人教版六年级数学下册正比例与反比例区别ppt课件
合集下载
人教版六年级数学下册第四单元《正比例和反比例》(复习课件)

3
汽车所行路程与相应耗油量是两种相关联的量,耗油量
随着所行路程的变化而变化。所行路程增加,耗油量随
着增加;所行路程减少,耗油量随着减少。
4.已知y与x成正比例关系,在下表的空格中填写合
适的数。(选题源于教材P49第4题)
5
15
8
3
12.5
25
50
5.同一时间、同一地点测得3棵树的树高及其影长如
下表。(选题源于教材P50第5题)
长劲鹿:0.8×18=14.4(千米)
答:斑马18分钟跑了21.6千米,
长颈鹿跑了14.4千米。
下面的图象表示斑马和长颈鹿的奔跑情况。
(3)从图象上看,斑马跑得快还是长颈鹿跑得快?
从图像上看,10分钟时,斑马跑了
12千米,长劲鹿跑了8千米。
答:斑马跑得快。
判断下面各题中的两种量是否成反比例关系,并说明理由。
面积与所需地砖数量如下表。
所需地砖数量与每块地砖的面积是否成反比例?
为什么?(选题源于教材P51第8题)
成反比例关系。
因为所需地砖数量与每块地砖的面积的乘
积等于教室的面积,而教室的面积一定,
所以所需地砖数量与每块地砖的面积成反
比例关系。
2.食品加工厂准备把一批新酿的醋装瓶运往商店。
所装瓶数与每瓶容量是否成反比例关系?为什么?
有x、y、z三个相关联的量,并有xy=z。
(1)当z一定时,x与y成
比例关系。
反
xy=z
(一定) 即xy的积一定,则xy成反比例。
正
(2)当x一定时,z与y成
比例关系。
z
=x
xy=z
则zy成正比例。
y (一定),
正 比例关系。
汽车所行路程与相应耗油量是两种相关联的量,耗油量
随着所行路程的变化而变化。所行路程增加,耗油量随
着增加;所行路程减少,耗油量随着减少。
4.已知y与x成正比例关系,在下表的空格中填写合
适的数。(选题源于教材P49第4题)
5
15
8
3
12.5
25
50
5.同一时间、同一地点测得3棵树的树高及其影长如
下表。(选题源于教材P50第5题)
长劲鹿:0.8×18=14.4(千米)
答:斑马18分钟跑了21.6千米,
长颈鹿跑了14.4千米。
下面的图象表示斑马和长颈鹿的奔跑情况。
(3)从图象上看,斑马跑得快还是长颈鹿跑得快?
从图像上看,10分钟时,斑马跑了
12千米,长劲鹿跑了8千米。
答:斑马跑得快。
判断下面各题中的两种量是否成反比例关系,并说明理由。
面积与所需地砖数量如下表。
所需地砖数量与每块地砖的面积是否成反比例?
为什么?(选题源于教材P51第8题)
成反比例关系。
因为所需地砖数量与每块地砖的面积的乘
积等于教室的面积,而教室的面积一定,
所以所需地砖数量与每块地砖的面积成反
比例关系。
2.食品加工厂准备把一批新酿的醋装瓶运往商店。
所装瓶数与每瓶容量是否成反比例关系?为什么?
有x、y、z三个相关联的量,并有xy=z。
(1)当z一定时,x与y成
比例关系。
反
xy=z
(一定) 即xy的积一定,则xy成反比例。
正
(2)当x一定时,z与y成
比例关系。
z
=x
xy=z
则zy成正比例。
y (一定),
正 比例关系。
小学数学正比例与反比例(第1课时)PPT课件(人教版数学六年级下册)

国家中小学课程资源
正比例和反比例(第1课时)
主讲人:XX 日期:XX年XX月XX日
国家中小学课程资源
颜色随着温度的变化而变化。
国家中小学课程资源
每过一年,年轮就增加一圈。 年轮的变化
一位同学的记录:
国家中小学课程资源
身高随着年龄的变化而变化。
国家中小学课程资源
一种量变化另一种量也随着变化
买同一种物品, 买的数量越多, 总价就越高。
汽车行驶的路程 会随着行驶时间 的增加而增加。
小红
小丽
国家中小学课程资源
文具店有一种彩带,销售的数量与总价的关系如下表:
⑴表中有哪两种量? 数量和总价。
⑵总价是怎样随着数量的变化而变化的? 总价随着数量的增加而增加。
小红
国家中小学课程资源
文具店有一种彩带,销售的数量与总价的关系如下表: +1 +1 +3.5 +3.5
总价与数量成 (10,35) 正比例关系。 (12,42)
小亮
小明
国家中小学课程资源
文具店有一种彩带,销售的数量与总价的关系如下表:
国家中小学课程资源
31.5
小明
小红
9
国家中小学课程资源
路程与时间是两种相关联的量,时间变化,路程也随着变化。
路程 时间 = 速度(一定)
路程与时间成正比例关系。
小红
彩带的数量每增加1米,总价就增加了3.5元。
小明
国家中小学课程资源
文具店有一种彩带,销售的数量与总价的关系如下表:
×4
÷3
×2
×2
×4
÷3
数量扩大到原来的多少倍,总价也随着扩大
到原来的多少倍;数量缩小到原来的几分之
正比例和反比例(第1课时)
主讲人:XX 日期:XX年XX月XX日
国家中小学课程资源
颜色随着温度的变化而变化。
国家中小学课程资源
每过一年,年轮就增加一圈。 年轮的变化
一位同学的记录:
国家中小学课程资源
身高随着年龄的变化而变化。
国家中小学课程资源
一种量变化另一种量也随着变化
买同一种物品, 买的数量越多, 总价就越高。
汽车行驶的路程 会随着行驶时间 的增加而增加。
小红
小丽
国家中小学课程资源
文具店有一种彩带,销售的数量与总价的关系如下表:
⑴表中有哪两种量? 数量和总价。
⑵总价是怎样随着数量的变化而变化的? 总价随着数量的增加而增加。
小红
国家中小学课程资源
文具店有一种彩带,销售的数量与总价的关系如下表: +1 +1 +3.5 +3.5
总价与数量成 (10,35) 正比例关系。 (12,42)
小亮
小明
国家中小学课程资源
文具店有一种彩带,销售的数量与总价的关系如下表:
国家中小学课程资源
31.5
小明
小红
9
国家中小学课程资源
路程与时间是两种相关联的量,时间变化,路程也随着变化。
路程 时间 = 速度(一定)
路程与时间成正比例关系。
小红
彩带的数量每增加1米,总价就增加了3.5元。
小明
国家中小学课程资源
文具店有一种彩带,销售的数量与总价的关系如下表:
×4
÷3
×2
×2
×4
÷3
数量扩大到原来的多少倍,总价也随着扩大
到原来的多少倍;数量缩小到原来的几分之
六年级数学课件正比例和反比例

正比例的意义
定义:两个量之间的比值相等 性质:当一个量增加时,另一个量也按相同的比例增加 举例:速度、路程和时间之间的关系 应用:在生活和生产中的实际应用
正比例的应用
定义:两个量之间 的比值保持不变, 即为正比例关系
应用场景:速度、 时间、距离等
Hale Waihona Puke 实例:汽车匀速行 驶,速度与时间成 正比
数学模型:y=kx ,其中k为比例系 数
题目:一辆汽车从甲地开往乙地,3小时行了150千米。照这样的速度,再行5小时到达乙地, 甲地到乙地相距多少千米?
反比例的练习题及解析
题目:一个工厂生产了200台机器,每台机器需要10个零件。如果该工厂决定生产更多的机器,但零件数量不变,那么每台新机器的 成本将会如何变化?
解析:这道题目考察了反比例的概念。当一个变量增加时,如果另一个变量保持不变,那么第一个变量与第二个变量之间 的比率将会保持不变。因此,如果该工厂生产的机器数量增加,但零件数量保持不变,那么每台新机器的成本将会降低。
生活中的反比例实例
汽车油箱:油箱容 量固定,行驶距离 与耗油量成反比
速度与时间:速度 越快,所需时间越 短,成反比关系
价格与需求量:价 格上涨,需求量减 少,成反比关系
杠杆原理:动力×动 力臂=阻力×阻力臂 ,当动力臂增加, 阻力臂减少时,动 力作用效果越不明 显
正比例和反比例在数学中的应用实例
化
反比例:两个 量之间的乘积 是一定的,当 一个量变化时, 另一个量也按 相反的比例变
化
区别:正比例 是比值一定, 反比例是乘积
一定
联系:正反比 例都是成比例 关系,当其中 一个量变化时, 另一个量也按 一定的比例变
化
应用上的区别与联系
六年级下册正比例和反比例复习ppt课件

A. y k(一定) B. xy k(k一定) C. y kx(k一定) x
C 4. x的 3 与y的 2 相等,且x、y均不为0,x与y的比值是( )
4
7
A. 4
B. 7
8
C.
7
4
21
A 5.如果甲÷ 乙=丙,当甲一定时,乙和丙( );当乙一定
B B 时,甲和丙( );当丙一定时,甲和乙( )。
A.成反比例
B.成正比例
C.不成比例
1.用长30厘米,宽24厘米的长方形砖铺一 条路,需用900块。如果改用边长20厘米 的方砖铺,需用多少块?
30×24=720(平方厘 20×20=400(平方厘米) 米) 解:设需用x块。
720:400=x:900 400x=648000
x=64800x0=÷1642000
关系式为:x y k(一定)
3.正比例、反比例的区别与联系
名称
不同点
相同
意义不同点 变化方向不 关系式不 点
同
同
正比例 反比例
两种量中相对 应的两个数的 比值,也就是 商一定。
两种量中相 对应的两个 数的积一定。
一种量扩大 (或缩小), 另一种量也随 之扩大(或缩 小)。
一种量扩大 (或缩小), 另一种量反而 缩小(或扩 大)。
( 反比例 )关系。 6.如果, y 6 那么x和y成( 反比例)关系。
x
1.圆的周长和半径成正比例。
(√ )
2.父子两人的年龄成正比例。
(× )
× 3.小丽跳高的高度和她的身高成正比例。 ( )
× 4.圆的周长一定,圆周率和直径成反比例。( )
× 5.长方形的周长一定,它的长和宽成反比例。( )
C 4. x的 3 与y的 2 相等,且x、y均不为0,x与y的比值是( )
4
7
A. 4
B. 7
8
C.
7
4
21
A 5.如果甲÷ 乙=丙,当甲一定时,乙和丙( );当乙一定
B B 时,甲和丙( );当丙一定时,甲和乙( )。
A.成反比例
B.成正比例
C.不成比例
1.用长30厘米,宽24厘米的长方形砖铺一 条路,需用900块。如果改用边长20厘米 的方砖铺,需用多少块?
30×24=720(平方厘 20×20=400(平方厘米) 米) 解:设需用x块。
720:400=x:900 400x=648000
x=64800x0=÷1642000
关系式为:x y k(一定)
3.正比例、反比例的区别与联系
名称
不同点
相同
意义不同点 变化方向不 关系式不 点
同
同
正比例 反比例
两种量中相对 应的两个数的 比值,也就是 商一定。
两种量中相 对应的两个 数的积一定。
一种量扩大 (或缩小), 另一种量也随 之扩大(或缩 小)。
一种量扩大 (或缩小), 另一种量反而 缩小(或扩 大)。
( 反比例 )关系。 6.如果, y 6 那么x和y成( 反比例)关系。
x
1.圆的周长和半径成正比例。
(√ )
2.父子两人的年龄成正比例。
(× )
× 3.小丽跳高的高度和她的身高成正比例。 ( )
× 4.圆的周长一定,圆周率和直径成反比例。( )
× 5.长方形的周长一定,它的长和宽成反比例。( )
人教版六年级数学正比例和反比例课件

.
15
(5)每千克苹果的价钱一定,付出的钱数和 购买
苹果的数量。
成正比例。
(6)每月收入一定,每月支出的钱数和剩下的钱
数。
不成正比例。
.
16
(7) 正方形的面积和边长. (不成比例)
(8)正方体的体积和它的棱长。
(不成比例)
(9) 正方体一个面的面积和
它的表面积.
(正比例)
.
17
(10) 圆的周长和半径.
不相关联 →不成比例
两
种
加的关系 →不成比例
量
相关联 减的关系 →不成比例
乘的关系 积一定 →成反比例
除的关系 商(比值)一定 →成正比例
.
10
讨论下面两个量成什么比例 当速度一定时,路程和时间 当路程一定时,速度和时间
当时间一定时,速度和路程
.
11
1 、判断下面各题中的两种量是否成比例,成什么比例?
(路程和时间的比值 )是一定的. 因 此路程和时间成(正 )比例 关系。
.
4
正比例的意义:
两种相关联一的种量量,变化,另一种量也随着变化。 如果这两种量中相对应的两个数的 比值(也
就是商) 一定这,两种量就叫做 成正比例的量 ,它们的 关系叫做 正比例关系 .
正比例关系可以用
y x
? k (一定)表示
(1)数量一定,单价和总价。
单价和总价是两种相关 联的量,因为 总价 ? 数量 单价
(一定),所以单价和 总价成正比例。
.
12
)学校食堂新进一批煤,每天的用煤量与使用天数。
每天的用煤量与使用天数是两种相关联的量, 因为每天用煤量×使用天数=煤的总量(一定), 所以每天的用煤量与使用天数成反比例。
人教版六年级数学下册正比例与反比例区别27页PPT

人教版六年级学下册正比例与反比 例区别
41、俯仰终宇宙,不乐复何如。 42、夏日长抱饥,寒夜无被眠。 43、不戚戚于贫贱,不汲汲于富贵。 44、欲言无予和,挥杯劝孤影。 45、盛年不重来,一日难再晨。及时 当勉励 ,岁月 不待人 。
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
六年级数学下册课件正比例和反比例复习课共19张PPT人教版

y k(一定) x
二、反比例
判断下面每组题中的两种量是否成反比例关系,并说出理由。 1.完成同一个工程,工作效率和工作时间。 ( 成反比例 )
工作效率×工作时间=工作总量(一定) 2.100元零花钱买同一种零食,零食的数量和单价。( 成反比例)
零食的数量×单价=100元(一定) 3.差一定,被减数和减数。( 不成比例 )
由题意得 60x 503
60x 150 x 5 2 5
答:返回时用了 小时。
2
归纳
用正、反比例解决实际问题的一般步骤:
➢ 根据题中的不变量找出两种相关联的量,并判断 这两种相关联的量成什么比例
➢ 设未知量为x,注意写明计量单位 ➢ 列出比例式,并解比例式 ➢ 写答
实际应用
3.用一台打字机打字,6小时打36页,照这样计算,如果再打4小
时,一共可以打字多少页?
工作总量
方法一
工作时间
=工作效率(一定) 方法二
解:设一共可以打字x页。
由题意得 x 36 64 6 6x 36 (6 4)
6x 360
解:设4小时可以打字x页。
由题意得 x 36 46
6x 36 4
6x 144
x 60
答:一共可以打字60页。
x 24
36+24=60(页) 答:一共可以打字60页。
正比例和反比例的异同点
正比例
反比例
相同点 都是两种相关联的量,一种量随着另一种量变化。
变 化(或缩小),另一 种量也扩大(或缩小)。
y k(一定) x
变化的方向相反,一种 量扩大(或缩小),另 一种量反而缩小(或扩 大)。
xy k(一定)
针对训练
4.下表中,x与y成反比例,那么☆表示的数是( B )
二、反比例
判断下面每组题中的两种量是否成反比例关系,并说出理由。 1.完成同一个工程,工作效率和工作时间。 ( 成反比例 )
工作效率×工作时间=工作总量(一定) 2.100元零花钱买同一种零食,零食的数量和单价。( 成反比例)
零食的数量×单价=100元(一定) 3.差一定,被减数和减数。( 不成比例 )
由题意得 60x 503
60x 150 x 5 2 5
答:返回时用了 小时。
2
归纳
用正、反比例解决实际问题的一般步骤:
➢ 根据题中的不变量找出两种相关联的量,并判断 这两种相关联的量成什么比例
➢ 设未知量为x,注意写明计量单位 ➢ 列出比例式,并解比例式 ➢ 写答
实际应用
3.用一台打字机打字,6小时打36页,照这样计算,如果再打4小
时,一共可以打字多少页?
工作总量
方法一
工作时间
=工作效率(一定) 方法二
解:设一共可以打字x页。
由题意得 x 36 64 6 6x 36 (6 4)
6x 360
解:设4小时可以打字x页。
由题意得 x 36 46
6x 36 4
6x 144
x 60
答:一共可以打字60页。
x 24
36+24=60(页) 答:一共可以打字60页。
正比例和反比例的异同点
正比例
反比例
相同点 都是两种相关联的量,一种量随着另一种量变化。
变 化(或缩小),另一 种量也扩大(或缩小)。
y k(一定) x
变化的方向相反,一种 量扩大(或缩小),另 一种量反而缩小(或扩 大)。
xy k(一定)
针对训练
4.下表中,x与y成反比例,那么☆表示的数是( B )
六年级数学下册 正比例和反比例的意义ppt课件

21
3.每袋面粉的重量一定,面粉的总重量和袋数 是不是成正比例?
面粉的总重量和袋数是两种相关联的量, 它们与每袋面粉的重量有下面的关系:
总重量 袋数 =每袋面粉的总重量(一定)
已知每袋面粉的重量一定,就是面粉的
总重量和袋数的比值是一定的,所以面粉的
总重量和袋数成正比例。
精选ppt课件
22
4.小新跳高的高度和他的身高. 因为 跳高的高度和身高不是两种相关联的量, 所以 小新跳高的高度和他的身高不成正比例.
精选t课件
27
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
对应的两个数的比值一定,这两种量就叫
做成正比例的量,它们的关系叫做正比例
关系31.。5 =3.5
7 2
=3.5
103.5=3.5 ...
相对应的总价和数量的比的比值是一定的
精选ppt课件
9
如果用字母x和y表示两种 相关联的量,用k表示它们的 比值(一定),正比例关系 可以用下面的式子表示:
xy =k(一定)
(3)表中相关联的两种变量成正比例吗? 为什么?
1. 判定两个量是否成正比例,主要 看它们的( 比值)是否一定。
2.苹果的单价一定,苹果的数量 和总价。 ( 总价 )和( 数量 )是相关联的量。
(总价) (数量)=(
单价
)(一定)
所以(总价 )和( 数量 )是 要思考 成正比例的量。
精选ppt课件
3、相对应的杯子的底面积和水的高度的乘积分别
是多少? 300立方厘米。
精选ppt课件
14
高度和底面积的变化有什么规律?
从上往下 看,底面 积增加, 水的高度 反而减少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
精选ppt课件
22
课堂达标:
2.选择.
(1)把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量.( )
A.成正比例
B.成反比例 C.不成比例
(2)和一定,加数和另一个加数.( )
A.成正比例
B.成反比例 C.不成比例
(3)在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,
成正比例关系是( ),成反比例关系是( )。
4 y
,则x和y成( 反 )比例。
(4)若x:4 = 5:y,则x和y成( 反 )
比例。
(5)若x = y+5,则x和y(不成)比例。
选择
B 三角形的面积一定,它的
底和高 ( ) A 成正比例 B 成反比例 C 不成比例
选择
甲数和乙数互为倒数,
甲数和ቤተ መጻሕፍቲ ባይዱ数( B)
A.成正比例 B.成反比例 C.不成比例
A.汽车每次运货吨数一定,运货次数和运货总吨数。
B.汽车运货次数一定,每次运货的吨数和运货总吨数。
C.汽车运货总吨数一定,每次运货的吨数和运货的次数。
精选ppt课件
23
500千克的海水中含盐25千克,120吨 海水含盐多少吨?
一个工程队铺一段铁路,原计划每天铺
3.2千米,实际每天比原计划多铺25%, 实际铺完这段铁路用了12天。原计划用 多少天才能铺完?
.
(不成比例)
易错易混题(二)
1 圆的周长和半径.(正比例) 2 圆的周长和直径.(正比例) 3 圆的面积和半径.(不成比例)
易错易混题(三)
1 正方形的周长和边长.(正比例) 2 正方形的面积和边长(. 不成比例)
3 正方体的体积和它的棱长.
(不成比例)
4 正方体一个面的面积和它的表面积.
(正比例)
二列:列出数量间的相等关系;
三找:找出谁是不变的量;
四判断: 商一定,两种量成正比例; 积一定,两种量成反比例。
精选ppt课件
7
思考
路程、速度和时间这三个量中每两个量之间有 什么样的比例关系?
当路程一定时,速度和时间成(反比例关系 ).
当速度一定时,路程和时间成(正比例关系).
当时间一定时,路程和速度成(正比例关系).
精选ppt课件
14
若x和y是两种相关联的量,判断 它们是否成比例,成什么比例?
(1)若x = 4 y,(x,y均不为0)
则x和y成( 正 )比例.
(2)若
X 3
=
y 4
, (x,y均不
为0) 则x和y,成( 正 )比
例.
若x和y是两种相关联的量,判断 它们是否成比例,成什么比例?
(3)若 X
3
=
x × y =k (一定)
不成比例关系
两种相关
正比例关系
联的量
成比例关系
反比例关系
精选ppt课件
4
名称 联系
区别 特征 关系式
正比例 反比例
两种相关 联的量, 一种量变 化,另一
相对应的 两个数的 比值(商) 一定。
x y =k (一定)
种量也随 着变化。
相对应的 两个数的
Xy=k
乘积一定。(一定)
选择
A 1
a是b的 5 ,那么a与b( ) A 成正比例 B 成反比例 C 不成比例
努 力 吧 !
拓展练习:
精选ppt课件
21
课堂达标:
1.判断下列各题中的两种量是否成比例?成什么比 例?
(1) 每袋大米的重量一定,袋数与总重量。 (2)用同一规格的地砖铺地,铺地的面积和地砖 的块数。 (3)班级人数一定,出勤人数和缺勤人数。 (4)比的前项一定,比的后项和比值。 (5)圆的周长一定,圆的半径与圆周率。
(1)收入一定,支出和结余成正
比例。(
)
(2)出米率一定,稻谷的重量和大
米的重量成正比例。(
)
(3)圆柱的侧面 积一定,它的底 面周长和高成正比例。( )
精选ppt课件
13
(4)在一定时间内,生产一个零件所用 的时间和零件个数成正比例。( )
(5)三角形的面积一定,它的底和高成 反比例。( )
(6)小明从家步行到学校,步行 的速度 和所需的时间成反比例。( )
正比例与反比例比较
正比例
两种(相关联 )的量,一种量 ( 变化 ),另一种量也随着( 变化), 如果这两种量中相对应的两个数的 ( 比值 )一定,这两种量就叫做成正比 例的量,它们的关系叫做(正比例关系)。
y x =k (一定)
反比例
两种( 相关联)的量,一种量 ( 变化 ),另一种量也随着(变化 ), 如果这两种量中相对应的两个数的 ( 乘积 )一定,这两种量就叫做成反比 例的量,它们的关系叫做( 反比例关系)。
做一做
判断单价、数量和总价中一种量一定,另外两个量 成什么比例关系。为什么?
单价一定,数量和总价 正比例 .
总价一定,数量和单价 反比例 .
数量一定,总价和单价 正比例 .
易错易混题(一)
1、方砖面积一定, 所需块数和铺地面积
.
(正比例)
2、铺地面积一定,方砖面积和所需块数.
(反比例)
3、铺地面积一定,方砖边长和所需块数
精选ppt课件
5
路程(千米)
180
150
●
B
120
●
90
●
60
●
A
30 ●
速度(千米/时)
180 150
120 ● A 90
60 ●
●
30
● ●B
0 2 4 6 8 10 12 时间(时) 0 2 4 6 8 10 12
时间(时)
精选ppt课件
6
一看:首先要看这两种量是不是相关 联的量,一种量是不是随着另一种量 的变化而变化 ;