动量守恒定律

合集下载

动量和动量守恒定律

动量和动量守恒定律

动量和动量守恒定律动量是物体运动的重要物理量,它描述了物体在运动中的惯性和力的效果。

动量守恒定律是描述一个孤立系统中动量守恒的原理。

本文将详细介绍动量和动量守恒定律的概念、公式以及实际应用。

一、动量的概念和公式动量是一个矢量量,它的大小等于物体的质量乘以其速度。

动量的公式可以表示为:p = m * v其中,p代表动量,m代表物体的质量,v代表物体的速度。

根据动量的定义和公式,我们可以得出以下结论:1. 动量与物体的质量成正比,即物体的质量越大,其动量也越大。

2. 动量与物体的速度成正比,即物体的速度越大,其动量也越大。

3. 动量是矢量量,具有方向性。

方向与速度的方向一致。

二、动量守恒定律的原理动量守恒定律是描述一个孤立系统中动量守恒的基本原理。

在一个孤立系统中,如果没有外力作用,系统内物体的动量总和保持不变。

具体而言,如果一个物体在没有外力作用下,其动量守恒定律可以表示为:m1 * v1 + m2 * v2 = m1 * v'1 + m2 * v'2其中,m1和m2分别代表参与碰撞的两个物体的质量,v1和v2分别代表碰撞前两个物体的速度,而v'1和v'2则代表碰撞后两个物体的速度。

三、动量守恒定律的应用动量守恒定律是物理学中的重要定律,广泛应用于各个领域。

以下是一些常见的应用:1. 碰撞问题:动量守恒定律可用于解析碰撞问题。

在碰撞中,通过应用动量守恒定律,可以计算出物体碰撞前后的速度。

2. 火箭推进原理:根据动量守恒定律,当火箭喷射出高速废气时,枪炮发射子弹时,火箭或子弹的向后喷射废气或火药的速度减小,而火箭或子弹的速度相应增加。

3. 交通安全:根据动量守恒定律,人行道上的行人在与汽车碰撞时,如果行人速度较快,可能会对汽车产生较大的碰撞力,导致严重伤害。

因此,交通中的速度限制和行人过街设施的设置都是基于动量守恒定律的。

4. 运动员技巧:运动员在一些体育项目中,通过善用动量守恒定律来改变自身的状态。

物理学中的动量守恒定律

物理学中的动量守恒定律

物理学中的动量守恒定律1. 引言动量守恒定律是物理学中非常重要的基本原理之一,它描述了在没有外力作用的情况下,系统的总动量将保持不变。

这一原理在理论物理学和工程学等领域具有广泛的应用,对于深入理解自然界中的许多现象具有重要意义。

2. 动量守恒定律的定义与表述2.1 定义动量守恒定律指的是,在一个孤立系统中,如果没有外力作用,那么系统的总动量将保持不变。

动量是物体的质量与速度的乘积,是一个矢量量,有大小和方向。

2.2 表述动量守恒定律可以用数学公式来表述:[ = _{i=1}^{n} m_i v_i = ]其中,( m_i ) 表示系统中第 ( i ) 个物体的质量,( v_i ) 表示第 ( i ) 个物体的速度,( n ) 表示系统中的物体总数。

3. 动量守恒定律的适用条件动量守恒定律在实际应用中有一定的局限性,需要满足以下条件:3.1 孤立系统动量守恒定律适用于孤立系统,即在系统中没有物质和能量的交换。

孤立系统可以是一个封闭的容器,也可以是真空中的自由空间。

3.2 没有外力作用在动量守恒定律的适用范围内,系统内部的所有作用力相互抵消,没有外力作用于系统。

外力可以是其他物体的撞击、摩擦力等。

3.3 物体间的相互作用力在动量守恒定律的适用范围内,系统内部物体之间的相互作用力在作用时间内具有相同的作用时间和大小。

这意味着在碰撞过程中,物体之间的相互作用力是恒定的。

4. 动量守恒定律的应用动量守恒定律在物理学和工程学中有广泛的应用,下面列举几个典型的应用场景:4.1 碰撞问题在碰撞问题中,动量守恒定律可以用来计算碰撞前后系统的总动量。

通过分析碰撞前后的动量变化,可以了解碰撞过程中物体速度、方向和能量的转化。

4.2 爆炸问题在爆炸问题中,动量守恒定律可以用来分析爆炸产生的冲击波和碎片运动。

通过计算爆炸前后系统的总动量,可以了解爆炸产生的能量和冲击波的传播速度。

4.3 宇宙物理学在宇宙物理学中,动量守恒定律可以用来研究星体碰撞、黑洞合并等极端现象。

动量守恒定律 (共19张PPT)

动量守恒定律 (共19张PPT)
B
A


F外 0
F x =0
F y =0
5、斜面B置于光滑水平面上,物体A沿 光滑斜面滑下,则AB组成的系统动量守 恒吗? 光滑
x
光滑
F外 0
F x =0
F y 0
空中爆炸
F外 0
但是F 内 ?
F x 0
F y 0
F

3. 成立条件
(1) 系统不受外力或所受外力的矢量和为零。
4、动量的变化P
1、表达式:
P2
P1
△P
P=P2-P1 =mv2-mv1=m(v2-v1)
2、运算:
(1)成θ角,平行四边形定则 (2)在一条直线上,确定正方向后,用正 负表示方向,就转化为代数运算
3、方向:与速度变化量的方向相同。
预 学
理解三个概念:
(请自主阅读教材P12)
1. 系统:相互作用的 两个或多个物体 组成的整体。系统可按 解决问题的需要灵活选取。
这个系统的总动量保持不变。
m11 m2 2 m11 m2 2
二、动量守恒定律成立的条件 1. 系统不受力,或者 F外合 = 0 2. F内 >> F外合
3. 若系统在某一方向上满足上述 1 或 2,则在该方向上系
统的总动量守恒。
三、应用动量守恒定律解决问题的基本步骤
定系统
判条件
2. 动量守恒定律是一个 独立的实验定律 ,它适用于目前为 止物理学研究的 一切 领域。
3. 与牛顿运动定律相比较,动量守恒定律解决问题优越性表 现在哪里? 动量守恒定律只涉及始末两个状态,与过程中力的 细节无关,往往能使问题大大简化。
课 堂 总 结

动量守恒定律

动量守恒定律

例 题 3.如图所示,在光滑的水平地面上有一辆 讲 平板车,车的两端分别站着人A和B,A的 解 质量为mA,B的质量为mB,mA>mB.最初 人和车都处于静止状态.现在,两人同时 由静止开始相向而行,A和B对地面的速度 大小相等,则车( ) A.静止不动 B.左右往返运动 C.向右运动 D.向左运动
(2)完全非弹性碰撞:设 m1 和 m2 碰后的共同速度为 v′. m1v1 动量关系:m1v1=(m1+m2)v′,即 v′= m1+m2
1 2 1 2 能量关系: m1v1= (m1+m2)v′ +ΔE,ΔE 为碰撞损失的动能. 2 2
例 【典例 2 】 质量为 M 的小物块 A 静止在离 题 讲 地面高 h 的水平桌面的边缘,质量为 m 的小物 解 块 B 沿桌面向 A 运动并以速度 v0 与之发生正碰
三、反冲、爆炸
2.爆炸问题
爆炸与碰撞类似,物体间的相互作用力很 大,且远大于系统所受的外力,所以系统 动量守恒,爆炸过程中位移很小,可忽略 不计,作用后从相互作用前的位置以新的 动量开始运动.
例 题 1.在下列几种现象中,所选系统动量守恒的 ) 讲 是( 解 A.原来静止在光滑水平面上的车,从水平方 向跳上一个人,人、车为一系统 B.运动员将铅球从肩窝开始加速推出,以运 动员和铅球为一系统 C.从高空自由下落的重物落在静止于地面上 的车厢中,以重物和车厢为一系统 D.光滑水平面上放一斜面,斜面也光滑,一 个物体沿斜面滑下,以重物和斜面为一系统
例 题 2 .如图所示,物体 A 静止在光滑的水平面上, 讲 A 的左边固定有轻质弹簧,与 A 质量相等的物 解 体 B以速度v向 A运动并与弹簧发生碰撞, A、 B始终沿同一直线运动,则A、B组成的系统动 能损失最大的时刻是( ) A.A开始运动时 B.A的速度等于v时 C.B的速度等于零时 D.A和B的速度相等时

动量守恒定律

动量守恒定律

动量守恒定律动量守恒定律是力学中的基本原理之一,它是描述物体运动的重要定律。

本文将从动量守恒定律的概念、推导以及应用方面进行详细论述。

动量是物体运动状态的描述性物理量,它与物体的质量和速度密切相关。

在力学中,动量被定义为物体质量乘以速度。

动量守恒定律表明在某个闭合系统内,当没有外力作用时,系统的总动量将保持不变。

换句话说,系统中各个物体的动量之和在时间变化过程中保持不变。

动量守恒定律可以通过以下方式进行推导:考虑一个封闭系统,系统中存在两个物体A和B,它们的质量分别为mA和mB,速度分别为vA和vB。

根据动量的定义,物体A和B的动量分别为pA=mAvA和pB=mBvB。

根据动量守恒定律,系统的总动量应该在时间变化过程中保持不变,即pA + pB = mAvA + mBvB = 常数。

这就是动量守恒定律的数学表达式。

动量守恒定律在实际生活和科学研究中有着广泛的应用。

首先,在碰撞过程中,动量守恒定律可以帮助我们分析和预测物体的运动状态。

当两个物体发生碰撞时,它们之间的相互作用力会改变它们的动量,但是根据动量守恒定律,整个系统的总动量始终保持不变。

这可以用来解释为什么有时候碰撞后的物体会改变速度和方向。

其次,在推进技术和航天科学中,动量守恒定律也起着重要的作用。

例如,火箭发射时会产生巨大的推力,这是通过排出高速喷气来实现的。

喷气的推力产生于燃烧过程中气体的重量和速度的改变,而根据动量守恒定律,整个系统的总动量保持不变。

因此,喷射出去的气体会以极高的速度向后排出,从而推动火箭向前飞行。

此外,在运动员比赛中也可以应用动量守恒定律。

例如,田径比赛中的标枪投掷项目中,运动员在投掷标枪时通过加大自身的动量来增加标枪的飞行距离。

同样,在击剑项目中,运动员通过调整自身的动量来控制刺击或防守的效果。

综上所述,动量守恒定律是力学领域中一个重要的定律,它在物体运动和相互作用等方面起着重要的作用。

通过研究动量守恒定律,我们可以更好地理解自然界中的各种运动现象,并应用于实际生活和科学研究中。

动量守恒定律

动量守恒定律

动量守恒定律动量守恒定律是物理学中的重要定律之一,它描述了一个封闭系统中,如果没有外力作用,系统的总动量将保持不变。

本文将详细介绍动量守恒定律的定义、原理、应用以及相关实验。

一、动量守恒定律的定义动量是物体运动的量度,它等于物体的质量与速度的乘积,即动量=质量×速度。

动量守恒定律的定义可以表述如下:在一个封闭系统中,如果没有外力作用,系统的总动量保持不变。

二、动量守恒定律的原理动量守恒定律的原理可以从牛顿第二定律推导而来。

根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比,即F=ma。

将牛顿第二定律改写为F=Δ(mv)/Δt,其中Δ(mv)表示物体动量的变化量,Δt表示时间变化量。

如果没有外力作用,即 F=0,则Δ(mv)=0,即总动量保持不变。

三、动量守恒定律的应用动量守恒定律在日常生活和科学研究中有着广泛的应用。

以下是一些常见的应用场景:1. 碰撞问题:当两个物体发生碰撞时,根据动量守恒定律可以推导出碰撞前后物体的速度变化。

例如,在车辆碰撞事故中,利用动量守恒定律可以确定碰撞前后车辆的速度,从而分析碰撞的严重程度。

2. 火箭推进原理:火箭推进原理依赖于动量守恒定律。

火箭喷出高速气体的同时,产生与气体喷出速度相反的动量,从而推动火箭向前运动。

3. 弹道学:弹道学研究物体在重力和空气阻力下的运动规律。

动量守恒定律是弹道学中的基本原理,通过分析物体在不同重力和阻力条件下的动量变化,可以预测物体的轨迹和射程。

四、相关实验为了验证动量守恒定律的有效性,科学家们进行了一系列实验。

以下是两个与动量守恒定律相关的实验。

1. 碰撞实验:在实验室中,可以通过设计不同碰撞装置,如弹性碰撞和非弹性碰撞,来观察和测量碰撞前后物体的质量和速度变化。

实验结果验证了动量守恒定律在碰撞问题中的适用性。

2. 火箭实验:利用模型火箭进行实验,测量火箭喷出气体的速度和质量,以及火箭前后的速度变化,验证了动量守恒定律在火箭推进中的应用。

高中物理动量守恒定律

高中物理动量守恒定律
第十六章动量守恒定律
一、概念复习
1、动量:p = mv
2、冲量:I=F·t
3、动量定理:即 p ′ — p=I
4、动量守恒定律 如果一个系统不受外力,或者所受外力之和为零 (两个物体)m1v1+m2v2=m1v/1+m2v/2
动量守恒定律成立的三个条件:
(1) 系统不受外力或者所受外力之和为零 (2) 若系统所受合外力不为零,但在内力远大于外
m2 m2
V0
m1
m2
V1ˊ
V2ˊ
V2
2m1 m1 m2
V0
m1
m2
碰撞问题的解应同时遵守三个原则:
(1)系统动量守恒的原则:P′=P (2)空间可行性原则
(63. )反不冲违运背动能:量一守个恒静的止原的则物体:在EK内′≤力E作K 用下分裂为两个部分,
一部分向某个方向运动,另一部分必然向相反的方向运动。这个
现象叫做反冲。
二、应用动量定理或动量守恒定律 解题的一般步骤
• 1.选取研究对象和系统,确定物理过程(是解 题关键所在),根据是否满足动量守恒的条件选 择用动量守恒定律还是动量定理; 2.选取正方向(或建立坐标系)和参考系(一 般以地面为参考系); 3.写出初末状态的动量(注意:一般以相对地面 速度),或应用动量定理时的冲量;
例7、带有1/4光滑圆弧轨道质量为M的滑车静止于光
滑水平面上,如图示,一质量为m的小球以速度v0水 平冲上滑车,当小球上行再返回并脱离滑车时,以下
说法正确的是: ( B C D )
A.小球一定水平向左作平抛运动
B.小球可能水平向左作平抛运动
v0
C.小球可能作自由落体运动
m
M
D.小球可能水平向右作平抛运动

动量守恒定律

动量守恒定律

Ek Ek 0 碰撞过程中有机械能损失
练习1、 质量相等A、B两球在光滑水平桌面上沿 同一直线,同一方向运动,A球的动量是7kg· m/s, B球的动量是5kg· m/s,当A球追上B球发生碰撞, 则碰撞后两球的动量可能值是( A ) A.pA'=6kg· m/s,pB'=6kg· m/s
律中的“总动量保持不变”指系统在整个过程中任意两个时 刻的总动量相等。
5.(动量守恒定律的简单应用)解放军鱼雷快艇在 南海海域附近执行任务,假设鱼雷快艇的总质量 为M,以速度v前进,现沿快艇前进方向发射一颗 质量为m的鱼雷后,快艇速度减为原来的3/5,不 计水的阻力,则鱼雷的发射速度为( A )
6.如图9所示,竖直平面内的四分之一圆弧轨道下 端与水平桌面相切,小滑块A和B分别静止在圆弧 轨道的最高点和最低点.现将A无初速度释放,A 与B碰撞后结合为一个整体,并沿桌面滑动.已知 圆弧轨道光滑,半径R=0.2 m,A和B的质量相等, A和B整体与桌面之间的动摩擦因数μ=0.2.取重力 加速度g=10 m/s2.求: (1)碰撞后瞬间A和B整体 的速率v′; (2)A和B整体在桌面上滑 动的距离L.
v1 v2
2v1 v2
0 v2
理论论证
m
v0
m
2m
v
v0 v 2
由动量守恒定律:mv0 0 2mv 碰撞前系统总动能: E k 0
1 2 mv 0 2
v0 2 1 1 1 2 2 E 2 m v 2 m ( ) m v 碰撞后系统总动能: k 2 0 2 2 4
v1 v1/ m2 m1 m2 v2/
m1
m2 v2 m1v1 m1v1
1 1 1 2 2 m2 v 2 2 m1v1 m1v1 2 2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量守恒定律一.动量和冲量1.动量:物体的质量和速度的乘积叫做动量:p =mv⑴动量是描述物体运动状态的一个状态量,它与时刻相对应。

⑵动量是矢量,它的方向和速度的方向相同。

2.冲量:力和力的作用时间的乘积叫做冲量:I =Ft⑴冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。

⑵冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。

如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。

⑶高中阶段只要求会用I=Ft 计算恒力的冲量。

对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。

⑷要注意的是:冲量和功不同。

恒力在一段时间内可能不作功,但一定有冲量。

例1. 质量为m 的小球由高为H 的光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大-解:力的作用时间都是gHg H t 2sin 1sin 22αα==,力的大小依次是mg 、 mg cos α和mg sin α,所以它们的冲量依次是:gH m I gHm I gH m I N G 2,tan 2,sin 2===合αα特别要注意,该过程中弹力虽然不做功,但对物体有冲量。

二、动量定理1.动量定理:物体所受合外力的冲量等于物体的动量变化。

既I =Δp⑴动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。

这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。

⑵动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。

⑶现代物理学把力定义为物体动量的变化率:tP F ∆∆=(牛顿第二定律的动量形式)。

⑷动量定理的表达式是矢量式。

在一维的情况下,各个矢量必须以同一个规定的方向为正。

^三.动量守恒定律1.动量守恒定律的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。

⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。

2.动量守恒定律的表达形式 (1) 即p1 p2=p1/ p2/,(2)Δp1 Δp2=0,Δp1= -Δp23.运用动量守恒定律的解题步骤1.明确研究对象,一般是两个或两个以上物体组成的系统; .2.分析系统相互作用时的受力情况,判定系统动量是否守恒; 3.选定正方向,确定相互作用前后两状态系统的动量; 4.在同一地面参考系中建立动量守恒方程,并求解.四、碰撞1.弹性碰撞特点:系统动量守恒,机械能守恒.设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则有动量守恒:221101v m v m v m +=碰撞前后动能不变:222212111210121v m v mv m += 所以012121v v m m m m +-= 022211v v m m m +=(注:在同一水平面上发生弹性正碰,机械能守恒即为动能守恒) [讨论]…①当m l =m 2时,v 1=0,v 2=v 0(速度互换)②当m l <<m 2时,v 1≈-v 0,v 2≈O (速度反向) ③当m l >m 2时,v 1>0,v 2>0(同向运动) ④当m l <m 2时,v 1<O ,v 2>0(反向运动)⑤当m l >>m 2时,v 1≈v,v 2≈2v 0 (同向运动)、 2.非弹性碰撞特点:部分机械能转化成物体的内能,系统损失了机械能两物体仍能分离.动量守恒 用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′机械能的损失:)()(22221211212222121121'+'-+=∆v m v m v m v m E3.完全非弹性碰撞特点:碰撞后两物体粘在一起运动,此时动能损失最大,而动量守恒. &用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v动能损失:。

【例题】甲、乙两球在光滑水平轨道上同向运动,已知它们的动量分别是p 甲=5 kg ·m/s,p 乙= 7 kg ·m/s ,甲追乙并发生碰撞,碰后乙球的动量变为p 乙′=10 kg ·m/s ,则两球质量m 甲与m 乙的关系可能是甲=m 乙 乙=2m 甲乙=4m 甲 乙=6m 甲五、平均动量守恒问题——人船模型:1.特点:初态时相互作用物体都处于静止状态,在物体发生相对运动的过程中,某一个方向的动量守恒(如水平方向动量守恒).对于这类问题,如果我们应用“人船模型”也会使问题迅速得到解决,现具体分析如下:【例1】静止在水面上的船长为L ,质量为M ,一个质量为m 的人站在船头,当此人由船头走到船尾时,船移动了多大距离'分析:将人和车作为系统,动量守恒,设车向右移动的距离为s 船=s ,则人向左移动的距离为s 人=L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m (L -s )=0,从而可解得s. 注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分。

lv 0 v SL mM ms +=∴说明:(1)此结论与人在船上行走的速度大小无关。

不论是匀速行走还是变速行走,甚至往返行走,只要人最终到达船的左端,那么结论都是相同的。

(2)做这类题目,首先要画好示意图,要特别注意两个物体相对于地面的移动方向和两个物体位移大小之间的关系。

(3)以上所列举的人、船模型的前提是系统初动量为零。

如果发生相互作用前系统就具有一定的动量,那就不能再用m 1v 1=m 2v 2这种形式列方程,而要利用(m 1+m 2)v 0= m 1v 1+ m 2v 2列式。

六、“子弹打木块”模型此模型包括:“子弹打击木块未击穿”和“子弹打击木块击穿”两种情况,它们有一个共同的特点是:初态时相互作用的物体有一个是静止的(木块),另一个是运动的(子弹) 1.“击穿”类%其特点是:在某一方向动量守恒,子弹有初动量,木块有或无初动量,击穿时间很短,击穿后二者分别以某一速度度运动【例2】质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速度v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。

2.“未击穿”类其特点是:在某一方向上动量守恒,如子弹有初动量而木块无初动量,碰撞时间非常短,子弹射入木块后二者以相同速度一起运动.|【例3】 设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。

求木块对子弹的平均阻力的大小和该过程中木块前进的距离。

解:子弹和木块最后共同运动,相当于完全非弹性碰撞。

从动量的角度看,子弹射入木块过程中系统动量守恒: ()v m M mv +=0从能量的角度看,该过程系统损失的动能全部转化为系统的内能。

设平均阻力大小为f ,设子弹、木块的位移大小分别为s 1、s 2,如图所示,显然有s 1-s 2=d"对子弹用动能定理:22012121mv mv s f -=⋅ ……①对木块用动能定理:2221Mv s f =⋅ ……② s 2 ds 1v 0v①、②相减得:()()222022121v m M Mm v m M mv d f +=+-=⋅ ……③ 这个式子的物理意义是:f d 恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见Q d f =⋅,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。

由上式不难求得平均阻力的大小:()dm M Mmv f +=22至于木块前进的距离s 2,可以由以上②、③相比得出:d mM ms +=2从牛顿运动定律和运动学公式出发,也可以得出同样的结论。

由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比:()d m M m s m m M v v s d v v v v v v s d s +=+==∴+=+=+2020022,,2/2/一般情况下m M >>,所以s 2<<d 。

这说明,在子弹射入木块过程中,木块的位移很小,可以忽略不计。

这就为分阶段处理问题提供了依据。

象这种运动物体与静止物体相互作用,动量守恒,最后共同运动的类型,全过程动能的损失量可用公式:()202v m M Mm E k +=∆…④当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统动量仍然守恒,系统动能损失仍然是ΔE K = f d (这里的d 为木块的厚度),但由于末状态子弹和木块速度不相等,所以不能再用④式计算ΔE K 的大小。

做这类题目时一定要画好示意图,把各种数量关系和速度符号标在图上,以免列方程时带错数据\七.爆炸类问题【例4】 抛出的手雷在最高点时水平速度为10m/s ,这时忽然炸成两块,其中大块质量300g 仍按原方向飞行,其速度测得为50m/s ,另一小块质量为200g ,求它的速度的大小和方向。

八.某一方向上的动量守恒【例5】 如图所示,AB 为一光滑水平横杆,杆上套一质量为M 的小圆环,环上系一长为L 质量不计的细绳,绳的另一端拴一质量为m 的小球,现将绳拉直,且与AB 平行,由静止释放小球,则当线绳与A B 成θ角时,圆环移动的距离是多少练习题—1.质量为M的楔形物块上有圆弧轨道,静止在水平面上。

质量为m的小球以速度v1向物块运动。

不计一切摩擦,圆弧小于90°且足够长。

求小球能上升到的最大高度H和物块的最终速度v。

2.如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等、方向相反的初速度v0,使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。

3.两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为,,它们的下底面光滑,上表面粗糙;另有一质量的滑块C(可视为质点),以的速度恰好水平地滑到A的上表面,如图所示,由于摩擦,滑块最后停在木块B上,B和C的共同速度为s,求(1)木块A的最终速度;(2)滑块C离开A时的速度。

4.如图所示,A B C是光滑轨道,其中BC部分是半径为R的竖直放置的半圆.一质量为M的小木块放在轨道水平部分,木块被水平飞来的质量为m的子弹射中,并滞留在木块中.若被击中的木块沿轨道能滑到最高点C,已知木块对C点的压力大小为(M+m)g,求:子弹射入木块前瞬间速度的大小.|5.如图所示,在足够长的光滑水平轨道上静止三个小木块A 、B 、C ,质量分别为m A =1kg ,m B =1kg ,m C =2kg ,其中B与C 用一个轻弹簧固定连接,开始时整个装置处于静止状态;A 和B 之间有少许塑胶炸药,A 的左边有一个弹性挡板(小木块和弹性挡板碰撞过程没有能量损失)。

相关文档
最新文档