北师大版八年级数学上册期末总复习题
2024八年级数学上册期末复习1勾股定理3常考题型专练习题课件新版北师大版

DN . 求证: AB2=2( CM + CN )2.
1
2
3
4
5
证明:如图,连接 CD ,过点 D 作 DE ⊥ BC 于点 E ,则
∠ DEC =∠ DEB =90°.
因为 DM ⊥ DN ,
所以∠ MDC +∠ CDN =90°.
3. 如图,在△ ABC 中, D 为 BC 的中点, AB =5, AD =
6, AC =13.求证: AB ⊥ AD .
1
2
3
4
5
证明:如图,延长 AD 至点 E ,使 DE = AD ,连接 BE .
因为 D 为 BC 的中点, 所以 CD = BD .
又因为 AD = ED ,∠ ADC =∠ EDB ,
所以△ ADC ≌△ EDB (SAS).所以 BE = CA =13.
在△ ABE 中, AE =2 AD =12, AB =5,
所以 AE2+ AB2=122+52=169.
又因为 BE2=132=169,所以 AE2+ AB2= BE2.
所以△ ABE 是直角三角形,且∠ BAE =90°,即 AB ⊥ AD .
设正方形的边长为 a ,则 AD = DC = BC = AB = a ,
BF = a , AF = a , BE = EC = a .
2
2
2
2
在Rt△ DAF 中, DF = AD + AF = a .
在Rt△ CDE 中, DE2= CD2+ CE2= a2.
在Rt△ EFB 中, EF2= FB2+ BE2= a2.
北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题1.下列实数中是无理数的是( )A.π B C .0 D .27- 2.如图,在Rt ABC 中,90C ∠=︒,边BC 的长是( )A.5 B .6 C .8 D .3.下列选项中,最简二次根式是( )A B C D 4.如图,在ABC 中,85B ∠=︒,40ACD ∠=︒,AB ∥CD ,则ACB ∠的度数为( )A .90°B .85°C .60°D .55° 5.若点(1,2)P 在正比例函数的图象上,则这个正比例函数的解析式是( ) A .2y x =- B .2y x = C .4y x =- D .4y x = 6.函数1y kx =-中,y 随x 的增大而增大,则它的图象可能是下图中的( )A .B .C .D .7.古代数学问题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是( )A . 4.5112y x y x =-⎧⎪⎨=-⎪⎩B . 4.5112y x y x =-⎧⎪⎨=+⎪⎩C . 4.5112y x y x =+⎧⎪⎨=-⎪⎩D . 4.521y x y x =+⎧⎨=-⎩ 8.如图,ABC 是一个三角形的纸片,点D 、E 分别是ABC 边上的两点,将ABC 沿直线DE 折叠,点A 落在点A '处,则BDA '∠,CEA '∠和A ∠的关系是( )A .BDA CEA A ''∠-∠=∠B .180BDA CEA A ''∠+∠+∠=︒C .2BDA A CEA ''∠+∠=∠D .2BDA CEA A ''∠+∠=∠9.下列运算结果正确的是( )AB.2+= C3= D.)213=-10.已知直线12//l l ,将一块直角三角板ABC (其中∠A 是30°,∠C 是60°)按如图所示方式放置,若∠1=84°,则∠2等于( )A .56°B .64°C .66°D .76°二、填空题11.正数a 的平方根是5和m ,则m =__________. 12.已知41x y =⎧⎨=⎩是关于x ,y 的二元一次方程3x ay -=的一个解,则a 的值是__________. 13.计算的结果是________. 14.解方程组5()3()22()4()6x y x y x y x y +--=⎧⎨++-=⎩,若设()x y A +=,()x y B -=,则原方程组可变形为______.15.如图,已知函数y ax b =+和y cx d =+图象交于点M ,则根据图象可知,关于x 、y 的二元一次方程组y ax b y cx d =+⎧⎨=+⎩的解为____________.16.如图,四边形ABCD 是长方形,F 是DA 延长线上一点,CF 交AB 于点E ,G 是CF 上一点,且∠ACG =∠AGC ,∠GAF =∠F .若∠ECB =20°,则∠ACD 的度数是______________.17.如图,已知∠1=∠2,∠B =35°,则∠3=________°.18.如图,已知直线y =ax+b 和直线y =kx 交于点P ,则关于x ,y 的二元一次方程组y kx y ax b=⎧⎨=+⎩的解是_____.三、解答题19.计算(2)1)20.为了搞好课外活动,王老师还需购买一定数量的足球和篮球.经调查发现:6个价格相同的篮球和4个价格相同的足球共需720元,1个篮球和3个足球共需260元,请问篮球和足球的单价分别是多少?21.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P到x轴、y轴的距离相等.22.已知:如图,在∠ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∠BC.23.如图,∠ABC中,∠ACB=90°,D为AB上一点,过D点作AB垂线,交AC于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.24.如图,在平面直角坐标系中,∠ABC 的顶点坐标分别为()3,2A -,()4,3B --,()2,2C --. (1)∠ABC 的面积是 ;(2)画出∠ABC 关于y 轴对称的∠A 1B 1C 1,并写出点B 1的坐标.25.在∠ABC 中,(1)如图1,AC =15,AD =9,CD =12,BC =20,求∠ABC 的面积;(2)如图2,AC =13,BC =20,AB =11,求∠ABC 的面积.26.如图,在平面直角坐标系xOy 中,一次函数的图象经过点()30A -,与点()0,4B .(1)求这个一次函数的表达式;(2)若点M 为此一次函数图象上一点,且∠MOB 的面积为12,求点M 的坐标;(3)点P 为x 轴上一动点,且∠ABP 是等腰三角形,请直接写出点P 的坐标.27.某校在八年级开展环保知识问卷调查活动,问卷一共10道题,八年级(三)班的问卷得分情况统计图如下图所示:a______________;(1)扇形统计图中,(2)根据以上统计图中的信息,∠问卷得分的极差是_____________分;∠问卷得分的众数是____________分;∠问卷得分的中位数是______________分;(3)请你求出该班同学的平均分.参考答案1.A【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、π是无理数,故此选项符合题意;B2=,属于有理数,故此选项不符合题意;C、0属于有理数,故此选项不符合题意;D、27-是分数,属于有理数,故此选项不符合题意;故选:A.【点睛】此题主要考查了无理数的定义,掌握实数的分类是解答本题的关键.2.B【分析】利用勾股定理计算即可.【详解】解:由题意可得:6=,故选:B.【点睛】本题考查了勾股定理,解题的关键是掌握直角三角形中直角边的平方和等于斜边的平方.3.C【分析】根据最简二次根式的定义判断即可.【详解】解:A=,不是最简二次根式,故不符合题意;B=CD=,不是最简二次根式,故不符合题意;故选:C.【点睛】本题考查了最简二次根式,熟练掌握最简二次根式的定义是解题的关键.满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.4.D【分析】根据平行线的性质和三角形的内角和定理即可得到结论.【详解】解:∠AB∠CD,∠ACD=40°,∠∠A=∠ACD=40°,∠∠ACB=180°-∠A-∠B=180°-40°-85°=55°,故选:D.【点睛】本题考查的是三角形内角和定理和平行线的性质,掌握三角形内角和定理等于180°是解题的关键.5.B【分析】将P坐标代入正比例函数解析式中求出k的值,即可确定出正比例解析式.【详解】解:设正比例函数的解析式为y=kx,将x=1,y=2代入y=kx中,得:2=k,则正比例解析式为y=2x;故选:B.【点睛】此题考查了待定系数法求正比例函数解析式,灵活运用待定系数法是解本题的关键.6.D【分析】y随x的增大而增大,则k>0,图象经过一、三象限;常数项-1<0,则直线与y 轴的交点在负半轴上,图象还经过第四象限.【详解】解:∠函数y=kx-1,y随x的增大而增大,∠k>0,图象经过一、三象限;又∠-1<0,∠图象还经过第四象限.即图象经过一、三、四象限.故选:D.【点睛】本题考查了一次函数的图象特征,函数的增减性,解题的关键是掌握一次函数的各个系数的作用.7.C【分析】根据用一根绳子去量一根长木,绳子还剩余4.5尺,可得x+4.5=y;根据将绳子对y,然后即可写出相应的方程组.折再量长木,长木还剩余1尺,可得x-1=12【详解】解:由题意可得,4.5112y x y x =+⎧⎪⎨=-⎪⎩, 故选:C .【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.8.D【分析】由∠BDA'+∠ADA'=180°,∠CEA'+∠A'EA=180°,得∠BDA'+∠CEA'=360°-∠ADA'-∠A'EA ,再利用四边形内角和定理可得答案.【详解】解:∠∠BDA'+∠ADA'=180°,∠CEA'+∠A'EA=180°,∠∠BDA'+∠CEA'=360°-∠ADA'-∠A'EA ,∠∠BDA'+∠CEA'=∠A+∠DA'E ,∠∠A'DE 是由∠ADE 沿直线DE 折叠而得,∠∠A=∠DA'E ,∠∠BDA'+∠CEA'=2∠A ;故选D .【点睛】本题主要考查了折叠的性质,三角形内角和定理等知识,遇到折叠的问题,一定要找准相等的量,结合题目所给出的条件在图形上找出之间的联系则可.9.D【分析】根据二次根式的运算性质,以及完全平方公式进行计算即可.【详解】A与B .2与CD.)22212113=-+=-故选:D .【点睛】本题考查了二次根式加减乘除计算,熟知二次根式加减乘除运算性质以及运用完全平方公式进行计算是解题的关键.10.C【分析】如图,由题意易得∠ABC=90°,则有∠3=∠1-∠C=24°,进而可得∠4=66°,然后根据平行线的性质可求解.【详解】解:如图所示:∠∠C=60°,∠1=84°,∠∠3=24°,∠∠ABC 是直角三角形,∠∠ABC=90°,∠∠4=66°,∠12//l l ,∠∠2=∠4=66°;故选C .【点睛】本题主要考查三角形外角的性质及平行线的性质,熟练掌握三角形外角的性质及平行线的性质是解题的关键.11.-5【分析】根据一个正数的平方根互为相反数,从而可以求得m 的值.【详解】解:∠正数a 的平方根是5和m ,∠5+m=0,∠m=-5,故答案为:-5.【点睛】本题考查了平方根,解答本题的关键是明确一个正数的平方根有两个,它们互为相反数.12.1【分析】把41x y =⎧⎨=⎩代入二元一次方程x -ay=3中,得到关于a 的方程,解方程就可以求出a .【详解】解:把41x y =⎧⎨=⎩代入二元一次方程x -ay=3,得 4-a=3,解得a=1.故答案为:1.【点睛】本题考查了二元一次方程的解,解题关键是把方程的解代入原方程,使原方程转化为以系数a 为未知数的方程.13.【详解】分析:先计算分子,然后进行二次根式的除法运算.详解:原式点睛:本题考查了二次根式的计算:一般情况下,先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.532246A B A B -=⎧⎨+=⎩ 【分析】根据题意,将()x y A +=,()x y B -=代入方程组中即可得出结论.【详解】解:由题意可得原方程组可变形为532246A B A B -=⎧⎨+=⎩故答案为:532246A B A B -=⎧⎨+=⎩. 【点睛】此题考查的是换元法,根据题意换元是解题关键.15.57x y =-⎧⎨=⎩ 【分析】一次函数y=ax+b 和y=cx+d 交于点(-5,7);因此点(-5,7)必为两函数解析式所组方程组的解.【详解】解:由图可知:直线y=ax+b 和直线y=cx+d 的交点坐标为(-5,7);因此关于x 、y 的二元一次方程组y ax b y cx d =+⎧⎨=+⎩的解为:57x y =-⎧⎨=⎩,故答案为:57xy=-⎧⎨=⎩.【点睛】考查了一次函数与二元一次方程(组)方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.16.30°【分析】根据矩形的性质得到AD∠BC,∠DCB=90°,根据平行线的性质得到∠F=∠ECB =20°,根据三角形的外角的性质得到∠ACG=∠AGC=∠GAF+∠F=2∠F=40°,于是得到结论.【详解】解:∠四边形ABCD是矩形,∠AD∠BC,∠DCB=90°,∠∠F=∠ECB∠∠ECB=20°,∠∠F=∠ECB=20°,∠∠GAF=∠F,∠∠GAF=∠F=20°,∠∠ACG=∠AGC=∠GAF+∠F=2∠F=40°,∠∠ACB=∠ACG+∠ECB=60°,∠∠ACD=90°﹣∠ACB=90°﹣60°=30°,故答案为:30°.【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.17.35【分析】根据“平行线的判定和性质”结合“已知条件”分析解答即可.【详解】∠∠1=∠2,∠AB∠CE,∠∠3=∠B=35°.故答案为35.【点睛】熟记“平行线的判定方法和性质”是解答本题的关键.18.12 xy=⎧⎨=⎩.【分析】直接根据函数图象交点坐标为两函数解析式组成的方程组的解得到答案.【详解】解:∠直线y=ax+b和直线y=kx交点P的坐标为(1,2),∠关于x,y的二元一次方程组y kxy ax b=⎧⎨=+⎩的解为12xy=⎧⎨=⎩.故答案为12xy=⎧⎨=⎩.【点睛】此题考查一次函数与二元一次方程(组),解题关键在于利用图象求解.19.(1)3 2(2)12【分析】(1)利用二次根式的乘法法则计算,再化简;(2)利用平方差公式计算即可.(1)=32;(2))11=221-=131-=12【点睛】本题考查了二次根式的混合运算,解题的关键是掌握运算法则.20.篮球单价为80元,足球单价为60元【分析】设篮球单价为x元,足球单价为y元,根据“6个价格相同的篮球和4个价格相同的足球共需720元,1个篮球和3个足球共需260元”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设篮球单价为x元,足球单价为y元,依题意,得:647203260x yx y+=⎧⎨+=⎩,解得:8060xy=⎧⎨=⎩,答:篮球单价为80元,足球单价为60元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.(1)P(-6,0);(2)P(-12,-12)或(-4,4)【分析】(1)利用x轴上点的坐标性质纵坐标为0,进而得出a的值,即可得出答案;(2)利用点P到x轴、y轴的距离相等,得出横纵坐标相等或互为相反数进而得出答案.【详解】解:(1)∠点P(a-2,2a+8)在x轴上,∠2a+8=0,解得:a=-4,故a-2=-4-2=-6,则P(-6,0);(2)∠点P到x轴、y轴的距离相等,∠a-2=2a+8或a-2+2a+8=0,解得:a=-10,或a=-2,故当a=-10时,a-2=-12,2a+8=-12,则P(-12,-12);故当a=-2时,a-2=-4,2a+8=4,则P(-4,4).综上所述:P(-12,-12)或(-4,4).【点睛】此题主要考查了点的坐标特征,用到的知识点为:点到两坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及点在坐标轴上的点的性质.22.证明见解析【分析】由角平分线的定义可知:∠EAD=12∠EAC,再由三角形的外角的性质可得∠EAD=∠B,然后利用平行线的判定定理可证明出结论.【详解】解:∠AD 平分∠EAC , ∠∠EAD=12∠EAC ,又∠∠B=∠C ,∠EAC=∠B+∠C , ∠∠B=12∠EAC , ∠∠EAD=∠B ,∠AD∠BC .【点睛】本题主要考查了平行线的判定,三角形的外角性质,熟练掌握平行线的判定,三角形的外角性质是解题的关键.23.(1)∠1与∠B 相等,理由见解析;(2)若BC =BD ,AB 与FB 相等,理由见解析【分析】(1)∠ACB=90°,∠1+∠F=90°,又由于DF∠AB ,∠B+∠F=90°,继而可得出∠1=∠B ;(2)通过判定∠ABC∠∠FBD (AAS ),可得出AB=FB .【详解】解:(1)∠1与∠B 相等,理由:∠,∠ABC 中,∠ACB =90°,∠∠1+∠F =90°,∠FD∠AB ,∠∠B+∠F =90°,∠∠1=∠B ;(2)若BC =BD ,AB 与FB 相等,理由:∠∠ABC 中,∠ACB =90°,DF∠AB ,∠∠ACB =∠FDB =90°,在∠ACB 和∠FDB 中, B B ACB FDB BC BD ∠=∠⎧⎪∠∠⎨⎪=⎩=,∠∠ACB∠∠FDB (AAS ),∠AB =FB .【点睛】本题考查全等三角形的判定(AAS )与性质、三角形内角和,解题的关键是掌握全等三角形的判定(AAS )与性质、三角形内角和.24.(1)4.5;(2)见解析,()14,3B -【分析】(1)依据割补法进行计算,即可得到∠ABC 的面积;(2)依据轴对称的性质进行作图,即可得到∠A 1B 1C 1.【详解】解:(1)∠ABC 的面积为:2×5−12×1×4−12×1×5−12×1×2=4.5;故答案为:4.5;(2)如图,111A B C △为所求;()14,3B -;【点睛】本题考查了作图——轴对称变换,解决本题的关键是掌握轴对称的性质.25.(1)150;(2)66【分析】(1)根据勾股定理的逆定理判断∠ADC=90°,再用勾股定理求出DB ,然后求面积即可;(2)过点C 作CD AB ⊥,交BA 的延长线于点D ,设AD x =,则11BD x =+,根据勾股定理列出方程,解出x ,再求出高CD 即可.【详解】解:(1)如答题1图,∠15AC =,9AD =,12CD =∠2222129225CD AD +=+=,2215225AC == ∠222CD AD AC +=∠90ADC ∠=︒,∠=90BDC ∠︒,∠16BD =∠91625AB AD BD =+=+=.∠11251215022ABC S AB CD =⋅=⨯⨯=△(2)如答题2图,过点C 作CD AB ⊥,交BA 的延长线于点D ,则90ADC BDC ∠=∠=︒.设AD x =,则11BD x =+在Rt ACD △,2222213CD AC AD x =-=-在Rt BCD ,()222222011CD BC BD x =-=-+∠()2222132011x x -=-+解得:5x =∠222135144CD =-=∠12CD = ∠1111126622ABC S AB CD =⋅=⨯⨯=△【点睛】本题考查了勾股定理和勾股定理逆定理,解题关键是恰当作垂线,构建直角三角形,依据勾股定理建立方程.26.(1)443y x =+;(2)()6,12或()6,4--;(3)点Р()3,0或()8,0-或()2,0或7,06⎛⎫ ⎪⎝⎭【分析】(1)设一次函数的表达式为y=kx+b ,把点A 和点B 的坐标代入求出k ,b 的值即可;(2)点M 的坐标为(a ,443a +),根据∠MOB 的面积为12,列出关于a 的等式,解之即可;(3)分三种情形讨论即可∠当AB=AP 时,∠当BA=BP 时,∠当PA=PB 时.【详解】解:(1)设这个一次函数的表达式为y kx b =+,依题意得:304k b b -+=⎧⎨=⎩, 解得:434k b ⎧=⎪⎨⎪=⎩, ∠443y x =+.(2)如图:设点M 的坐标为4,43a a ⎛⎫+ ⎪⎝⎭,∠()0,4B ,∠4OB =,∠MOB △的面积为12,14122a ⨯⨯=, ∠6a =,∠6a =±,当6a =时,44123a +=; 当6a =-时,4443a +=-; ∠点M 的坐标为:()6,12或()6,4--.(3)∠点A (-3,0),点B (0,4).∠OA=3,OB=4,5=,当PA=AB 时,P 的坐标为(-8,0)或(2,0);当PB=AB 时,P 的坐标为(3,0);当PA=PB 时,设P 为(m ,0),则(m+3)2=m 2+42, 解得:7m 6=,∠P 的坐标为(76,0); 综上,点Р的坐标是:()3,0或()8,0-或()2,0或7,06⎛⎫ ⎪⎝⎭. 【点睛】本题考查一次函数综合题、待定系数法、等腰三角形的判定和性质、三角形面积等知识,解题的关键是灵活运用所学知识,学会用转化的思想思考问题,属于中考常考题型. 27.(1)14%;(2)∠40,∠90,∠85;(3)82.6.【分析】(1)依据扇形统计图中各项目的百分比,即可得到a 的值;(2)依据极差、众数和中位数的定义进行计算,即可得到答案;(3)依据加权平均数的算法进行计算,即可得到该班同学的平均分.【详解】(1)120%30%20%16%14%a =----=;(2)∠问卷得分的极差是100-60=40(分),∠90分所占的比例最大,故问卷得分的众数是90分,∠7÷14=50(人),70分的人数为:50×16%=8(人)80分的人数为:50×20%=10(人)90分的人数为:50×30%=15(人)100分的人数为:50×20%=10(人)所以,问卷得分的中位数是从低分到高分排列第25,26个学生分数的平均数,即908085 2+=(分);(3)该班同学的平均分为:6014%7016%8020%9030%10020%82.6⨯+⨯+⨯+⨯+⨯=(分)。
北师大版八年级上册数学期末考试试题及答案

北师大版八年级上册数学期末考试试卷一、单选题1.在ABC 中,90C A B C ∠=︒∠∠∠,,,的对应边分别是a b c ,,,则下列式子成立的是 A .222+=a b c B .222a c b += C .222a c b -= D .222b c a +=2.如图,在ABC 中,90ACB ∠=︒,CD AB ⊥,垂足为D .若3AC =,4BC =,则CD 的长为( )A .2.4B .2.5C .4.8D .53.估计3 )A .在6和7之间B .在7和8之间C .在8和9之间D .在9和10之间 4.下列各组二次根式中,属于同类二次根式的是( )A .B C .D5.在平面直角坐标系中,若点()P m m n -,与点()21Q ,关于原点对称,则点()M m n ,在( ) A .第一象限B .第二象限C .第三象限D .第四象限6.已知点A 的坐标为()23,,直线AB y ∥轴,且5AB =,则点B 的坐标为( ) A .()28,B .()28,或()22-,C .()73,D .()73,或()33-, 7.一次函数1y ax b 与正比例函数2y bx =-在同一坐标系中的图象大致是( )A .B .C .D .8.如图,某电信公司手机的收费标准有A B ,两类,已知每月应缴费用S (元)与通话时间t (分)之间的关系如图所示,当通话时间为50分钟时,按这两类收费标准缴费的差为( )A .30元B .20元C .15元D .10元9.八(1)班同学参加社会实践活动,在王伯伯的指导下,要围一个如图所示的长方形菜园ABCD ,莱园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为12m ,设边BC的长为x m ,边AB 的长为y m ()x y >.则y 与x 之间的函数表达式为( )A .212(012)y x x =-+<<B .()164122y x x =-+<< C .212(012)y x x =-<< D .16(412)2y x x =-<< 10.下列方程组中是二元一次方程组的是( )A .23124x y x y ⎧+=⎨-=⎩ B .225xy x y =⎧⎨+=⎩ C .63a b b c -=⎧⎨+=⎩ D .310521m n m n +=⎧⎨-=⎩11.古代数学问题:“今有木,不知长短,引绳度之,余绳五尺四寸:屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余5.4尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为( )A . 5.412y x x y -=⎧⎪⎨-=⎪⎩B . 5.412x y y x -=⎧⎪⎨-=⎪⎩C . 5.412y x y x -=⎧⎪⎨-=⎪⎩D . 5.412x y xy -=⎧⎪⎨-=⎪⎩12.若324432a ba b x y ++--=是关于x ,y 的二元一次方程,则2a b +的值为( )A .0B .-3C .3D .413.在一次投篮训练中,甲、乙、丙、丁四人各进行10次投篮,每人投篮成绩的平均数都是8,方差分别为S 甲2=0.24,S 乙2=0.42,S 丙2=0.56,S 丁2=0.75,成绩最稳定的是() A .甲.B .乙C .丙D .丁14.如图,在ABC 中,1268AD BC C ⊥∠=∠∠=︒,,.则BAC ∠的度数为( )A .68°B .67°C .77°D .78°15.如图,AB CD ∥,EF BD ⊥于点E ,50ABM ∠=︒,则CFE ∠的度数为( )A .130︒B .140︒C .145︒D .150︒二、填空题16______,338的算术平方根是______.17.已知Rt△ABC 中,AB =8,BC =10,△BAC =90°,则图中阴影部分面积为 _____.18.已知()115P a -,和()221P b -,关于x 轴对称,则()2022a b +的值为______.19.若点()()1232A y B y -,,,都在一次函数1yx =-+的图象上,则1y ______2y .(填“>”或“<”)20.一个三位数,十位数字比个位数字大1,百位数字是个位数字的2倍,把百位数字与个位数字对调,得到的三位数比原来的三位数小297,则原三位数为______.三、解答题21.用适当的方法解下列方程组:(1)524x yx y+=⎧⎨-=⎩;(2)12343314312 x yx y++⎧=⎪⎪⎨--⎪-=⎪⎩22.学校运动会开设了“抢收抢种”项目,八(5)班甲、乙两个小组都想代表班级参赛,为了选择一个比较好的队伍,八(5)班的班委组织了一次选拔赛,甲、乙两组各10人的比赛成绩如下表:(1)甲组的平均成绩是____分;(2)计算乙组的平均成绩和方差;(3)已知甲组成绩的方差是1.4,如果你是老师,你将选择哪组代表八(5)班参加学校比赛?说说你的理由.23.如图,在四边形ABCD中,20AB=,15AD=,7CD=,24BC=,90A∠=︒,求证:△C=90°.24.某移动公司设了两类通讯业务,A类收费标准为不管通话时间多长使用者都应缴50元月租费,然后每通话1分钟,付0.4元,B类收费标准为用户不缴月租费,每通话1分钟,付话费0.6元,若一个月通讯x分钟,两种方式费用分别是A y,B y元.(1)分别写出A y ,B y 与x 之间的函数关系式.(2)某人估计一个月通话时间为300分钟,应选哪种通讯方式合算些,请书写计算过程. (3)小明用的A 卡,他计算了一下,若是B 卡,他本月话费将会比现在多100元,请你算一下小明实际话费是多少元?25.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:|P|表示点P 到x 、y 轴的距离中的最大值,|Q|表示点Q 到x 、y 轴的距离中的最大值,若P Q =,则称P ,Q 两点为“等距点”.例如:如图中的P (3,3),Q (﹣3,﹣2)两点,有|P|=|Q|=3,所以P 、Q 两点为“等距点”.(1)已知点A 的坐标为(﹣3,1),△则点A 到x 、y 轴的距离中的最大值|A|= ;△在点E (0,3),F (3,﹣3),G (2,﹣5)中,为点A 的“等距点”的是 ; △若点B 的坐标为B (m ,m+6),且A ,B 两点为“等距点”,则点B 的坐标为 ;(2)若()113T k --,-,()2443T k -,且|4k ﹣3|≤4,两点为“等距点”,求k 的值.261==;==2==.请解决下列问题: (1)=______; (2)=______;(3)....27.如图,已知12AB CD ∠=∠∥,.(1)求证:EF NP ∥;(2)若FH 平分EFG ∠,交CD 于点H ,交NP 于点O ,且14010FHG ∠=︒∠=︒,,求FGD ∠的度数.参考答案1.A【分析】根据题意,可得c 为斜边,,a b 为直角边,根据勾股定理即可求解. 【详解】解:△在ABC 中,90C A B C ∠=︒∠∠∠,,,的对应边分别是a b c ,,, △c 为斜边,,a b 为直角边, △222+=a b c ,故选:A .【点睛】本题考查了勾股定理,掌握勾股定理是解题的关键. 2.A【分析】先由勾股定理求出AB 的长,再运用等面积法求得CD 的长即可. 【详解】解:△在Rt ABC △中,90ACB ∠=︒,3AC =,4BC =,△AB 5==,CD AB ⊥△1122AB CD AC BC ⋅=⋅,即342.45AC BC CD AB ⋅⨯===. 故选A .【点睛】本题主要考查了勾股定理、等面积法等知识点,掌握运用等面积法求三角形的高是解题的关键. 3.B3 【详解】解:△161725<<,△45<,△738<+,△37和8之间, 故选:B .【点睛】此题考查了无理数的估算,正确掌握各平方数及无理数估算的方法是解题的关键. 4.B【分析】将各项先化为最简二次根式,再根据同类二次根式的定义逐项判断即可.【详解】A. ,不是同类二次根式,故该选项不符合题意;B. =C. =D.=故选:B .【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式,掌握同类二次根式的定义是解题的关键. 5.C【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,求得,m n 的值,即可求解.【详解】解:△点()P m m n -,与点()21Q ,关于原点对称, △2,1m m n =--=-,△()2,1M --在第三象限, 故选:C .【点睛】本题考查了关于原点对称的两个点,横坐标、纵坐标分别互为相反数,判断点所在的象限,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键. 6.B【分析】根据平行于y 轴的直线上的点的横坐标相等求出点B 的纵坐标,再分点B 在点A 的上面与下面两种情况求出点B 的纵坐标,即可得解.【详解】解:△AB y ∥轴,点A 的坐标为()23,, △点B 的横坐标为2, △5AB =,△点B 在点A 的下面时,纵坐标为352-=-, 点B 在点A 的上面时,纵坐标为358+=,△点B 的坐标为()28,或()22-,. 故选:B .【点睛】本题考查了平面直角坐标系中点的坐标特点,利用了平行于y 轴的直线是上的点的横坐标相等的性质,难点在于要分情况讨论. 7.C【分析】根据一次函数和正比例函数的性质逐一判断即可得答案. 【详解】A.△一次函数经过一、二、三象限, △a >0,b >0, △-b <0,△正比例函数应经过二、四象限,故本选项不符合题意, B.△一次函数经过一、三、四象限, △a >0,b <0, △-b >0,△正比例函数应经过一、三象限,故本选项不符合题意, C.△一次函数经过二、三、四象限, △a <0,b <0,△正比例函数应经过一、三象限,故本选项符合题意, D.△一次函数经过二、三、四象限, △a <0,b <0, △-b >0,△正比例函数经过一、三象限,故本选项不符合题意, 故选:C .【点睛】本题考查一次函数和正比例函数的性质,对于一次函数y=kx+b ,当k >0时,图象经过一、三象限,当k <0时,图象经过二、四象限;当b >0时,图象与y 轴交于正半轴;当b <0时,图象与y 轴交于负半轴;熟练掌握相关性质是解题关键. 8.D【分析】根据题意,待定系数法求得解析式,分别令50x =,求得S 是的值,进而即可求解. 【详解】解:设A 类收费的解析式为AS ax b =+,代入()0,20 ,()100,30,得2010030b a b =⎧⎨+=⎩, 解得11020a b ⎧=⎪⎨⎪=⎩, △12010A S x =+, B 类收费的解析式为BS kx =,代入()100,30,得30100k =, 解得310k =, △310B S x =, △当50x =时,150202510A S =⨯+=,3501510B S =⨯=, △251510-=(元), 故选:D .【点睛】本题考查了一次函数的应用,待定系数法求解析式,求得解析式是解题的关键.9.B【分析】根据菜园的三边的和为12m ,即可得出一个x 与y 的关系式. 【详解】解:根据题意得,菜园三边长度的和为12m ,212y x ∴+=,162y x ∴=-+,0y >,x y >,∴1602162x x x ⎧-+>⎪⎪⎨⎪>-+⎪⎩,解得412x <<,16(412)2y x x ∴=-+<<,故选:B .【点睛】本题考查一次函数的应用,理解题目中的数量关系,即菜园三边的长度和为12m ,列出关于x ,y 的方程是解决问题的关键. 10.D【分析】二元一次方程组是指含有两个未知数,且未知数的次数都是1的一次整式方程组成的方程组,据此求解即可.【详解】解:A 、23124x y x y ⎧+=⎨-=⎩未知数的最高次不是1,不是二元一次方程组,不符合题意;B 、225xy x y =⎧⎨+=⎩xy 的次数不是1,不是二元一次方程组,不符合题意; C 、63a b b c -=⎧⎨+=⎩含有3个未知数,不是二元一次方程组,不符合题意;D 、310521m n m n +=⎧⎨-=⎩是二元一次方程组,符合题意;故选D .【点睛】本题主要考查了二元一次方程组的定义,熟知二元一次方程组的定义是解题的关键. 11.C【分析】设木条长x 尺,绳子长y 尺,根据用一根绳子去量一根木条,绳子剩余5.4尺;将绳子对折再量木条,木条剩余1尺,列出二元一次方程组,即可求解.【详解】设木条长x 尺,绳子长y 尺,可列方程组为5.412y x y x -=⎧⎪⎨-=⎪⎩, 故选:C .【点睛】本题考查了列二元一次方程组,根据题意列出方程组是解题的关键.12.D【分析】根据二元一次方程的定义,得出1a b +=,3241a b +-=,解出a b 、的值,然后把a b 、的值代入2a b +,计算即可得出结果.【详解】解:△324432a b a b x y ++--=是关于x ,y 的二元一次方程,△可得:13241a b a b +=⎧⎨+-=⎩, 解得:32a b =⎧⎨=-⎩, 把32a b =⎧⎨=-⎩代入2a b +, 可得:22324a b +=⨯-=.故选:D【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.13.A【分析】根据方差的意义,即可求解.【详解】解:△S 甲2=0.24,S 乙2=0.42,S 丙2=0.56,S 丁2=0.75△2222甲乙丁丙<<<S S S S△成绩最稳定的是甲故选A【点睛】此题考查了方差的意义,方差反应一组数据的波动情况,方差越小数据越稳定,理解方差的意义是解题的关键.14.B【分析】根据垂直的定义,直角三角形的两个锐角互余,可得145,22DAC ∠=︒∠=︒,即可求解.【详解】解:△1268AD BC C ⊥∠=∠∠=︒,,,△90ADB ADC ∠=∠=︒,△1245∠=∠=°,90906822DAC C ∠=︒-∠=︒-︒=︒,△1452267BAC DAC ∠=∠+∠=︒+︒=︒,故选:B .【点睛】本题考查了直角三角形的两个锐角互余,求得145,22DAC ∠=︒∠=︒是解题的关键.15.B【分析】根据题意和平行线的性质得=50D ABM ∠∠=︒,根据垂直得=90DEF ∠︒,运用三角形内角和定理求出=40EFD ∠︒,即可得.【详解】解:△AB CD ∥,50ABM ∠=︒,△=50D ABM ∠∠=︒,△EF BD ⊥,△=90DEF ∠︒,△=180=1805090=40EFD D DEF ∠︒∠∠︒︒︒︒----,△180=18040=140CFE EFD ∠=︒-∠︒-︒︒,故选:B .【点睛】本题考查了平行线的性质,三角形内角和定理,解题的关键是掌握这些知识点.16. 2± 【分析】根据平方根和算术平方根的定义求解即可.【详解】4,△4的平方根是2±,,即338故答案为:2± 【点睛】本题考查的是平方根、算术平方根的计算,如果一个数的平方等于a ,这个数就叫a 的平方根,如果一个正数的平方等于a ,这个数就叫a 的算术平方根,0的算术平方根是0.掌握定义是解题的关键.17.24【分析】根据阴影部分面积等于以,AB AC 为直径的半圆的面积与ABC 的面积的和减去以BC 为直径的半圆面积即可求解.【详解】解:Rt△ABC 中,AB =8,BC =10,△BAC =90°,6AC ∴==,222111111=+222222ABC S AB AC BC S πππ⎛⎫⎛⎫⎛⎫∴+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭△阴影部分 ABC S =△1862=⨯⨯ =24.故答案为:24.【点睛】本题考查了勾股定理,掌握勾股定理是解题的关键.18.1【分析】根据关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数,求得,a b 的值,进而代入代数式即可求解.【详解】解:△()115P a -,和()221P b -,关于x 轴对称, △12,510a b -=+-=,解得3,4a b ==-,△()2022a b +()2022341=-=,故答案为:1.【点睛】本题考查了关于x 轴对称的两个点的坐标特征,掌握关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.19.>【分析】根据解析式中10k =-<,可得y 随x 的增大而减小,即可求解.【详解】解:△在1y x =-+中,10k =-<,△y 随x 的增大而减小,△32-<,点()()1232A y B y -,,,都在一次函数1yx =-+的图象上, △12y y >,故答案为:>.【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小.20.643【分析】设原三位数的个位数字为x ,十位数字为y ,则百位数字为2x ,由题意:十位数字比个位数字大1,把百位数字与个位数字对调,得到的三位数比原来的三位数小297,列出二元一次方程组,解方程组即可.【详解】解:设原三位数的个位数字为x ,十位数字为y ,则百位数字为2x ,由题意得:1100210(100102)297y x x y x x y x =+⎧⎨⨯++-++=⎩, 解得:34x y =⎧⎨=⎩, △26x =,即原三位数为643,故答案为:643.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.(1)32x y =⎧⎨=⎩(2)22x y =⎧⎨=⎩【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】(1)解:524x y x y +=⎧⎨-=⎩①②△+△得: 3x=9,解得: x=3,把x=3代入△得:3+y=5得 y=2,则方程组的解为32x y =⎧⎨=⎩ ; (2)12343314312x y x y ++⎧=⎪⎪⎨--⎪-=⎪⎩ 方程组整理得:432342x y x y -=⎧⎨-=-⎩①② 由△×4-△×3得: 7x=14,解得: x=2,把x=2代入△得:4×2-3y=2得 y=2,则方程组的解为22x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(1)9(2)乙组的平均成绩为9,方差为1(3)选择乙组,理由见解析【分析】(1)根据平均数的计算公式求得平均数即可求解;(2)一组数据:123n x x x x ⋯,,,,,则它们的平均数1232n x x x x x ++++=,方差是()()()()2222212312n s x x x x x x x x ⎡⎤=-+-+-+++-⎣⎦; (3)根据一组数据的方差越大,则数据的波动就越大,进行判断即可.【详解】(1)甲组的平均成绩是:()1789710109101010910+++++++++=, (2)乙组的平均成绩是:()110879810109109910+++++++++=, 方差是:()()()()22221109897999110⎡⎤-+-+-++-=⎣⎦; (3)选择乙组,理由如下,△1.41>,且平均成绩都为9,△乙组的方差较小,应该选择乙组.【点睛】本题考查了求平均数,求方程,以及根据方差做决策,掌握平均数,方差是解题的关键.23.见解析【分析】连接BD ,勾股定理求得BD 的值,进而根据222CD BC BD +=,即可得证.【详解】解:如图,连接BD ,△20AB =,15AD =,90A ∠=︒,△25BD =,△7CD =,24BC =,△22224957662525CD BC BD +=+===,△CDB △是直角三角形,且90C ∠=︒.【点睛】本题考查了勾股定理及其逆定理,掌握勾股定理及其逆定理是解题的关键. 24.(1)500.4A y x =+,0.6B y x =(2)选择A 类(3)350元【分析】(1)A 类应缴50元月租费,每通话1分钟,付0.4元,则费用是月租费加上通话费;B 类不缴月租费,每通话1分钟,付话费0.6元,则费用是通话费与时间的乘积,通讯x 分钟,由此即可求解;(2)由(1)的结论可知,当300x =时,170A y =元,180B y =元,由此即可求解; (3)由题意可知选择A 卡的费用比选择B 卡的费用少100元,由此可列出等量关系100A B y y +=,由此即可求解.【详解】(1)解:根据题意得,A 类的费用是月租费加上通话费,即500.4Ay x =+; B 类的费用是通话费与时间的乘积,即0.6B y x =,△500.4A y x =+,0.6B y x =.(2)解:通话时间为300分钟,根据(1)中的结论得,500.4500.4300170A y x =+=+⨯=(元),0.60.6300180B y x ==⨯=(元) △A B y y <,△选择A 类.(3)解:根据题意得,100A B y y +=,△500.41000.6x x ++=,解方程得,750x =,即小明打电话的时间为750分钟, △500.4500.4750350A y x =+=+⨯=(元),△小明实际话费是350元.【点睛】本题主要考查一次函数在实际中的运用,解题的关键是理解两类缴费的方式,A 类的费用是月租费加上通话费,B 类的费用是通话费与时间的乘积.25.(1)△3;△E ;F ;△(−3,3)(2)k 的值是1【分析】(1)△找到x 、y 轴距离最大为3的点即可;△先分析出直线上的点到x 、y 轴距离中有3的点,再根据“等距点”概念进行解答即可; △根据A ,B 两点为“等距点”得出点B 的坐标即可;(2)根据“等距点”概念对4k−3分类讨论,进行解答即可.【详解】(1)解:△点A (−3,1)到x 、y 轴的距离中最大值为|A|=3,故答案为:3.△△点A (−3,1)到x 、y 轴的距离中最大值为3,△与点A 的“等距点”的是E ,F ,故答案为:E ;F .△当点B 坐标中到x 、y 轴距离其中至少有一个为3的点有(3,9)、(−3,3)、(−9,−3),这些点中与A 符合“等距点”的是(−3,3).故答案为:(−3,3).(2)解:()113T k --,-,()2443T k -,两点为“等距点”, △4=−k−3或−4=−k−3,解得:k =−7或k =1,△当k =−7时,43314k -=>,△k =−7不符合题意舍去,根据“等距点”的定义知,k =1符合题意,△k 的值是1.【点睛】:本题主要考查了平面直角坐标系的知识,此题属于阅读理解类型题目,解题的关键是读懂“等距点”的定义,而后根据概念解决问题.26.(1)21【分析】(1)先找出有理化因式2,根据平方差公式求出即可;(2(3)先分母有理化,再合并即可.【详解】(1-故答案为:2;(2(3...+⋅⋅⋅1.【点睛】本题考查了分母有理化,能正确分母有理化是解此题的关键.27.(1)见解析(2)60︒【分析】(1)根据平行线的性质及等量代换得出1BNP ∠=∠,即可判定EF NP ∥; (2)过点F 作FM AB ∥,根据平行公理得出AB FM CD ∥∥,根据平行线的性质及角平分线定义得到50GFH EFH ∠=∠=︒,根据三角形外角性质求解即可.【详解】(1)证明:△AB CD ∥,50GFH EFH ∠=∠=︒△2BNP ∠=∠,△12∠=∠,△1BNP ∠=∠,△EF NP ∥;(2)解:如图,过点F 作FM AB ∥,△AB CD ∥,△AB FM CD ∥∥,△14010EFM HFM FHG ∠=∠=︒∠=∠=︒,,△50EFH EFM HFM ∠=∠+∠=︒,△FH 平分EFG ∠,△50GFH EFH ∠=∠=︒,△60FGD GHF HFG ∠=∠+∠=︒.。
北师大版八年级上册数学期末考试题及答案【完整版】

北师大版八年级上册数学期末考试题及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()A.38°B.39°C.42°D.48°二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+2()a b+的结果是________.2.已知34(1)(2)xx x---=1Ax-+2Bx-,则实数A=__________.3.如果实数a,b满足a+b=6,ab=8,那么a2+b2=________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.4.如图,在平面直角坐标系中,一次函数y=kx+b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y=3x 的图象相交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.5.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 4a -+|b ﹣6|=0,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣C ﹣B ﹣A ﹣O 的线路移动.(1)a= ,b= ,点B 的坐标为 ;(2)当点P 移动4秒时,请指出点P 的位置,并求出点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.6.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、C6、B7、C8、C9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、13、204、﹣2<x <25、49136、8三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、3.3、(1)见解析;(2)经过,理由见解析4、(1)k=-1,b=4;(2)点D 的坐标为(0,-4).5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。
北师大版数学八年级上册全册复习

例4 李老师让同学们讨论这样一个问题,如图1-3所示,有 一个长方体盒子,底面正方形的边长为2 cm,高为3 cm,在长
方体盒子下底面的A点处有一只蚂蚁,它想吃到上底面的F点处
的食物,则怎样爬行路程最短?最短路程是多少?
过了一会,李老师问同学们答案,甲生说:先由A点到B点, 再走对角线BF;乙生说:我认为应由A先走对角线AC,再走C到F 点;丙生说:将长方形ABCD与长方形BEFC展开成长方形AEFD, 利用勾股定理求AF的长;丁生说:将长方形ABCD与正方形CFGD 展开成长方形ABFG,利用勾股定理求AF的长.你认为哪位同学
则BF=BC+CF=3+2=5(cm),AB=2 cm,连接AF,在 Rt△ABF中,AF2=BF2+AB2=52+22=29≈5.392,
∴AF=5.39 cm.连接AC, ∵AF<AC+CF,
∴丁的方法比乙的好. 比较丙生与丁生的计算结果,知丙生的说法正确.
图1-4
图1-5
方法技巧
最短路径问题是勾股定理在立体几何中的应用,一般做法 是把长方体(或其他几何体)侧面展开,将立体图形问题转化为 平面图形问题,再根据两点之间线段最短,用勾股定理求解.
图1-19
15.一个棱长为6的木箱(如图1-20),一只苍蝇位于左面的壁 上,且到该面上两侧棱距离相等的A处.一只蜘蛛位于右面壁上 ,且到该面与上、下底面两交线的距离相等的B处.已知A到下 底面的距离AA′=4,B到一个侧面的距离BB′=4,则蜘蛛沿这 个立方体木箱的内壁爬向苍蝇的最短路程为多少?
在 Rt△ECF 中,有 EF2=a22+a42=156a2. 在 Rt△FDA 中,有 AF2=a22+a2=54a2.
在 Rt△ABE 中,有 BE=a-14a=34a,
2024年北师大版八年级上册数学期末复习专题二 利用勾股定理解决最短路径问题

专题
【解】过点 A 作 BD 的垂线,垂足为 C ,则 AC 的长是攀 梯 A 到泳道 l 的最近距离.设 BC = x 米,则 CD =(14- x ) 米,根据题意,可得 AB2- BC2= AD2- CD2, 所以152- x2=132-(14- x )2,解得 x =9. 所以 AC2= AB2- BC2=152-92=144.所以 AC =12米. 答:攀梯 A 到泳道 l 的最近距离为12米.
12345678
专题
【解】如图,作点 A 关于直线 l 的对称点 E ,连接 BE , 交 l 于点 M ,连接 AM , MA + MB 的值即为所求最短管 道长.
12345678
专题
因为 MA = ME ,所以 MA + MB = ME + MB = BE ,则 线段 BE 的长度即为所求,过 E 作 EF ∥ CD ,交 BD 的延 长线于 F ,由题易知, EF = CD =5 km, BF = BD + DF = BD + AC =7+5=12(km),所以 BE2= EF2+ BF2 =52+122=169,所以 BE =13 km.故铺设最短的管道长 是13 km.
专题
三、将立体图形转化为平面图形求最短距离 【高分秘籍】在立体图形上找最短距离,通常要把立体图形 转化为平面图形,在平面图形中构建直角三角形,运用勾股 定理来解答.
12345678
专题
5. [2024龙岩月考]如图,有一圆柱形油罐,要从 A 点环绕油 罐侧面搭梯子,正好到 A 点正上方的 B 点.梯子最短需要 多少米?(已知油罐底面的周长是12 m,高 AB 是5 m)
12345678
专题
【解】在Rt△ MNB 中, BN2= BM2- MN2=752-602= 2 025,所以 BN =45 m.所以 AN = AB - BN =125- 45=80(m).在Rt△ AMN 中, AM2= AN2+ MN2=802+ 602=10 000,所以 AM =100 m.所以供水点 M 到喷 泉 A , B 需要铺设的管道总长为100+75=175(m).
北师大版八年级上册数学《期末》考试(必考题)

北师大版八年级上册数学《期末》考试(必考题) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或73.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x<5,化简2(1)x-+|x-5|=________.2.若式子x1x+有意义,则x的取值范围是__________.3.分解因式:3x-x=__________.4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x y x y -=⎧⎨-=⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、B4、D5、B6、C7、C8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、42、x 1≥-且x 0≠3、x (x+1)(x -1)4、20°.5、36、6三、解答题(本大题共6小题,共72分)1、(1)55x y =⎧⎨=⎩;(2)64x y =⎧⎨=⎩.2、3x3、(1)略(2)1或24、(1) 65°;(2) 25°.5、(1)略;(2)四边形EFGH 是菱形,略;(3)四边形EFGH 是正方形.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
北师大版八年级数学上册期末测试题(附参考答案)

北师大版八年级数学上册期末测试题(附参考答案)一、选择题:本题共12个小题,每小题3分,共36分。
每小题只有一个选项符合题目要求。
1.下列各数中为无理数的是( )A.√2B.1.5C.0 D.-12.△ABC的三边长a,b,c满足(a-b)2+√2a−b−3+|c-3√2|=0,则△ABC 是( )A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形3.如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为点D,E是边BC上的中点,AD=ED=3,则BC的长为( )A.3√2B.3√3C.6 D.6√24.下列说法错误的是( )A.1的平方根是1B.4的算术平方根是2C.√2是2的平方根D.-√3是√(−3)2的平方根−√45,则实数m所在的范围是( )5.若实数m=5√15A.m<-5 B.-5<m<-4C.-4<m<-3 D.m>-36.甲、乙两位同学放学后走路回家,他们走过的路程s(km)与所用的时间t(min)之间的函数关系如图所示.根据图中信息,下列说法错误的是( )A.前10 min,甲比乙的速度慢B.经过20 min,甲、乙都走了1.6 kmC.甲的平均速度为0.08 km/minD.经过30 min,甲比乙走过的路程少7.某油箱容量为60升的汽车,加满汽油后行驶了100千米时,油箱中的汽油大约消耗了15.若加满汽油后汽车行驶的路程为x千米,油箱中剩余油量为y升,则y与x之间的函数表达式是( )A.y=0.12xB.y=60+0.12xC.y=-60+0.12xD.y=60-0.12x8.在同一平面直角坐标系中,一次函数y1=ax+b(a≠0)与y2=mx+n(m≠0)的图象如图所示,则下列结论错误的是( )A.y1随x的增大而增大B.b<nC.当x<2时,y1>y2D.关于x,y的方程组{ax−y=−b,mx−y=−n的解为{x=2,y=39.已知方程组{2x+y=1,kx+(k−1)y=19的解满足x+y=3,则( )A.k=-8 B.k=2C.k=8D.k=-210.甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及其方差如表:A.甲B.乙C.丙D.丁11.如图,直线AB∥CD,GE⊥EF于点E.若∠BGE=60°,则∠EFD的度数是( )A.60°B.30°C.40°D.70°12.如图,在平面直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P为位似中心作正方形P A1A2A3,正方形P A4A5A6,…,按此规律作下去,所作正方形的顶点均在格点上,其中正方形P A1A2A3的顶点坐标分别为P(-3,0),A1(-2,1),A2(-1,0),A3(-2,-1),则顶点A100的坐标为( )A.(31,34) B.(31,-34)C.(32,35) D.(32,0)二、填空题:本题共6个小题,每小题3分,共18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年级数学上册期末总复习题
LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】
第一学期数学期末总复习
学号________ 班级________ 姓名_______ 成绩________
一、选择题:(每题3分,共30分)
1. 下列各组数中不能作为直角三角形的三边长的是 ( )
,24,25 ,8,10 ,12,15
2.如图,一圆柱高cm 8,底面半径cm 2,一只蚂蚁从点A 爬到点B 处
吃食,要爬行的最短路程(π取3)是( )
A.cm 20
B.cm 10
C.cm 14
D.无法确定.
3.已知一直角三角形的木版,三边的平方和为1800cm 2,则斜边长为( ).
.
4.下列各题估算正确..
的是( ) A.059.035.0≈ B.6.2103≈ C.1.351234≈ D.6.299269003≈
5.下列命题中的真命题是( )
A 关于中心对称的两个图形全等
B 全等的两个图形是中心对称图形
C 中心对称图形都是轴对称图形
D 轴对称图形都是中心对称图形
6.在△MBN 中,BM =6,点A ,C ,D 分别在MB ,NB ,MN 上,四边形ABCD 为平行四边形,
∠NDC =∠M DA ,□ABCD 的周长是( )
7.如图是一个旋转对称图形,要使它旋转后与自身重合,至少应将它绕中心逆时针方向旋转的度数是( )
° B. 60° ° °
B
8.已知在正方形网格中,每个小方格都是边长为1的正方形,A 、B 两点在小方格的顶点上,位置如图所示,点C 也在小方格的顶点上,且以A 、B 、C 为顶点的三角形面积为1,则点C 的个数为( )
个 个 个 个
(第6题) (第7题) (第8题) 9.菱形具有而平行四边形不具有的性质是( ) A.对角线互相垂直 B.内角和为360° C.对角相等 D.对角线互相 10.二元一次方程组⎩
⎨⎧==+x y y x 2102的解是( ). A.⎩⎨⎧==;3,4y x B.⎩⎨⎧==;6,3y x C.⎩⎨⎧==;4,2y x D.⎩⎨⎧==.
2,4y x
二、填空题:(每题3分,共15分)
11、25平方根是 125
27-
的立方根是 比较大小215- 21。
12.点A (-3,4)关于原点对称的点的坐标为 ;对于函数24
3+-=x y ,y 的值随x 值的增大而 。
13.右图是小刚画的一张脸,他对妹妹说:“如果我用(1,3)•表示
这张脸上的左眼,用(3,3)表示右眼,那么这张脸的嘴的位置用
_______表示.”
14.在平行四边形,矩形,菱形,正方形,正五边形,正六边形,等腰梯形中,是轴对称图形的有 中心对称图形的有 。
15.数据1,4,3,4,3,2,5,5,2,5的平均数为 ,众数为 ,中位数为 。
A B
C D N
M A
B
三、解答题:(本题共55分) 16.计算(每题3分,共12分)
.① 255
20-+ ②()()
2551-+ ③⎩⎨⎧=-+=-+0519203637y x y x ④⎪⎩⎪⎨⎧=-+=+0
18343121y x y x (用代入法) 17. 作图题:(6分)
⑴.在下面的箭头上画出数轴,并作出表示5-的点A .
⑵.如图,△ABC 绕O 点旋转后,顶点A 的对应点为点D ,试确定顶点B 、C 对应点的位置,以及旋转后的三角形.
、
18.(5分)如图,等腰梯形ABCD 中,AD ∥BC
,AD =5,AB =7,BC =12,求∠B 的度数.
第18题
19. (5分)某饮料厂生产一种饮料,经测算,用一吨水生产的饮料利润y (元)是一吨水的价格x (元)的一次函数,根据下表提供的数据,求y 与x 的函数关系式;当水价为每吨10元时,一吨水生产出的饮料的利润是多少
一吨水的价格x (元)
4 6 用一吨水生产的饮料所获利润y
(元) 200 198
20.(6分)已知两直线21l l ,的位置关系如图所示,请求出以点A 的坐标为解的二元一次方程组。
21. (6分)已知:如图,菱形ABCD 中
(1)求证:AE=AF.
(2)若∠B=60°,点E,F分别为BC和CD的中点,求证:△AEF为等边三角形.
22.(9分)如图(1),正方形ABCD和正方形CEFG有一公共顶点C,且B、C、E在一直线上,连接BG、DE.
(1)请你猜测BG、DE的位置关系和数量关系?并说明理由.
(2)若正方形CEFG绕C点向顺时针方向旋转一个角度后,如图(2),BG和DE是否还存在上述关系?若存在,试说明理由;若不存在,也请你给出理由.
23.(6分)用三种不同的方法把平行四边形面积四等分。
(在所给出的图形中画出你的设计方案,画图工具不限)。