中考数学复习复习题二[人教版]
人教版数学九年级中考复习训练专题二 计算求解题 附答案

专题二 计算求解题(必考)类型一 简便运算1. (2020唐山路北区三模)如图,是小明完成的一道作业题,请你参考小明的方法解答下面的问题:第1题图(1)计算:① 42020×(-0.25)2020;②(125)11×(-56)13×(12)12. (2)若2×4n ×16n =219,直接写出n 的值.2. 嘉琪研究了“十位数字相加等于10,个位数字相等”的两位数乘法的口算技巧:如34×74=2516.结果中的前两位数是用3×7+4得25,后两位数是用4×4=16,经过直接组合就可以得到正确结果2516.(1)请用上述方法直接计算45×65=________;56×56=________;(2)请用合适的数学知识解释上述方法的合理性.类型二 计算过程纠错1. 小杨对算式“(-24)×(18-13+14)+4÷(12-13)”进行计算时的过程如下: 解:原式=(-24)×18+(-24)×(-13)+(-24)×14+4÷(12-13)……① =-3+8-6+4×(2-3)……②=-1-4……③=-5④根据小杨的计算过程,回答下列问题:(1)小杨在进行第①步时,运用了__________律;(2)他在计算中出现了错误,其中你认为第________步出错了(只填写序号);(3)请你给出正确的解答过程.2. (2020石家庄模拟)已知多项式A =(x +2)2+x (1-x )-9.(1)化简多项式A 时,小明的结果与其他同学的不同,请你检查小明同学的解题过程,在标出①②③④的几项中出现错误的是________,并写出正确的解答过程;(2)小亮说:“只要给出x 2-2x +1的合理的值,即可求出多项式A 的值.”小明给出x 2-2x +1的值为4,请你求出此时A 的值.第2题图类型三 缺 项1. (2020邢台一模)嘉淇在解一道运算题时,发现一个数被污染,这道题是:计算:(-1)2020+÷(-4)×8. (1)若被污染的数为0,请计算(-1)2020+0÷(-4)×8;(2)若被污染的数是不等式组⎩⎪⎨⎪⎧2x +1>3,7-3x ≥1的整数解,求原式的值.2. (2020石家庄模拟)小丽同学准备化简:(3x 2-6x -8)-(x 2-2x □6),算式中“□”是“+,-,×,÷”中的某一种运算符号.(1)如果“□”是“×”,请你化简:(3x 2-6x -8)-(x 2-2x ×6);(2)若x 2-2x -3=0,求(3x 2-6x -8)-(x 2-2x -6)的值;(3)当x =1时,(3x 2-6x -8)-(x 2-2x □6)的结果是-4,请你通过计算说明“□”所代表的运算符号.类型四新定义1.仔细观察下列有理数的运算,回答问题.(+2)∅(+3)=+5,(-2)∅(-3)=+5,(+2)∅(-3)=-5,(-2)∅(+3)=-5,0∅(+3)=(+3)∅0=+3,0∅(-3)=(-3)∅0=+3.(1)“∅”的运算法则为:_______________________________________________________________;(2)计算:(-4)∅[0∅(-5)];(3)若(-2)∅a=a+3,求a的值.2. (2020邢台桥西区二模)如果a,b都是非零整数,且a=4b,那么就称a是“4倍数”.(1)30到35之间的“4倍数”是________,小明说:232-212是“4倍数”,嘉淇说:122-6×12+9也是“4倍数”,他们谁说的对?________.(2)设x是不为零的整数.①x(x+1)是________的倍数;②任意两个连续的“4倍数”的积可表示为________,它________(填“是”或“不是”)32的倍数.(3)设三个连续偶数的中间一个数是2n(n是整数),写出它们的平方和,并说明它们的平方和是“4倍数”.类型五与数轴结合1. (2020石家庄教学质量检测)如图①,点A,B,C是数轴上从左到右排列的三个点,分别对应的数为-5,b,4.某同学将刻度尺如图②放置,使刻度尺上的数字0对齐数轴上的点A,发现点B对齐刻度1.8 cm,点C对齐刻度5.4 cm.图①图②第1题图(1)在图①的数轴上,AC=________个单位长度;数轴上的一个单位长度对应刻度尺上的________cm;(2)求数轴上点B所对应的数b;(3)在图①的数轴上,点Q是线段AB上一点,满足AQ=2QB,求点Q所表示的数.2. (2020张家口一模)如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①、②、③、④四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)请说明原点在第几部分;(2)若AC=5,BC=3,b=-1,求a;(3)若点B到表示1的点的距离与点C到表示1的点的距离相等,且a-b-c=-3,求-a+3b-(b-2c)的值.第2题图3. (2020河北黑马卷)已知:在一条数轴上,从左到右依次排列n(n>1)个点,在数轴上取一点P,使点P到各点的距离之和最小.如图①,若数轴上依次有A1、A2两个点,则点P可以在A1A2之间的任意位置,距离之和为A1A2;图①图②第3题图如图②,若数轴上依次有A1、A2、A3三个点,则点P在A2的位置,距离之和为A1A2+A2A3;如图③,若数轴上依次有A1、A2、A3、A4四个点,则点P可以在A2A3之间的任意位置,距离之和为A1P+A2P+A3P+A4P;第3题图③探究若数轴上依次有A1、A2、A3、A4、A5五个点,判断点P所处的位置;归纳若数轴上依次有n个点,判断点P所处的位置;应用在一条直线上有依次排列的39个工位在工作,每个工位间隔1米,我们需要设置供应站P,使这39个工位到供应站P的距离总和最小,求供应站P的位置和最小距离之和.专题二 计算求解题类型一 简便运算1. 解:(1)①原式=(-4×0.25)2020=(-1)2020=1;②原式=(-125×56×12)11×12×(-56)2 =-12×2536=-2572; (2)n =3.2. 解:(1)2925;3136;类型二 计算过程纠错1. 解:(1)乘法分配:(2)②;(3)原式=(-24)×18+(-24)×(-13)+(-24)×14+4÷(12-13) =-3+8-6+4÷16=-1+24=23.2. 解:(1)①;正确的解答过程为:A =x 2+4x +4+x -x 2-9=5x -5;(2)∵x 2-2x +1=4,即(x -1)2=4,∴x -1=±2,则A =5x -5=5(x -1)=±10.类型三 缺 项1. 解:(1)(-1)2020+0÷(-4)×8=1+0=1;(2)解不等式组⎩⎪⎨⎪⎧2x +1>37-3x ≥1,得1<x ≤2,其整数解为2. 原式=(-1)2020+2÷(-4)×8=1-4=-3.2. 解:(1)(3x 2-6x -8)-(x 2-2x ×6)=3x 2-6x -8-(x 2-12x )=3x 2-6x -8-x 2+12x=2x 2+6x -8;(2)(3x 2-6x -8)-(x 2-2x -6)=3x 2-6x -8-x 2+2x +6=2x 2-4x -2,∵x 2-2x -3=0,∴x 2-2x =3∴2x 2-4x -2=2(x 2-2x )-2=2×3-2=4;(3)当x =1时,原式=(3-6-8)-(1-2□6)=-4,整理得-11-(1-2□6)=-4,1-2□6=-7,-2□6=-8,∴□处应为“-”.类型四 新定义1. 解:(1)运算时两数同号则绝对值相加,两数异号则为绝对值相加的相反数,0与任何数进行运算,结果为该数的绝对值;(2)(-4)∅[0∅(-5)]=(-4)∅(+5)=-9;(3)当a >0时,等式可化为(-2)-a =a +3,解得a =-52,与a >0矛盾,不合题意; 当a =0时,等式可化为2=a +3,解得a =-1,与a =0矛盾,不合题意;当a <0时,等式可化为2-a =a +3,解得a =-12,符合题意. 综上所述,a 的值为-12. 2. 解:(1)32;小明;(2)①2;②16x (x +1)或16x 2+16x ,是;(3)三个连续偶数为2n -2,2n ,2n +2,∴(2n -2)2+(2n )2+(2n +2)2=4n 2-8n +4+4n 2+4n 2+8n +4=12n 2+8=4(3n 2+2),∵n 为整数,∴4(3n 2+2)是“4倍数”.类型五 与数轴结合1. 解:(1)9;0.6;2. 解:(1)∵bc <0,∴b ,c 异号.∴原点在第③部分;(2)若AC =5,BC =3,则AB =2.∵b =-1,∴a =-1-2=-3;(3)设点B 到表示1的点的距离为m (m >0),则b =1-m ,c =1+m .∴b +c =2.∵a -b -c =-3,即a -(b +c )=-3,∴a =-1.∴-a +3b -(b -2c )=-a +3b -b +2c =-a +2b +2c =-a +2(b +c )=-(-1)+2×2=5.3. 解:探究 数轴上依次有A 1、A 2、A 3、A 4、A 5五个点,当点P 的位置在A 3处时,距离总和最小;归纳 当n 为偶数时,点P 在第n 2和第n 2+1个点之间的任意位置; 当n 为奇数时,点P 在第n +12个点的位置; 应用 设点P 在数轴上表示的数为x ,距离之和为M ,则M =||x -1+||x -2+…+||x -39, ∵39+12=20, ∴当x =20时,代数式M 取到最小值,∵每个工位间隔1米,∴M=19+18+…+0+1+2+…+19=(19+1)×19=380(米). 答:供应站P的位置在第20个工位,最小距离之和为380米.。
2019届人教版中考复习数学练习专题二:阅读理解专题(有答案)

专题二阅读理解专题【课堂精讲】例1阅读例题,模拟例题解方程.解方程x2+|x-1|-1=0.解:(1)当x-1≥0即x≥1时,原方程可化为:x2+x-1-1=0即x2+x-2=0,解得x1=1,x2=-2(不合题意,舍去)(2)当x-1<0即x<1时,原方程可化为:x2-(x-1)-1=0即x2-x=0,解得x3=0,x4=1(不合题意,舍去)综合(1)、(2)可知原方程的根是x1=1,x2=0.请你模拟以上例题解方程:x2+|x+3|-9=0.解析:(1)当x+3≥0时,即x≥-3时.原方程可化为:x2+x-6=0.解得x1=2,x2=-3.(2)当x+3<0时,即x<-3时.原方程可化为:x2-x-12=0.解得x3=-3,x4=4.经检验,x3=-3,x4=4都不符合题意,舍去.综合(1)、(2)可知原方程的根为x1=2,x2=-3.点评:解决这类题的策略是先理解例题的思想方法,再把这种思想方法迁移到问题中从而得到解决.例2条件:如下图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小模型应用:(1)如图1,正方形ABCD边长为2,E为AB的中点,P是AC上一动点.则PB+PE的最小值是______;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC最小值是______;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值是______.解析:关键在于把握题中的两点:第一是动点在哪条线上运动?这条线就确定为对称轴;第二是画出一个点的对称点,并确定符合条件的动点的位置,再进行解答.(1)在图1中,点B关于AC的对称点是D,连接DE交AC于点P,此时点P就符合条件,再进行计算.(2)在图2中,点A关于OB的对称点是点D,连接DC交OB于点P,点P就是符合条件的点.PA+PC的最小值是CD,求出CD的长即可.(3)在图3中,作出P关于OB、OA的对称点P′和P″.连接P′P″交OB、OA于R、Q.再连接PR、PQ.则△PRQ的周长最小,此时△PRQ的周长=P′P″的长.在等腰直角形P′OP″中.求出P′P″的长即可.答案:523102【课堂提升】1.阅读材料,解答问题.用图象法解一元二次不等式,x2-2x-3>0.解:设y=x2-2x-3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2-2x-3=0.解得x1=-1,x2=3.∴由此得抛物线y=x2-2x-3的大致图象如图所示:观察函数图象可知:当x<-1或x>3时,y>0.∴x2-2x-3>0的解集是:x<-1或x>3.(1)观察图象,直接写出一元二次不等式:x2-2x-3<0的解集是________;(2)仿照上例,用图象法解一元二次不等式:x2-5x+6<0的解集.2. 阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2又∵x>1,∵y+2>1.∴y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y +x <0+2∴x +y 的取值范围是0<x +y <2请按照上述方法,完成下列问题:(1)已知x ﹣y =3,且x >2,y <1,则x +y 的取值范围是 .(2)已知y >1,x <﹣1,若x ﹣y =a 成立,求x +y 的取值范围(结果用含a 的式子表示).3.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A . 1,2,3B . 1,1,C . 1,1,D . 1,2,y 1),Q (x 2,y 2)的对称中心的坐标为( 122x x + ,122y y + ).(1)如图,在平面直角坐标系中,若点P 1(0,-1),P 2(2,3)的对称中心是点A ,则点A 的坐标为________;(2)另取两点B (-1.6,2.1),C (-1,0).有一电子青蛙从点P 1处开始依次关于点A ,B ,C 作循环对称跳动,即第一次跳到点P 1关于点A 的对称点P 2处,接着跳到点P 2关于点B 的对称点P 3处,第三次再跳到点P 3关于点C 的对称点P 4处,第四次再跳到点P 4关于点A 的对称点P 5处,…,则点P 3,P 8的坐标分别为____、____;(3)求出点P 2012的坐标,并直接写出在x 轴上与点P 2012、点C 构成等腰三角形的点的坐标.【高效作业本】专题二 阅读理解专题1.如图,已知正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1).规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为( )A.(—2012,2) B.(一2012,一2)C. (—2013,—2) D. (—2013,2)2.定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于5而小于9,求x的取值范围.一元二次方程两个根二次三项式因式分解x2-2x+1=0 x1=1,x2=1 x2-2x+1=(x-1)(x-1)x2-3x+2=0 x1=1,x2=2 x2-3x+2=(x-1)(x-2)3x2+x-2=0 x1=,x2=-1 3x2+x-2=3(x- )(x+1)2x2+5x+2=0 x1=____,x2=____ 2x2+5x+2=2(x+ )(x+2)4x2+13x+3=0 x1=____,x2=____ 4x2+13x+3=4(x+____)(x+____)4.阅读下面的例题:解方程x2-|x|-2=0解:(1)当x≥0时,原方程化为x2-x-2=0解得x1=2,x2=-1(不合题意,舍去)(2)当x<0时,原方程化为x2+x-2=0,解得x1=1(不合题意,舍去),x2=-2所以原方程的解是x1=2,x2=-2请参照例题,解方程:x2-|x-3|-3=0.【答案】专题二阅读理解专题答案1.分析:(1)观察图象即可写出一元二次不等式:x2-2x-3<0的解集;(2)先设函数解析式,根据a的值确定抛物线的开口向上,再找出抛物线与x轴相交的两点,就可以画出抛物线,根据y<0确定一元二次不等式x2-2x-3<0的解集.解:(1)观察图象,可得一元二次不等式x2-2x-3<0的解集是:-1<x<3(2)设y=x2-5x+6,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2-5x+6=0,解得x1=2,x2=3.∴由此得抛物线y=x2-5x+6的大致图象如图所示.观察函数图象可知:当2<x<3时,y<0.∴x2-5x+6<0的解集是:2<x<3点评:本题主要考查在直角坐标系中利用二次函数图象解不等式,可作图利用交点直观求解集.2.解:(1)∵x﹣y=3,∴x=y+3,又∵x>2,∴y+3>2,∴y>﹣1.又∵y<1,∴﹣1<y<1,…①同理得:2<x<4,…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5;(2)∵x﹣y=a,∴x=y+a,又∵x<﹣1,∴y+a<﹣1,∴y<﹣a﹣1,又∵y>1,∴1<y<﹣a﹣1,…①同理得:a+1<x<﹣1,…②由①+②得1+a+1<y+x<﹣a﹣1+(﹣1),∴x+y的取值范围是a+2<x+y<﹣a﹣2.本题考查了一元一次不等式组的应用,解答本题的关键是仔细阅读材料,理解解题过程,难度一般.3.分析A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.解:A、∵1+2=3,不能构成三角形,故选项错误;B、∵12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D.点评:考查了解直角三角形,涉及三角形三边关系,勾股定理的逆定理,等腰直角三角形的判定,“智慧三角形”的概念.(2)(-5.2,1.2);(2,3)(提示:P1(0,-1),P2(2,3),P3(-5.2,1.2),P4(3.2,-1.2),P5(-1.2,3.2),P6(-2,1),P7(0,-1),P8(2,3))(3)∵P1(0,-1)→P2(2,3)→P3(-5.2,1.2)→P4(3.2,-1.2)→P5(-1.2,3.2)→P6(-2,1)→P7(0,-1)→P8(2,3)→…,∴P7的坐标和P1的坐标相同,P8的坐标和P2的坐标相同,即坐标以6为周期循环.∵2012÷6=335…2.∴P2012的坐标与P2的坐标相同,即P2012(2,3);在x轴上与点P2012,点C构成等腰三角形的点的坐标为(-3 -1,0),(2,0),(3 -1,0),(5,0).【高效作业本】1.分析:首先求出正方形对角线交点坐标分别是(2,2),然后根据题意求得第1次、2次、3次变换后的点M的对应点的坐标,即可得规律.解答:∵正方形ABCD,点A(1,3)、B(1,1)、C(3,1).∴M的坐标变为(2,2)∴根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第2014次变换后的点M的对应点的为坐标为(2-2014, 2),即(-2012, 2)故答案为A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n 次变换后的点M 的对应点的坐标为:当n 为奇数时为(2-n ,-2),当n 为偶数时为(2-n ,2)是解此题的关键.2.分析:首先根据运算的定义化简3△x ,则可以得到关于x 的不等式组,即可求解.解答:3△x=3x ﹣3﹣x+1=2x ﹣2,根据题意得:,解得:<x <.点评:本题考查了一元一次不等式组的解法,正确理解运算的定义是关键.3.(1)-12 -2 -14 -3 143 (2)ax2+bx +c =a(x -x1)(x -x2)4.解析:(1)当x -3≥3,原方程为 x 2-(x -3)-3=0∵x ≥3∴不符合题意,都舍去(2)当x -3<0时,即x <3,原方程化为x 2+(x -3)-3=0解得x 2+(x -3)=0解得x 1=-3或x 2=2(都符合题意)所以原方程的解是x 1=3或x 2=2.答案:x =-3或x =2。
2022年人教版中考数学一轮复习:四边形综合 专项练习题2(Word版,含答案)

2022年人教版中考数学一轮复习:四边形综合专项练习题21.如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC=BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是(限填序号).2.如图1,平行四边形纸片ABCD的面积为120,AD=15.今沿两对角线将四边形ABCD剪成甲、乙.丙、丁四个三角形纸片.若将甲、丙合并(AD、CB重合)形成一个对称图形戊,如图2所示.则图形戊的两条对角线长度之和为.3.如图,菱形ABCD的两条对角线AC,BD交于点O,BE⊥AD于点E,若AC=8,BD=6,则BE的长为.4.如图,在▱ABCD中,∠A=70°,DB=DC,CE⊥BD于E,则∠BCE=.5.如图,在菱形ABCD中,AB=BD,点E、F分别在AB、AD上,且AE=DF,连接BF与DE交于点H,若CG=1,则S=.四边形BCDG6.如图,正方形瓷砖图案是四个全等且顶角为45°的等腰三角形.已知该瓷砖的面积是1m2,则中间小正方形的面积为m2.7.如图所示,在Rt△ABC外作等边△ADE,点E在AB边上,AC=5,∠ABC=30°,AD=3.将△ADE沿AB方向平移,得到△A′D′E′,连接BD′.给出下列结论:①AB=10;②四边形ADD′A′为平行四边形;③AB平分∠D′BC;④当平移的距离为4时,BD′=3.其中正确的是(填上所有正确结论的序号).8.如图,菱形ABCD的对角线AC,BD相交于点O,P为AB边上一动点(不与点A,B重合),PE⊥OA于点E,PF⊥OB于点F,若AB=4,∠BAD=60°,则EF的最小值为.9.如图,在正方形ABCD中,点E为BC边上一点,且CE=2BE,点F为对角线BD上一点,且BF=2DF,连接AE交BD于点G,过点F作FH⊥AE于点H,若HG=2cm,则正方形ABCD 的边长为cm.10.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为.11.如图,在正方形ABCD内有一点P,若AP=4,BP=7,DP=9,则∠APB的度数为.12.如图是两个边长分别为2a,a的正方形,则△ABC的面积是.13.如图,点P是正方形ABCD内一点,连接AP、BP、DP,若AP=1,PD=,∠APB=135°,则正方形ABCD的面积为.14.如图,正三角形ABC与正方形CDEF的顶点B,C,D三点共线,动点P沿着CA由C向A 运动.连接EP,若AC=10,CF=8.则EP的最小值是.15.如图,正方形ABCD中,H为CD上一动点(不含C、D),连接AH交BD于G,过点G作GE⊥AH交BC于E,过E作EF⊥BD于F,连接AE,EH.下列结论:①AG=EG;②∠EAH=45°;③BD=2GF;④GE平分∠FEC.正确的是(填序号).16.如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是.17.如图,在正方形ABCD中,点E在对角线AC上,EF⊥AB于点F,EG⊥BC于点G,连接FG,若AB=8,则FG的最小值为.18.如图,正方形ABCD的边长为2,点E是BC的中点,连接AE与对角线BD交于点G,连接CG并延长,交AB于点F,连接DE交CF于点H,连接AH.以下结论:①CF⊥DE;②=;③GH=;④AD=AH,其中正确结论的序号是.19.如图,矩形ABCD中,对角线AC、BD交于点O,AE⊥BD于E,若∠DAE=3∠BAE.则的值为.20.将矩形ABCD按如图所示的方式折叠,BE、EG、FG为折痕,若顶点A、C、D都落在点O 处,且点B、O、G在同一条直线上,同时点E、O、F在另一条直线上.(1)的值为.(2)若AD=4,则四边形BEGF的面积为.参考答案1.解:①∵四边形ABCD是平行四边形,AB=AD,∴平行四边形ABCD是菱形;②∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形;③∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,因此∠ABC=∠ADC时,四边形ABCD还是平行四边形;故答案为:①.2.解:如图,连接AD、EF,则可得对角线EF⊥AD,且EF与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=1520,∴BC=AD=15,EF×AD=×120,∴EF=8,又BC=15,∴则图形戊中的四边形两对角线之和为20+3=23,故答案为23.3.解:∵四边形ABCD是菱形,∴AO=CO=4,BO=DO=3,AC⊥BD,∴AD===5,=AD×BE=×AC×BD,∵S菱形ABCD∴BE=,故答案为:.4.解:∵四边形ABCD是平行四边形,∴∠BCD=∠A=70°,∵DB=DC,∴∠DBC=∠BCD=70°,∵CE⊥BD,∴∠CEB=90°,∴∠BCE=20°.故答案为:20°.5.解:过点C作CM⊥GB于M,CN⊥GD,交GD的延长线于N.∵四边形ABCD为菱形,∴AB=AD=CD=BC,∵AB=BD,∴AB=BD=AD=CD=BC,∴△ABD为等边三角形,△BCD是等边三角形,∴∠A=∠BDF=60°,∠ADC=60°,在△ADE和△DBF中,,∴△ADE≌△DBF(SAS),∴∠ADE=∠DBF,∵∠FBC =60°+∠DBF ,∠NDC =180°﹣(120°﹣∠ADE )=60°+∠ADE ,∴∠NDC =∠FBC ,在△CDN 和△CBM 中,,∴△CDN ≌△CBM (AAS ),∴CM =CN ,在Rt △CBM 与Rt △CDN 中,,∴Rt △CBM ≌Rt △CDN (HL ),∴S 四边形BCDG =S 四边形CMGN .S 四边形CMGN =2S △CMG ,∵∠CGM =60°,∴GM =CG =,CM =CG =,∴S 四边形BCDG =S 四边形CMGN =2S △CMG =2×××=, 故答案为:.6.解:如图,作大正方形的对角线,作小正方形的对角线并延长交大正方形各边于中点, 设小正方形的边长为xm , 则大正方形的边长为x +x x =(1)xm , ∵瓷砖的面积是1m 2,∴大正方形的边长为1m ,即(1)x =1, 解得x =﹣1, ∴中间小正方形的面积为()2=3﹣2, 故答案为:3﹣2.7.解:∵∠ACB=90°,AC=5,∠ABC=30°,∴AB=2AC=10,故①正确;由平移的性质得:A'D'=AD,A'D'∥AD,∴四边形ADD′A′为平行四边形,故②正确;当平移的距离为4时,EE'=4,∴BE'=AB﹣AE﹣EE'=10﹣3﹣4=3,由平移的性质得:∠A'D'E'=∠A'E'D'=∠AED=60°,A'D'=D'E'=DE=AD=3,∴BE'=D'E',∴∠E'BD'=∠E'D'B=∠A'E'D'=30°,∴∠A'D'B=60°+30°=90°,∴BD'=A'D'=3,故④正确;由④得:当平移的距离为4时,∠E'BD'=∠ABC=30°,故③错误;故答案为:①②④.8.解:连接OP,∵四边形ABCD是菱形,∴AC⊥BD,∠CAB=DAB=30°,∵PE⊥OA于点E,PF⊥OB于点F,∴∠EOF=∠OEP=∠OFP=90°,∴四边形OEPF是矩形,∴EF=OP,∵当OP取最小值时,EF的值最小,∴当OP⊥AB时,OP最小,∵AB=4,∴OB=AB=2,OA=AB=2,∴S=OA•OB=AB•OP,△ABO∴OP==,∴EF的最小值为,故答案为:.9.解:如图,过F作FI⊥BC于I,连接FE,FA,∴FI∥CD,∵CE=2BE,BF=2DF,∴设BE=EI=IC=a,CE=FI=2a,AB=3a,∴则FE=FC=FA=a,∴H为AE的中点,∴AH=HE=AE=a,∴AG=AH+GH=a+2,∵四边形ABCD是正方形,∴BE∥AD,∴==,∴GE=AG=(a+2),∵GE=HE﹣GH=a﹣2,∴(a+2)=a﹣2,解得,a=,∴AB=3a=.故答案为:.10.解:设图1中分成的直角三角形的长直角边为a,短直角边为b,,得,∴图1中菱形的面积为:×4=48,故答案为48.11.解:∵四边形ABCD为正方形,∴∠ABC=90°,BA=BC,∴△BAP绕点A逆时针旋转90°可得△ADE,连接PE,由旋转的性质得,ED=BP=7,AE=AP=4,∠PBE=90°,∠AED=∠APB,∴△APE为等腰直角三角形,∴PE=AP=4,∠AEP=45°,在△PED中,∵PD=9,ED=7,PE=4,∴DE2+PE2=DP2,∴△PED为直角三角形,∠PED=90°,∴∠AED=90°+45°=135°,∴∠APB=135°,故答案为:135°.12.解:∵两个正方形的边长分别为2a,a,∴△ABC的的高为:2a+a,底边为:BC=a,∴△ABC的面积是:(2a+a)•a=a2.故答案为:a2.13.解:如图,将△APB绕点A逆时针旋转90°得到△AHD,连接PH,过点A作AE⊥DH交DH的延长线于E,∴△APB≌△AHD,∠PAH=90°,∴PB=DH,AP=AH=1,∠APB=∠AHD=135°,∴PH=AP=,∠APH=∠AHP=45°,∴∠PHD=90°,∴DH===2,∵∠AHD=135°,∴∠AHE=45°,∵AE⊥DH,∴∠AHE=∠HAE=45°,∴AE=EH,AH=AE,∴AE=EH=,∴DE=,∵AD2=AE2+DE2=13,∴正方形的面积为13,故答案为:13.14.解:如图,过点E作EP⊥AC,交FC于点G,当EP⊥AC时,EP取得最小值,∵正三角形ABC与正方形CDEF的顶点B,C,D三点共线,∴∠ACB=60°,∠FCD=90°,∴∠ACF=30°,∴∠CGP=∠EGF=60°,∵∠F=90°,∴∠FEG=30°,设PG=x,则CG=2x,∴FG=CF﹣CG=8﹣2x,∴EG=2FG=2(8﹣2x),∵FG=EF,∴8﹣2x=8×,∴x=4﹣,∴EP=EG+PG=2(8﹣2x)+x=16﹣3x=4+4.故答案为:4+4.15.解:连接GC,延长EG交AD于点L,∵四边形ABCD为正方形,∴AD∥CB,AD=CD,∠ADG=∠CDG=45°,∵DG=DG,∴△ADG≌△CDG(SAS),∴AG=GC,∠HCG=∠DAG,∵∠HCG+∠GCB=90°,∴∠DAG+∠GCB=90°,∵GE⊥AH,∴∠AGL=90°,∴∠ALG+∠LAG=90°,∵AD∥CB,∴∠ALG=∠GEC,∴∠GEC+∠LAG=90°,∴∠GEC=∠GCE,∴GE=GC,∴AG=EG,故①正确;∵GE⊥AH,∴∠AGE=90°,∵AG=EG,∴∠EAH=45°,故②正确;连接AC交BD于点O,则BD=2OA,∵∠AGF+∠FGE=∠GEF+∠EGF=90°,∴∠AGF=∠GEF,∵AG=GE,∠AOG=∠EFG=90°,∴△AOG≌△GFE(AAS),∴OA=GF,∵BD=2OA,∴BD=2GF,故③正确.过点G作MN⊥BC于点N,交AD于点M,交BC于点N,∵G是动点,∴GN的长度不确定,而FG=OA是定值,∴GE不一定平分∠FEC,故④错误;故答案为:①②③.16.解:将△ABD绕点D顺时针旋转90°,得△MCD,如图:由旋转不变性可得:CM=AB=4,AD=MD,且∠ADM=90°,∴△ADM是等腰直角三角形,∴AD=AM,AD最大,只需AM最大,而在△ACM中,AM<AC+CM,∴当且仅当A、C、M在一条直线上,即不能构成△ACM时,AM最大,且最大值为AC+CM =AC+AB=7,此时AD=AM=,故答案为:.17.解:连接BE,如图:∵四边形ABCD是正方形,∴∠ABC=90°,又EF⊥AB于点F,EG⊥BC,∴四边形FBGE是矩形,∴FG=BE,所以当BE最小时,FG就最小,根据垂线段最短,可知当BE⊥AC时,BE最小,当BE⊥AC时,在正方形ABCD中,△AEB是等腰直角三角形,在Rt△ABE中,根据勾股定理可得2BE2=AB2=64,解得BE=4,∴FG最小为4;故答案为4.18.解:∵四边形ABCD是边长为2的正方形,点E是BC的中点,∴AB=AD=BC=CD=2,BE=CE=,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,∴△ABE≌△DCE(SAS),∴∠CDE=∠BAE,DE=AE,∵AB=BC,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS),∴∠BAE=∠BCF,∴∠BCF=∠CDE,又∵∠CDE+∠CED=90°,∴∠BCF+∠CED=90°,∴∠CHE=90°,∴CF⊥DE,故①正确;∵CD=2,CE=,由勾股定理得,DE===5,=CD×CE=DE×CH,∵S△DCE∴CH=2,∵∠CHE=∠CBF,∠BCF=∠ECH,∴△ECH∽△FCB,∴=,∴=,∴CF=5,∴HF=CF﹣CH=3,∴=,故②正确;如图,过点A作AM⊥DE于点M,∵DC=2,CH=2,由勾股定理得,DH===4,∵∠CDH+∠ADM=90°,∠DAM+∠ADM=90°,∴∠CDH=∠DAM,又∵AD=CD,∠CHD=∠AMD=90°,∴△ADM≌△DCH(AAS),∴CH=DM=2,AM=DH=4,∴MH=DM=2,又∵AM⊥DH,∴AD=AH,故④正确;∵DE=5,DH=4,∴HE=1,∴ME=HE+MH=3,∵AM⊥DE,CF⊥DE,∴∠AME=∠GHE,∵∠HEG=∠MEA,∴△MEA∽△HEG,∴=,∴=,∴HG=,故③错误.综上,正确的有:①②④.故答案为:①②④.19.解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∴∠OAB=∠OBA,∵∠DAE=3∠BAE,∴∠BAE=×90°=22.5°,∵AE⊥BD,∴∠OAB=∠OBA=90°﹣22.5°=67.5°,∴∠OAE=67.5°﹣22.5°=45°,∴△AOE是等腰直角三角形,∴OA=OE,设OE=a,则OB=OA=a,∴BE=OB﹣OE=(﹣1)a,BD=2OB=2a,∴DE=BD﹣BE=2a﹣(﹣1)a=(+1)a,∴==,故答案为:.20.解:(1)由折叠可得,AE=OE=DE,CG=OG=DG,∴E,G分别为AD,CD的中点,设CD=2a,AD=2b,则AB=OB=2a,DG=OG=CG=a,BG=3a,BC=AD=2b,∵∠C=90°,在Rt△BCG中,CG2+BC2=BG2,∴a2+(2b)2=(3a)2,∴b=a,∴===,由折叠可得:∠ABE=∠EBG,∠AEB=∠BEO,∠DEG=∠GEO,∵∠AEB=∠BEO+∠DEG=∠GEO=180°,∴∠BEG=90°,∵∠A=∠BEG=90°,∠ABE=∠EBG,∴△ABE∽△EBG,∴==,故答案为:;(2)∵AD=BC=2b=4,∴b=2,a=2,∴AB=OB=4,CG=2,AE=OE=2,∴BG=6,∵∠OBF =∠CBG ,由折叠可得∠BOF =∠BCG =90°, ∴△BOF ∽△BCG , ∴=, 即=,∴OF =,∴S 四边形EBFG =S △BEG +S △BFG =×6×2+×6×=9. 故答案为:9.。
2022年人教版数学中考复习:选择、填空综合训练2及答案

选择、填空综合训练(时间:40分钟分值:54分)一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1.412的倒数是( )A.412B.-29C.-412D.292.已知a-b=3,a-c=1,则(b-c)2-2(b-c)+94的值为( )A.274B.412C.272D.4143.点P(a,b)在第四象限,且|a|>|b|,那么点Q(a+b,a-b)在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为( )第4题图5.如图所示,△ABC的各个顶点都在正方形的格点上,则sin A的值为( )第5题图A.55B.255C.225D.1056.若实数a使关于x的一元二次方程(a+1)x2-3x+1=0有两个不相等的实数根,则实数a的取值范围是( )A.a<54B.a<54且a≠-1 C.a>54D.a>54且a≠-17.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是( )A.70°B.35°C.40°D.50°第7题图8.如图,△ABC是⊙O的内接三角形,连接OA,OB,OC.若∠AOB=40°,∠OBC=50°,AC=4,则⊙O的直径为( )第8题图A.433B.4 C.833D.89.如图,在矩形纸片ABCD中,AD=9,AB=7,点F是BC上一点,点E在AD上,将矩形纸片沿直线EF折叠,点A落在点A′处,点B恰好落在边CD上的点B′处,A′B′交AD于点G,若CB′=3,则四边形EFB′G的面积等于( )第9题图A.353B.553C.352D.145610.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y 轴的交点B 在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x =1,下列结论:①abc >0;②4a +2b +c >0;③13<a <23;④b >c.其中含所有正确结论的选项是( )第10题图A .①②③B .①③④C .②③④D .①②④二、填空题:本大题共8小题,每小题3分,共24分.11.在平面直角坐标系内,把点P 先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是(-5,3),则点P 的坐标是 .12.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数不大于4的概率是 .13.若14的小数部分为a ,整数部分为b ,则a ·(14+b)的值为 .14.函数y =2-m x的图象与直线y =x 没有交点,那么m 的取值范围是 . 15.如图,在平行四边形ABCD 中,AB =8,BC =10,∠ABC =60°,BE 平分∠ABC 交AD 于点E ,AF 平分∠BAD 交BC 于点F ,交BE 于点G ,连接DG ,则DG 的长为 .第15题图16.如图,在△ABC 中,∠A =70°,BC =4,以BC 的中点D 为圆心,2为半径作弧,分别交边AB ,AC 于E ,F ,则EF ︵的长为 .第16题图17.如图,在△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,点D为AB的中点.如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动.若点Q的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为.第17题图18.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…,已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S 的式子表示这组数据的和是.选择、填空综合训练(时间:40分钟分值:54分)一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1.412的倒数是( D )A.412B.-29C.-412D.292.已知a-b=3,a-c=1,则(b-c)2-2(b-c)+94的值为( D )A.274B.412C.272D.4143.点P(a,b)在第四象限,且|a|>|b|,那么点Q(a+b,a-b)在( A )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为( C )第4题图5.如图所示,△ABC的各个顶点都在正方形的格点上,则sin A的值为( A )第5题图A.55B.255C.225D.1056.若实数a使关于x的一元二次方程(a+1)x2-3x+1=0有两个不相等的实数根,则实数a的取值范围是( B )A.a<54B.a<54且a≠-1 C.a>54D.a>54且a≠-17.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是( C )A.70°B.35°C.40°D.50°第7题图8.如图,△ABC是⊙O的内接三角形,连接OA,OB,OC.若∠AOB=40°,∠OBC=50°,AC=4,则⊙O的直径为( C )第8题图A.433B.4 C.833D.89.如图,在矩形纸片ABCD中,AD=9,AB=7,点F是BC上一点,点E在AD上,将矩形纸片沿直线EF折叠,点A落在点A′处,点B恰好落在边CD上的点B′处,A′B′交AD于点G,若CB′=3,则四边形EFB′G的面积等于( D )第9题图A.353B.553C.352D.145610.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1,下列结论:①abc>0;②4a+2b+c>0;③13<a<23;④b>c.其中含所有正确结论的选项是( B )第10题图A.①②③B.①③④C.②③④D.①②④二、填空题:本大题共8小题,每小题3分,共24分.11.在平面直角坐标系内,把点P 先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是(-5,3),则点P 的坐标是 (-3,-1) .12.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数不大于4的概率是 23. 13.若14的小数部分为a ,整数部分为b ,则a ·(14+b)的值为 5 .14.函数y =2-m x的图象与直线y =x 没有交点,那么m 的取值范围是 m >2 . 15.如图,在平行四边形ABCD 中,AB =8,BC =10,∠ABC =60°,BE 平分∠ABC 交AD 于点E ,AF 平分∠BAD 交BC 于点F ,交BE 于点G ,连接DG ,则DG 的长为 219 .第15题图16.如图,在△ABC 中,∠A =70°,BC =4,以BC 的中点D 为圆心,2为半径作弧,分别交边AB ,AC 于E ,F ,则EF ︵的长为 49π .第16题图17.如图,在△ABC 中,AB =AC =12厘米,∠B =∠C ,BC =9厘米,点D 为AB 的中点.如果点P 在线段BC 上以v 厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为3厘米/秒,则当△BPD 与△CQP 全等时,v 的值为 2.25或3 .第17题图18.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…,已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S 的式子表示这组数据的和是 2S2-S .。
人教版九年级数学中考复习二次函数真题专练(解析版)

二次函数----真题专练一、选择题1.在同一平面直角坐标系中,函数y=ax+b与y=ax2-bx的图象可能是()A. B.C. D.2.若二次函数的图象经过,,三点则关于,,大小关系正确的是A. B. C. D.3.将抛物线平移,得到抛物线,下列平移方式中,正确的是A. 先向左平移1个单位,再向上平移2个单位B. 先向左平移1个单位,再向下平移2个单位C. 先向右平移1个单位,再向上平移2个单位D. 先向右平移1个单位,再向下平移2个单位4.已知二次函数(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c<0;③方程的两根之和大于0;④a-b+c<0,其中正确的个数是()A. 4个B. 3个C. 2个D. 1个5.在二次函数的图象中,若y随x的增大而减少,则x的取值范围是A. B. C. D.6.2下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y 随x的增大而增大;④方程ax2+bx+c=0有一个根大于4.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个7.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当-1<x<5时,y<0.其中正确的有()A. 1个B. 2个C. 3个D. 4个8.抛物线y=(x-2)2-3的顶点坐标是()A. B. C. D.9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.B.C.D.10.如图,抛物线y=ax2+bx+c经过点(-1,0),对称轴如图所示,则下列结论:①abc>0;②a-b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.B.C.D.二、填空题11.函数y=-中自变量x的取值范围是______.12.已知抛物线y=x2-(k+2)x+9的顶点在坐标轴上,则k的值为______.13.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,对称轴是直线x=-1,点B的坐标为(1,0).下面的四个结论:①AB=4;②b2-4ac>0;③ab<0;④a-b+c<0,其中正确的结论是______ (填写序号).14.二次函数y=-x2+2x+2图象的顶点坐标是______.15.若二次函数y=mx2+x+m(m-2)的图象经过原点,则m的值为______ .16.如图,抛物线C1:y=x2经过平移得到抛物线C2:y=x2+2x,抛物线C2的对称轴与两段抛物线所围成的阴影部分的面积是______三、解答题17.如图,抛物线y=ax2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,-3),顶点为D.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和对称轴.(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.18.如图,抛物线经过A(-1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.19.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(-1,0),B(4,0),C(0,-4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.20.如图,二次函数y=-x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点(1)求m的值及C点坐标;(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由(3)P为抛物线上一点,它关于直线BC的对称点为Q①当四边形PBQC为菱形时,求点P的坐标;②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.21.如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(-1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A、点B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E.①当PE=2ED时,求P点坐标;②是否存在点P使△BEC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.22.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P 在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为2?若存在求出点Q的坐标;若不存在请说明理由.答案和解析1.【答案】C【解析】【分析】此题主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【解答】解:A.对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2-bx来说,对称轴x=>0,应在y轴的右侧,故不合题意,图形错误;B.对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2-bx 来说,对称轴x=<0,应在y轴的左侧,故不合题意,图形错误;C.对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2-bx 来说,图象开口向上,对称轴x=>0,应在y轴的右侧,故符合题意;D.对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2-bx 来说,图象开口向下,a<0,故不合题意,图形错误;故选C.2.【答案】A【解析】【分析】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性以及增减性,确定出各点到对称轴的距离的大小是解题的关键.先求出二次函数的对称轴,再求出点A、B、C到对称轴的距离,然后根据二次函数增减性判断即可.【解答】解:二次函数对称轴为直线x=-=3,3-(-1)=4,3-1=2,3+-3=,∵a=1>0,开口向上,离对称轴越远,y值越大,又∵4>2>,∴y1>y2>y3.故选A.3.【答案】D【解析】【分析】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的法则是解答此题的关键.找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【解答】解:∵y=-3x2的顶点坐标为(0,0),y=-3(x-1)2-2的顶点坐标为(1,-2),∴将抛物线y=-3x2向右平移1个单位,再向下平移2个单位,可得到抛物线y=-3(x-1)2-2.故选D.4.【答案】B【解析】解:∵抛物线开口向下,∴a<0,∵抛物线对称轴x>0,且抛物线与y轴交于正半轴,∴b>0,c>0,故①错误;由图象知,当x=1时,y<0,即a+b+c<0,故②正确,令方程ax2+bx+c=0的两根为x1、x2,由对称轴x>0,可知>0,即x1+x2>0,故③正确;由可知抛物线与x轴的左侧交点的横坐标的取值范围为:-1<x<0,∴当x=-1时,y=a-b+c<0,故④正确.故选:B.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题主要考查二次函数图象与系数的关系,熟练掌握二次函数系数符号与抛物线开口方向、对称轴、与x轴、y轴的交点是关键.5.【答案】B【解析】【分析】本题考查了二次函数的性质有关知识,先配方得到抛物线的对称轴为直线x=1,然后根据二次函数的性质求解.【解答】解:y=-x2+2x+1=-(x-1)2+2,抛物线的对称轴为直线x=1,∵a=-1<0,开口向下,∴当x>1时,y随x的增大而减少.故选B.6.【答案】B【解析】解:由表格可知,二次函数y=ax2+bx+c有最大值,当x==时,取得最大值,∴抛物线的开口向下,故①正确,其图象的对称轴是直线x=,故②错误,当x<时,y随x的增大而增大,故③正确,方程ax2+bx+c=0的一个根大于-1,小于0,则方程的另一个根大于=3,小于3+1=4,故④错误,故选:B.根据二次函数的图象具有对称性和表格中的数据,可以得到对称轴为x==,再由图象中的数据可以得到当x=取得最大值,从而可以得到函数的开口向下以及得到函数当x<时,y随x的增大而增大,当x>时,y随x的增大而减小,然后跟距x=0时,y=1,x=-1时,y=-3,可以得到方程ax2+bx+c=0的两个根所在的大体位置,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用表格中数据和二次函数的性质判断题目中各个结论是否正确.7.【答案】C【解析】【分析】本题考查了二次函数图象与系数的关系有关知识,根据函数图象可得各系数的关系:a>0,b<0,即可判断①,根据对称轴为x=2,即可判断②;由对称轴x=-=2,即可判断③;求得抛物线的另一个交点即可判断④.【解答】解:∵抛物线开口向上,∴a>0,∵对称轴x=2,∴-=2,∴b=-4a<0,∴a、b异号,故①错误;∵对称轴x=2,∴x=1和x=3时,函数值相等,故②正确;∵对称轴x=2,∴-=2,∴b=-4a,∴4a+b=0,故③正确;∵抛物线与x轴交于(-1,0),对称轴为x=2,∴抛物线与x轴的另一个交点为(5,0),∴当-1<x<5时,y<0,故④正确;故正确的结论为②③④三个,故选C.8.【答案】B【解析】【分析】此题考查了二次函数顶点式的性质有关知识,已知解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【解答】解:因为的是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,-3).故选B.9.【答案】C【解析】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=-=1,∴b=-2a<0,∴ab<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2-4ac>0,所以②正确;∵x=1时,y<0,∴a+b+c<0,而c<0,∴a+b+2c<0,所以③正确;∵抛物线的对称轴为直线x=-=1,∴b=-2a,而x=-1时,y>0,即a-b+c>0,∴a+2a+c>0,所以④错误.故选:C.由抛物线开口方向得到a>0,然后利用抛物线抛物线的对称轴得到b的符合,则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;利用x=1时,y<0和c<0可对③进行判断;利用抛物线的对称轴方程得到b=-2a,加上x=-1时,y>0,即a-b+c>0,则可对④进行判断.本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b 同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数有△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.10.【答案】D【解析】解:①∵二次函数图象的开口向下,∴a<0,∵二次函数图象的对称轴在y轴右侧,∴->0,∴b>0,∵二次函数的图象与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故①错误;②∵抛物线y=ax2+bx+c经过点(-1,0),∴a-b+c=0,故②正确;③∵a-b+c=0,∴b=a+c.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2(a+c)+c<0,∴6a+3c<0,∴2a+c<0,故③正确;④∵a-b+c=0,∴c=b-a.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2b+b-a<0,∴3a+3b<0,∴a+b<0,故④正确.故选D.①根据开口向下得出a<0,根据对称轴在y轴右侧,得出b>0,根据图象与y轴的交点在y轴的正半轴上,得出c>0,从而得出abc<0,进而判断①错误;②由抛物线y=ax2+bx+c经过点(-1,0),即可判断②正确;③由图可知,x=2时,y<0,即4a+2b+c<0,把b=a+c代入即可判断③正确;④由图可知,x=2时,y<0,即4a+2b+c<0,把c=b-a代入即可判断④正确.本题考查了二次函数y=ax2+bx+c(a≠0)的性质:①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a <0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.11.【答案】-2<x≤3【解析】【分析】本题考查的是函数自变量取值范围,分式有意义的条件,二次根式的概念.根据二次根式有意义的条件就是被开方数大于或等于0,分式有意义的条件是分母不为0,列不等式组求解.【解答】解:根据题意,得,解得:-2<x≤3,则自变量x的取值范围是-2<x≤3.故答案为-2<x≤3.12.【答案】4,-8,-2【解析】解:当抛物线y=x2-(k+2)x+9的顶点在x轴上时,△=0,即△=(k+2)2-4×9=0,解得k=4或k=-8;当抛物线y=x2-(k+2)x+9的顶点在y轴上时,x=-==0,解得k=-2.故答案为:4,-8,-2.由于抛物线的顶点在坐标轴上,故应分在x轴上与y轴上两种情况进行讨论.本题考查的是二次函数的性质,解答此题时要注意进行分类讨论,不要漏解.13.【答案】①②④【解析】解:∵抛物线对称轴是直线x=-1,点B的坐标为(1,0),∴A(-3,0),∴AB=4,故选项①正确;∵抛物线与x轴有两个交点,∴b2-4ac>0,故选项②正确;∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴左侧,∴a,b同号,∴ab>0,故选项③错误;当x=-1时,y=a-b+c此时最小,为负数,故选项④正确;故答案为:①②④.利用二次函数对称性以及结合b2-4ac的符号与x轴交点个数关系,再利用数形结合分别分析得出答案.此题主要考查了二次函数图象与系数的关系,正确判断a-b+c的符号是解题关键.14.【答案】(1,3)【解析】解:∵y=-x2+2x+2=-(x2-2x+1)+3=-(x-1)2+3,故顶点的坐标是(1,3).故填空答案:(1,3).此题既可以利用y=ax2+bx+c的顶点坐标公式求得顶点坐标,也可以利用配方法求出其顶点的坐标.求抛物线的顶点坐标、对称轴的方法.15.【答案】2【解析】【分析】本题考查了二次函数图象上点的坐标特征,二次函数的定义.此题属于易错题,学生们往往忽略二次项系数不为零的条件.本题中已知二次函数经过原点(0,0),因此二次函数与y轴交点的纵坐标为0,即m(m-2)=0,由此可求出m的值,要注意二次项系数m不能为0.【解答】解:根据题意得:m(m-2)=0,∴m=0或m=2,∵二次函数的二次项系数不为零,即m≠0,∴m=2.故答案为2.16.【答案】4【解析】解:抛物线C1:y=x2的顶点坐标为(0,0),∵y=x2+2x=(x+2)2-2,∴平移后抛物线的顶点坐标为(-2,2),对称轴为直线x=-2,当x=-2时,y=×(-2)2=2,∴平移后阴影部分的面积等于如图三角形的面积为:(2+2)×2=4,故答案为:4.确定出抛物线y=x2+2x的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即可得解.本题考查了二次函数图象与几何变换,确定出与阴影部分面积相等的三角形是解题的关键.17.【答案】解:(1)∵抛物线y=ax2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,-3),∴,解得,,即此抛物线的解析式是y=x2-2x-3;(2)∵y=x2-2x-3=(x-1)2-4,∴此抛物线顶点D的坐标是(1,-4),对称轴是直线x=1;(3)存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形,设点P的坐标为(1,y),当PA=PD时,=,解得,y=-,即点P的坐标为(1,-);当DA=DP时,=,解得,y=-4±,即点P的坐标为(1,-4-2)或(1,-4+);当AD=AP时,=,解得,y=±4,即点P的坐标是(1,4)或(1,-4),当点P为(1,-4)时与点D重合,故不符合题意,由上可得,以点P、D、A为顶点的三角形是等腰三角形时,点P的坐标为(1,-)或(1,-4-2)或(1,-4+)或(1,4).【解析】(1)根据抛物线y=ax2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,-3),可以求得抛物线的解析式;(2)根据(1)中的解析式化为顶点式,即可得到此抛物线顶点D的坐标和对称轴;(3)首先写出存在,然后运用分类讨论的数学思想分别求出各种情况下点P的坐标即可.本题考查二次函数综合题,解题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答问题.18.【答案】解:(1)设抛物线的解析式为y=ax2+bx+c (a≠0),∵A(-1,0),B(5,0),C(0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2-2x-;(2)∵抛物线的解析式为:y=x2-2x-,∴其对称轴为直线x=-=-=2,连接BC,如图1所示,∵B(5,0),C(0,-),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x-,当x=2时,y=1-=-,∴P(2,-);(3)存在.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,-),∴N1(4,-);②当点N在x轴上方时,如图,过点N2作N2D⊥x轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC=,即N2点的纵坐标为.∴x2-2x-=,解得x=2+或x=2-,∴N 2(2+,),N3(2-,).综上所述,符合条件的点N的坐标为(4,-),(2+,)或(2-,).【解析】(1)设抛物线的解析式为y=ax2+bx+c(a≠0),再把A(-1,0),B(5,0),C(0,)三点代入求出a、b、c的值即可;(2)因为点A关于对称轴对称的点B的坐标为(5,0),连接BC交对称轴直线于点P,求出P点坐标即可;(3)分点N在x轴下方或上方两种情况进行讨论.本题考查的是二次函数综合题,涉及到用待定系数法求一次函数与二次函数的解析式、平行四边的判定与性质、全等三角形等知识,在解答(3)时要注意进行分类讨论.19.【答案】解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,∴抛物线解析式为y=x2-3x-4;(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,∴PO=PC,此时P点即为满足条件的点,∵C(0,-4),∴D(0,-2),∴P点纵坐标为-2,代入抛物线解析式可得x2-3x-4=-2,解得x=(小于0,舍去)或x=,∴存在满足条件的P点,其坐标为(,-2);(3)∵点P在抛物线上,∴可设P(t,t2-3t-4),过P作PE⊥x轴于点E,交直线BC于点F,如图2,∵B(4,0),C(0,-4),∴直线BC解析式为y=x-4,∴F(t,t-4),∴PF=(t-4)-(t2-3t-4)=-t2+4t,∴S△PBC=S△PFC+S△PFB=PF•OE+PF•BE=PF•(OE+BE)=PF•OB=(-t2+4t)×4=-2(t-2)2+8,∴当t=2时,S△PBC最大值为8,此时t2-3t-4=-6,∴当P点坐标为(2,-6)时,△PBC的最大面积为8.【解析】本题为二次函数的综合应用,涉及待定系数法、等腰三角形的性质、二次函数的性质、三角形的面积、方程思想等知识.在(1)中注意待定系数法的应用,在(2)中确定出P点的位置是解题的关键,在(3)中用P点坐标表示出△PBC的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由题意可知点P在线段OC的垂直平分线上,则可求得P点纵坐标,代入抛物线解析式可求得P点坐标;(3)过P作PE⊥x轴,交x轴于点E,交直线BC于点F,用P点坐标可表示出PF 的长,则可表示出△PBC的面积,利用二次函数的性质可求得△PBC面积的最大值及P点的坐标.20.【答案】解:(1)将B(4,0)代入y=-x2+3x+m,解得,m=4,∴二次函数解析式为y=-x2+3x+4,令x=0,得y=4,∴C(0,4),(2)存在,理由:∵B(4,0),C(0,4),∴直线BC解析式为y=-x+4,当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大,∴,∴x2-4x+b=0,∴△=16-4b=0,∴b=4,∴,∴M(2,6),(3)①如图,∵点P在抛物线上,∴设P(m,-m2+3m+4),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,∵B(4,0),C(0,4)∴线段BC的垂直平分线的解析式为y=x,∴m=-m2+3m+4,∴m=1±,∴P(1+,1+)或P(1-,1-),②如图,设点P(t,-t2+3t+4),过点P作y轴的平行线l交BC于点D,交x轴于点E,过点C作l的垂线交l于点F,∵点D在直线BC上,∴D(t,-t+4),∵PD=-t2+3t+4-(-t+4)=-t2+4t,BE+CF=4,∴S四边形PBQC=2S△PBC=2(S△PCD+S△PBD)=2(PD×CF+PD×BE)=4PD=-4t2+16t,∵0<t<4,∴当t=2时,S四边形PBQC最大=16【解析】(1)用待定系数法求出抛物线解析式;(2)先判断出面积最大时,平移直线BC的直线和抛物线只有一个交点,从而求出点M坐标;(3)①先判断出四边形PBQC时菱形时,点P是线段BC的垂直平分线,利用该特殊性建立方程求解;②先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值.此题是二次函数综合题,主要考查了待定系数法,极值的确定,对称性,面积的确定,解本题的关键是确定出△MBC面积最大时,点P的坐标.21.【答案】解:(1)∵点B(4,m)在直线y=x+1上,∴m=4+1=5,∴B(4,5),把A、B、C三点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=-x2+4x+5;(2)①设P(x,-x2+4x+5),则E(x,x+1),D(x,0),则PE=|-x2+4x+5-(x+1)|=|-x2+3x+4|,DE=|x+1|,∵PE=2ED,∴|-x2+3x+4|=2|x+1|,当-x2+3x+4=2(x+1)时,解得x=-1或x=2,但当x=-1时,P与A重合不合题意,舍去,∴P(2,9);当-x2+3x+4=-2(x+1)时,解得x=-1或x=6,但当x=-1时,P与A重合不合题意,舍去,∴P(6,-7);综上可知P点坐标为(2,9)或(6,-7);②设P(x,-x2+4x+5),则E(x,x+1),且B(4,5),C(5,0),∴BE==|x-4|,CE==,BC==,当△BEC为等腰三角形时,则有BE=CE、BE=BC或CE=BC三种情况,当BE=CE时,则|x-4|=,解得x=,此时P点坐标为(,);当BE=BC时,则|x-4|=,解得x=4+或x=4-,此时P点坐标为(4+,-4-8)或(4-,4-8);当CE=BC时,则=,解得x=0或x=4,当x=4时E点与B点重合,不合题意,舍去,此时P点坐标为(0,5);综上可知存在满足条件的点P,其坐标为(,)或(4+,-4-8)或(4-,4-8)或(0,5).【解析】(1)由直线解析式可求得B点坐标,由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出E、D的坐标,从而可表示出PE和ED的长,由条件可知到关于P点坐标的方程,则可求得P点坐标;②由E、B、C三点坐标可表示出BE、CE和BC的长,由等腰三角形的性质可得到关于E点坐标的方程,可求得E点坐标,则可求得P点坐标.本题为二次函数的综合应用,涉及待定系数法、勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P点坐标分别表示出PE和ED的长是解题关键,在(2)②中用P点坐标表示出BE、CE和BC的长是解题的关键,注意分三种情况讨论.本题考查知识点较多,综合性较强,难度适中.22.【答案】解:(1)∵抛物线的顶点C的坐标为(1,4),∴可设抛物线解析式为y=a(x-1)2+4,∵点B(3,0)在该抛物线的图象上,∴0=a(3-1)2+4,解得a=-1,∴抛物线解析式为y=-(x-1)2+4,即y=-x2+2x+3,∵点D在y轴上,令x=0可得y=3,∴D点坐标为(0,3),∴可设直线BD解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=-1,∴直线BD解析式为y=-x+3;(2)设P点横坐标为m(m>0),则P(m,-m+3),M(m,-m2+2m+3),∴PM=-m2+2m+3-(-m+3)=-m2+3m=-(m-)2+,∴当m=时,PM有最大值;(3)如图,过Q作QG∥y轴交BD于点G,交x轴于点E,作QH⊥BD于H,设Q(x,-x2+2x+3),则G(x,-x+3),∴QG=|-x2+2x+3-(-x+3)|=|-x2+3x|,∵△BOD是等腰直角三角形,∴∠DBO=45°,∴∠HGQ=∠BGE=45°,当△BDQ中BD边上的高为2时,即QH=HG=2,∴QG=×2=4,∴|-x2+3x|=4,当-x2+3x=4时,△=9-16<0,方程无实数根,当-x2+3x=-4时,解得x=-1或x=4,∴Q(-1,0)或(4,-5),综上可知存在满足条件的点Q,其坐标为(-1,0)或(4,-5).【解析】(1)可设抛物线解析式为顶点式,由B点坐标可求得抛物线的解析式,则可求得D 点坐标,利用待定系数法可求得直线BD解析式;(2)设出P点坐标,从而可表示出PM的长度,利用二次函数的性质可求得其最大值;(3)过Q作QG∥y轴,交BD于点G,过Q和QH⊥BD于H,可设出Q点坐标,表示出QG的长度,由条件可证得△DHG为等腰直角三角形,则可得到关于Q点坐标的方程,可求得Q点坐标.本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、等腰直角三角形的性质及方程思想等知识.在(1)中主要是待定系数法的考查,注意抛物线顶点式的应用,在(2)中用P点坐标表示出PM的长是解题的关键,在(3)中构造等腰直角三角形求得QG的长是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
人教版初中数学中考复习 一轮复习-一次方程及其解法(含参)(2)

x y 3的解,求a的值。
考点二:二元一次方程含参问题
已知方程组2mxx5nyy246, 与n3xx m5 yy
8 ,
36
有相同的解,求m,
n的值。
考点二:二元一次方程含参问题
类型二:解的性质
1.如果关于x、y的二元一次方程组2ax3x
2y 5 (a 2) y
的x与y的值相等, 4
那么a
D.无法判断
追问:m的值是多少?
考点三:二元一次方程与一次函数
2.在二元一次方程组
2x 3y 1 0 6x my 3 0
中,当m=
无数组解。
追问:请你讨论该方程解的情况。
时,这个方程有
考点三:二元一次方程与一次函数
3.已知方程组
2x ky 4
x
2
y
0
有正数解,则k的取值范围是
。
考点三:二元一次方程与一次函数
练习1.
已知xy
21是二元一次方程组mmxx nnyy
7的解,则m 1
n
考点二:二元一次方程含参问题
练习2.
已知xy
25和
x 1 是方程ax y 10
by
15的两个解,则a
考点二:二元一次方程含参问题
类型二:方程同解
1.已知关于x、y的二元一次方程组4xxayy
1 的解也是二元一次方程 3
x2 y 1
考点一:二元一次方程(组)及其解法
例2. 用代入法解方程组2xxyy1106
① ②
解:由①得x=10-y ③ 把③代入②,得2(10-y)+y=16 y=4 把y=4代入③,得x=6
所以这个方程的解为 xy
6 4
中考数学专题复习 实际生活应用问题(二)习题-人教版初中九年级全册数学试题

word 1 / 8 y AD B 实际生活应用问题(二)例题示X例 1:如图,排球运动员甲站在点 O 处练习发球,将球从 O 点正上方的 A 处发出,把球看成点,其运行路线是抛物线 y 1 (x 6)2 2.6 的一部分,点 D 为球运动的最高点.球60网 BC 离 O 点的水平距离为 9 米,以 O 为坐标原点建立如图所示的坐标系,乙站立地点 M 的坐标为(m ,0)(m >9).乙原地起跳可接球的最大高度为 2.4 米(2.4 米时能接到球), 若乙因为接球高度不够而失球,求 m 的取值X 围.O C M x2 / 83【思路分析】①理解题意,梳理信息读题标注,将题目中的数据转化为图象中对应的线段长以及关键点坐标.如: D (6,2.6),C (9,0),M (m ,0) .②辨识类型,建立函数图象模型题目条件和判断标准均与函数图象相关,判断为实际生活应用问题.利用二次函数图象求解,首先要明确目标及判断标准.由题意,若排球高度(y )大于 2.4 米,则乙会因接球高度不够而接不到球;若排球高度(y )小于等于 2.4 米,则乙可以接到球.即当 y >2.4 时,符合题目要求.所求目标即为当 y >2.4 时,对应的 x 的取值X 围,即 m 的取值X 围. ③求解验证,回归实际【过程示X 】解:由题意得 y ,即1 (x 6)2 2.6 2.4 , 60 解得, 6 2 ∵m >9,∴9m 6 2 x623,即6 2 .m 6 2 ∴乙因为接球高度不够而失球,m 的取值X 围是 9m 6 2 . 3 3 3 3巩固练习1.杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y3x2 3x 1 的一部分,如图. 5(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4 米,在一次表演中,人梯到起跳点A 的水平距离是 4 米,则这次表演是否成功?请说明理由.y(米)BAO C x(米)3 / 82.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为 80 m 的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为x m,矩形区域ABCD 的面积为y m2.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值X围;(2)当x 为何值时,y 有最大值?最大值是多少?岸堤4 / 8B s(m)A3.小明的爸爸和妈妈分别驾车从家同时出发去上班.爸爸行驶到甲处时,看到前面路口是红灯,他立即刹车减速并在乙处停车等待.爸爸驾车从家到乙处的过程中,速度v(m/s)与时间t(s)的关系如图 1中的实线所示,行驶路程s(m)与时t s)的关系如图 2 所示,在加速过程中,s与t 满足表达式s=at2.v(m/s)12180hC48O 8 17 21 t(s)O 8 17 21t(s)图1 图2(1)根据图中的信息,写出小明家到乙处的路程,并求a的值;(2)求图 2 中A 点的纵坐标h,并说明它的实际意义;(3)爸爸在乙处等待了 7 s 后绿灯亮起继续前行.为了节约能源,减少刹车,妈妈驾车从家出发的行驶过程中,速度v(m/ s)与时间t(s)的关系如图 1 中的折线O—B—C 所示,加速过程中行驶路程s (m)与时间t(s)的关系也满足表达式s=at2.当她行驶到甲处时,前方的绿灯刚好亮起,求此时妈妈驾车的行驶速度.5 / 84.我市某风景区门票价格如图所示,某旅游公司有甲、乙两个旅行团队,计划在“五一”小黄金周期间到该景点游玩,两团队游客人数之和为 120 人,乙团队人数不超过 50 人.设甲团队人数为x人,如果甲、乙两团队分别购买门票,两团队门票款之和为W元.(1)求W关于x的函数关系式,并写出自变量x的取值X围.(2)若甲团队人数不超过100 人,请说明甲、乙两团队联合购票比分别购票最多可节约多少钱.(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过 50人但不超过 100 人时,每X 门票降价a 元;人数超过 100 人时,每X门票降价 2a元.在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约 3 400 元,求a 的值.门票价(元/人)807060O 50100 人数(人)思考小结图象类问题的关键是能够把实际场景与数学模型结合起来进行思考分析.在读图时,要考虑三个方面:①x 轴、y 轴代表的意义.6 / 8word②每个点坐标在实际场景中的意义.③每两个转折点间的线段(曲线)代表实际场景的变化趋势.7 / 8word 8 / 8【参考答案】1. (1)演员弹跳离地面的最大高度是19米; 4(2)这次表演能够成功,理由略.2. (1)y 3 x 230x (0x 40);4(2)当 x =20 时 y 有最大值,最大值为 300.3. (1) a 3 ;4(2) h =156,它的实际意义是小明家距离甲处的距离为 156 米; (3)此时妈妈的驾车速度是 6 m/s .4. (1)W 10x 9600 (70≤x ≤100)20x9600(100 x 120 ; )(2)最多节约 1 700 元;(3) a =10.。
中考数学二轮复习 专题二 解答重难点题型突破 题型六 二次函数与几何图形综合题试题-人教版初中九年级

题型六 二次函数与几何图形综合题类型一 二次函数与图形判定1.(2017·某某)在同一直角坐标系中,抛物线C 1:y =ax 2-2x -3与抛物线C 2:y =x 2+mx +n 关于y 轴对称,C 2与x 轴交于A 、B 两点,其中点A 在点B 的左侧.(1)求抛物线C 1,C 2的函数表达式; (2)求A 、B 两点的坐标;(3)在抛物线C 1上是否存在一点P ,在抛物线C 2上是否存在一点Q ,使得以AB 为边,且以A 、B 、P 、Q 四点为顶点的四边形是平行四边形?若存在,求出P 、Q 两点的坐标;若不存在,请说明理由.2.(2017·随州)在平面直角坐标系中,我们定义直线y =ax -a 为抛物线y =ax 2+bx +c(a 、b 、c 为常数,a ≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“梦想三角形”.已知抛物线y =-233x 2-433x +23与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“梦想直线”的解析式为__________,点A的坐标为__________,点B的坐标为__________;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.(2017·某某模拟)已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.4.(2016·某某)如图①,直线y =-43x +n 交x 轴于点A ,交y 轴于点C(0,4),抛物线y =23x 2+bx +c 经过点A ,交y 轴于点B(0,-2).点P 为抛物线上一个动点,过点P 作x轴的垂线PD ,过点B 作BD⊥PD 于点D ,连接PB ,设点P 的横坐标为m.(1)求抛物线的解析式;(2)当△BDP 为等腰直角三角形时,求线段PD 的长;(3)如图②,将△BDP 绕点B 逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P 的对应点P′落在坐标轴上时,请直接写出点P 的坐标.类型二 二次函数与图形面积1.(2017·某某)如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C ,抛物线y =-12x 2+bx +c 经过A 、C 两点,与x 轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D 为直线AC 上方抛物线上一动点;①连接BC 、CD ,设直线BD 交线段AC 于点E ,△CDE 的面积为S 1,△BCE 的面积为S 2,求S 1S 2的最大值; ②过点D 作DF⊥AC,垂足为点F ,连接CD ,是否存在点D ,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求点D 的横坐标;若不存在,请说明理由.2.(2017·某某)如图甲,直线y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).3.(2017·某某模拟)如图,抛物线y=ax2+bx-3与x轴交于点A(1,0)和点B,与y 轴交于点C,且其对称轴l为x=-1,点P是抛物线上B,C之间的一个动点(点P不与点B,C重合).(1)直接写出抛物线的解析式;(2)小唐探究点P的位置时发现:当动点N在对称轴l上时,存在PB⊥NB,且PB=NB的关系,请求出点P的坐标;(3)是否存在点P使得四边形PBAC的面积最大?若存在,请求出四边形PBAC面积的最大值;若不存在,请说明理由.4.(2017·某某模拟)如图①,已知抛物线y=ax2+bx-3的对称轴为x=1,与x轴分别交于A、B两点,与y轴交于点C,一次函数y=x+1经过A,且与y轴交于点D.(1)求该抛物线的解析式.(2)如图②,点P为抛物线B、C两点间部分上的任意一点(不含B,C两点),设点P的横坐标为t,设四边形DCPB的面积为S,求出S与t的函数关系式,并确定t为何值时,S取最大值?最大值是多少?(3)如图③,将△ODB沿直线y=x+1平移得到△O′D′B′,设O′B′与抛物线交于点E,连接ED′,若ED′恰好将△O′D′B′的面积分为1∶2两部分,请直接写出此时平移的距离.类型三二次函数与线段问题1.(2017·某某)如图,已知抛物线y=ax2-23ax-9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,1AM +1AN均为定值,并求出该定值.2.(2017·某某模拟)如图①,直线y =34x +m 与x 轴、y 轴分别交于点A 和点B(0,-1),抛物线y =12x 2+bx +c 经过点B ,点C 的横坐标为4.(1)请直接写出抛物线的解析式;(2)如图②,点D 在抛物线上,DE ∥y 轴交直线AB 于点E ,且四边形DFEG 为矩形,设点D 的横坐标为x(0<x <4),矩形DFEG 的周长为l ,求l 与x 的函数关系式以及l 的最大值;(3)将△AOB 绕平面内某点M 旋转90°或180°,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A 1的横坐标.3.(2017·某某)已知点A(-1,1),B(4,6)在抛物线y=ax2+bx上.(1)求抛物线的解析式;(2)如图①,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,,连接FH、AE,求证:FH∥AE;(3)如图②,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.类型四二次函数与三角形相似1.(2016·某某)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x-2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.2.(2017·某某模拟)如图,抛物线y=ax2+bx+1与直线y=-ax+c相交于坐标轴上点A(-3,0),C(0,1)两点.(1)直线的表达式为__________;抛物线的表达式为__________;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交直线AC于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)P为抛物线上一动点,且P在第四象限内,过点P作PN垂直x轴于点N,使得以P、A、N为顶点的三角形与△ACO相似,请直接写出点P的坐标.3.如图①,二次函数y =ax 2+bx +33经过A(3,0),G(-1,0)两点. (1)求这个二次函数的解析式;(2)若点M 是抛物线在第一象限图象上的一点,求△ABM 面积的最大值;(3)抛物线的对称轴交x 轴于点P ,过点E(0,233)作x 轴的平行线,交AB 于点F ,是否存在着点Q ,使得△FEQ∽△BEP?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.4.(2017·某某)抛物线y =ax 2+bx +3经过点A(1,0)和点B(5,0). (1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=错误!x+3相交于C、D两点,点P是抛物线上的动点且位于x 轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连接PC、PD,如图①,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连接PB,过点C作CQ⊥PM,垂足为点Q,如图②,是否存在点P,使得△Q与△PBM 相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.题型六第23题二次函数与几何图形综合题类型一二次函数与图形判定1.解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=-3,∴C1的对称轴为x=1,∴C2的对称轴为x=-1,∴m=2,∴C1的函数表示式为y=x2-2x-3,C2的函数表达式为y=x2+2x-3;(2)在C2的函数表达式为y=x2+2x-3中,令y=0可得x2+2x-3=0,解得x=-3或x=1,∴A(-3,0),B(1,0);(3)存在.设P(a ,b),则Q(a +4,b)或(a -4,b), ①当Q(a +4,b)时,得:a 2-2a -3=(a +4)2+2(a +4)-3, 解得a =-2,∴b =a 2-2a -3=4+4-3=5, ∴P 1(-2,5),Q 1(2,5). ②当Q(a -4,b)时,得:a 2-2a -3=(a -4)2+2(a -4)-3, 解得a =2.∴b =4-4-3=-3, ∴P 2(2,-3),Q 2(-2,-3).综上所述,所求点的坐标为P 1(-2,5),Q 1(2,5); P 2(2,-3),Q 2(-2,-3). 2.解:(1)∵抛物线y =-233x 2-433x +23, ∴其梦想直线的解析式为y =-233x +233,联立梦想直线与抛物线解析式可得⎩⎪⎨⎪⎧y =-233x +233y =-233x 2-433x +23,解得⎩⎨⎧x =-2y =23或⎩⎪⎨⎪⎧x =1y =0,∴A(-2,23),B(1,0);(2)当点N 在y 轴上时,△AMN 为梦想三角形, 如解图①,过A 作AD ⊥y 轴于点D ,则AD =2,在y =-233x 2-433x +23中,令y =0可求得x =-3或x =1,∴C(-3,0),且A(-2,23), ∴AC =(-2+3)2+(23)2=13, 由翻折的性质可知AN =AC =13,在Rt △AND 中,由勾股定理可得DN =AN 2-AD 2=13-4=3, ∵OD =23,∴ON =23-3或ON =23+3,当ON =23+3时,则MN >OD >CM ,与MN =CM 矛盾,不合题意, ∴N 点坐标为(0,23-3);当M 点在y 轴上时,则M 与O 重合,过N 作NP ⊥x 轴于点P ,如解图②,在Rt △AMD 中,AD =2,OD =23,∴tan ∠DAM =MDAD =3,∴∠DAM =60°,∵AD ∥x 轴,∴∠AMC =∠DAM =60°, 又由折叠可知∠NMA =∠AMC =60°, ∴∠NMP =60°,且MN =CM =3, ∴MP =12MN =32,NP =32MN =332,∴此时N 点坐标为(32,332);综上可知N 点坐标为(0,23-3)或(32,332);(3)①当AC 为平行四边形的边时,如解图③,过F 作对称轴的垂线FH ,过A 作AK ⊥x 轴于点K ,则有AC ∥EF 且AC =EF ,∴∠ACK =∠EFH , 在△ACK 和△EFH 中,⎩⎪⎨⎪⎧∠ACK =∠EFH ∠AKC =∠EHF AC =EF,∴△ACK ≌△EFH(AAS ), ∴FH =CK =1,HE =AK =23,∵抛物线对称轴为x =-1,∴F 点的横坐标为0或-2,∵点F 在直线AB 上,∴当F 点横坐标为0时,则F(0,233),此时点E 在直线AB 下方,∴E 到x 轴的距离为EH -OF =23-233=433,即E 点纵坐标为-433,∴E(-1,-433); 当F 点的横坐标为-2时,则F 与A 重合,不合题意,舍去; ②当AC 为平行四边形的对角线时, ∵C(-3,0),且A(-2,23), ∴线段AC 的中点坐标为(-52,3),设E(-1,t),F(x ,y),则x -1=2×(-52),y +t =23,∴x =-4,y =23-t ,代入直线AB 解析式可得23-t =-233×(-4)+233,解得t =-433,∴E(-1,-433),F(-4,1033);综上可知存在满足条件的点F ,此时E(-1,-433)、F(0,233)或E(-1,-433)、F(-4,1033).3.解:(1)由题意,得⎩⎪⎨⎪⎧0=16a -8a +c 4=c ,解得⎩⎪⎨⎪⎧a =-12c =4, ∴所求抛物线的解析式为y =-12x 2+x +4;(2) 设点Q 的坐标为(m ,0),如解图①,过点E 作EG ⊥x 轴于点G. 由-12x 2+x +4=0,得x 1=-2,x 2=4,∴点B 的坐标为(-2,0),∴AB =6,BQ =m +2,∵QE ∥AC ,∴△BQE ∽△BAC ,∴EG CO =BQ BA ,即EG 4=m +26,∴EG =2m +43,∴S △CQE =S △CBQ -S △EBQ =12BQ·CO-12BQ·EG=12(m +2)(4-2m +43)=-13m 2+23m +83=-13(m-1)2+3,又∵-2≤m ≤4,∴当m =1时,S △CQE 有最大值3,此时Q(1,0);图①图②(3)存在.在△ODF 中. (ⅰ)若DO =DF ,∵A(4,0),D(2,0),∴AD =OD =DF =2, 又∵在Rt △AOC 中,OA =OC =4,∴∠OAC =45°, ∴∠DFA =∠OAC =45°,∴∠ADF =90°,此时,点F 的坐标为(2,2), 由-12x 2+x +4=2,得x 1=1+5,x 2=1-5,此时,点P 的坐标为P(1+5,2)或P(1-5,2); (ⅱ)若FO =FD ,如解图②,过点F 作FM ⊥x 轴于点M , 由等腰三角形的性质得:OM =MD =1,∴AM =3, ∴在等腰直角△AMF 中,MF =AM =3,∴F(1,3), 由-12x 2+x +4=3,得x 1=1+3,x 2=1-3,此时,点P 的坐标为:P(1+3,3)或P(1-3,3); (ⅲ)若OD =OF ,∵OA =OC =4,且∠AOC =90°,∴AC =42,∴点O 到AC 的距离为22,而OF =OD =2<22,与OF ≥22矛盾, ∴AC 上不存在点使得OF =OD =2,此时,不存在这样的直线l ,使得△ODF 是等腰三角形. 综上所述,存在这样的直线l ,使得△ODF 是等腰三角形.所求点P 的坐标为(1+5,2)或(1-5,2)或(1+3,3)或(1-3,3). 4.解:(1)∵点C(0,4)在直线y =-43x +n 上,∴n =4,∴y =-43x +4,令y =0,解得x =3,∴A(3,0),∵抛物线y =23x 2+bx +c 经过点A ,交y 轴于点B(0,-2),∴c =-2,6+3b -2=0,解得b =-43,∴抛物线的解析式为y =23x 2-43x -2;(2)∵点P 的横坐标为m ,且点P 在抛物线上, ∴P(m ,23m 2-43m -2),∵PD ⊥x 轴,BD ⊥PD ,∴点D 坐标为(m ,-2), ∴|BD|=|m|,|PD|=|23m 2-43m -2+2|,当△BDP 为等腰直角三角形时,PD =BD , ∴|m|=|23m 2-43m -2+2|=|23m 2-43m|.∴m 2=(23m 2-43m)2,解得:m 1=0(舍去),m 2=72,m 3=12,∴当△BDP 为等腰直角三角形时,线段PD 的长为72或12;(3)∵∠PBP′=∠OAC ,OA =3,OC =4,∴AC =5, ∴sin ∠PBP ′=45,cos ∠PBP ′=35,①当点P′落在x 轴上时,如解图①,过点D′作D′N⊥x 轴,垂足为N ,交BD 于点M ,∠DBD ′=∠ND′P′=∠PBP′,由旋转知,P ′D ′=PD =23m 2-43m ,在Rt △P ′D ′N 中,cos ∠ND ′P ′=ND′P′D′=cos ∠PBP ′=35,∴ND ′=35(23m 2-43m),在Rt △BD ′M 中,BD ′=-m ,sin ∠DBD ′=D′M BD′=sin ∠PBP ′=45,∴D ′M =-45m ,∴ND ′-MD′=2,∴35(23m 2-43m)-(-45m)=2, 解得m =5(舍去)或m =-5,如解图②, 同①的方法得,ND ′=35(23m 2-43m),MD ′=45m ,ND ′+MD′=2, ∴35(23m 2-43m)+45m =2, ∴m =5或m =-5(舍去),∴P(-5,45+43)或P(5,-45+43),②当点P′落在y 轴上时,如解图③,过点D′作D′M⊥x 轴,交BD 于M ,过点P′作P′N⊥y 轴,交MD′的延长线于点N , ∴∠DBD ′=∠ND′P′=∠PBP′,同①的方法得:P′N=45(23m 2-43m),BM =35m ,∵P ′N =BM ,∴45(23m 2-43m)=35m , 解得m =258或m =0(舍去),∴P(258,1132),∴P(-5,45+43)或P(5,-45+43)或P(258,1132).类型二 二次函数与图形面积1.解:(1)根据题意得A(-4,0),C(0,2), ∵抛物线y =-12x 2+bx +c 经过A 、C 两点,∴⎩⎪⎨⎪⎧0=-12×16-4b +c 2=c ,解得⎩⎪⎨⎪⎧b =-32c =2, ∴y =-12x 2-32x +2;(2)①令y =0,∴-12x 2-32x +2=0,解得x 1=-4,x 2=1,∴B(1,0),如解图①,过D 作DM ∥y 轴交AC 于M ,过B 作BN ⊥x 轴交AC 于N , ∴DM ∥BN ,∴△DME ∽△BNE ,∴S 1S 2=DE BE =DMBN ,设D(a ,-12a 2-32a +2),∴M(a ,12a +2),∵B(1,0),∴N(1,52),∴S 1S 2=DMBN =-12a 2-2a 52=-15(a +2)2+45; ∴当a =-2时,S 1S 2有最大值,最大值是45;②∵A(-4,0),B(1,0),C(0,2), ∴AC =25,BC =5,AB =5, ∵AC 2+BC 2=AB 2,∴△ABC 是以∠ACB 为直角的直角三角形,取AB 的中点P ,∴P(-32,0),∴PA =PC =PB =52,∴∠CPO =2∠BAC ,∴tan ∠CPO =tan (2∠BAC)=43,如解图②,过D 作x 轴的平行线交y 轴于R ,交AC 的延长线于G , 情况一:∠DCF =2∠BAC =∠DGC +∠CDG ,∴∠CDG =∠BAC , ∴tan ∠CDG =tan ∠BAC =12,即RC DR =12,令D(a ,-12a 2-32a +2),∴DR =-a ,RC =-12a 2-32a ,∴-12a 2-32a -a =12,解得a 1=0(舍去),a 2=-2, ∴x D =-2,情况二:∠FDC =2∠BAC , ∴tan ∠FDC =43,设FC =4k ,∴DF =3k ,DC =5k , ∵tan ∠DGC =3k FG =12,∴FG =6k ,∴CG =2k ,DG =35k ,∴RC =255k ,RG =455k , DR =35k -455k =1155k ,∴DR RC =1155k 255k =-a -12a 2-32a ,解得a 1=0(舍去),a 2=-2911, ∴点D 的横坐标为-2或-2911.2.解:(1)∵直线y =-x +3与x 轴、y 轴分别交于点B 、点C , ∴B(3,0),C(0,3),把B 、C 坐标代入抛物线解析式可得⎩⎪⎨⎪⎧9+3b +c =0c =3,解得⎩⎪⎨⎪⎧b =-4c =3,∴抛物线的解析式为y =x 2-4x +3; (2)∵y =x 2-4x +3=(x -2)2-1, ∴抛物线对称轴为x =2,P(2,-1), 设M(2,t),且C(0,3),∴MC =22+(t -3)2=t 2-6t +13,MP =|t +1|,PC =22+(-1-3)2=25, ∵△CPM 为等腰三角形,∴有MC =MP 、MC =PC 和MP =PC 三种情况,①当MC =MP 时,则有t 2-6t +13=|t +1|,解得t =32,此时M(2,32);②当MC =PC 时,则有t 2-6t +13=25,解得t =-1(与P 点重合,舍去)或t =7,此时M(2,7);③当MP =PC 时,则有|t +1|=25,解得t =-1+25或t =-1-25,此时M(2,-1+25)或(2,-1-25);综上可知存在满足条件的点M ,其坐标为(2,32)或(2,7)或(2,-1+25)或(2,-1-25);(3)如解图,在0<x <3对应的抛物线上任取一点E ,过E 作EF ⊥x 轴,交BC 于点F ,交x 轴于点D ,设E(x ,x 2-4x +3),则F(x ,-x +3), ∵0<x <3,∴EF =-x +3-(x 2-4x +3)=-x 2+3x ,∴S △CBE =S △EFC +S △EFB =12EF·OD+12EF·BD=12EF·OB=12×3(-x 2+3x)=-32(x -32)2+278,∴当x =32时,△CBE 的面积最大,此时E 点坐标为(32,-34),即当E 点坐标为(32,-34)时,△CBE 的面积最大.3.解:(1)∵A(1,0),对称轴l 为x =-1,∴B(-3,0),∴⎩⎪⎨⎪⎧a +b -3=09a -3b -3=0,解得⎩⎪⎨⎪⎧a =1b =2, ∴抛物线的解析式为y =x 2+2x -3; (2)如解图①,过点P 作PM ⊥x 轴于点M ,设抛物线对称轴l 交x 轴于点Q. ∵PB ⊥NB ,∴∠PBN =90°, ∴∠PBM +∠NBQ =90°.∵∠PMB =90°,∴∠PBM +∠BPM =90°, ∴∠BPM =∠NBQ.又∵∠BMP =∠BQN =90°,PB =NB ,∴△BPM ≌△NBQ ,∴PM =BQ.∵抛物线y =x 2+2x -3与x 轴交于点A(1,0)和点B ,且对称轴为x =-1, ∴点B 的坐标为(-3,0),点Q 的坐标为(-1,0), ∴BQ =2,∴PM =BQ =2.∵点P 是抛物线y =x 2+2x -3上B 、C 之间的一个动点, ∴结合图象可知点P 的纵坐标为-2,将y =-2代入y =x 2+2x -3,得-2=x 2+2x -3, 解得x 1=-1-2,x 2=-1+2(舍去), ∴此时点P 的坐标为(-1-2,-2); (3) 存在.如解图②,连接AC ,PC.可设点P 的坐标为(x ,y)(-3<x <0),则y =x 2+2x -3, ∵点A(1,0),∴OA =1.∵点C 是抛物线与y 轴的交点,∴令x =0,得y =-3,即点C(0,-3),∴OC =3. 由(2)可知S四边形PBAC=S △BPM +S四边形PMOC+S △AOC =12BM·PM+12(PM +OC)·OM+12OA·OC=12(x+3)(-y)+12(-y +3)(-x)+12×1×3=-32y -32x +32,将y =x 2+2x -3代入可得S 四边形PBAC =-32(x 2+2x -3)-32x +32=-32(x +32)2+758.∵-32<0,-3<x <0,∴当x =-32时,S 四边形PBAC 有最大值758,此时,y =x 2+2x -3=-154.∴当点P 的坐标为(-32,-154)时,四边形PBAC 的面积最大,最大值为758.4.解:(1)把y =0代入直线的解析式得x +1=0,解得x =-1,∴A(-1,0). ∵抛物线的对称轴为x =1,∴B 的坐标为(3,0). 将x =0代入抛物线的解析式得y =-3,∴C(0,-3).设抛物线的解析式为y =a(x +1)(x -3),将C(0,-3)代入得-3a =-3,解得a =1, ∴抛物线的解析式为y =(x +1)(x -3)=x 2-2x -3; (2)如解图①,连接OP.将x =0代入直线AD 的解析式得y =1,∴OD =1. 由题意可知P(t ,t 2-2t -3). ∵S 四边形DCPB =S △ODB +S △OBP +S △OCP ,∴S =12×3×1+12×3×(-t 2+2t +3)+12×3×t ,整理得S =-32t 2+92t +6,配方得:S =-32(t -32)2+758,∴当t =32时,S 取得最大值,最大值为758;(3)如解图②,设点D′的坐标为(a ,a +1),O ′(a ,a).当△D′O′E 的面积∶△D′EB′的面积=1∶2时,则O′E∶EB ′=1∶2. ∵O ′B ′=OB =3,∴O ′E =1, ∴E(a +1,a).将点E 的坐标代入抛物线的解析式得(a +1)2-2(a +1)-3=a ,整理得:a 2-a -4=0,解得a =1+172或a =1-172,∴O ′的坐标为(1+172,1+172)或(1-172,1-172),∴OO ′=2+342或OO′=34-22, ∴△DOB 平移的距离为2+342或34-22, 当△D′O′E 的面积∶△D ′EB ′的面积=2∶1时,则O′E∶EB ′=2∶1. ∵O ′B ′=OB =3,∴O ′E =2,∴E(a +2,a).将点E 的坐标代入抛物线的解析式得:(a +2)2-2(a +2)-3=a ,整理得:a 2+a -3=0,解得a =-1+132或a =-1-132.∴O ′的坐标为(-1+132,-1+132)或(-1-132,-1-132).∴OO′=-2+262或OO′=2+262.∴△DOB 平移的距离为-2+262或2+262.综上所述,当△D′O′B′沿DA 方向平移2+342或2+262单位长度,或沿AD 方向平移34-22或-2+262个单位长度时,ED ′恰好将△O′D′B′的面积分为1∶2两部分. 类型三 二次函数与线段问题1.(1)解:∵C(0,3),∴-9a =3,解得a =-13.令y =0,得ax 2-23ax -9a =0,∵a ≠0,∴x 2-23x -9=0,解得x =-3或x =3 3. ∴点A 的坐标为(-3,0),点B 的坐标为(33,0),∴抛物线的对称轴为x =3; (2)解:∵OA =3,OC =3, ∴tan ∠CAO =3,∴∠CAO =60°. ∵AE 为∠BAC 的平分线,∴∠DAO =30°, ∴DO =33AO =1,∴点D 的坐标为(0,1), 设点P 的坐标为(3,a).∴AD 2=4,AP 2=12+a 2,DP 2=3+(a -1)2. 当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a -1)2,解得a =0或a =2, ∴点P 的坐标为(3,0)或(3,2).当AP =DP 时,12+a 2=3+(a -1)2,解得a =-4. ∴点P 的坐标为(3,-4).综上所述,点P 的坐标为(3,0)或(3,-4)或(3,2);(3)证明:设直线AC 的解析式为y =mx +3,将点A 的坐标代入得-3m +3=0,解得m =3,∴直线AC 的解析式为y =3x +3. 设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1,得kx +1=0,解得:x =-1k ,∴点N 的坐标为(-1k ,0),∴AN =-1k +3=3k -1k.将y =3x +3与y =kx +1联立,解得x =2k -3,∴点M 的横坐标为2k -3.如解图,过点M 作MG ⊥x 轴,垂足为G.则AG =2k -3+ 3.∵∠MAG =60°,∠AGM =90°, ∴AM =2AG =4k -3+23=23k -2k -3.∴1AM +1AN =k -323k -2+k 3k -1=k -323k -2+2k 23k -2=3k -323k -2=3(3k -1)2(3k -1)=32. 2.解:(1)∵直线l :y =34x +m 经过点B(0,-1),∴m =-1,∴直线l 的解析式为y =34x -1,∵直线l :y =34x -1经过点C ,且点C 的横坐标为4,∴y =34×4-1=2,∵抛物线y =12x 2+bx +c 经过点C(4,2)和点B(0,-1),∴⎩⎪⎨⎪⎧12×42+4b +c =2c =-1,解得⎩⎪⎨⎪⎧b =-54c =-1, ∴抛物线的解析式为y =12x 2-54x -1;(2)令y =0,则34x -1=0,解得x =43,∴点A 的坐标为(43,0),∴OA =43,在Rt △OAB 中,OB =1,∴AB =OA 2+OB 2=(43)2+12=53, ∵DE ∥y 轴,∴∠ABO =∠DEF ,在矩形DFEG 中,EF =DE·cos ∠DEF =DE·OB AB =35DE ,DF =DE·sin ∠DEF =DE·OA AB =45DE ,∴l =2(DF +EF)=2×(45+35)DE =145DE ,∵点D 的横坐标为t(0<t <4), ∴D(t ,12t 2-54t -1),E(t ,34t -1),∴DE =(34t -1)-(12t 2-54t -1)=-12t 2+2t ,∴l =145×(-12t 2+2t)=-75t 2+285t ,∵l =-75(t -2)2+285,且-75<0,∴当t =2时,l 有最大值285;(3)“落点”的个数有4个,如解图①,解图②,解图③,解图④所示.如解图③,设A 1的横坐标为m ,则O 1的横坐标为m +43,∴12m 2-54m -1=12(m +43)2-54(m +43)-1, 解得m =712,如解图④,设A 1的横坐标为m ,则B 1的横坐标为m +43,B 1的纵坐标比A 1的纵坐标大1,∴12m 2-54m -1+1=12(m +43)2-54(m +43)-1,解得m =43, ∴旋转180°时点A 1的横坐标为712或43.3.(1)解:将点A(-1,1),B(4,6)代入y =ax 2+bx 中, 得⎩⎪⎨⎪⎧a -b =116a +4b =6,解得⎩⎪⎨⎪⎧a =12b =-12, ∴抛物线的解析式为y =12x 2-12x ;(2)证明:设直线AF 的解析式为y =kx +m , 将点A(-1,1)代入y =kx +m 中,即-k +m =1, ∴k =m -1,∴直线AF 的解析式为y =(m -1)x +m. 联立直线AF 和抛物线解析式成方程组,⎩⎪⎨⎪⎧y =(m -1)x +m y =12x 2-12x ,解得⎩⎪⎨⎪⎧x 1=-1y 1=1,⎩⎪⎨⎪⎧x 2=2my 2=2m 2-m , ∴点G 的坐标为(2m ,2m 2-m). ∵GH ⊥x 轴,∴点H 的坐标为(2m ,0). ∵抛物线的解析式为y =12x 2-12x =12x(x -1),∴点E 的坐标为(1,0).设直线AE 的解析式为y =k 1x +b 1,将A(-1,1),E(1,0)代入y =k 1x +b 1中,得⎩⎪⎨⎪⎧-k 1+b 1=1k 1+b 1=0,解得⎩⎪⎨⎪⎧k 1=-12b 1=12,∴直线AE 的解析式为y =-12x +12.设直线FH 的解析式为y =k 2x +b 2,将F(0,m)、H(2m ,0)代入y =k 2x +b 2中,得⎩⎪⎨⎪⎧b 2=m 2mk 2+b 2=0,解得:⎩⎪⎨⎪⎧k 2=-12b 2=m, ∴直线FH 的解析式为y =-12x +m.∴FH ∥AE ;(3)解:设直线AB 的解析式为y =k 0x +b 0,将A(-1,1),B(4,6)代入y =k 0x +b 0中,⎩⎪⎨⎪⎧-k 0+b 0=14k 0+b 0=6,解得⎩⎪⎨⎪⎧k 0=1b 0=2, ∴直线AB 的解析式为y =x +2.当运动时间为t 秒时,点P 的坐标为(t -2,t),点Q 的坐标为(t ,0).当点M 在线段PQ 上时,过点P 作PP′⊥x 轴于点P′,过点M 作MM′⊥x 轴于点M′,则△PQP′∽△MQM′,如解图所示.∵QM =2PM , ∴QM′QP′=MM′PP′=23,∴QM ′=43,MM ′=23t ,∴点M 的坐标为(t -43,23t),又∵点M 在抛物线y =12x 2-12x 上,∴23t =12(t -43)2-12(t -43), 解得t =15±1136,当点M 在线段QP 的延长线上时, 同理可得出点M 的坐标为(t -4,2t), ∵点M 在抛物线y =12x 2-12x 上,∴2t =12×(t -4)2-12(t -4),解得t =13±892.综上所述:当运动时间为15-1136秒、15+1136秒、13-892秒或13+892秒时,QM =2PM.类型四 二次函数与三角形相似 1.(1)解:∵顶点坐标为(1,1), ∴设抛物线解析式为y =a(x -1)2+1,又∵抛物线过原点,∴0=a(0-1)2+1,解得a =-1, ∴抛物线的解析式为y =-(x -1)2+1,即y =-x 2+2x ,联立抛物线和直线解析式可得⎩⎪⎨⎪⎧y =-x 2+2x y =x -2,解得⎩⎪⎨⎪⎧x =2y =0或⎩⎪⎨⎪⎧x =-1y =-3, ∴B(2,0),C(-1,-3);(2)证明:如解图,分别过A 、C 两点作x 轴的垂线,交x 轴于D 、E 两点, 则AD =OD =BD =1,BE =OB +OE =2+1=3,EC =3, ∴∠ABO =∠CBO =45°,即∠ABC =90°, ∴△ABC 是直角三角形;(3)解:假设存在满足条件的点N ,设N(x ,0),则M(x ,-x 2+2x), ∴ON =|x|,MN =|-x 2+2x|,由(2)在Rt △ABD 和Rt △CEB 中,可分别求得AB =2,BC =32, ∵MN ⊥x 轴于点N ∴∠MNO =∠ABC =90°,∴当△MNO 和△ABC 相似时有MN AB =ON BC 或MN BC =ONAB,①当MN AB =ON BC 时,则有|-x 2+2x|2=|x|32,即|x|×|-x +2|=13|x|,∵当x =0时M 、O 、N 不能构成三角形, ∴x ≠0,∴|-x +2|=13,即-x +2=±13,解得x =53或x =73,此时N 点坐标为(53,0)或(73,0),②当MN BC =ON AB 时,则有|-x 2+2x|32=|x|2,即|x|×|-x +2|=3|x|,∴|-x +2|=3,即-x +2=±3,解得x =5或x =-1, 此时N 点坐标为(-1,0)或(5,0),综上可知存在满足条件的N 点,其坐标为(53,0)或(73,0)或(-1,0)或(5,0).2.解:(1)把A 、C 两点坐标代入直线y =-ax +c 可得⎩⎪⎨⎪⎧3a +c =0c =1,解得⎩⎪⎨⎪⎧a =-13c =1, ∴直线的表达式为y =13x +1,把A 点坐标和a =-13代入抛物线解析式可得9×(-13)-3b +1=0,解得b =-23,∴抛物线的表达式为y =-13x 2-23x +1;(2)∵点D 为抛物线在第二象限部分上的一点,∴可设D(t ,-13t 2-23t +1),则F(t ,13t +1),∴DF =-13t 2-23t +1-(13t +1)=-13t 2-t =-13(t +32)2+34.∵-13<0,∴当t =-32时,DF 有最大值,最大值为34,此时D 点坐标为(-32,54);(3)设P(m ,-13m 2-23m +1),如解图,∵P 在第四象限,∴m >0,-13m 2-23m +1<0,∴AN =m +3,PN =13m 2+23m -1,∵∠AOC =∠ANP =90°,∴当以P 、A 、N 为顶点的三角形与△ACO 相似时有△AOC ∽△PNA 和△AOC ∽△ANP ,①当△AOC ∽△PNA 时,则有OC NA =AO PN ,即1m +3=313m 2+23m -1,解得m =-3或m =10,经检验当m =-3时,m +3=0(舍去), ∴m =10,此时P 点坐标为(10,-39);②当△AOC ∽△ANP 时,则有OC NP =AO AN ,即113m 2+23m -1=3m +3,解得m =2或m =-3,经检验当m =-3时,m +3=0(舍去), ∴m =2,此时P 点坐标为(2,-53);综上可知P 点坐标为(10,-39)或(2,-53).3.解:(1)将A 、G 点坐标代入函数解析式,得⎩⎨⎧9a +3b +33=0,a -b +33=0,解得⎩⎨⎧a =-3b =23,∴抛物线的解析式为y =-3x 2+23x +33; (2)如解图①,作ME ∥y 轴交AB 于E 点, 当x =0时,y =33,即B 点坐标为(0,33), 直线AB 的解析式为y =-3x +33,设M(n ,-3n 2+23n +33),E(n ,-3n +33), ME =-3n 2+23n +33-(-3n +33)=-3n 2+33n , S △ABM =12ME·AO=12(-3n 2+33n)×3=-332(n -32)2+2738,当n =32时,△ABM 面积的最大值是2738;(3)存在;理由如下:OE =233,AP =2,OP =1,BE =33-233=733,当y =233时,-3x +33=233,解得x =73,即EF =73,将△BEP 绕点E 顺时针方向旋转90°,得到△B′EC(如解图②), ∵OB ⊥EF ,∴点B′在直线EF 上,∵C 点横坐标绝对值等于EO 长度,C 点纵坐标绝对值等于EO -PO 长度, ∴C 点坐标为(-233,233-1),如解图,过F 作FQ ∥B′C,交EC 于点Q , 则△FEQ ∽△B′EC,由BE EF =B′E EF =CEEQ =3,可得Q 的坐标为(-23,-33);根据对称性可得,Q 关于直线EF 的对称点Q′(-23,533)也符合条件.4.解:(1)∵抛物线y =ax 2+bx +3经过点A(1,0)和点B(5,0), ∴⎩⎪⎨⎪⎧a +b +3=025a +5b +3=0,解得⎩⎪⎨⎪⎧a =35b =-185, ∴该抛物线对应的函数解析式为y =35x 2-185x +3;(2)①∵点P 是抛物线上的动点且位于x 轴下方,∴可设P(t ,35t 2-185t +3)(1<t <5),∵直线PM ∥y 轴,分别与x 轴和直线CD 交于点M 、N , ∴M(t ,0),N(t ,35t +3),∴PN =35t +3-(35t 2-185t +3)=-35(t -72)2+14720,联立直线CD 与抛物线解析式可得⎩⎪⎨⎪⎧y =35x +3y =35x 2-185x +3,解得⎩⎪⎨⎪⎧x =0y =3或⎩⎪⎨⎪⎧x =7y =365,∴C(0,3),D(7,365),分别过C 、D 作直线PN 的垂线,垂足分别为E 、F ,如解图①,则CE =t ,DF =7-t ,∴S △PCD =S △P +S △PDN =12PN·CE+12PN·DF=72PN =72[-35(t -72)2+14720]=-2110(t -72)2+102940, ∴当t =72时,△PCD 的面积最大,最大值为102940;②存在.∵∠CQN =∠PMB =90°, ∴当△Q 与△PBM 相似时,有NQ CQ =PM BM 或NQ CQ =BMPM两种情况, ∵CQ ⊥PN ,垂足为Q ,∴Q(t ,3),且C(0,3),N(t ,35t +3),∴CQ =t ,NQ =35t +3-3=35t ,∴NQ CQ =35,∵P(t ,35t 2-185t +3),M(t ,0),B(5,0),∴BM =5-t ,PM =0-(35t 2-185t +3)=-35t 2+185t -3,当NQ CQ =PM BM 时,则PM =35BM ,即-35t 2+185t -3=35(5-t),解得t =2或t =5(舍去),此时P(2,-95);当NQ CQ =BM PM 时,则BM =35PM ,即5-t =35(-35t 2+185t -3),解得t =349或t =5(舍去),此时P(349,-5527);综上可知存在满足条件的点P ,其坐标为(2,-95)或(349,-5527).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)若一次函数y=kx-1的图象l 把 矩形ABCD分成面积相等的两部分,求 此一次函数的解析式(用含m的代数式 表示); (3)在(2)的前提下,l 又与半径为 1的⊙M 相切,且点M(0,1),求此 时矩形ABCD 的中心P 的坐标.
பைடு நூலகம்
棋牌评测网 棋牌评测网
3、等腰三角形的两边长分别为2和7, 则它的周长是 ( ) ( A) 9 (B)11 (C)16 (D)11或16
4、某市在“旧城改造”中计划在市内一 块如图所示的三角形空地上种植某种草 皮以美化环境,已知这种草皮每平方米 售价a元,则购买这种草皮至少需要 ( ) (A)450a元 (B)225a元 (C)150a元 (D)300a元
wnd30xpy
用手敲着木鱼,好用心的样子,纪雪芙不忍打扰,只得加速了自己的速度。她打开香篮,拿出准备好的香火,在佛前立 着的蜡烛钱点燃,然后端端正正的插在香炉里,诚心的回到垫子上参拜,祈求我佛保佑雪城和哥哥身体康健,福安康宁。 彼时,大殿安静的只有木鱼还在敲击的声音,却传来有人说念佛理的声音。“融融春景绝纤埃,五叶腾芳七叶开。子内 子生枝上巢,一花一叶一如来。”纪雪芙参拜完睁开眼睛,看着眼前僧人的背影,她很难想象如此禅机是从这样一个年 轻的背影嘴中传出来的,这大殿除了他们两个人再无其他人,这样的处境,竟是为纪雪芙怀疑的其余可能做了一个绝对 假设。“小师傅可是灵机禅师?”“阿弥陀佛,女施主真是好眼力,贫僧正是灵机。”“听小师傅刚刚念的是《正解金 刚经》中的几句,想来也是佛法高深之人,不知怎么见解?”“这叶子意指莲花,说的是如来佛让这世间春意盎然,世 间轮回,叶子变成花又变成果实。”“此之意可是说因果轮回都有因果,有因才有果,若得果那其中必有因,解其因便 可解其果,凡事都是如此,所以若是想做什么,那必须种因才能得果,对吗?”“女施主真是悟掉极高的人,不错,正 是这个意思,只是种善因结善果,种恶因得恶果,循环往复,皆是报应。”“多谢禅师解惑,小女受用不尽。”“我寒 山寺除讲经外,求签也是很灵的,女施主佛缘极深,不如试试?”纪雪芙犹豫片刻,爷爷说过这签不可随意求,今日是 受了灵机禅师的嘱托才得一签,不妨试试,于是便答应了。纪雪芙拿起签筒虔诚的上下晃动着,终于有一支签文掉了出 来,其言道:何人不觅赤绳牵,月朗星稀尚未棉。好向闺中调静好,休教错过好姻缘。“禅师,这„„”灵机禅师看了 眼签文,眉眼间都是笑意。“女施主看来是姻缘到,这可是姻缘签,可要珍惜眼前人。”纪雪芙心中一惊,便匆匆向灵 机禅师告了别,让人安排了下榻的禅房之后带着侍女玉瑶快步走了回去,一个大胆的计划在她脑海里渐渐产生。 第016 章 声色美人醉纪雪芙在寒山寺住了足足有三日都不见萧煜痕露面,这一日晚饭后闲来无事,让玉瑶拿来从灵机禅师处 借来的古琴,架在院子中,皓月当空,良辰美景。这把古琴玉瑶去借的时候本是没有的,但灵机禅师一听是纪雪芙要借, 就立马拿出一把古琴。玉瑶跟在纪雪芙身边自然也是见过世面的人,看这琴面琴身也可知是价值不菲,自然不敢收的, 只是灵机大师说有贵人愿意相赠,不想此琴蒙了尘,这才抱了来,只是60自从琴抱来连打眼都没有瞅一眼,今日倒要弹 琴,着实有点怪怪的。悠扬的琴声从小院里飘出,伴着微风吹过,院子里的柱子随风飘动,吹来一片黑云,如黑纱般遮 住了天边的月,一时曲子情意绵绵难舍难分,让
5、解不等式组
2 x 1 4 x 3 x 1 5 x 7
并把它的解集在数轴上表示出来.
6、为落实“珍惜和合理利用每一寸土 地”的基本国策.某地区计划经过若 干年开发“改造后可利用土地”360平 方千米,实际施工中,每年比原计划 多开发2平方千米,按此进行预计可 提前6年完成开发任务,问实际每年 可开发多少平方千米?
1、若圆锥底面的直径为6cm,母线长为 5cm,则它的侧面积为________cm3 (结果保留π).
2、如图:四边形 ABCD是正方形, 曲线DA1B1C1D1…叫做“正方形的渐 开线”,其中所有四分之一弧的圆心 依次按A、B、C、D循环,它依次连 接.取AB=1,则曲线DA1B1…C2D2 的长是__________(结果保留π).
7、已知:二次函数y=x2+bx+c (b、c为常数). (1)若二次函数的图象经过 A(-2,-3)和B(2,5)两点, 求此二次函数的解析式; (2)若(1)中的二次函数的 图象过点P(m+1,n2+4n), 且m≠n,求m+n的值.
8、已知:矩形ABCD在平面直角坐标系 中,顶点A、B、D的坐标分别为 A(0,0),B (m,0),D(0,4), 其中m≠0. (1)写出顶点C的坐标和矩形ABCD的 中心P点的坐标(用含m的代数式表示);