y=x-14. (2分)如图,过点Q(0,3.5)的一次函数的图象与正比例函数的图象相交于点P,能表示这个一次函数图象的方程的是()A .B .C .D .5. (2分) (2020八下·福州期中) 如图,平行四边形ABCD中,对角线AC、BD相交于点O,则下列结论中错误的是()A . OA=OC,OB=ODB . 当AC⊥BD时,它是菱形C . 当AC=BD时,它是矩形D . 当AC垂直平分BD时,它是正方形6. (2分)在平行四边形、矩形、菱形、正方形中,对角线相等的图形有()A . 4个B . 3个C . 2个D . 1个7. (2分)下列语句正确的是()A . 线段绕着它的中点旋转180°后与原线段重合,那么线段是中心对称图形B . 正三角形绕着它的三边中线的交点旋转120°后与原图形重合,那么正三角形是中心对称图形C . 正方形绕着它的对角线交点旋转90°后与原图形重合,则正方形是中心对称图形D . 正五角星绕着它的中心旋转72°后与原图形重合,则正五角星是中心对称图形8. (2分)在△ABC中,已知∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,∠EHF的度数是()A . 50°B . 40°C . 130°D . 120°9. (2分)(2020·龙华模拟) 某小组在一次“在线测试”中做对的题数分别为是10、8、6、9、8、7、8,对于这组数据,下列判断中错误的是()A . 众数是8B . 中位数是8C . 平均数是8D . 方差是810. (2分) (2019八下·武安期末) 某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172,把身高160 cm的成员替换成一位165 cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A . 平均数变小,方差变小B . 平均数变大,方差变大C . 平均数变大,方差不变D . 平均数变大,方差变小11. (2分) (2019八下·丰城期末) 如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为()A . x>﹣2B . x<﹣2C . x>4D . x<412. (2分) (2019八上·东平月考) 在对边不相等的四边形中,若四边形的两条对角线互相垂直,那么顺次连结四边形各边中点得到的四边形是()A . 梯形B . 矩形C . 菱形D . 正方形二、填空题 (共6题;共6分)13. (1分) (2019八下·南浔期末) 若二次根式有意义,则x的取值范围是________.14. (1分) (2020八下·淮滨期末) 一组数据2,6,5,2,4,则这组数据的平均数是________.15. (1分)(2019·下城模拟) 已知C是优弧AB的中点,若,则AB=________.16. (1分)(2020·朝阳模拟) 如图:平行四边形ABCD中,E为AB中点,AF= FD,连E、F交AC于G,则AG:GC=________.17. (1分) (2018八下·深圳月考) 如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点A ,则不等式mx+2<kx+b<0的解集为________.18. (1分) (2019八下·鄞州期末) 如图,矩形中,,,点是矩形的边上的一动点,以为边,在的右侧构造正方形,连结,则的最小值为________.三、解答题 (共7题;共56分)19. (20分)计算(1)÷ ﹣× +(2)(﹣3)0﹣ +|1﹣ |+(3)(3 ﹣2 + )÷2(4)(﹣3 )(4 + )20. (5分)在学校组织的实践活动中,小明同学用纸板制作了一个如图所示的圆锥模型,它的底面积半径为1,高为,则这个圆锥的侧面积为.(结果保留π)21. (5分)如图,△ABC的三个顶点的坐标分别为A(0,2),B(4,0),C(6,4),求△ABC的周长与面积.22. (5分)已知:如图,矩形ABCD的对角线AC、BD相交于点O,CE∥DB,交AB的延长线于点E.求证:AC=EC.23. (6分)(2019·沈阳) 如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF∥BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=,∠CBG=45°,BC=4 ,则▱ABCD的面积是________.24. (7分) (2018八上·焦作期末) 为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6分钟忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知单车的速度是步行速度的3倍,如图是小亮和姐姐距家的路程y(米)与出发的时间x(分钟)的函数图象,根据图象解答下列问题:(1)小亮在家停留了________分钟.(2)求小亮骑单车从家出发去图书馆时距家的路程y(米)与出发时间x(分钟)之间的函数关系式.(3)若小亮和姐姐到图书馆的实际时间为m分钟,原计划步行到达图书馆的时间为n分钟,则n-m=________分钟.25. (8分) (2020八下·洛宁期末) 某校初一开展英语拼写大赛,爱国班和求知班根据初赛成绩,各选出5名选手参加复赛,两个班备选出的5名选手的复赛成绩如图所示:班级平均数(分)中位数(分)众数(分)爱国班a85c求知班85b100(1)根据图示直接写出a________,b________,c________的值:(2)己知爱国班复赛成绩方差是70,请求出求知班复赛成绩的方差,并说明哪个班成绩比较稳定?参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共56分)19-1、答案:略19-2、答案:略19-3、答案:略19-4、答案:略20-1、答案:略21-1、答案:略22-1、23-1、23-2、24-1、24-2、答案:略24-3、25-1、25-2、答案:略。
山东省济南市八年级下学期数学期末考试试卷

山东省济南市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项 (共10题;共30分)1. (3分) (2017八下·胶州期末) 若分式有意义,则x的取值范围是()A . x>1B . x>﹣1C . x≠0D . x≠﹣12. (3分) (2021九上·台州月考) 观察下列图形,其中既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (3分)已知a<b,则下列式子正确的是()A . a+5>b+5B . 3a>3b;C . -5a>-5bD . >4. (3分) (2020七下·秦淮期末) 下列各式从左到右的变形中,是因式分解的是()A . 8a2b2=2a2·4b2B . 1-a2=(1+a)(1-a)C . (x+2)(x-1)=x2+x-2D . a2-2a+3=(a-1)2+25. (3分)一个多边形的每个内角都是144°,这个多边形是()A . 八边形B . 十边形C . 十二边形D . 十四边形6. (3分) (2020七下·湘桥期末) 中国上海世博会吉祥物的名字叫“海宝”,意即“四海之宝”。
通过平移,可将图中的吉祥物“海宝”平移到图()A .B .C .D .7. (3分)直线:与直线:在同一平面直角坐标系中的图象如图所示,则关于的不等式的解为()A . x>-1B . x<-1C . x<-2D . 无法确定8. (3分)(2019·河南模拟) 如图,□ABCD的对角线AC与BD相交于点O,过点O作OE⊥AD于点E,若AB =4,∠ABC=60°,则OE的长是()A .B . 2C . 2D .9. (3分)在实数范围内定义一种新运算“*”,其规则是a*b=a2-b2,如果(x+2)*5>(x-5)(5+x),则x的取值范围是()A . x>-1B . x<-1C . x>46D . x<4610. (3分) (2019九上·中卫期中) 如果菱形的边长是a,一个内角是,那么菱形较短的对角线长等于()A .B .C .D .二、填空题(共4小题,每小题3分,计12分) (共4题;共12分)11. (3分) (2019七下·嘉兴期末) 因式分解x3-xy2=________ .12. (3分)(2018·铜仁模拟) 若关于x的方程无解,则m=________13. (3分)(2018·鼓楼模拟) 如图,在□ABCD中, E、F分别是AB、CD的中点.当□ABCD满足________时,四边形EHFG是菱形.14. (3分)(2020·常德模拟) 如图,在中,已知依次连接的三边中点,得,再依次连接的三边中点得,···,则的周长为________.三、解答题(共11小题,计78分.解答应写出过程) (共11题;共75分)15. (2分)(2020·温州模拟)(1)计算: 3(2)解方程:16. (5分)(2018·宁夏) 解不等式组:17. (5分)(2020·深圳模拟) 先化简,再求值:,其中.18. (5分) (2019八上·龙湾期中) 如图,在4×4方格中,按要求作出以AB为边,第三个顶点在格点上的等腰三角形ABC.(1)面积为2(2)面积为2.5(3)面积为________(要求不与1、2图形全等)19. (7分)已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.20. (7.0分) (2020八上·文水期末) 综合与实践问题情境在中,,,于点,点是射线上一点,连接,过点作于点,且交直线于点 .(1)如图1,当点在线段上时,求证: .自主探究(2)如图2,当点在线段上时,其它条件不变,请猜想与之间的数量关系,并说明理由.拓展延伸(3)如图3,当点在线段的延长线上时,其它条件不变,请直接写出与之间的数量关系.21. (7分)(2017·绿园模拟) 如图在数学活动课中,小敏为了测量小院内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为12m,则旗杆AB的高度是多少米?(参考值:≈1.73,≈1.41,结果精确到0.1米)22. (7分) (2020七下·孝义期末) 如图,三角形三个顶点的坐标分别是,将三角形进行平移,点A的对应点为,点B的对应点是,点C 的对应点是.(1)画出平移后的三角形并写出的坐标;(2)写出由三角形平移得到三角形的过程;(3)分别连接,则和有怎样的关系?(直接写出答案,不需证明)23. (8.0分) (2020七下·灌南月考) 甲、乙两家超市以相同的价格出售同样的商品.为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价八折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价九折优惠.设顾客预计累计购物元( >300)(1)请用x的代数式分别表示顾客在两家超市购物所付的费用;(2)试比较顾客到哪家超市购物更优惠?说明你的理由.24. (10分)(2016·南岗模拟) 某商场购进甲、乙两种服装,每件甲种服装比每件乙种服装贵25元,该商场用2000元购进甲种服装,用750元购进乙种服装,所购进的甲种服装的件数是所购进的乙种服装的件数的2倍.(1)分别求每件甲种服装和每件乙种服装的进价;(2)若每件甲种服装售价130元,将购进的两种服装全部售出后,使得所获利润不少于750元,问每件乙种服装售价至少是多少元?25. (12分) (2020八上·苍南期末) 如图,直角坐标系中,直线y=kx+b分别与x轴、y轴交于点A(3,0),点B(0,-4),过D(0,8)作平行x轴的直线CD,交AB于点C,点E(0,m)在线段OD上,延长CE交x轴于点F,点G在x轴正半轴上,且AG=AF。
2017-2018学年山东省济南市市中区八年级(下)期末数学试卷(解析版)

A.
B.
C.
D.
4.(4 分)使分式 有意义的 x 的取值范围是( )
A.x=2
B.x≠2
C.x=﹣2
D.x≠﹣2
5.(4 分)如图,在▱ ABCD 中,AC、BD 相交于点 O,点 E 是 AB 的中点.若 OE=1cm,
则 AD 的长是( )cm.
A.3
B.
C.
D.4
11.(4 分)如图,边长 2 的菱形 ABCD 中,∠A=60°,点 M 是 AD 边的中点,将菱形 ABCD
翻折,使点 A 落在线段 CM 上的点 E 处,折痕交 AB 于点 N,则线段 EC 的长为( )
A.
B. ﹣1
C.
D. ﹣1
12. (4 分)如图,在 Rt△ABC 中,∠ACB=90°,将△ABC 绕顶点 C 逆时针旋转得到△A'B'C,
A.2
B.3
C.4
D.5
6.(4 分)如图,在 6×6 方格中有两个涂有阴影的图形 M、N,①中的图形 M 平移后位置
如②所示,以下对图形 M 的平移方法叙述正确的是( )
A.向右平移 2 个单位,向下平移 3 个单位
第 1 页(共 19 页)
B.向右平移 1 个单位,向下平移 3 个单位 C.向右平移 1 个单位,向下平移 4 个单位 D.向右平移 2 个单位,向下平移 4 个单位 7.(4 分)在数轴上表示不等式 x≥﹣2 的解集,正确的是( )
第 4 页(共 19 页)
购进甲种玩具多少?
24.(10 分)探索发现:
=1﹣ ;
根据你发现的规律,回答下列问题:
2016-2017学年济南市市中区八年级下期末数学试卷(有答案)

2016-2017学年山东省济南市市中区八年级(下)期末数学试卷一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)若a>b,则下列各式中一定成立的是()A.a+2<b+2 B.a﹣2<b﹣2 C.>D.﹣2a>﹣2b2.(3分)下面式子从左边到右边的变形是因式分解的是()A.x2﹣x﹣2=x(x﹣1)﹣2 B.x2﹣4x+4=(x﹣2)2C.(x+1)(x﹣1)=x2﹣1 D.x﹣1=x(1﹣)3.(3分)下列所给图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.4.(3分)多项式x2﹣1与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)25.(3分)已知一个多边形的内角和是360°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形6.(3分)下列多项式能用完全平方公式分解因式的有()A.m2﹣mn+n2B.x2+4x﹣4 C.x2﹣4x+4 D.4x2﹣4x+47.(3分)如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是()A.60°B.90°C.120° D.150°8.(3分)运用分式的性质,下列计算正确的是()A.=x4B.=﹣1 C.=D.=09.(3分)如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=()A.16cm B.14cm C.12cm D.8cm10.(3分)若分式方程有增根,则m等于()A.3 B.﹣3 C.2 D.﹣211.(3分)如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE 的周长为24,则BC的长为()A.18 B.14 C.12 D.612.(3分)如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x的不等式x+m <kx﹣1的解集在数轴上表示正确的是()A.B.C.D.13.(3分)如图,在菱形ABCD 中,对角线AC、BD 相交于点O,BD=8,BC=5,AE⊥BC 于点E,则AE的长等于()A.5 B.C.D.14.(3分)定义新运算“⊕”如下:当a>b时,a⊕b=ab+b;当a<b时,a⊕b=ab﹣b,若3⊕(x+2)>0,则x的取值范围是()A.﹣1<x<1或x<﹣2 B.x<﹣2或1<x<2 C.﹣2<x<1或x>1 D.x<﹣2或x>2 15.(3分)在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO 在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2017OB2017.则点B2017的坐标()A.(22017,﹣22017)B.(22016,﹣22016)C.(22017,22017)D.(22016,22016)二、填空题(共6小题,每小题3分,满分18分)16.(3分)分式有意义的x的取值范围为.17.(3分)若m=2,则m2﹣4m+4的值是.18.(3分)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于.19.(3分)不等式组(m≠4)的解集是x>4,那么m的取值范围是.20.(3分)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移2个单位后得到△DEF,连接DC,则DC的长为.21.(3分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EFC=.其中正确结论的是(只填序号).三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)22.(7分)(1)分解因式:ax2﹣ay2.(2)解不等式组,并把不等式组的解集在数轴上表示出来.23.(7分)(1)如图,在平行四边形ABCD中,点E,F分别在AB,CD上,AE=CF,求证:DE=BF.(2)先化简,再求值:(﹣)÷,其中a=6.24.(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿X轴方向向左平移6个单位,画出平移后得到的△A1B1C1.(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2.(3)直接写出点A2、C2的坐标.25.(8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么,最多可购买多少件甲种商品?26.(9分)探索发现:=1﹣;=﹣;=﹣…根据你发现的规律,回答下列问题:(1)=,=;(2)利用你发现的规律计算: +++…+(3)灵活利用规律解方程: ++…+=.27.(9分)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.(1)如图1,点A、D分别在EH和EF上,连接BH、AF,直接写出BH和AF的数量关系:(2)将正方形EFGH绕点E顺时针方向旋转①如图2,判断BH和AF的数量关系,并说明理由;②如果四边形ABDH是平行四边形,请在备用图中补全图形;如果四方形ABCD的边长为,求正方形EFGH的边长.28.(9分)如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(﹣6,8).矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x轴分别交于点D、F.(1)直接写出线段BO的长:(2)求点D的坐标;(3)若点N是平面内任一点,在x轴上是否存在点M,使咀M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.2016-2017学年山东省济南市市中区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)若a>b,则下列各式中一定成立的是()A.a+2<b+2 B.a﹣2<b﹣2 C.>D.﹣2a>﹣2b【解答】解:(A)a+2>b+2,故A错误;(B)a﹣2>b﹣2,故B错误;(D)﹣2a<﹣2b,故D错误;故选:C.2.(3分)下面式子从左边到右边的变形是因式分解的是()A.x2﹣x﹣2=x(x﹣1)﹣2 B.x2﹣4x+4=(x﹣2)2C.(x+1)(x﹣1)=x2﹣1 D.x﹣1=x(1﹣)【解答】解:A、没把多项式转化成几个整式积的形式,故A不符合题意;B、把多项式转化成几个整式积的形式,故B符合题意;C、是整式的乘法,故C不符合题意;D、没把多项式转化成几个整式积的形式,故D不符合题意;故选:B.3.(3分)下列所给图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、不是中心对称图形,不是轴对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项错误;D、是中心对称图形,也是轴对称图形,故此选项正确.故选:D.4.(3分)多项式x2﹣1与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2【解答】解:∵x2﹣1=(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴多项式x2﹣1与多项式x2﹣2x+1的公因式是:x﹣1.故选:A.5.(3分)已知一个多边形的内角和是360°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形【解答】解:设这个多边形的边数为n,则有(n﹣2)180°=360°,解得:n=4,故这个多边形是四边形.故选:A.6.(3分)下列多项式能用完全平方公式分解因式的有()A.m2﹣mn+n2B.x2+4x﹣4 C.x2﹣4x+4 D.4x2﹣4x+4【解答】解:A、m2﹣mn+n2不符合能用完全平方公式分解因式的式子的特点;B、x2+4x﹣4不符合能用完全平方公式分解因式的式子的特点;C、x2﹣4x+4能用完全平方公式分解因式;D、4x2﹣4x+4不符合能用完全平方公式分解因式的式子的特点.故选:C.7.(3分)如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是()A.60°B.90°C.120° D.150°【解答】解:旋转角是∠BAB′=180°﹣30°=150°.故选:D.8.(3分)运用分式的性质,下列计算正确的是()A.=x4B.=﹣1 C.=D.=0【解答】解:A、=x4,所以A选项计算正确;B、为最简分式,所以B选项的计算错误;C、为最简分式,所以C选项的计算错误;D、=1,所以D选项的计算错误;故选:A.9.(3分)如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=()A.16cm B.14cm C.12cm D.8cm【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∵▱ABCD的周长为40cm,∴AB+BC=20cm,∵BC=AB,∴BC=20×=8cm,故选:D.10.(3分)若分式方程有增根,则m等于()A.3 B.﹣3 C.2 D.﹣2【解答】解:分式方程去分母得:x﹣3=m,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:m=﹣2,故选:D.11.(3分)如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE 的周长为24,则BC的长为()A.18 B.14 C.12 D.6【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=CE=AC=.∵△CDE的周长为24,∴CD=9,∴BC=2CD=18.故选:A.12.(3分)如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x的不等式x+m <kx﹣1的解集在数轴上表示正确的是()A.B.C.D.【解答】解:根据图象得,当x<﹣1时,x+m<kx﹣1.故选:D.13.(3分)如图,在菱形ABCD中,对角线AC、BD 相交于点O,BD=8,BC=5,AE⊥BC 于点E,则AE的长等于()A.5 B.C.D.【解答】解:∵四边形ABCD是菱形,BD=8,∴BO=DO=4,∠BOC=90°,在Rt△OBC中,OC===3,∴AC=2OC=6,∴AE×BC=BO×AC故5AE=24,解得:AE=.故选:C.14.(3分)定义新运算“⊕”如下:当a>b时,a⊕b=ab+b;当a<b时,a⊕b=ab﹣b,若3⊕(x+2)>0,则x的取值范围是()A.﹣1<x<1或x<﹣2 B.x<﹣2或1<x<2 C.﹣2<x<1或x>1 D.x<﹣2或x>2【解答】解:当3>x+2,即x<1时,3(x+2)+x+2>0,解得:x>﹣2,∴﹣2<x<1;当3<x+2,即x>1时,3(x+2)﹣(x+2)>0,解得:x>﹣2,∴x>1,综上,﹣2<x<1或x>1,故选:C.15.(3分)在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO 在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2017OB2017.则点B2017的坐标()A.(22017,﹣22017)B.(22016,﹣22016)C.(22017,22017)D.(22016,22016)【解答】解:∵△AOB是等腰直角三角形,OA=1,∴AB=OA=1,∴B(1,1),将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,B1(2,﹣2),B2(﹣4,﹣4),B3(﹣8,8),B4(16,16),∵2017÷4=503…1,∴点B2017与B2同在一个象限内,∵﹣4=﹣22,8=23,16=24,∴点B2017(22017,﹣22017).故选:A.二、填空题(共6小题,每小题3分,满分18分)16.(3分)分式有意义的x的取值范围为x≠1.【解答】解:当分母x﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.17.(3分)若m=2,则m2﹣4m+4的值是0.【解答】解:当m=2时,原式=4﹣8+4=0,故答案为:018.(3分)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于2.【解答】解:作PE⊥OA于E,∵CP∥OB,∴∠OPC=∠POD,∵P是∠AOB平分线上一点,∴∠POA=∠POD=15°,∴∠ACP=∠OPC+∠POA=30°,∴PE=PC=2,∵P是∠AOB平分线上一点,PD⊥OB,PE⊥OA,∴PD=PE=2,故答案为:2.19.(3分)不等式组(m≠4)的解集是x>4,那么m的取值范围是m<4.【解答】解:不等式组的解集是x>4,得m≤4(m≠4),∴m<4,故答案为:m<4.20.(3分)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移2个单位后得到△DEF,连接DC,则DC的长为4.【解答】解:∵△ABC沿射线BC方向平移2个单位后得到△DEF,∴DE=AB=4,BC﹣BE=6﹣2=4,∵∠B=∠DEC=60°,∴△DEC是等边三角形,∴DC=4,故答案为:4.21.(3分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EFC=.其中正确结论的是①②③④(只填序号).【解答】解:∵四边形ABCD是正方形,∴AB=AD=DC=6,∠B=D=90°,∵CD=3DE,∴DE=2,∵△ADE沿AE折叠得到△AFE,∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,∴AF=AB,∵在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),∴①正确;∵Rt△ABG≌Rt△AFG,∴BG=FG,∠AGB=∠AGF,设BG=x,则CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2,在Rt△ECG中,由勾股定理得:CG2+CE2=EG2,∵CG=6﹣x,CE=4,EG=x+2∴(6﹣x)2+42=(x+2)2解得:x=3,∴BG=GF=CG=3,∴②正确;∵CG=GF,∴∠CFG=∠FCG,∵∠BGF=∠CFG+∠FCG,又∵∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF,∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG∴AG∥CF,∴③正确;∵==,=ו3×4=,∴④正确,∴S△EFC故答案为①②③④.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)22.(7分)(1)分解因式:ax2﹣ay2.(2)解不等式组,并把不等式组的解集在数轴上表示出来.【解答】解:(1)原式=a(x2﹣y2)=a(x+y)(x﹣y);(2)由①解得x<2,由②解得x≥﹣2,不等式组的解集在数轴上表示如图;不等式组的解集为﹣2≤x<2.23.(7分)(1)如图,在平行四边形ABCD中,点E,F分别在AB,CD上,AE=CF,求证:DE=BF.(2)先化简,再求值:(﹣)÷,其中a=6.【解答】(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,∵AE=CF,∴DF=EB,∴四边形DEBF是平行四边形,∴DE=BF.(2)解:原式=×(a﹣2)=﹣,当a=6时,原式=﹣1.24.(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿X轴方向向左平移6个单位,画出平移后得到的△A1B1C1.(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2.(3)直接写出点A2、C2的坐标.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△AB2C2即为所求;(3)由以上作图知,A2的坐标为(1,1)、C2的坐标为(1,﹣3).25.(8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么,最多可购买多少件甲种商品?【解答】解:(1)设每件乙种商品的价格为x元,则每件甲种商品的价格为(x+10)元,根据题意得:=,解得:x=60,经检验,x=60是原方程的解,∴x+10=70.答:每件乙种商品的价格为60元,每件甲种商品的价格为70元.(2)设购买y件甲种商品,则购买(50﹣y)件乙种商品,根据题意得:70y+60(50﹣y)≤3200,解得:x≤20.答:最多可购买20件甲种商品.26.(9分)探索发现:=1﹣;=﹣;=﹣…根据你发现的规律,回答下列问题:(1)=﹣,=﹣;(2)利用你发现的规律计算: +++…+(3)灵活利用规律解方程: ++…+=.【解答】解:(1)=﹣,=﹣;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)(﹣+﹣+…+﹣)=,(﹣)=﹣=,=,解得x=50,经检验,x=50为原方程的根.故答案为﹣,﹣.27.(9分)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.(1)如图1,点A、D分别在EH和EF上,连接BH、AF,直接写出BH和AF的数量关系:(2)将正方形EFGH绕点E顺时针方向旋转①如图2,判断BH和AF的数量关系,并说明理由;②如果四边形ABDH是平行四边形,请在备用图中补全图形;如果四方形ABCD的边长为,求正方形EFGH的边长.【解答】解:(1)在正方形ABCD中,AE=B E,∠BEH=∠AEF=90°,∵四边形EFGH是正方形,∴EF=EH,∵在△BEH和△AEF中,,∴△BEH≌△AEF(SAS),∴BH=AF;(2)①BH=AF,理由:连接EG,∵四边形ABCD是正方形,∴AE=BE,∠BEA=90°,∵四边形EFGH是正方形,∴EF=EH,∠HEF=90°,∴∠BEA+∠AEH=∠HEF+∠AEH,即∠BEH=∠AEF,在△BEH与△AEF中,,∴△BEH≌△AEF,∴BH=AF;②如备用图,∵四边形ABDH是平行四边形,∴AH∥BD,AH=BD,∴∠EAH=∠AEB=90°,∵四方形ABCD的边长为,∴AE=BE=CE=DE=1,∴EH===,∴正方形EFGH的边长为.28.(9分)如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(﹣6,8).矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x轴分别交于点D、F.(1)直接写出线段BO的长:(2)求点D的坐标;(3)若点N是平面内任一点,在x轴上是否存在点M,使咀M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)∵四边形ABCO是矩形,点B的坐标是(﹣6,8).∴∠BAD=∠OCB=90°,AB=OC=6,OA=BC=8,∴BO==10;(2)由折叠的性质得:BE=AB=6,∠BED=∠BAD=90°,DE=AD,∴OE=BO﹣BE=10﹣6=4,∠OED=90°,设D(0,a),则OD=a,DE=AD=OA﹣OD=8﹣a,在Rt△EOD中,由勾股定理得:DE2+OE2=OD2,即(8﹣a)2+42=a2,解得:a=5,∴D(0,5);(3)存在,点M的坐标为(4,0)或(﹣4,0)或(﹣,0)或(﹣,0);理由如下:①当OM、OE都为菱形的边时,OM=OE=4,∴M的坐标为(4,0)或(﹣4,0);②当OM为菱形的边,OE为对角线时,MN垂直平分OE,垂足为G,如图1所示:则OG=OE=2,则cos∠MOG=cos∠BOC,∴,即,解得:OM=,∴M(﹣,0);③当OM为菱形的对角线,OE为边时,如图2所示:同②得:M(﹣,0);综上所述,在x轴上存在点M,使以M、N、E、O为顶点的四边形是菱形,点M的坐标为(4,0)或(﹣4,0)或(﹣,0)或(﹣,0).21。
山东省济南市八年级下学期数学期末考试试卷

山东省济南市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016八上·昆山期中) 下面有4个汽车标志图案,其中是轴对称图形的有()A . 1个B . 2个C . 3个D . 4个2. (2分)下列因式分解正确的是()A . x2-16=(x+16)(x-16)B . x2+6x+9=x(x+6)+9C . 3mx-9my=3m(x-y)D . x2-8x+16=(x-4)23. (2分) (2016八上·达县期中) 不等式≤﹣ x+ 的解集在数轴上表示正确的是()A .B .C .D .4. (2分) (2020七下·万州期末) 在下列说法中,(1)角的对称轴是它的角平分线所在直线;(2)图形的平移、旋转、轴对称变换不改变图形的形状和大小;(3)三角形的三条高线一定在三角形内;(4)多边形的外角和是360°.则正确的有()A . 4个B . 3个C . 2个D . 1个5. (2分)(2020·怀化模拟) 函数中,自变量x的取值范围是()A .B .C .D .6. (2分) (2019八下·昭通期中) 平行四边形的周长为24cm,相邻两边长的比为3:1,那么这个平行四边形较短的边长为()A . 6cmB . 3cmC . 9cmD . 12cm7. (2分)若关于x的分式方程 =2的解为非负数,则m的取值范围是().A . m>﹣1B . m≥1C . m>﹣1且m≠1D . m≥﹣1且m≠18. (2分) (2020九上·椒江月考) 如图,在△ABC中,∠C=64°,将△ABC绕着点A顺时针旋转后,得到△AB′C′,且点C′在BC上,则∠B′C′B的度数为()A . 42°B . 48°C . 52°D . 589. (2分) (2016八上·绵阳期中) 如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A . 5B . 4C . 3D . 210. (2分) (2018八上·合浦期末) 对于实数、,定义一种新运算“ ”为:,这里等式右边是实数运算.例如:.则方程的解是()A .B .C .D .二、填空题 (共5题;共6分)11. (1分) (2018八上·如皋期中) 已知点A(m,3)与点B(2,n)关于x轴对称,则m+n=________.12. (1分)(2020·呼伦贝尔模拟) 已知y﹣x=3xy,则代数式的值为________.13. (2分)四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD成为平行四边形的是________ .14. (1分) (2019八上·无棣期中) 下列各式:① ,② ,③ ,④ 中,是分式的是________(填序号).15. (1分) (2019八下·辉期末) 如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为__.三、综合题 (共8题;共68分)16. (10分) (2019八上·济宁期中) 分解因式(1);(2)17. (10分)先化简,再求值:•(x+2),其中x=.18. (2分) (2018八上·沁阳期末) 如图,点A,B,C,D在同一条直线上,,,求证: .19. (15分) (2019八下·渠县期末) 如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,5),C(4,2)(每个方格的边长均为1个单位长度)(1)将△ABC平移,使点A移动到点A1 ,请画出△A1B1C1;(2)作出△ABC关于O点成中心对称的△A2B2C2 ,并直接写出A2 , B2 , C2的坐标;(3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.20. (11分) (2017七下·石景山期末) 杨辉是我国南宋时期杰出的数学家和教育家,下图是杨辉在公元1261年著作《详解九章算法》里面的一张图,即“杨辉三角”,该图中有很多规律,请仔细观察,解答下列问题:(1)图中给出了七行数字,根据构成规律,第8行中从左边数第3个数是________;(2)利用不完全归纳法探索出第n行中的所有数字之和为________.21. (5分)(2012·泰州) 如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.22. (10分) (2020七下·阳东期末) 阳江市正在创建“全国文明城市”,育才学校拟举办“创文知识”抢答赛,欲购买、两种奖品以鼓励抢答者.如果购买种件,种件,共需元;如果购买种件,种件,共需元.(1)、两种奖品每件各多少元?(2)现要购买、两种奖品共件.①若购买金额不超过元,那么种奖品最多购买多少件?②若购买金额不低于元,不超过元,有哪几种购买方案?23. (5分)如图,等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE⊥AC交BC于点F,且DF =EF.(1)求证:CD=BE;(2)若AB=12,试求BF的长.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、综合题 (共8题;共68分)16-1、16-2、17-1、18-1、19-1、19-2、19-3、20-1、20-2、21-1、22-1、22-2、23-1、23-2、。
济南市八年级下学期数学期末考试试卷

济南市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2019·桂林模拟) 函数中,自变量x的取值范围是()A .B .C .D .2. (2分) (2017八下·青龙期末) 点K在直角坐标系中的坐标是(3,﹣4),则点K到x轴和y轴的距离分别是()A . 3,4B . 4,3C . 3,﹣4D . ﹣4,33. (2分) (2019八下·吴兴期末) 湖州是“两山”理论发源地在一次学校组织的以“学习两山理论,建设生态文明”为主题的知识竞赛中,某班6名同学的成绩如下(单位:分):97,99,95,92,92,93,则这6名同学的成绩的中位数和众数分别为()A . 93分,92分B . 94分,92分C . 94分,93分D . 95分,95分4. (2分)(2019·宝鸡模拟) 如图,直线y=mx+n与两坐标轴分别交于点B,C,且与反比例函致y=(x >0)图象交于点A,过点A作AD⊥x轴,垂足为D,连接DC,若△BOC的面积是6,则△DOC的面积是()A . 5﹣2B . 5+2C . 4 ﹣6D . ﹣3+5. (2分) (2017八下·桂林期中) 如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A . 45°B . 30°C . 60°D . 55°6. (2分)(2011·资阳) 如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()A . M或O或NB . E或O或CC . E或O或ND . M或O或C7. (2分)(2017·市中区模拟) 如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A . y=x+5B . y=x+10C . y=﹣x+5D . y=﹣x+108. (2分) (2017九上·黄岛期末) 已知点(﹣2,y1),(﹣1,y2),(1,y3)都在反比例函数y= (k<0)的图象上,那么y1 , y2与y3的大小关系是()A . y3<y1<y2B . y3<y2<y1C . y1<y2<y3D . y1<y3<y2二、填空题 (共6题;共6分)9. (1分)(2019·余姚会考) 下图是某小组美术作业得分情况,则该小组美术作业得分的众数为________分.编号 1 2 3 4 5 6 7 8 910得分(分)343554355410. (1分) (2018八上·姜堰期中) 若,则 =________.11. (1分)如图,一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2;④不等式kx+b>0的解集是x>2.其中说法正确的有________(把你认为说法正确的序号都填上).12. (1分)如图,四边形ABCD中,对角线AC,BD相交于点O,AD∥BC,OA=OC,AC平分∠BAD.欲使四边形ABCD是正方形,则还需添加添加________ (写出一个合适的条件即可)13. (1分)(2017·贵阳) 如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是________.14. (1分)甲乙两车沿直路同向行驶,车速分别为20m/s和25m/s.现甲车在乙车前500m处,设xs(0≤x≤100)后两车相距ym.那么y关于x的数解析式为________ .(写出自变量取值范围)三、解答题 (共10题;共81分)15. (5分)化简:.16. (10分) (2018八下·江门月考) 某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:若日销售量y是销售价x的一次函数.x (元)152025…y (件)252015…(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.17. (10分) (2019八下·尚志期中) 图1、图2分别是的网格,网格中的每个小正方形的边长均为1.请按要求画出下列图形,所画图形的各个项点均在所给小正方形的顶点上.(1)在图1中画一个周长为的菱形.(非正方形)(2)在图2中画出周长为18,面积为16的平行四边形.18. (3分)(2019·兰州模拟) 某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.【收集数据】从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:【整理、描述数据】按如下分数段整理、描述这两组样本数据:成绩人数部门40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲0011171乙(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)【分析数据】两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.377.575乙7880.581【得出结论】.估计乙部门生产技能优秀的员工人数为________;.可以推断出________部门员工的生产技能水平较高,理由为________.(至少从两个不同的角度说明推断的合理性)19. (5分)已知,如图,▱ABCD中,BE,CF分别是∠ABC和∠BCD的一平分线,BE,CF相交于点O.(1)求证:BE⊥CF;(2)试判断AF与DE有何数量关系,并说明理由;(3)当△BOC为等腰直角三角形时,四边形ABCD是何特殊四边形?(直接写出答案)20. (12分)(2016·湘西) 某校为了了解学生家长对孩子用手机的态度问题,随机抽取了100名家长进行问卷调查,每位学生家长只有一份问卷,且每份问卷仅表明一种态度(这100名家长的问卷真实有效),将这100份问卷进行回收整理后,绘制了如下两幅不完整的统计图.(1)“从来不管”的问卷有________份,在扇形图中“严加干涉”的问卷对应的圆心角为________.(2)请把条形图补充完整.(3)若该校共有学生2000名,请估计该校对手机问题“严加干涉”的家长有多少人.21. (10分)在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.22. (10分)(2017·兰山模拟) 张老师计划组织朋友暑假去旅游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团旅游的游客,甲旅行社表示,每人按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团旅游的总费用y(元)与x(人)之间的函数关系式;(2)若你是张老师,在甲、乙两家旅行社中,你怎样选择?说明理由.23. (1分) (2017八下·南沙期末) 如图,已知在正方形ABCD外取一点E,连接CE、BE、DE.过点C作CE的垂线交BE于点F.CE=CF=1,DF= .下列结论:①△BCF≌△DCE;②EB⊥ED;③点D到直线CE的距离为2;④S四边形DECF= + .其中正确结论的序号是________.24. (15分) (2019九上·杭州期末) 绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共10题;共81分)15-1、16-1、16-2、17-1、17-2、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、24-1、24-2、24-3、。
山东济南市中区16-17学年八年级下期末考试试卷--数学

6. 下列多项式能用完全平方公式分解因式的有 ( )
A.m2-mn+n2B.x2+4x– 4 C.x2-4x+4 D. 4x2-4x+4
7.如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是( )
21.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②BG=CG;③AG//CF;④S△EFC= .其中正确结论的是____________(只填序号).
22.(本小题满分7分)
C.(x+1)(x—1)=x2- 1 D.x-1=x(1- )
3下列所培图形中·既是中心对称图形又是轴对称图形的是( )
A B C D
4.多项式x2-1与多项式x2一2x+1的公因式是( )
A.x一1 B.x+1 C.x2一1 D.(x-1)2
5己知一个多边形的内角和是360°,则这个多边形是( )
A.(22017,-22017)B.((22016,22016)
二、填空题(本大题共5小题,每小题4分,共20分)
16.若分式 有意义,则x的取值范围是_______________.
17.若m=2,则m2-4m+4的值是_________________.
济南市市中区2016-2017学年第二学期期末考试八年级数学试卷
一、选择题(本大题共15小题,每小题3分,共45分)
1.若a>b,则下列各式中一定成立的是( )
A.a+2<b+2 B.a一2<b一2 C. > D.-2a>-2b
2.下面式子从左边到右边豹变形是因式分解的是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年山东省济南市市中区育英中学八年级(下)期末数学试卷一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)若a>b,则下列各式中一定成立的是()A.a+2<b+2 B.a﹣2<b﹣2 C.>D.﹣2a>﹣2b2.(3分)下面式子从左边到右边的变形是因式分解的是()A.x2﹣x﹣2=x(x﹣1)﹣2 B.x2﹣4x+4=(x﹣2)2C.(x+1)(x﹣1)=x2﹣1 D.x﹣1=x(1﹣)3.(3分)下列所给图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.4.(3分)多项式x2﹣1与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)25.(3分)已知一个多边形的内角和是360°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形6.(3分)下列多项式能用完全平方公式分解因式的有()A.m2﹣mn+n2B.x2+4x﹣4 C.x2﹣4x+4 D.4x2﹣4x+47.(3分)如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是()A.60°B.90°C.120° D.150°8.(3分)运用分式的性质,下列计算正确的是()A.=x4B.=﹣1 C.=D.=09.(3分)如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=()A.16cm B.14cm C.12cm D.8cm10.(3分)若分式方程有增根,则m等于()A.3 B.﹣3 C.2 D.﹣211.(3分)如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,则BC的长为()A.18 B.14 C.12 D.612.(3分)如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x 的不等式x+m<kx﹣1的解集在数轴上表示正确的是()A.B.C.D.13.(3分)如图,在菱形ABCD 中,对角线AC、BD 相交于点O,BD=8,BC=5,AE⊥BC 于点E,则AE的长等于()A.5 B.C.D.14.(3分)定义新运算“⊕”如下:当a>b时,a⊕b=ab+b;当a<b时,a⊕b=ab ﹣b,若3⊕(x+2)>0,则x的取值范围是()A.﹣1<x<1或x<﹣2 B.x<﹣2或1<x<2 C.﹣2<x<1或x>1 D.x<﹣2或x>215.(3分)在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2017OB2017.则点B2017的坐标()A.(22017,﹣22017)B.(22016,﹣22016)C.(22017,22017)D.(22016,22016)二、填空题(共6小题,每小题3分,满分18分)16.(3分)分式有意义的x的取值范围为.17.(3分)若m=2,则m2﹣4m+4的值是.18.(3分)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA 于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于.19.(3分)不等式组(m≠4)的解集是x>4,那么m的取值范围是.20.(3分)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移2个单位后得到△DEF,连接DC,则DC的长为.21.(3分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①=.其中正确结论的是(只△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EFC填序号).三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)22.(7分)(1)分解因式:ax2﹣ay2.(2)解不等式组,并把不等式组的解集在数轴上表示出来.23.(7分)(1)如图,在平行四边形ABCD中,点E,F分别在AB,CD上,AE=CF,求证:DE=BF.(2)先化简,再求值:(﹣)÷,其中a=6.24.(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿X轴方向向左平移6个单位,画出平移后得到的△A1B1C1.(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2.(3)直接写出点A2、C2的坐标.25.(8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么,最多可购买多少件甲种商品?26.(9分)探索发现:=1﹣;=﹣;=﹣…根据你发现的规律,回答下列问题:(1)=,=;(2)利用你发现的规律计算:+++…+(3)灵活利用规律解方程:++…+=.27.(9分)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.(1)如图1,点A、D分别在EH和EF上,连接BH、AF,直接写出BH和AF的数量关系:(2)将正方形EFGH绕点E顺时针方向旋转①如图2,判断BH和AF的数量关系,并说明理由;②如果四边形ABDH是平行四边形,请在备用图中补全图形;如果四方形ABCD 的边长为,求正方形EFGH的边长.28.(9分)如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(﹣6,8).矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x轴分别交于点D、F.(1)直接写出线段BO的长:(2)求点D的坐标;(3)若点N是平面内任一点,在x轴上是否存在点M,使咀M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.2016-2017学年山东省济南市市中区育英中学八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)若a>b,则下列各式中一定成立的是()A.a+2<b+2 B.a﹣2<b﹣2 C.>D.﹣2a>﹣2b【解答】解:(A)a+2>b+2,故A错误;(B)a﹣2>b﹣2,故B错误;(D)﹣2a<﹣2b,故D错误;故选:C.2.(3分)下面式子从左边到右边的变形是因式分解的是()A.x2﹣x﹣2=x(x﹣1)﹣2 B.x2﹣4x+4=(x﹣2)2C.(x+1)(x﹣1)=x2﹣1 D.x﹣1=x(1﹣)【解答】解:A、没把多项式转化成几个整式积的形式,故A不符合题意;B、把多项式转化成几个整式积的形式,故B符合题意;C、是整式的乘法,故C不符合题意;D、没把多项式转化成几个整式积的形式,故D不符合题意;故选:B.3.(3分)下列所给图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、不是中心对称图形,不是轴对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项错误;D、是中心对称图形,也是轴对称图形,故此选项正确.故选:D.4.(3分)多项式x2﹣1与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2【解答】解:∵x2﹣1=(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴多项式x2﹣1与多项式x2﹣2x+1的公因式是:x﹣1.故选:A.5.(3分)已知一个多边形的内角和是360°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形【解答】解:设这个多边形的边数为n,则有(n﹣2)180°=360°,解得:n=4,故这个多边形是四边形.故选:A.6.(3分)下列多项式能用完全平方公式分解因式的有()A.m2﹣mn+n2B.x2+4x﹣4 C.x2﹣4x+4 D.4x2﹣4x+4【解答】解:A、m2﹣mn+n2不符合能用完全平方公式分解因式的式子的特点;B、x2+4x﹣4不符合能用完全平方公式分解因式的式子的特点;C、x2﹣4x+4能用完全平方公式分解因式;D、4x2﹣4x+4不符合能用完全平方公式分解因式的式子的特点.故选:C.7.(3分)如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是()A.60°B.90°C.120° D.150°【解答】解:旋转角是∠BAB′=180°﹣30°=150°.故选:D.8.(3分)运用分式的性质,下列计算正确的是()A.=x4B.=﹣1 C.=D.=0【解答】解:A、=x4,所以A选项计算正确;B、为最简分式,所以B选项的计算错误;C、为最简分式,所以C选项的计算错误;D、=1,所以D选项的计算错误;故选:A.9.(3分)如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=()A.16cm B.14cm C.12cm D.8cm【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∵▱ABCD的周长为40cm,∴AB+BC=20cm,∵BC=AB,∴BC=20×=8cm,故选:D.10.(3分)若分式方程有增根,则m等于()A.3 B.﹣3 C.2 D.﹣2【解答】解:分式方程去分母得:x﹣3=m,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:m=﹣2,故选:D.11.(3分)如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,则BC的长为()A.18 B.14 C.12 D.6【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=CE=AC=.∵△CDE的周长为24,∴CD=9,∴BC=2CD=18.故选:A.12.(3分)如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x的不等式x+m<kx﹣1的解集在数轴上表示正确的是()A.B.C.D.【解答】解:根据图象得,当x<﹣1时,x+m<kx﹣1.故选:D.13.(3分)如图,在菱形ABCD 中,对角线AC、BD 相交于点O,BD=8,BC=5,AE⊥BC 于点E,则AE的长等于()A.5 B.C.D.【解答】解:∵四边形ABCD是菱形,BD=8,∴BO=DO=4,∠BOC=90°,在Rt△OBC中,OC===3,∴AC=2OC=6,∴AE×BC=BO×AC故5AE=24,解得:AE=.故选:C.14.(3分)定义新运算“⊕”如下:当a>b时,a⊕b=ab+b;当a<b时,a⊕b=ab ﹣b,若3⊕(x+2)>0,则x的取值范围是()A.﹣1<x<1或x<﹣2 B.x<﹣2或1<x<2 C.﹣2<x<1或x>1 D.x<﹣2或x>2【解答】解:当3>x+2,即x<1时,3(x+2)+x+2>0,解得:x>﹣2,∴﹣2<x<1;当3<x+2,即x>1时,3(x+2)﹣(x+2)>0,解得:x>﹣2,∴x>1,综上,﹣2<x<1或x>1,故选:C.15.(3分)在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2017OB2017.则点B2017的坐标()A.(22017,﹣22017)B.(22016,﹣22016)C.(22017,22017)D.(22016,22016)【解答】解:∵△AOB是等腰直角三角形,OA=1,∴AB=OA=1,∴B(1,1),将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,B1(2,﹣2),B2(﹣4,﹣4),B3(﹣8,8),B4(16,16),∵2017÷4=503…1,∴点B2017与B1同在一个象限内,∵﹣4=﹣22,8=23,16=24,∴点B2017(22017,﹣22017).故选:A.二、填空题(共6小题,每小题3分,满分18分)16.(3分)分式有意义的x的取值范围为x≠1.【解答】解:当分母x﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.17.(3分)若m=2,则m2﹣4m+4的值是0.【解答】解:当m=2时,原式=4﹣8+4=0,故答案为:018.(3分)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA 于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于2.【解答】解:作PE⊥OA于E,∵CP∥OB,∴∠OPC=∠POD,∵P是∠AOB平分线上一点,∴∠POA=∠POD=15°,∴∠ACP=∠OPC+∠POA=30°,∴PE=PC=2,∵P是∠AOB平分线上一点,PD⊥OB,PE⊥OA,∴PD=PE=2,故答案为:2.19.(3分)不等式组(m≠4)的解集是x>4,那么m的取值范围是m <4.【解答】解:不等式组的解集是x>4,得m≤4(m≠4),∴m<4,故答案为:m<4.20.(3分)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移2个单位后得到△DEF,连接DC,则DC的长为4.【解答】解:∵△ABC沿射线BC方向平移2个单位后得到△DEF,∴DE=AB=4,BC﹣BE=6﹣2=4,∵∠B=∠DEC=60°,∴△DEC是等边三角形,∴DC=4,故答案为:4.21.(3分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①=.其中正确结论的是①②△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EFC③④(只填序号).【解答】解:∵四边形ABCD是正方形,∴AB=AD=DC=6,∠B=D=90°,∵CD=3DE,∴DE=2,∵△ADE沿AE折叠得到△AFE,∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,∴AF=AB,∵在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),∴①正确;∵Rt△ABG≌Rt△AFG,∴BG=FG,∠AGB=∠AGF,设BG=x,则CG=BC﹣BG=6﹣x,GE=GF+EF=BG+DE=x+2,在Rt△ECG中,由勾股定理得:CG2+CE2=EG2,∵CG=6﹣x,CE=4,EG=x+2∴(6﹣x)2+42=(x+2)2解得:x=3,∴BG=GF=CG=3,∴②正确;∵CG=GF,∴∠CFG=∠FCG,∵∠BGF=∠CFG+∠FCG,又∵∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF,∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG∴AG∥CF,∴③正确;∵==,=ו3×4=,∴④正确,∴S△EFC故答案为①②③④.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)22.(7分)(1)分解因式:ax2﹣ay2.(2)解不等式组,并把不等式组的解集在数轴上表示出来.【解答】解:(1)原式=a(x2﹣y2)=a(x+y)(x﹣y);(2)由①解得x<2,由②解得x≥﹣2,不等式组的解集在数轴上表示如图;不等式组的解集为﹣2≤x<2.23.(7分)(1)如图,在平行四边形ABCD中,点E,F分别在AB,CD上,AE=CF,求证:DE=BF.(2)先化简,再求值:(﹣)÷,其中a=6.【解答】(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,∵AE=CF,∴DF=EB,∴四边形DEBF是平行四边形,∴DE=BF.(2)解:原式=×(a﹣2)=﹣,当a=6时,原式=﹣1.24.(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿X轴方向向左平移6个单位,画出平移后得到的△A1B1C1.(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2.(3)直接写出点A2、C2的坐标.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△AB2C2即为所求;(3)由以上作图知,A2的坐标为(1,1)、C2的坐标为(1,﹣3).25.(8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么,最多可购买多少件甲种商品?【解答】解:(1)设每件乙种商品的价格为x元,则每件甲种商品的价格为(x+10)元,根据题意得:=,解得:x=60,经检验,x=60是原方程的解,∴x+10=70.答:每件乙种商品的价格为60元,每件甲种商品的价格为70元.(2)设购买y件甲种商品,则购买(50﹣y)件乙种商品,根据题意得:70y+60(50﹣y)≤3200,解得:x≤20.答:最多可购买20件甲种商品.26.(9分)探索发现:=1﹣;=﹣;=﹣…根据你发现的规律,回答下列问题:(1)=﹣,=﹣;(2)利用你发现的规律计算:+++…+(3)灵活利用规律解方程:++…+=.【解答】解:(1)=﹣,=﹣;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)(﹣+﹣+…+﹣)=,(﹣)=﹣=,=,解得x=50,经检验,x=50为原方程的根.故答案为﹣,﹣.27.(9分)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH.(1)如图1,点A、D分别在EH和EF上,连接BH、AF,直接写出BH和AF的数量关系:(2)将正方形EFGH绕点E顺时针方向旋转①如图2,判断BH和AF的数量关系,并说明理由;②如果四边形ABDH是平行四边形,请在备用图中补全图形;如果四方形ABCD 的边长为,求正方形EFGH的边长.【解答】解:(1)在正方形ABCD中,AE=BE,∠BEH=∠AEF=90°,∵四边形EFGH是正方形,∴EF=EH,∵在△BEH和△AEF中,,∴△BEH≌△AEF(SAS),∴BH=AF;(2)①BH=AF,理由:连接EG,∵四边形ABCD是正方形,∴AE=BE,∠BEA=90°,∵四边形EFGH是正方形,∴EF=EH,∠HEF=90°,∴∠BEA+∠AEH=∠HEF+∠AEH,即∠BEH=∠AEF,在△BEH与△AEF中,,∴△BEH≌△AEF,∴BH=AF;②如备用图,∵四边形ABDH是平行四边形,∴AH∥BD,AH=BD,∴∠EAH=∠AEB=90°,∵四方形ABCD的边长为,∴AE=BE=CE=DE=1,∴EH===,∴正方形EFGH的边长为.28.(9分)如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(﹣6,8).矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x轴分别交于点D、F.(1)直接写出线段BO的长:(2)求点D的坐标;(3)若点N是平面内任一点,在x轴上是否存在点M,使咀M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)∵四边形ABCO是矩形,点B的坐标是(﹣6,8).∴∠BAD=∠OCB=90°,AB=OC=6,OA=BC=8,∴BO==10;(2)由折叠的性质得:BE=AB=6,∠BED=∠BAD=90°,DE=AD,∴OE=BO﹣BE=10﹣6=4,∠OED=90°,设D(0,a),则OD=a,DE=AD=OA﹣OD=8﹣a,在Rt△EOD中,由勾股定理得:DE2+OE2=OD2,即(8﹣a)2+42=a2,解得:a=5,∴D(0,5);(3)存在,点M的坐标为(4,0)或(﹣4,0)或(﹣,0)或(﹣,0);理由如下:①当OM、OE都为菱形的边时,OM=OE=4,∴M的坐标为(4,0)或(﹣4,0);②当OM为菱形的边,OE为对角线时,MN垂直平分OE,垂足为G,如图1所示:则OG=OE=2,则cos∠MOG=cos∠BOC,∴,即,解得:OM=,∴M(﹣,0);③当OM为菱形的对角线,OE为边时,如图2所示:同②得:M(﹣,0);综上所述,在x轴上存在点M,使以M、N、E、O为顶点的四边形是菱形,点M的坐标为(4,0)或(﹣4,0)或(﹣,0)或(﹣,0).。