二次函数中常见图形的的面积问题

合集下载

二次函数专题一:面积问题-含答案

二次函数专题一:面积问题-含答案

专题一:二次函数中的面积问题(一)利用割补:将图形割(补)成三角形或梯形面积的和差,其中需使三角形的底边在坐标轴上或平行于坐标轴;(例如以下4、5两图中,连结BD 解法不简便。

)例1:如图抛物线与轴交于两点,与轴交于点, (1)k=___-3_____,点的坐标为___(-1,0)___,点的坐标为____(3,0)____; (2)设抛物线的顶点为,求的面积;(3)在轴下方的抛物线上是否存在一点,使四边形的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由;解:(2)M (1,-4);(3)设,,当m =52时,四边形ABDC 面积最大,为52。

练习1、如图,抛物线与轴交于A 、B 两点,与轴交于点C ,抛物线的对称轴交轴于点D ,已知A (﹣1,0),C (0,2). (1)求抛物线的表达式;(2)点E 是线段BC 上的一个动点,过点E 作轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.解:(1)y =-12x 2+32x +2(2)对称轴x =-b 2a =32,\D (32,0), 令-12x 2+32x +2=0,x 1=-1,x 2=4,\B (4,0) ,设F (a ,-12a 2+32a +2),y =x 2-2x +k x A ,B y C (0,-3)A B M D BCM x D ABDC S D BCM =S D OCM +S D BOM -S D BOC =12´3´1+12´3´4-12´3´3=3D (m ,m 2-2m -3) S 四边形ABDC =S D AOC +S D BOD +S D COD=12´1´3+12´|m 2-2m -3|´3+12´m ´3=-12m 2+52m +3-b 2a =-522´(-12)=52,0<m <3y =-12x 2+mx +n x y xxS四边形CDBF =SD COF+SD BOF-SD COD=12´2´a+12´4´(-12a2+32a+2)-12´2´32=-a2+4a+52∵-42´(-1)=2,0<a<4,-1<0,\当a=2时,S四边形CDBF最大,为132此时,直线BC解析式可求得y=-12x+2,\E(2,1)练习2:已知:抛物线的顶点坐标为C(1,4),抛物线交x轴于点A,交y轴于点B(0,3).点P是在第一象限内的抛物线上的一个动点,过点P作y轴的平行线,交AB于点D.是否存在点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.解:设抛物线解析式为y=a(x-1)2+4,将B(0,3)代入得a=-1\y=-(x-1)2+4=-x2+2x+3,令y=0得x1=-1,x2=3,\A(3,0)连结OC,SD ABC =SD CBO+SD ACO-SD ABO=3,\SD PAB=54×SD ABC=54´3=154设P(m,-m2+2m+3),连结OP、BP,SD PAB =SD BPO+SD APO-SD AOB=12´3´m+12´3´(-m2+2m+3)-12´3´3=-32m2+92m-32m2+92m=154,整理得2m2-6m+0,D=(-6)2-4´2´5=-4<0,所以不存在这样的点P。

2020二次函数中的面积问题

2020二次函数中的面积问题

二次函数——面积问题〖知识要点〗一.求面积常用方法:1. 直接法(一般以坐标轴上线段或以与轴平行的线段为底边)2. 利用相似图形,面积比等于相似比的平方3. 利用同底或同高三角形面积的关系4. 割补后再做差或做和(三边均不在坐标轴上的三角形及不规则多边形需把图形分解)二.常见图形及公式抛物线解析式y=ax 2 +bx+c (a ≠0)抛物线与x 轴两交点的距离AB=︱x 1–x 2︱=a ∆ 抛物线顶点坐标(-a b2, a b ac 442-)抛物线与y 轴交点(0,c ) “歪歪三角形中间砍一刀” ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半.y 轴交PCD 的面3、已知抛物线c bx x y ++=2与y 轴交于点A ,与x 轴的正半轴交于B 、C 两点,且BC=2,S △ABC =3,则b = ,c = .〖典型例题〗● 面积最大问题1、二次函数c bx ax y ++=2的图像与x 轴交于点A (-1,0)、B (3 ,0),与y 轴交于点C ,∠ACB=90°. (1)求二次函数的解析式;(2)P 为抛物线X 轴上方一点,若使得△PAB 面积最大,求P 坐标(3)P 为抛物线X 轴上方一点,若使得四边形PABC 面积最大,求P 坐标(4) P 为抛物线上一点,若使得ABC PAB S S ∆∆=21,求P 点坐标。

● 同高情况下,面积比=底边之比2.已知:如图,直线y=﹣x +3与x 轴、y 轴分别交于B 、C ,抛物线y=﹣x 2+bx +c 经过点B 、C ,点A 是B 图1抛物线与x 轴的另一个交点.(1)求B 、C 两点的坐标和抛物线的解析式;(2)若点P 在直线BC 上,且,求点P 的坐标.3.已知:m 、n 是方程x 2﹣6x +5=0的两个实数根,且m <n ,抛物线y=﹣x 2+bx +c 的图象经过点A (m ,0)、B (0,n ).(1)求这个抛物线的解析式;(2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(注:抛物线y=ax 2+bx +c (a ≠0)的顶点坐标为(3)P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标.● 三角形面积等于水平宽与铅垂高乘积的一半4.阅读材料:如图,过△ABC 的三个顶点分别作出水平垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可以得出一种计算三角形面积的新方法:S △ABC =ah ,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题:如图,抛物线顶点坐标为点C (1,4)交x 轴于点A ,交y 轴于点B (0,3)(1)求抛物线解析式和线段AB 的长度;(2)点P 是抛物线(在第一象限内)上的一个动点,连接PA ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及S △CAB ;(3)在第一象限内抛物线上求一点P ,使S △PAB =S △CAB .法一:同底情况下,面积相等转化成平行线法二:同底情况下,面积相等转化成铅垂高相等变式一:如图2,点P 是抛物线(在第一象限内)上的一个动点,连结PA ,PB ,是否存在一点P ,使S △PAB =S △CAB ?若存在,求出P 点的坐标;若不存在,请说明理由.变式二:抛物线上是否存在一点P ,使S △PAB =S △CAB ?若存在,求出P 点的坐标;若不存在,请说明 ● 点动+面积5.如图1,已知△ABC 中,AB=10cm ,AC=8cm ,BC=6cm ,如果点P 由B 出发沿BA 方向向点A 匀速运动,同时点Q 由A 出发沿AC 方向向点C 匀速运动,它们的速度均为2cm/s ,连接PQ ,设运动的时间为t (单位:s )(0≤t ≤4).解答下列问题:(1)当t为何值时,PQ∥BC.(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由.(3)如图2,把△APQ沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.形动+面积6.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?。

二次函数与图形面积问题

二次函数与图形面积问题

二次函数与图形面积问题1、阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部的线段的长度叫△ABC的“铅垂高”(h).我们可行出生种计算三角形面积的新方示:y=a(x-1)2+4 ,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图2,抛物线顶点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)求△ABC的铅垂高CD及S △ ABC(3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使a=-1 ,且S△PAB=9/8 S△CAB若存在,求出P点的坐标;若不存在,请说明理由.2、如图,已知抛物线y=ax2+bx+c经过点A(2,3),B(6,1),C(0,-2).(1)求此抛物线的解析式,并用配方法把解析式化为顶点式;(2)点P是抛物线对称轴上的动点,当AP⊥CP时,求点P的坐标;(3)设直线BC与x轴交于点D,点H是抛物线与x轴的一个交点,点E(t,n)是抛物线上的动点,四边形OEDC的面积为S.当S取何值时,满足条件的点E只有一个?当S取何值时,满足条件的点E有两个?3、如图,已知平面直角坐标系xOy中,点A(m,6),B(n,1)为两动点,其中0<m<3,连接OA,OB,OA⊥OB。

(1)求证:mn=-6;(2)当S△AOB=10时,抛物线经过A,B两点且以y轴为对称轴,求抛物线对应的二次函数的关系式;(3)在(2)的条件下,设直线AB交y轴于点F,过点F作直线l交抛物线于P,Q两点,问是否存在直线l,使S△POF:S△QOF=1:3?若存在,求出直线l对应的函数关系式;若不存在,请说明理由。

4、如图1,在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(3,1),二次函数y=x2的图象记为抛物线l1。

(1)平移抛物线l1,使平移后的抛物线过点A,但不过点B,写出平移后的一个抛物线的函数表达式:______ (任写一个即可);(2)平移抛物线l1,使平移后的抛物线过A,B两点,记为抛物线l2,如图2,求抛物线l2的函数表达式;(3)设抛物线l2的顶点为C,K为y轴上一点,若S△ABK=S△ABC,求点K的坐标;(4)请在图3上用尺规作图的方式探究抛物线l2上是否存在点P,使△ABP为等腰三角形,若存在,请判断点P共有几个可能的位置(保留作图痕迹);若不存在,请说明理由。

二次函数的应用问题:面积、高度、利润等

二次函数的应用问题:面积、高度、利润等

二次函数的应用问题:面积、高度、利润

二次函数是数学中常见的一种函数类型,具有广泛的应用。

在实际生活中,我们可以利用二次函数来解决面积、高度、利润等问题。

面积
当需要求解一个图形的面积时,二次函数可以提供一个可行的解决方案。

例如,假设我们需要求解一个矩形的面积,已知其宽度是x,长度是y,可以建立如下的二次函数关系:
y = ax^2 + bx
其中a和b为常数,可以根据实际情况确定。

通过求解这个二次函数,我们可以得到矩形的面积,从而满足问题需求。

高度
在某些场景下,我们可能需要确定一个物体的最大高度。

例如,炮弹发射的最大高度问题就可以通过二次函数来解决。

假设物体的
高度是y,时间是x,可以建立如下的二次函数关系:
y = ax^2 + bx + c
其中a、b和c为常数,可以通过实验或者推导得到。

通过求
解这个二次函数,我们可以确定物体的最大高度及对应的时间,为
问题解决提供依据。

利润
二次函数还可以应用于经济领域,特别是求解利润相关的问题。

例如,假设某公司的利润随销售量的变化可以建立一个二次函数模型:
P = ax^2 + bx + c
其中P表示利润,x表示销售量,a、b和c为常数。

通过求解这个二次函数,我们可以确定最大利润对应的销售量及其他相关信息,为经济决策提供参考。

总结来说,二次函数在解决面积、高度、利润等问题时具有很大的潜力。

通过建立二次函数模型并进行求解,我们可以得到对应问题的答案,为实际应用提供指导。

二次函数面积问题(整)

二次函数面积问题(整)

二次函数面积问题(整)1.题型一:割补法1.1 求解析式已知抛物线经过点A(4,)和点B(,2),且对称轴为直线l,顶点为C,求解析式。

由对称性可知,顶点C的横坐标为4/2=2,代入抛物线方程得2b+c=-4,又由于抛物线经过点A和B,代入方程可得2b+c=16和-b+c=2.解方程组得b=-3,c=2,代入方程y=-x^2-3x+2即可得到解析式。

1.2 求面积连接AC、BC、BD,求四边形ADBC的面积。

由于AC和BC在对称轴上,所以它们的长度相等。

设AC=BC=x,由顶点C的坐标可知,AC和BC的纵坐标分别为2和-2,因此四边形ADBC的面积为x*4+1/2*x*(-4)=2x。

2.如图,在直角坐标系中,已知直线y=x+4与y轴交于A 点,与x轴交于B点,C点坐标为(-2,),求解析式和四边形AOBM的面积。

2.1 求解析式由于抛物线经过点A、B、C,所以可以列出三个方程,分别是c=4,a+b+c=0,4a-2b+c=-2.解方程组得a=1,b=-3,c=4,因此抛物线的解析式为y=x^2-3x+4.2.2 求面积设抛物线的顶点为M,连接AM和XXX,求四边形AOBM的面积。

由于抛物线的对称轴与x轴垂直,所以顶点M的横坐标为1.5,代入抛物线方程可得纵坐标为4.25.因此,四边形AOBM的面积为1/2*2*4.25=4.25.3.已知抛物线y=3(x+1)^2-12如图所示3.1 求交点坐标抛物线与y轴的交点为(-3,-3),因为当x=0时,y=-3.抛物线与x轴的交点为(-3±2√3,0),因为当y=0时,x=-1±√3.3.2 求面积设顶点D的坐标为(-1,0),连接AD和BD,求四边形ABCD的面积。

由于AD和BD在对称轴上,所以它们的长度相等。

设AD=BD=x,由顶点D的坐标可知,AD和BD的纵坐标分别为3和-3,因此四边形ABCD的面积为x*6+1/2*x*6=9x。

二次函数中的面积计算问题(包含铅垂高)

二次函数中的面积计算问题(包含铅垂高)

(D)二次函数中的面积计算问题【典型例子】例如,如图所示,二次函数2y x bx c =++图像x 在A 和B 两点(A 在B 的左边)与y 轴相交,在C 点与轴相交,顶点为M ,MAB ∆为直角三角形,图像的对称轴是一条直线2-=x ,该点P 是两点之间抛物线上的移动点,A C ,则PAC ∆面积的最大值为(C )A.274 B. 112C 。

278D.3 二次函数中常见的面积问题类型:1.选择填空的简单应用2.不规则三角形的面积用S=3.使用4.使用相似的三角形5.使用分割法将不规则图形转为规则图形例 1如图 1 所示,已知正方形ABCD 的边长为 1 , E , F , G , H 为每边的点, AE=BF=CG=DH ,设面积为小s 正方形EFGH 为, AE 为x , 那么about s 的x 函数图大致为 (乙)示例 2.回答以下问题:如图1所示,抛物线的顶点坐标为C 点( 1,4 ),与x 轴相交于A 点( 3 , 0),与y 轴相交于B 点。

抛物线和直线AB 的解析公式;(2)求△ CA AB 和S △ CAB 的垂直高度CD ;(3)假设点P 是抛物线上(第一象限)上的一个移动点,是否存在点P ,使得S △ PA B = 89S △ CA B ,如果存在,求点P 的坐标;如果不存在,请解释原因。

思想分析这个问题是二次函数中的常见面积问题。

该方法不是唯一的。

可以使用截补法,但是有点麻烦。

如图第10题xyABCOM图1B铅垂高水平宽ha图2A xC Oy ABD 112所示,我们可以画出一种计算三角形面积的新方法:ah S ABC 21=∆即三角形的面积等于水平宽度与前导垂直乘积的一半。

掌握了这个公式之后,思路就直截了当,过程也比较简单,计算量也相对少了很多。

答: (1)据已知,抛物线的解析公式可以设为y 1 = a ( x - 1 ) 2+ 4 ( a ≠ 0 ) 。

将A (3, 0)代入解析表达式,得到a = - 1 ,∴抛物线的解析公式为y 1 = - ( x - 1 ) 2+ 4,即y 1 = - x 2+2 x +3。

二次函数应用 图形面积问题

二次函数应用     图形面积问题

二次函数应用图形面积问题
1、在创建文明城市的活动中,政府想借助如图所示的直角墙角(两边足够长),用30m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB x
200m,求AB的
=m.(Ⅰ)若花园的面积是2
长;(Ⅱ)当AB的长是多少时,花园面积最大?最大面积是多少?
2、如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园
a=,所ABCD,其中AD MN,已知矩形菜园的一边靠墙,另三边一共用了200米木栏.(1)若30
围成的矩形菜园的面积为1800平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.
3、某养鸡专业户用篱笆及一面墙(该墙可用最大长度为36米)围成一个矩形场地ABCD来供鸡室外活动,该场地中间隔有一道与AB平行的篱笆()
EF,如图,BE、EF上各留有1米宽的门(门不需要篱笆),该养鸡专业户共用篱笆58米,设该矩形的一边AB长x米,AD AB
>,矩形ABCD的面积为s 平方米.(1)求出S与x的函数关系式,直接写出自变量x的取值范围;
(2)若矩形ABCD的面积为252平方米,求AB的长.
4、如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的矩形
花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数表达式.(2)如果要围成面积为45m2的花圃,AB的长是多少米?(3)能围成面积为50m2的花圃吗?若能,请说明围法;若不能请说明理由.。

二次函数图象中的面积问题.doc

二次函数图象中的面积问题.doc

二次函数图象中的面积问题
二次函数综合题中,常常会考面积相关的问题.
通常解决此类问题的关键是用未知数表示出图形的面积,再解决问题.
因此,第一步一般需要设出动点坐标(或用条件中的动点坐标),再选择适当的方式求图形的面积(三角形或四边形),然后用未知数表示出需要求的线段的长度,再得出结论.
常用求面积方法:
①直接法求三角形面积.如图所示,△ABC中AD为边BC上的高,则S△ABC=1/2BC·AD.
②补全法求三角形面积.如图所示,S△ABC=S矩形BDFE-S△ABE-S△ACF-S△BCD.
③分割法求三角形面积.如图所示,S△ABC=S△ABD+S△ACD=AD·BF+AD·CE=AD·(BF+CE).
④平移法求三角形面积.如图所示,过点A作AD∥BC,则S△ABC=S△BCD.
当一个三角形(或其他多边形)的形状或大小发生变化时,产生面积变化.选择合适的方法,利用已知条件求出变化过程中该三角形(或其他多边形)的面积.
【典型例题】
1.如图,已知抛物线y=ax2+bx+3与x轴交于A、B
两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).
(1)求抛物线的解析式;
(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD 的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;
(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.此类问题非常常见,不难掌握,希望大家灵活选择适当的方法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数中常见图形的的面积问题
说出如何表示各图中阴影部分的面积?
如图
1
,
过厶
ABC 勺三个顶点分别作出与水平垂直的三条线,外侧两条直线之间的距离叫厶ABC勺“水平宽”,中间的这条直线在△ ABC部线段的长度叫△ ABC 的“铅垂高h”。

三角形面积的新方法:,即三角形面积等于水平宽与铅垂高乘积的一半。

抛物线y x2 2x 3与x轴交与A B (点A在B右侧),与y轴交与点C, D为抛物线的顶点,连接BD CD
(1)求四边形BOC啲面积.
(2)求厶BCD的面积.(提示:本题中的三角形
没有横向或纵向的边,可以通过添加辅助线进行转化,
把你想到的思路在图中
画出来,并选择其中的一种写出详细的解答过程)
图二图三
图一
D
如图1,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),
交y轴于点B
(1)求抛物线和直线AB的解析式;(2)求厶CAB勺铅垂高CD及S^AB;
(3)设点P是抛物线(在第一象限)上的一个动点,是否存在一点P,使S\PAB
=S A CAB ,若存在,求出P点的坐标;若不存在,请说明理由。

八V
如图,已知抛物线y=ax2+bx+c(a工0)经过A(-2,0), B(0,4), C(2,4)三点,且与x轴的另一个交点为E。

(1)求该抛物线的解析式;
(2)求该抛物线的顶点D的坐标和对称轴;(3)求四边形ABDE勺面积
D
已知二次函数y x2 2x 3与x轴交于A B两点(A在B的左边),与y轴交于点
C,顶点为在双曲线y 3上是否存在点N,使得S NAB S ABC ,若存在直接写出N
x
的坐标;若不存在,请说明理由.
抛物线y x2 2x 3与X轴交与A B (点A在B右侧),与y轴交与点C,若点E为第二象限抛物线上一动点,点E运动到什么位置时,△ EBC勺面积最大,并求出此时点E 的坐标和厶EBC勺最大面积.
D
如图,抛物线顶点坐标为点C(1, 4),交x轴于点A(3,0),交y轴于点B
(1)求抛物线和直线AB的解析式; (2)点P是抛物线(在第一象限)上的一个动点,连PA PB当P点运动到顶点C 时,求△ CAB勺铅垂高CD及;(3)在⑵中是否存在一点P,使,若存在,求出P 点的坐标;若不存在,请说明理由.
如图,在直角坐标系中,点A的坐标为(一2, 0),连结0A将线段0A绕原点0 时针
旋转120°,得到线段OB
(1)求点B的坐标;
(2)求经过A、O B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点。

,使厶BO(的周长最小?若存在, 求出
点C的坐标;若不存在,请说明理由.
(4)如果点P是( 2)中的抛物线上的动点,且在x轴的下方,那么△ PAB是否有
最大面积?若有,求出此时P点的坐标及△ PAB勺最大面积;若没有,请说明理由.
3.如图,已知抛物线y= ax2+ bx—4与直线y= x交于点A、BA B的横坐标分别为一1和4。

两点,
(1)求此抛物线的解析式。

(2)若平行于y轴的直线x= m( O v m<+ 1 )与抛物线交于点M与直线y =x交于点N,交x轴于点P,求线段MN勺长(用含m的代数式表示)。

⑶在(2)的条件下,连接OM BM是否存在m的值,使得△ BOM。

相关文档
最新文档