江苏省苏州市吴中区2016届中考第一次模拟数学测试卷(解析版)
苏州市吴中区2015~2016学年第一学期九年级数学期终调研解答

2015~2016学年第一学期期终调研测试试卷初 三 数 学2016.1注意事项:1. 本试卷满分130分,考试时间120分钟;2. 答卷前答题卷上的相关项目填涂清楚,所有解答均须写在答题卷上,在本试卷上答题无效 .一、选择题(本大题共10小题,每小题3分,共30分;每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应的位置上.) 1.sin30︒的值等于 A .12B.22.函数y =有意义的自变量x 的取值范围是A.13x >B.13x >-C.13x ≥D.13x ≥- 3.一元二次方程2104x x -+=的根是A.1211,22x x ==- B.122,2x x ==-C.1212x x ==-D.1212x x ==4.如图所示,ABC ∆中,DE ∥BC ,若12AD DB =,则下列结论中不正确...的是 A.12AE EC = B.12DE BC = C.13ADE ABC ∆=∆的周长的周长 D.19ADE ABC ∆=∆的面积的面积第4题图5.二次函数223y x x =+-的图象的顶点坐标是A.()1,4--B.()1,4-C.()1,2--D.()1,2-6.如图,在3×3的方格中,点A 、B 、C 、D 、E 、F 都是格点,从A 、D 、E 、F 四点中任意取一点,以所取点及B 、C 为顶点画三角形,所画三角形是直角三角形的概率是 A.14 B.12 C.34 D.23第6题图第7题图7.如图,是一个圆锥形纸杯的侧面展开图,已知圆锥底面半径为5cm ,母线长为15cm ,那么纸杯的侧面积为A.275cm π B.2150cm π C.2752cm π D.23752cm π8.下列命题是真命题...的是 A . 垂直于圆的半径的直线是圆的切线 B . 经过半径外端的直线是圆的切线C . 直线上一点到圆心的距离等于圆的半径的直线是圆的切线D . 到圆心的距离等于圆的半径的直线是圆的切线9.已知a 是方程220160x x +-=的一个根,则22211a a a ---的值为 A . 2015 B . 2016 C . 12015 D . 1201610.如图,在平面直角坐标系xOy 中,直线AB 经过()6,0A 、()0,6B ,O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为第10题图二、填空题:(本大题共8小题,每小题3分,共24分;请将正确答案填在相应的横线上) 11.关于x 的方程()22430m x x --+=是一元二次方程,则m 满足的条件是 . 12.有一组数据如下:2,3,4,5,6,则这组数据的极差是 .13.在Rt ABC ∆中,斜边AB 的长是8,3cos 5B =,则BC 的长是 . 14.已知关于x 的一元二次方程()221104x m x m +-+=有两个实数根,则m 的取值范围是 .15.在半径为2的圆中,弦AB 的长为2,则AB 的长等于 .16.如图,AB 是O 的直径,C ,D 两点在O 上,若40C ∠=︒,则ABD ∠的度数为 .第16题图17.如果将抛物线221y x x =--向上平移,使它经过点()0,3A ,那么所得新抛物线的表达式是 .18.如图,平行于x 轴的直线AC 分别交抛物线()210y x x =≥与()2203x y x =≥于B 、C两点,过点C 作y 轴的平行线交1y 于点D ,直线DE ∥AC ,交2y 于点E , 则DEAB= .第18题图三、解答题(本大题共10小题,共76分;解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分4分)计算:()0tan 456π︒+- . 20.(本题满分8分,每小题4分)解方程:(1)2440x x --= ; (2)()215x x -= .21.(本题满分5分)先化简,再求值:()239x x x--÷,其中1x =-.22.(本题满分7分)如图,抛物线23y x x k =-+与x 轴交于A 、B 两点,与y 轴交于点()0,4C - .(1)k = ;(2)点A 的坐标为 ,B 的坐标为 ; (3)设抛物线23y x x k =-+的顶点为M ,求四边形ABMC 的面积.第22题图 23.(本题满分7分)2015年9月,某市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价,评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.第23题图根据上述信息,解答下列问题:(1)本次抽取的学生人数是 ;扇形统计图中的圆心角α等于 度; (2)补全统计直方图;(3)被抽取的学生还要在只有五条跑道的田径场上进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率. 24.(本题满分7分)如图,海中有一灯塔P ,它的周围8海里内有暗礁,海轮以18海里/时的速度由西向东航行,在A 处测得灯塔P 在北偏东60︒方向上;航行40分钟到达B 处,测得灯塔P 在北偏东30︒方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?第24题图 25.(本题满分8分)某工厂一种产品2014年的产量是100万件,计划2016年产量达到121万件.假设2014年到2016年这种产品产量的年增长率相同. (1) 求2014年到2016年这种产品产量的年增长率; (2)2015年这种产品的产量应达到多少万件? 26.(本题满分9分)如图,已知直线l 与O 相离,OA l ⊥于点A ,5OA =,OA O相交于点P ,AB 与O 相切于点B ,BP 的延长线交直线l 于点C . (1)试判断线段AB 与AC 的数量关系,并说明理由; (2)若PC =O 的半径和线段PB 的长.第26题图27.(本题满分10分)如图,抛物线212y x mx n =++与直线132y x =-+交于,A B 两点,交x 轴与,D C 两点,连接,AC BC ,已知()()0,3,3,0A C . (1)求抛物线的解析式;(2)求tan BAC ∠的值;(3)设P 为点A 下方、x 轴上方、y 轴右侧抛物线上一动点,连接PA ,过点P 作PQ PA ⊥交y 轴于点Q ,问:是否存在点P 使得以,,A P Q 为顶点的三角形与ACB ∆相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由 .第27题图28.(本题满分11分)如图,在Rt ABC ∆中,90,C CA ∠=︒=12BC =cm ;动点P 从点C 开始沿CA以的速度向点A 移动,动点Q 从点A 开始沿AB 以4 cm/s 的速度向点B 移动,动点R 从点B 开始沿BC 以 2cm/s 的速度向点C 移动.如果P 、Q 、R 分别从C 、A 、B 同时移动,移动时间为t ()06t <<s.(1)CAB ∠的度数是 ;(2)以CB 为直径的O 与AB 交于点M ,当t 为何值时,PM 与O 相切?(3)写出PQR ∆的面积S 随动点移动时间t 的函数关系式,并求S 的最小值及相应的t值;(4)是否存在APQ ∆为等腰三角形,若存在,求出相应的t 值,若不存在请说明理由.第28题图 备用图参考答案及评分标准一、选择题(本大题共10小题,每小题3分,共30分.) A C D B A C A D D C二、填空题:(本大题共8小题,每小题3,共24分.)11.2m ≠. 12.4 13.245 14.12m ≤15. 16.50° 17.223y x x =-+ 18.3 三、解答题(本大题共10小题,共76分.) 19.(本题满分4分)解:原式=11+ = 20.(本题满分8分,每小题4分) 解:(1)∵224(4)41(4)32b ac -=--⨯⨯-=∴x =∴12x =+22x =- (2)原方程可变形为22150x x --= (5)(3)0x x -+= ∴15x =,23x =-21. (本题满分5分) 解:原式=(3)(3)3xx x x +-⋅+ =23x x -;当1x =-时,原式=2(1)3(1)--⨯- =4.22.(本题满分7分) 解:(1) 4- -----------------------------------1分 (2)(1,0)-, (4,0); ---------------------------3分(3)∵234y x x =--2325()24x =--∴325(,)24M - , -------------------------4分设抛物线的对称轴与x 轴交于N ,则B AC M A C N N C M S S S S =++V V V111222AN OC NM ON NB NM =⨯⨯+⨯⨯+⨯⨯------5分1512531525422242224=⨯⨯+⨯⨯+⨯⨯ -----------------6分 352=∴四边形ABMC 的面积是352.----------------------------7分 23.(本题满分7分) 解:(1)30 144 ------------------2分 (2)补全统计图(略); ---------------------4分 (3)根据题意列表如下:记小红和小花抽在相邻两道这个事件为A ,∴. ---------------------------------------7分24.(本题满分7分)解:过P 作PD ⊥AB 于D401860AB =⨯=12(海里),---------------1分 ∵30PAB ∠=︒,60PBD ∠=︒∴PAB APB ∠=∠-----------------2分∴12AB BP ==(海里)-----------------3分 在Rt PBD V 中, s i n P D B P P BD =⋅∠ ------------4分12== ---------------5分∵8 ----------------------------------6分∴海轮不改变方向继续前进没有触礁的危险.-------7分 25.(本题满分8分) 解:(1)2014年到2016年这种产品产量的年增长率x ,则----------1分2100(1)121x +=-----------------------------3分解,得x 1=0.1=10%,x 2=﹣2.1(舍去),-----------4分答:2014年到2016年这种产品产量的年增长率10%.-------5分 (2)2015年这种产品的产量为:100(10.1)110+=(万件).-------------7分 答:2015年这种产品的产量应达到110万件.-----------------------------------8分 26.(本题满分9分)解:(1)AB AC =. --------1分 如图1,结OB∵AB 是O e 的切线, ∴90ABO ∠=︒ ∴4901∠=︒-∠ 又∵OA l ⊥∴903C ∠=︒-∠ -----------------2分 又∵OB OP = ∴12∠=∠ 又32∠=∠∴4C ∠=∠∴AB AC = -------------------3分 (2)如图2,延长AO 交O e 于E ,连结BE ,设O e 的半径为r ,AB AC x ==∵5OA = ∴5PA r =- 在Rt ABO V 中, 222AO AB OB =+即:2225x r =+ ----------① ------4分 在Rt CAP V 中222PC AC AP =+即:222(5)x r =+- -----------② ----------5分 由①、②得,34r x =⎧⎨=⎩ ---------------------------------6分 ∵PE 是O e 的直径, ∴90PBE ∠=︒2226PB BE += ----------③ -----------------7分 又∵4901∠=︒-∠ 902E ∠=︒-∠ 12∠=∠∴4E ∠=∠ B A P E A B ∠=∠ ∴BAP V ~EAB V PB ABBE AE =------------------8分 ∴48PB BE = ----------④ 由③、④得5PB =;综上,O e 的半径和线段PB 的长分别是3和5.-------------------------9分27.(本题满分10分)解:(1)把A (0,3),C (3,0)代入212y x mx n =++得319302n m n =⎧⎪⎨⨯++=⎪⎩ ------------------------------1分 解得图 1 图2352n m =⎧⎪⎨=-⎪⎩∴抛物线的解析式为215322y x x =-+;--------------2分 (2)如图1,过点B 作BH ⊥x 轴于H ,解方程组213215322y x y x x ⎧=-+⎪⎪⎨⎪=-+⎪⎩得:03x y =⎧⎨=⎩或41x y =⎧⎨=⎩∴点B 的坐标为(4,1) ---------------------3分又∵C (3,0)∴1BH =,3OC =,4OH =,431CH =-=∴1BH CH ==∵90BHC ∠=︒∴45,BCH BC ∠=︒=同理:45,ACO AC ∠=︒= ---------------------4分 ∴180454590ACB ∠=︒-︒-︒=︒∴tan BCBAC AC ∠=13==;-------------------------------------5分(3)存在点P ,使得以A ,P ,Q 为顶点的三角形与ACB V 相似.过点P 作PG ⊥y 轴于G ,则90PGA ∠=︒,设点P 的横坐标为x ,由于P 在y 轴右侧可得x >0,则PG x =,∵PQ ⊥P A ,90ACB ∠=︒90APQ ACB ∠=∠=︒, ---------------------------------------6分①如图2,当PAQ CAB ∠=∠时,PAQ CAB V V ∽.∵90PGA ACB ∠=∠=︒,PAQ CAB ∠=∠ ∴PGA BCA V V ∽∴13PG BC AG AC == ∴33AG PG x ==∴P (x ,3﹣3x ) ---------------------7分把P (x ,3﹣3x )代入215322y x x =-+,得21533322x x x -+=- 整理,得 20x x +=解得:10x =(舍去),21x =-(舍去);---------8分②如图3,当PAQ CBA ∠=∠时,PAQ CBA V V ∽ 同理可得:1133AG PG x ==, 则P 1(,3)3x x - ----------------------------9分 把P 1(,3)3x x -,代入215322y x x =-+,得 215133223x x x -+=- 整理,得23130x x -= 解得:10x =(舍去),2133x = ∴1314(,)39P ---------------------------------------10分 28.(本题满分11分)解:(1) 30︒ : -----------------1分(2)如图1,连接OP ,OM . 当PM 与O e 相切时,有90PMO PCO ∠=∠=︒, ∵MO CO =P O P O =∴Rt PMO Rt PCO ≅V V∴MOP COP ∠=∠ ---------------2分由(1)知∠OBA =60°∵OM OB =∴OBM V 是等边三角形∴60BOM ∠=︒∴MOP COP ∠=∠=60︒∴tan CP CO COP =⋅∠=︒= --------------------------------3分又∵CP =∴32t =36∴3t =即:3t =s 时,PM 与O e 相切. --------------4分(3)如图2,过点Q 作QE ⊥AC 于点E∵30BAC ∠=︒,4AQ t =∴122QE AQ t == c o s A E A Q B AC =⋅∠ 4cos30t=⋅︒= --------------------------------------5分图3∴111222ACB S AC CB =⋅⋅=⋅=V 11)2)22AQP S AP QE t t =⋅⋅=⋅⋅=⋅V111()2(3)22Q B R S B R C E B R A C A E t =⋅⋅=⋅⋅-=⋅V)t =⋅11(122)22PCR S RC CP t =⋅⋅=⋅-⋅V (1223t =- -------------6分 ∴PQR ACB AQP QBR PCR S S S S S =---V V V V V))(122)t t t =⋅-⋅--=372336362+-t t -----------------------------------7分=23)t -+(60<<t )∴当3t =s 时,PQR S =V 最小值2;------------------------------8分(4)存在. 如图3,分三种情况:○1114PQ AQ t ==时,过点1Q 作1Q D ⊥AC 于点D ,则122AP AD AQ COS A ==⋅∠=CP =∴+=∴2t =; ---------------------------9分○2当24AP AQ t ==时,∵CP AP +=∴4t +=t =18) -------------------------10分 ○3当34PA PQ t ==时,过点P 作PH ⊥AB 于点H , c o s 30A H P A =⋅︒)2=⋅ 183t =-32366A Q A H t =⋅=- ∴3664t t -=∴ 3.6t =综上所述,当18)t =s 时,APQ V 是等腰三角形.------11分。
苏州市初三数学中考模拟试卷(一)含答案.pdf

苏州市初三数学中考模拟试卷(一)
(满分 130 分,考试时间 120 分钟) 一、选择题:本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,恰
有一项是符合题目要求的,请将正确选项前的字母代号填涂在答.题.卡.相.应.位.置.上. 1.如果向北走2km记作+2km,那么向南走3km记作
D. 1 a 2
二、填空题:本大题共 8 小题,每小题 3 分,共 24 分.不需写出解答过程,请把答案直接
学海无涯
填写在答.题.卡.相.应.位.置.上. 11. 计算: 32 2 = ▲ . 12. 函数 y = x 中,自变量 x 的取值范围是 ▲ .
x+5 13. 如图,AB∥CD,∠C=20o,∠A=55o,则∠E= ▲ o. 14. 若关于 x 的方程 x2 − x + a =0 有两个相等的实数根,则 a 的值为 ▲ . 15. 已知扇形的圆心角为 45o,半径为 2cm,则该扇形的面积为 ▲ cm2. 16. 如图,矩形 ABCD 沿着直线 BD 折叠,使点 C 落在 C1 处,BC1 交 AD 于点 E,AD=8,
例函数 y = 1 (x>0)的图象上移动时,B 点坐标满足的函数解析式为 ▲ . x
三、解答题:本大题共 10 小题,共计 76 分.请在答.题.卡.指.定.区.域.内作答,解答时应写出 文字说明、证明过程或演算步骤.
19.(本小题满分 5 分)计算:
|
−3 |
+(−3)2
+
(6
−
)0
−
1 2
−1
A. x −2
B. x −2
C. x 2
D. x 3
10. 如图,边长为 2a 的等边三角形 ABC 中,M 是高 CH 所在直线上的一个动点,连接 MB,
江苏省苏州市2016年中考数学试卷及答案解析(word版)

2016年江苏省苏州市中考数学试卷一、选择题(共10小题, 21 . 1的倒数是()A 3 r 3-2A .一B .- — C . — D .22 3每小题3分,满分30分)2 •肥皂泡的泡壁厚度大约是0.0007mm , 0.0007用科学 记数法表示为( ) -3- 3- 4- 5A . 0.7 X 10B . 7 X10C . 7 X10D . 7 X10 3 .下列运算结果正确的是()2 2A. a+2b=3ab B . 3a - 2a =12482332C . a ?a =aD . ( - a b ) +( a b ) = - b4. 一次数学测试后,某班40名学生的成绩被分为5组,第1〜4组的频数分 别为12、10、6、8,则第5组的频率是()A . 0.1B . 0.2C . 0.3D . 0.4(y 1=y 2D .无法确定阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的 阶梯水价”标准收费,某中学 研究学习小组的同学们在社会实践活动中调查了 30户家庭某月的用水量,如 用水量(吨)1520 25 30 35 户数36795则这30户家庭该用用水量的众数和中位数分别是( )A . 25 , 27B . 25 , 25C . 30 , 27D . 30 , 258.如图,长4m 的楼梯AB 的倾斜角/ ABD 为60 °为了改善楼梯的安全 性 能,准备重新建造楼b 分别相交于A 、B 两点,过点A 作直线I °则/ 2的度数为() (4, y 2) 都在反比例函数y= — ( k v 0)的图象上,则 A. y 1、y 2的大小关系为 y 1 > y 2B . y 1v y 2C .根据国家发改委实施28已知点A ( 2, y 1)、 B 6. 5.如图,直线a // b ,直线I 与a 、若/仁58梯,使其倾斜角/ ACD为45。
江苏省苏州市2016年中考数学模拟试卷(一)解析【解析版】

2016年江苏省苏州市中考数学模拟试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1.下列式子结果为负数的是()A.(﹣3)0B.﹣|﹣3| C.(﹣3)2D.(﹣3)﹣2【考点】负整数指数幂;绝对值;有理数的乘方;零指数幂.【试题解析】解:A、(﹣3)0=1>0;C、(﹣3)2=9>0;D、(﹣3)﹣2=>0;B、﹣|﹣3|=﹣3<0.【答案】B.2.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.0.21×10﹣5 D.2.1×10﹣5【考点】科学记数法—表示较小的数.【试题解析】解:一粒大米的质量约为0.000021千克,这个数用科学记数法表示为2.1×10﹣5;【答案】:D3.下列计算正确的是()A.(2a2)3=8a5B.()2=9 C.3﹣=3 D.﹣a8÷a4=﹣a4【考点】幂的乘方与积的乘方;算术平方根;同底数幂的除法;二次根式的加减法.【试题解析】解:A、(2a2)3=8a6,原式计算错误,故本选项错误;B、()2=3,原式计算错误,故本选项错误;C、3﹣=2,原式计算错误,故本选项错误;D、﹣a8÷a4=﹣a4,原式计算正确,故本选项正确.【答案】D.4.下面调查中,适合采用普查的是()A.调查全国中学生心理健康现状B.调查你所在的班级同学的身高情况C.调查我市食品合格情况D.调查南京市电视台《今日生活》收视率【考点】全面调查与抽样调查.【试题解析】解:A、人数众多,应用抽样调查,故此选项错误;B、人数不多,应用全面调查,故此选项正确;C、数量众多,使用抽样调查,破坏性较强,故此选项错误;D、范围太大,应用抽样调查,故此选项错误;【答案】:B.5.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④【考点】中心对称图形.【试题解析】解:应该将②涂黑.【答案】B.6.已知是二元一次方程组的解,则a﹣b的值为()A.﹣1 B.1 C.2 D.3【考点】二元一次方程的解.【试题解析】解:∵已知是二元一次方程组的解,∴由①+②,得a=2,由①﹣②,得b=3,∴a﹣b=﹣1;【答案】:A.7.如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.【考点】简单几何体的三视图;截一个几何体.【试题解析】解:从上面看,图2的俯视图是正方形,有一条对角线.【答案】C.8.如图,在△ABC中,∠A=90°,AB=AC=2,点O是边BC的中点,半圆O与△ABC相切于点D、E,则阴影部分的面积等于()A.1﹣B.C.1﹣D.【考点】切线的性质;扇形面积的计算.【试题解析】解:连接OD,OE,∵半圆O与△ABC相切于点D、E,∴OD⊥AB,OE⊥AC,∵在△ABC中,∠A=90°,AB=AC=2,∴四边形ADOE是正方形,△OBD和△OCE是等腰直角三角形,∴OD=OE=AD=BD=AE=EC=1,∴∠ABC=∠EOC=45°,∴AB∥OE,∴∠DBF=∠OEF,在△BDF和△EOF中,,∴△BDF ≌△EOF (AAS ),∴S 阴影=S 扇形DOE =×π×12=.【答案】B .9.在△ABC 中,∠ABC=30°,AB 边长为10,AC 边的长度可以在3、5、7、9、11中取值,满足这些条件的互不全等的三角形的个数是( )A .3个B .4个C .5个D .6个【考点】勾股定理;含30度角的直角三角形.【试题解析】解:如图,过点A 作AD ⊥BC 于D ,∵∠ABC=30°,AB=10,∴AD=AB=5,当AC=5时,可作1个三角形,当AC=7时,可作2个三角形,当AC=9时,可作2个三角形,当AC=11时,可作1个三角形,所以,满足条件的互不全等的三角形共有1+2+2+1=6个.【答案】D .10.二次函数y=x 2+px+q 中,由于二次项系数为1>0,所以在对称轴左侧,y 随x 增大而减小,从而得到y 越大则x 越小,在对称轴右侧,y 随x 增大而减大,从而得到y 越大则x 也越大,请根据你对这句话的理解,解决下面问题:若关于x 的方程x 2+px+q+1=0的两个实数根是m、n(m<n),关于x的方程x2+px+q﹣5=0的两个实数根是d、e(d<e),则m、n、d、e的大小关系是()A.m<d<e<n B.d<m<n<e C.d<m<e<n D.m<d<n<e【考点】抛物线与x轴的交点.【试题解析】解:二次函数y=x2+px+q+1图象如图所示:结合图象可知方程x2+px+q﹣5=0的两个实数根即为函数y=x2+px+q+1和y=6的交点,即d<m<n<e,【答案】B.二、填空题(本大题共8小题,每小题3分,共24分)11.在函数y=中,自变量x的取值范围是x≥﹣1且x≠0.【考点】函数自变量的取值范围.【试题解析】解:根据题意得:x+1≥0且x≠0,解得:x≥﹣1且x≠0.【答案】x≥﹣1且x≠0.12.若点P(a,a﹣2)在第四象限,则a的取值范围是0<a<2.【考点】点的坐标.【试题解析】解:∵点P(a,a﹣2)在第四象限,∴,解得0<a<2.【答案】0<a<2.13.分解因式:4x3﹣4x2y+xy2=x(2x﹣y)2.【考点】提公因式法与公式法的综合运用.【试题解析】解:4x3﹣4x2y+xy2=x(4x2﹣4xy+y2)=x(2x﹣y)2.【答案】x(2x﹣y)2.14.方程x(x﹣2)=﹣(x﹣2)的根是x1=2,x2=﹣1.【考点】解一元二次方程-因式分解法.【试题解析】解:x(x﹣2)=﹣(x﹣2)移项得:x(x﹣2)+(x﹣2)=0,∴(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1.【答案】x1=2,x2=﹣1.15.已知点P(a,b)在直线上,点Q(﹣a,2b)在直线y=x+1上,则代数式a2﹣4b2﹣1=1.【考点】一次函数图象上点的坐标特征.【试题解析】解:∵点P(a,b)在直线上,点Q(﹣a,2b)在直线y=x+1上,∴,解得,∴原式=﹣4×﹣1=1.【答案】1.16.某数学活动小组的20名同学站成一列做报数游戏,规则是:从前面第一位开始,每位同学一次报自己的顺序数的倒数加1,第一同学报(+1),第二位同学报(+1),第三位同学报(+1),…这样得到的20个数的积为21.【考点】规律型:数字的变化类.【试题解析】解:∵第一同学报(+1),第二位同学报(+1),第三位同学报(+1),…∴这样20个数据分别为:( +1)=2,( +1)=,( +1)=…(+1)=,( +1)=,故这样得到的20个数的积为:2×××…××=21, 【答案】21.17.如图,正方形ABCD 与正三角形AEF 的顶点A 重合,将△AEF 绕其顶点A 旋转,在旋转过程中,当BE=DF 时,∠BAE 的大小可以是 15°或165° .【考点】旋转的性质;等边三角形的性质;正方形的性质.【试题解析】解:①当正三角形AEF 在正方形ABCD 的内部时,如图1,∵正方形ABCD 与正三角形AEF 的顶点A 重合,当BE=DF 时,在△ABE 与△ADF 中,,∴△ABE ≌△ADF (SSS ),∴∠BAE=∠FAD ,∵∠EAF=60°,∴∠BAE+∠FAD=30°,∴∠BAE=∠FAD=15°,②当正三角形AEF 在正方形ABCD 的外部时.∵正方形ABCD 与正三角形AEF 的顶点A 重合,当BE=DF 时,∴AB=AD BE=DF AE=AF ,∴△ABE≌△ADF(SSS),∴∠BAE=∠FAD,∵∠EAF=60°,∴∠BAE=(360°﹣90°﹣60°)×+60°=165°,∴∠BAE=∠FAD=165°【答案】15°或165°.18.如图,圆心都在x轴正半轴上的半圆O1、半圆O2、…、半圆O n与直线相切,设半圆O1、半圆O2、…、半圆O n的半径分别是r1、r2、…、r n,则当r1=1时,r2016=32015.【考点】切线的性质;一次函数图象上点的坐标特征.【试题解析】解:设A、B、C是切点,由题意直线y=x与x轴的夹角为30°,在RT△OO1A中,∵AO1=1,∠AOO1=30°,∴OO1=2AO1=2,同理:OO2=2BO2,OO3=2CO3,∴3+r2=2r2,∴r2=3,9+r3=2r3,r3=9,∴r1=1,r2=3,r3=9…r n=3n﹣1,∴r2016=32015.【答案】32015.三、解答题(本大题共10小题,共76分)19.计算:﹣2cos30°+()﹣2﹣|1﹣|.【考点】特殊角的三角函数值;绝对值;负整数指数幂;二次根式的性质与化简.【试题解析】解:原式=3﹣2×+4﹣(﹣1),=3﹣+4﹣+1,=+5.【答案】+5.20.化简:÷(x+2﹣)【考点】分式的混合运算.【试题解析】解:÷(x+2﹣)=÷()=•=.【答案】.21.解不等式组:,并求它的整数解的和.【考点】一元一次不等式组的整数解.【试题解析】解:由①得x>﹣2由②得x≤1∴不等式组的解集为﹣2<x≤1∴不等式组的整数解的和为﹣1+0+1=0.【答案】022.如图,是数轴的一部分,其单位长度为a,已知△ABC中,AB=3a,BC=4a,AC=5a.(1)用直尺和圆规作出△ABC(要求:使点A,C在数轴上,保留作图痕迹,不必写出作法);,△ABC的面积为S△,试说明>π.(2)记△ABC的外接圆的面积为S圆【考点】作图—复杂作图;勾股定理;三角形的外接圆与外心.【试题解析】解:(1)如图所示:(2)∵△ABC的外接圆的面积为S,圆=π×()2=π,∴S圆△ABC的面积S△ABC=×3a×4a=6a2,∴==π>π.【答案】见解析23.九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.奖项一等奖二等奖三等奖|x| |x|=4 |x|=3 1≤|x|<3(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?【考点】列表法与树状图法.【试题解析】解:(1)画树状图得:∵共有20种等可能的结果,甲同学获得一等奖的有2种情况,∴甲同学获得一等奖的概率为:=;(2)不一定,当两张牌都是3时,|x|=0,不会有奖.【答案】见解析24.为了解八年级学生的课外阅读情况,我校语文组从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(2015•常州)如图,在四边形ABCD中,∠A=∠C=45°,∠ADB=∠ABC=105°.(1)若AD=2,求AB;(2)若AB+CD=2+2,求AB.【考点】勾股定理;含30度角的直角三角形;等腰直角三角形.【试题解析】解:(1)过D点作DE⊥AB,过点B作BF⊥CD,∵∠A=∠C=45°,∠ADB=∠ABC=105°,∴∠ADC=360°﹣∠A﹣∠C﹣∠ABC=360°﹣45°﹣45°﹣105°=165°,∴∠BDF=∠ADC﹣∠ADB=165°﹣105°=60°,△ADE与△BCF为等腰直角三角形,∵AD=2,∴AE=DE==,∵∠ABC=105°,∴∠ABD=105°﹣45°﹣30°=30°,∴BE===,∴AB=;(2)设DE=x,则AE=x,BE===,∴BD==2x,∵∠BDF=60°,∴∠DBF=30°,∴DF==x,∴BF===,∴CF=,∵AB=AE+BE=,CD=DF+CF=x,AB+CD=2+2,∴AB=+1【答案】见解析26.“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y 值表示7:00时的存量,x=2时的y 值表示8:00时的存量…依此类推.他发现存量y (辆)与x (x 为整数)满足如图所示的一个二次函数关系. 时段 x 还车数(辆)借车数 (辆) 存量y (辆) 6:00﹣7:00 145 5 100 7:00﹣8:00243 11 n … … … … …根据所给图表信息,解决下列问题:(1)m= 60 ,解释m 的实际意义: 该停车场当日6:00时的自行车数 ;(2)求整点时刻的自行车存量y 与x 之间满足的二次函数关系式;(3)已知9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.【考点】二次函数的应用.【试题解析】解:(1)m+45﹣5=100,解得m=60,即6点之前的存量为60.m表示该停车场当日6:00时的自行车数;(2)n=100+43﹣11=132,设二次函数的解析式为y=ax2+bx+c,把(1,100),(2,132)、(0,60)代入得,解得,所以二次函数的解析式为y=﹣4x2+44x+60(x为1﹣12的整数);(3)设9:00~10:O0这个时段的借车数为x辆,则还车数为(3x﹣4)辆,把x=3代入y=﹣4x2+44x+60得y=﹣4×32+44×3+60=156,把x=4代入y=﹣4x2+44x+60得y=﹣4×42+44×4+60=172,即此时段的存量为172,所以156﹣x+(3x﹣4)=172,解得x=10,答:此时段借出自行车10辆.【答案】见解析27.如图,A(5,0),B(3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB,∠CDA=90°.点P从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位长度的速度运动,运动时间t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.【考点】圆的综合题.【试题解析】解:(1)∵A(5,0),B(3,0),∴OA=5,OB=3,∵∠CBO=45°,∴OC=OB=3,∴点C的坐标(0,3);(2)①当P在点B的左侧时,∵∠CBO=45°,∠BCP=15°∴∠OCP=∠OCB﹣∠BCP=45°﹣15°=30°,∵CO=3,∴OP=CO=,∵Q(﹣4,0),∴QP=+4,∵点P沿x轴向右以每秒2个单位的速度运动,∴t=,②当P在点B的右侧时,∵∠CBO=45°,∠BCP=15°∴∠OCP=∠OCB+∠BCP=45°+15°=60°,∵CO=3,∴OP=CO=3,∵Q(﹣4,0),∴QP=3+4,∵点P沿x轴向右以每秒2个单位的速度运动,∴t=,综上所述当∠BCP=15°时,t的值为或;(3)①如图1,当PC⊥BC时,⊙P与BC相切,∵∠CBO=45°,∴∠CPB=45°,CP=BC,∵CO=3,∴PO=3,∴QP=QO﹣PO=4﹣3=1,∵点P从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位的速度运动,∴t=0.5(秒),②如图2,当PC⊥CD时,⊙P与CD相切,∵QO=4,点P从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位的速度运动,∴t=4÷2=2(秒)③如图3,当PA⊥AD时,⊙P与AD相切,设PA=r∵OA=5,OC=3,∴OP2+OC2=PC2,即(5﹣r)2+32=r2,解得:r=,∴QP=4+5﹣=,∵点P从点Q(﹣4,0)出发,沿x轴向右以每秒2个单位的速度运动,∴t=,综上所述t1=0.5秒,t2=2秒,t3=秒.【答案】见解析28.已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFC为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.【考点】相似三角形的判定与性质;勾股定理;正方形的性质;直角梯形.【试题解析】解:(1)如图①,设正方形BEFG的边长为x,则BE=FG=BG=x,∵AB=3,BC=6,∴AG=AB﹣BG=3﹣x,∵GF∥BE,∴△AGF∽△ABC,∴,即,解得:x=2,即BE=2;(2)存在满足条件的t,理由:如图②,过点D作DH⊥BC于H,则BH=AD=2,DH=AB=3,由题意得:BB′=HE=t,HB′=|t﹣2|,EC=4﹣t,∵EF∥AB,∴△MEC∽△ABC,∴,即,∴ME=2﹣t,在Rt△B′ME中,B′M2=ME2+B′E2=22+(2﹣t)2=t2﹣2t+8,在Rt△DHB′中,B′D2=DH2+B′H2=32+(t﹣2)2=t2﹣4t+13,过点M作MN⊥DH于N,则MN=HE=t,NH=ME=2﹣t,∴DN=DH﹣NH=3﹣(2﹣t)=t+1,在Rt△DMN中,DM2=DN2+MN2=t2+t+1,(Ⅰ)若∠DB′M=90°,则DM2=B′M2+B′D2,即t2+t+1=(t2﹣2t+8)+(t2﹣4t+13),解得:t=,(Ⅱ)若∠B′MD=90°,则B′D2=B′M2+DM2,即t2﹣4t+13=(t2﹣2t+8)+(t2+t+1),解得:t1=﹣3+,t2=﹣3﹣(舍去),∴t=﹣3+;(Ⅲ)若∠B′DM=90°,则B′M2=B′D2+DM2,即:t2﹣2t+8=(t2﹣4t+13)+(t2+t+1),此方程无解,综上所述,当t=或﹣3+时,△B′DM是直角三角形;(3)①如图③,当F在CD上时,EF:DH=CE:CH,即2:3=CE:4,∴CE=,∴t=BB′=BC﹣B′E﹣EC=6﹣2﹣=,∵ME=2﹣t,∴FM=t,当0≤t≤时,S=S△FMN=×t×t=t2,②如图④,当G在AC上时,t=2,∵EK=EC•tan∠DCB=EC•=(4﹣t)=3﹣t,∴FK=2﹣EK=t﹣1,∵NL=AD=,∴FL=t﹣,∴当<t≤2时,S=S△FMN﹣S△FKL=t2﹣(t﹣)(t﹣1)=﹣t2+t﹣;③如图⑤,当G在CD上时,B′C:CH=B′G:DH,即B′C:4=2:3,解得:B′C=,∴EC=4﹣t=B′C﹣2=,∴t=,∵B′N=B′C=(6﹣t)=3﹣t,∵GN=GB ′﹣B ′N=t ﹣1,∴当2<t ≤时,S=S 梯形GNMF ﹣S △FKL =×2×(t ﹣1+t )﹣(t ﹣)(t ﹣1)=﹣t 2+2t﹣,④如图⑥,当<t ≤4时, ∵B ′L=B ′C=(6﹣t ),EK=EC=(4﹣t ),B ′N=B ′C=(6﹣t ),EM=EC=(4﹣t ),S=S 梯形MNLK =S 梯形B ′EKL ﹣S 梯形B ′EMN =﹣t+.综上所述:当0≤t ≤时,S=t 2,当<t ≤2时,S=﹣t 2+t ﹣;当2<t ≤时,S=﹣t 2+2t ﹣,当<t ≤4时,S=﹣t+.最大最全最精的教育资源网 全国中小学教育资源门户网站 | 天量课件、教案、试卷、学案 免费下载 | 【答案】见解析。
2016年江苏省苏州市吴中区中考数学一模试卷带解析答案

17. (3 分)如图,半圆 O 的直径 AE=4,点 B,C,D 均在半圆上,若 AB=BC, CD=DE,连接 OB,OD,则图中阴影部分的面积为 .
18. (3 分)如图,在矩形 ABCD 中,AB=10,BC=5,若点 M、N 分别是线段 AC、AB 上的两个动点,则 BM+MN 的最小值为
25. (8 分)如图,一次函数 y=kx+b(k<0)的图象经过点 C(3,0) ,且与两 坐标轴围成的三角形的面积为 3. (1)求该一次函数的解析式; (2)若反比例函数 y= 的图象与该一次函数的图象交于二、四象限内的 A、B
第 4 页(共 27 页)
两点,且 AC=2BC,求 m 的值.
9. (3 分)如图,已知▱ ABCD 的对角线 BD=4cm,将▱ ABCD 绕其对称中心 O 旋转 180°,则点 D 所转过的路径长为( )
A.4πcm
B.3πcm
C.2πcm
D.πcm
10. (3 分)给出下列命题及函数 y=x,y=x2 和 y= 的图象: ①如果 >a>a2,那么 0<a<1; ②如果 a2>a> ,那么 a>1; ③如果 >a2>a,那么﹣1<a<0; ④如果 苏州市吴中区中考一模数学试卷
一、选择题(每题 3 分) 1. (3 分)2 的倒数是( A. B.﹣ ) C. (a3)2=a9 D.a2+a3=a5 ) C.± D.2
26. (10 分)如图,AB 是⊙O 的直径,弦 CD⊥AB 于 H,过 CD 延长线上一点 E 作⊙O 的切线交 AB 的延长线于 F.切点为 G,连接 AG 交 CD 于 K. (1)求证:KE=GE; (2)若 KG2=KD•GE,试判断 AC 与 EF 的位置关系,并说明理由; (3)在(2)的条件下,若 sinE= ,AK= ,求 FG 的长.
2016年苏州市中考一模数学试卷

2016届江苏省苏州市中考模拟数学一、选择题(共10小题;共50分)1. 的绝对值是A. B. C. D.2. 新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为公里,用科学记数法表示为A. B. C. D.3. 如图,,,则的度数是A. B. C. D.4. 下列运算不正确的是A. B. C. D.5. 若代数式与的值相等,则的值是A. B. C. D.6. 太仓港城中学足球队的名队员的年龄如表所示:这名队员年龄的众数和中位数分别是A. 岁,岁B. 岁,岁C. 岁,岁D. 岁,岁7. 如图,在平面直角坐标系中,的顶点都在方格纸的格点上,如果将先向右平移个单位长度,在向下平移个单位长度,得到,那么点的对应点的坐标为A. B. C. D.8. 如图,一次函数与一次函数的图象交于点,则关于的不等式>的解集是A. B. C. D.9. 如图,正方形的对角线与相交于点,的角平分线分别交、于,两点.若,则线段的长为A. B. C. D.10. 如图,抛物线与轴交于点,,把抛物线在轴及其上方的部分记作,将向右平移得,与轴交于点,.若直线与,共有个不同的交点,则的取值范围是A. B.C. D.二、填空题(共8小题;共40分)11. 分解因式:.12. 如图,是的切线,是切点,,,则的周长为(结果保留).13. 小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖的除颜色外完全相同,它最终停留在黑色方砖上的概率是.14. 如图,等边三角形的顶点的坐标为,顶点在反比例函数的图象上,则.15. 函数=中,自变量的取值范围是.16. 已知关于的方程的两个根为、,则.17. 如图,在边长为的正方形中,是的中点,以为圆心,为半径作半圆,交,所在的直线于,两点,分别以直径、为直径作半圆,则阴影部分面积为.18. 如图,在菱形中,,,分别交、于点,,,连接,以下结论:;点到的距离是;;的面积为.其中一定成立的是(把所有正确结论的序号都填在横线上).三、解答题(共10小题;共130分)19. 计算:.20. 解不等式组:.21. 先化简,再求值:,其中.22. 太仓和温州两地相距,乘坐高铁列车比乘坐普通快车能提前到达,已知高铁列车的平均行驶速度是普通快车的倍,求高铁列车的平均行驶速度.23. 八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:(1)计算;(2)在扇形统计图中,“其他”类所占的百分比为;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的人恰好是乙和丙的概率.24. (1)如图,在矩形中,,求证:;(2)如图,在圆内接四边形中,为圆心,,求的度数.25. 如图1,点、都在反比例函数>的图象上,过点作轴于,过点作轴于.(1)求的值和直线的函数关系式;(2)动点从点出发,以每秒个单位长度的速度沿折线向点运动,同时动点从点出发,以每秒个单位长度的速度沿折线向点运动,当动点运动到时,点也停止运动,设运动的时间为秒.设的面积为,写出与的函数关系式;如图2,当的在线段上运动时,如果作关于直线的对称图形,是否存在某时刻,使得点恰好落在反比例函数的图象上?若存在,求的坐标和的值;若不存在,请说明理由.26. 如图,是的直径,弦垂直平分半径,垂足为,,连接,过作平行线交延长线于点.(1)求的半径;(2)求证:是的切线;(3)若弦与直径交于点,当时,求图中阴影部分的面积.27. 抛物线过点,,与轴交于点.(1)求抛物线的函数表达式;(2)如图1,连接,以为边作平行四边形,若点在直线上方的抛物线上,为坐标平面内的一点,且平行四边形的面积为,求点的坐标;(3)如图2,过点,,三点,为直径,点为上的一动点(不与点,重合),为直角,边与的延长线交于,求线段长度的最大值.28. 如图,已知:在矩形的边上有一点,,以为圆心,长为半径作圆,交于,恰好与相切于,过作弦,弦.若点是边上一动点(点与,不重合),过作直线交于,再把沿着动直线对折,点的对应点为.设,与矩形重叠部分的面积为.(1)求证:四边形是菱形;(2)问的直角顶点能落在上吗?若能,求出此时的值;若不能,请说明理由;(3)求与之间的函数关系式,并直接写出与相切时,的值.答案第一部分1. A2. B3. C4. D5. B【解析】根据题意得:,去分母得:,解得:.6. B7. D8. C9. C 【解析】作于,如图,因为四边形为正方形,所以,所以为等腰直角三角形,所以,因为平分,所以,所以,所以,所以,,因为,所以,所以,所以,即,所以.10. D【解析】令,即,解得或,则点,,由于将向右平移个长度单位得,则解析式为,当与相切时,令,即,,解得,当过点时,即,,当时直线与、共有个不同的交点.第二部分11.12.【解析】连接,因为是的切线,是切点,所以,在中,,,,由勾股定理得:,则的周长为.13.14.【解析】过点作轴于点,因为是等边三角形,点的坐标为,所以,,所以,,所以,所以.15.16.17.【解析】根据图形可知阴影部分的面积两个小的半圆的面积的面积大半圆的面积.因为的半圆的直径,所以.在中,,所以两个小半圆的面积大半圆的面积.所以阴影部分的面积的面积.在中,,所以阴影部分的面积的面积.18.【解析】因为菱形,所以,因为,所以,,在与中,所以,所以正确;过点作,过点作,,如图:因为,,,所以,因为,所以,所以点到的距离是,故正确;因为,,所以,所以,所以的面积为,故错误;因为,所以,因为,所以,所以,所以,所以,故正确.第三部分19. 原式.20.解得:解得:故不等式组的解为:.原式21.当,即时,原式.22. 设普通快车的速度为时,由题意得:解得:经检验:是原分式方程的解,,答:高铁列车的平均行驶速度是时.23. (1)【解析】因为喜欢散文的有人,频率为,所以.(2)【解析】在扇形统计图中,“其他”类所占的百分比为 .(3)画树状图,如图所示:所有等可能的情况有种,其中恰好是丙与乙的情况有种,所以丙和乙.24. (1)因为四边形是矩形,所以,,因为,所以,在和中,所以,所以.(2)因为,所以,因为,,,四点共圆,所以,所以.25. (1)因为点、都在反比例函数的图象上,所以,所以,所以,即,设的解析式为,把、代入上式得:解得:所以直线的解析式为.(2)由题意知:,,当在上运动时,,当在上运动时,;存在,作轴,轴于,交于,则,,,由题意知:,,所以,所以,设,,则,,所以,解得:,,所以,当在反比例函数的图象上时,,解得:,因为反比例函数的图形在第一象限,所以,所以.当个长度单位时,恰好落在反比例函数的图象上.26. (1)连接.因为垂直平分半径,所以,因为,所以,,所以,所以.(2)由知:,,所以,所以,因为,所以,所以,所以,所以是的切线.(3)连接.因为,因为,所以,所以,.所以阴影扇形27. (1)将点,的坐标代入抛物线的解析式得:解得:所以抛物线得解析式为.(2)如图所示:设点的坐标为,因为平行四边形的面积为,所以,即:梯形.所以.化简得:解得:或因为,所以点的坐标为.(3)连接、.因为是圆的直径,所以.所以.又因为,所以.因为,,所以点的横坐标为,将代入抛物线的解析式得:,所以点的坐标为.设点的坐标为,因为,所以,解得:.所以点的坐标为,所以,在中,由勾股定理得:,所以点的坐标为.所以,.因为,所以.所以.所以.所以当为直径时,最大,此时最大.所以,所以.28. (1)连接,如图所示.因为四边形是矩形,所以,,.因为,所以.所以.所以.因为,所以.所以,因为与相切于点,所以.所以.所以.所以.所以.因为,.所以.所以.因为,所以.因为,所以四边形是平行四边形.因为,是的直径,所以与相切于点.因为与相切于点,所以.所以平行四边形是菱形.(2)的直角顶点能落在上.如图所示,点落到上.因为,所以.因为,所以.由折叠可得:.所以.因为,所以..所以.所以.所以,.所以.所以.所以.所以点与点重合.此时的直角顶点落在上,对应的的值为.所以当的直角顶点落在上时,对应的的值为.(3)如图,在中,.所以.所以.如图,,,.因为,所以.所以.因为,所以.综上所述:当时,;当时,.当与相切于点时,延长交于点,过点作,垂足为,如图所示.因为四边形是矩形,所以,,所以.因为,所以.所以.因为,所以四边形是矩形.所以,.所以.在中,.所以.所以.解得:.因为,所以.所以与相切时,的值为.。
苏州市2015—2016学年第一学期九年级数学期终模拟测试(一)及答案讲解

2015—2016学年第一学期期终模拟测试一九年级数学试卷(范围:苏科版 2013年九年级上下两册; 分值:130分;时间:120分钟)2016年1月 -、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个 是符合题意的•请将正确选项前的字母填在表格中相应的位置题号12345678910答案1.一元二次方程2x 2 -x - 3 =0的二次项系数、一次项系数、常数项分别是( )A • 2,1,3B • 2,1, -3C .2 1,3 2.下列图形是中心对称图形的是( )2 2 2 2A . y =x 2B . y =x -2C . y 二 x 2D . y 二 x-26 .已知扇形的半径为 6,圆心角为60,则这个扇形的面积为( )A . 9 二B . 6 二C . 3 二D . ■:7.用配方法解方程 x 2 4x =3,下列配方正确的是()2 2 2 2A . (x —2)=1B . (X —2) =7C . (x + 2)=7D. (x + 2)=1&已知二次函数 y =ax 2 • bx • c 的图象如图所示,则下列选 项中不正确的是()A . a :: 0b 彳D . 2,-1,-33.二次函数y =-(x+1)2 -2的最大值是()A . -2B . -1C . 1D . 24.已知O O 的半径是4, OP 的长为3,则点P 与O O 的位置关系是(A .点P 在圆内B .点P 在圆上C .点P 在圆外 )D .不能确定 5.将抛物线y = x 2沿y 轴向下平移2个单位,得到的抛物线的解析式为(A .B .C .D .C . 0 < 1B . c 0D . a b c ::02a9.如图,△ ABC 内接于O O,BD 是O O 的直径.若.DBC =33 •,则.匕A 等于()A . 33B . 57C . 67D . 66A . 7 分B . 6.5 分C . 6 分D . 5.5 分二、填空题(本题共18分,每小题3分) 11.方程x 2 -4 =0的解为 ____________________ .12•请写出一个开口向上且经过 (0, 1)的抛物线的解析式 __________ . 13 .若二次函数y=2x 2-5的图象上有两个点 A (2,a )、B (3,b ),则 a —b (填“ <”或“=”或“ >”).14 .如图,A 、B 、C 三点在O O 上,/ AOC=100 ° ,则/ ABC= _______15 .用一块直径为4米的圆桌布平铺在对角线长为 4米的正方形桌面上(如 示意图),若四周下垂的最大长度相等,则这个最大长度 x 为 _________ 米(.2 取 1.4).16 .如图,O 是边长为1的等边△ ABC 的中心,将 AB 、BC 、CA 分别 绕点A 、点B 、点C 顺时针旋转:-(0 ::: :- < 180 ),得到AB'、BC'、 CA',连接 A'B'、B'C'、A'C'、OA'、OB'.(1) X A'OB'= ______ ?;(2)当:•二 ______ ?时,△ A'B'C'的周长最大.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29 题8 分)17 .解方程:x 2 =3x 「2 .18 .若抛物线y = x 2 • 3x • a 与x 轴只有一个交点,求实数 a 的值.10•小明乘坐摩天轮转一圈,他离地面的高度y (米)与旋转时间x (分) x/分2.663.23 3.46y/米69.1669.6268.46之间的关系可以近似地用二次函数来刻画 •经测试得出部分数据如下表: F 列选项中,最接近摩天轮转一圈的时间的是( )19.已知点(3, 0)在抛物线y = -3x2 - (k - 3)x -k上,求此抛物线的对称轴.20.如图,AC是O O的直径, 的度数.PA, PB是O O的切线,A, B为切点,BAC =25〔求/ P21.已知x=1是方程x2 -5ax • a2 =0的一个根,求代数式3a2 -15a -7的值.22.一圆柱形排水管的截面如图所示,已知排水管的半径为1m,水面宽AB为1.6m .由于天气干燥,水管水面下降,此时排水管水面宽变为1.2m,求水面下降的高度.23. 已知关于x 的方程3x2-(a - 3)x - a 二0(a - 0).(1)求证:方程总有两个不相等的实数根;(2)若方程有一个根大于2,求a的取值范围.24. 在设计人体雕像时,若使雕像的上部(腰以上)与下部(腰以下)的高度的比等于下部与全部(全身)的高度比,则可以增加视觉美感•按此比例,如果雕像的高为2m,那么它的下部应设计为多高(.5取2.2 ).(1)函数y =£x —1)(x — 2)的自变量x 的取值范围是表描点画出了函数-2)图象的一部分,请补全函数图象;25. 已知 AB 是O O 直径,AC 、AD 是O O 的弦,AB=2, AC=-、2 , AD=1,求/ CAD 度数.226.抛物线y^x bx c 与直线y 2 =-2x • m 相交于A (-2,n)、B (2,-3)两点. (1) 求这条抛物线的解析式; (2) 若一 4兰X 兰1,则y 2_ y 1的最小值为 _______ .27•如图,AB 为O O 的直径,C 为O O 上一点,CD 丄AB 于点 D. P 为AB 延长线上一点,.PCD =2. BAC . (1) 求证:CP 为O O 的切线; (2) BP=1 , CP f j 5. ①求O O 的半径;②若M 为AC 上一动点,贝y OM + DM 的最小值为 ______________28•探究活动:利用函数y =(x -1)(x -2)的图象(如图1)和性质,探究函数 与性质•下面是小东的探究过程,请补充完整:y = , (x-1)(x-2)的图象图1(2)如图2,他列 7图y (x-1)解决问题:1设方程•(x _1)(x -2) -一x -b =0 的两根为x,、x2,且x, :::x2,方程42 1 —x -3x 2 x b 的两根为x3、x4,且x3:::x4.若1 :::b :::、. 2,则x,、x2、x3、x4的4大小关系为____________________________ (用“ <”连接).29.在平面直角坐标系xOy中,半径为1的O O与x轴负半轴交于点A,点M在O O上,将点M绕点A顺时针旋转60待到点Q.点N为x轴上一动点(N不与A重合),将点M 绕点N顺时针旋转60得到点P. PQ与x轴所夹锐角为:-.1(1)如图1,若点M的横坐标为—,点N与点O重合,则a = ______________ °;2(2)若点M、点Q的位置如图2所示,请在x轴上任取一点N,画出直线PQ,并求的度数;(3)当直线PQ与O O相切时,点M的坐标为____________ .图1 图2 备用图数学试卷参考答案、选择题(本题共 30分,每小题3 分) 题号1 2 3 4 5 6 7 8 9 10 答案D A A A B B C D B C、填空题(本题共 18分,每小题3 分) 题号 111213 14 1516答案X 1 =2, x 2 = -22y = x 2 +1(答案不唯一)<1300.6 120, 150三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8 分)217•解:X -3x 2=0. (X-1)(x-2)=0 -••• x — 1 = 0或 x —2 = 0 ••••捲=1,x 2 = 2.218. 解:•••抛物线 y =x 3x a 与x 轴只有一个交点,9 .•..:: = 0 ,即卩 9 —'4a = 0 . • a =.419. 解:•••点(3, 0)在抛物线 y = -3x 2 (k - 3)x-k 上,• 0 = —3 32 3(k 3) -k . • k =9. ...................... 3 分 •抛物线的解析式为 y = -3x 212x-9 .•••对称轴为 x=2 . (5)分• PA=PB. (1)分• • PAB = • PBA . ........................................................ 2 •/ AC 为O O 的直径,• CA 丄 PA . • PAC =90o . T BAC =25o , •乙PAB =65o . • . P =180 -2 PAB =50o .2221 .解:I x = 1是方程x -5ax a = 0的一个根,• 1 -5a a 2 = 0 . • a 2 - 5a - T . •原式=3(a 2 - 5a) - 7 = T0 .20 .解:T PA,PB 是O O 的切线,分22.解:如图,下降后的水面宽CD为1.2m,连接OA, OC ,过点O作ON丄CD于N,交AB于M . ONC = 90 o•••AB// CD ,••• . OMA 二/ONC =90o.•/ AB =1.6, CD -1.2 ,1 1• AM AB =0.8, CN CD =0.6 .2 2在Rt△ OAM 中,• OA =1 ,•- OM = ,OA2 - AM2 =0.6 .同理可得ON =0.8 . /. MN =ON —OM =0.2.答:水面下降了0.2米.2 223.( 1)证明:厶=(a - 3) -4 3 (-a) =(a 3).• a . 0 , • (a 3)20 . 即,0 .•方程总有两个不相等的实数根. ............................... 分 (2)a(2)解方程,得咅=-1, x2. ••方程有一个根大于2,23• — 2 . • a 6 . ........................................................... 5分3224.解:如图,雕像上部高度AC与下部高度BC应有AC : BC = BC : 2 ,即BC - 2AC .设BC为x m.依题意,得X = 2(2 —■ x) . ............................ 3分解得X1 =-1「5, x2- -1 - 5 (不符合题意,舍去). - V 1.2 .答:雕像的下部应设计为 1.2m . ..................................... 5 分25. 解:如图1,当点D、C在AB的异侧时,连接OD、BC. ................... 1分•/ AB 是O O 的直径,•••乙ACB =90o .在Rt△ ACB 中,•AB =2, AC = .2 ,• BC =、2 .•一BAC = 45o. • OA = OD = AD = 1,•. BAD =60o. .......................... 3分•CAD = BAD BAC =105o. .................................... 4 分当点D、C在AB的同侧时,如图2,同理可得• BAC =45 ,BAD =60 . • CAD "BAD - BAC =15o.•CAD 为15o或105o. ........................ 5分26. 解:(1)T直线y2二-2x m经过点B (2, -3),•一3 - -2 2 m . • m = 1 .图1•••直线 y 2 - _2x - m 经过点 A (-2, n ),2••• n =5 . T 抛物线y 1 -x bx c 过点A 和点B ,‘5 = 4-2b+c, • 'b = -2,-3=4 + 2b+c. c = —3.!U (2) -12.27. (1)证明:连接 OC. •••/ PCD=2/ BAC , / POC=2/ BAC ,•••/ POC=Z PCD. •/ CD 丄 AB 于点 D,•••/ ODC=90 . POC+Z OCD =90o .•••/ PCD+Z OCD =90o . OCF=90o .•半径OC 丄CP. • CP 为O O 的切线.(2)解:①设O O 的半径为r.在 Rt A OCP 中,OC 2 CP 2 =OP 2 .••• BP =1,CP =』5,• r 2 (、5)2 =(r 1)2 . 28.解:(1) x 二1 或 x 亠 2 ;捲:x 3 : x 4 : x 2.29•解:(1) 60. (2) 解得r = 2 . /.O O 的半径为(2)如图所示: /接MQ, MP .记MQ, PQ 分别交x 轴于巳F .• QFE "AMQ =60 .•••将点M 绕点A 顺时针旋转60得到点Q ,将点 • △ MAQ 和厶MNP 均为等边三角形. ..... • MA =MQ , MN =MP , . AMQ "NMP • AMN —QMP . • △ MAN ◎△ MQP . • MAN 二 MQP .••• • AEM 二■ QEF , M 绕点 -60 . N 顺时针旋转60得到点P, , -/P 二 yr = x 2 _2x _ 3 .2 14初中数学(九下)个性化辅导第13页共8页。
江苏省苏州市2016年中考数学模拟试卷一 苏科版【优质】

2012年苏州市中考数学模拟试卷一(考试时间:120分钟,满分:130分)一、选择题:(本大题共10小题,每小题3分,共30分)1.16的平方根是 ( )A.±4 B.4 C.±2 D.2 2.下列运算正确的是 ( )A.x3+x3=2x6 B.x8÷x2=x4C.x m·x n=x mn D.(-x5)4=x203.函数y=22xx+-中自变量x的取值范围是 ( )A.x≥-2 B.x≤-2C.x≠-2 D.x≥-2且x≠24.下列四个图形中,既是轴对称图形,又是中心对称图形是 ( )5.2011年3月5日上午9时,第十一届全国人民代表大会第四次会议在人民大会堂开幕,国务院总理温家宝在年度计划报告中指出,今年中央财政用于“三农”的投入拟安排9884.5亿元.将9884.5用科学记数法表示应为 ( )A.98.845×102 B.0.98845×104C.9.8845×104 D.9.8845×1036.不等式322x+<x的解集为 ( )A.x<-2 B.x<-1C.x<0 D.x>27.2011年的三八妇女节,第一学习小组为了解本地区大约有多少中学生知道自己母亲的生日,随机调查了100个中学生,结果其中只有30个学生知道自己母亲的生日.对于这个关于数据收集与整理的问题,下列说法正确的是 ( )A.调查的方式是全面调查B.本地区约有30%的中学生知道自己母亲的生日C.样本是30个中学生D.本地区约有70个中学生不知道自己母亲的生日8.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为 ( )9.如图,是一次函数y =k x +b 与反比例函数y =2x 的图象,则关于x 的方程k x +b =2x的解是 ( ) A .x 1=1,x 2=2 B .x 1=-2,x 2=-1C .x 1=1,x 2=-2D .x 1=2,x 2=-1 10.如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心、EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则S 四边形ADCE :S 正方形ABCD 的值为 ( )A .45 B .34C .38D .58 二、填空题:(本大题共8小题,每小题3分,共24分)11.分解因式:x 3-4xy 2=_______.12.若等腰三角形两边长分别为2和5,则它的周长是_______.13.如图,AD ⊥CD ,AB =13,BC =12,CD =3,AD =4则sinB =_______.第13题 第14题 第15题 第16题14.如图,扇形CAB 的圆心角∠ACB =90°,半径CA =8cm ,D 为弧AB 的中点,以CD 为直径的⊙O 与CA 、CB 相交于点E 、F ,则图中阴影部分的面积是_______cm 2.15.如图,梯形ABCD 中,AD ∥BC ,AB =CD ,∠ABC =72°,DE ∥AB ,将△DCE 沿DE 翻折,得到△DC'E ,则∠EDC'=_______度.16.某校为鼓励学生课外阅读,制定了“阅读奖励方案”.方案公布后,随机征求了00名学生的意见,并对持“赞成”、“反对”、“弃权”三种意见的人数进行统计,绘制成 如图所示的扇形统计图.若该校有1000名学生,则赞成该方案的学生约有_______人.17.如图,D 是反比例函数y =k x(k<0)的图象上一点,过D 作DE ⊥x 轴于E ,DC ⊥y 轴于C ,一次函数y =-x +m 与y =-3x +2的图象都经过点C ,与x 轴分别交于A 、B 两点,四边形DCAE 的面积为4,则k 的值为_______. 18.设m>n>0.m 2+n 2=4mm ,则22m n mn -=_______. 三、解答题:(本大题共11小题,共76分)19.(5分)计算()04920103tan30π----+︒+3t a n30°20.(5分)解方程组3610638x y x y +=⎧⎨+=⎩,并求xy 的值.21.(5分)先化简,再求值:231124a a a +⎛⎫+÷ ⎪--⎝⎭,其中23a =-.A BCO xy22.(6分)如图,AB、CD是两条高速公路,M、N是两个村庄,现建造一个货物中转站,要求到AB、CD 的距离相等,且到两个村庄的距离也相等.(不写作法,保留作图痕迹)23.(6分)如图,已知在平面直角坐标系中,平行四边形ABCD顶点A(0,0),C(10,4),直线y=ax-2a-1将平行四边形ABCD分成面积相等的两部分,求a的值.24.(6分)有一种传染性疾病,蔓延速度极快,据统计,在人群密集的某地市里.通常情况下,每人每天能传染给若干人,通过计算回答下列问题:(1)现有一人患了这种疾病,开始两天共有225人患上此病,每人每天传染了几人?(2)两天后,人们有所觉察,这样平均一个人一天以少传播五人的速度在递减,再过两天,共有多少人患有此病?25.(5分)如图,抛物线y=12x2-x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=-2x 上.(1)求A,B的坐标;(2)以AC,CB为一组邻边作□ABCD,则点D关于轴的对称点D′是否在该抛物线上?请说明理由.26.(8分)杨华与季红用5张同样规格的硬纸片做拼图游戏,正面如图①所示,背面完全一样,将它们背面朝上搅匀后,分别抽出两张.规则如下:当两张硬纸片上的图表可拼成电灯或小人时,杨华得1分;当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图②).问题:游戏规则对双方公平吗?请说明理由.若你认为不公平,如何修改游戏规则才能使游戏对双方公平?27.(8分)如图①,将边长为4 cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的M处,点落在点N处,MN与CD交于点P,连接EP.(1)如图②,若M为AD边的中点,①△AEM的周长=_______cm;②求证:EP=AE+DP:(2)随着落点M的AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.28.(9分)如图,四边形ABCD中,AD∥BC,∠ABC=∠BAD=90°,AB为⊙O的直径.(1)若AD=2,AB=BC=8,连接OC、OD.(如图①)①求△COD的面积;②试判断直线CD与⊙O的位置关系,说明理由.(2)若直线CD与⊙O相切于F,AD=x(x>0),AB=8.试用x表示四边形ABCD的面积S.(如图②)A BC图1P1P2R2R1A BC图2P1P2R2R1D Q1Q229.(10分)某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:(1)有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比;(2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比;…现请你继续对下面问题进行探究,探究过程可直接应用上述结论.(S表示面积)问题1:如图1,现有一块三角形纸板ABC,P1,P2三等分边AB,R1,R2三等分边AC.经探究知2121RRPPS四边形=13S△ADE,请证明.问题2:若有另一块三角形纸板,可将其与问题1中的拼合成四边形ABCD,如图2,Q1,Q2三等分边DC.请探究2211PQQPS四边形与S四边形ABCD之间的数量关系.问题3:如图3,P1,P2,P3,P4五等分边AB,Q1,Q2,Q3,Q4五等分边DC.若S四边形ABCD=1,求3322PQQPS四边形.问题4:如图4,P1,P2,P3四等分边AB,Q1,Q2,Q3四等分边DC,P1Q1,P2Q2,P3Q3将四边形ABCD分成四个部分,面积分别为S1,S2,S3,S4.请直接写出含有S1,S2,S3,S4的一个等式.参考答案1-10 CDDCD ABACD11.x (x -2y )(x +2y ) 12.12 13.513 14.16π-32 15.36 16.700 17.-218.1920.2321.原式=2a + 代入122.∠DOB 的平分线与线段MN 的垂直平分线的交点即为所求的中转站的位置.23.a =124.(1)14 (2)22500(人)25.(1)A(-1,0) B(3,0) (2) D ′ 在该抛物线上26.(1)这个游戏对双方不公平.(2)改为:当拼成的图形是小人时杨华得3分,其余规则不变,就能使游戏对双方公平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三年级教学质量调研测试(一)数 学 2016.04本试卷有选择题、填空题和解答题三部分组成,共28题,满分100分,考试时间120分钟注意事项:1. 答题前,考生务必将学校、班级、姓名、考试号等信息用0.5毫米黑色墨水签字笔填写在答题卷的相应位置上;2.答选择题必须用2B 铅笔把答题卷上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生必须答在答题卡相应的位置上,保持卷面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。
一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案填在答题卡相应的位置上.)1. 2的倒数是A. -2B. -12C. 2D. 122.下列运算正确的是A. 236a a a ⋅=B. 32a a a ÷=C. 329()a a =D. 235a a a +=3.PM2.5是指大气中直径小于或等于0.0000025 m 的颗粒物,将0.0000025用科学记数法表示为A. 50.2510-⨯B. 60.2510-⨯C. 52.510-⨯D. 62.510-⨯4.如图,△ABC ,∠B=90°,AB=3,BC=4,则cosA 等于A. 43B. 34C. 45D. 35 5.如图,直线AC//BD ,AO 、BO 分别是 ∠BAC 、∠ABD 的平分线,那么∠BAO 与∠ABO 之间的大小关系一定为A. 互余B. 相等C. 互补D. 不等6.为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15-20,包括15,不包括20,以下同),请根据统计计算成绩在20-30次的频率是A. 0.7B. 0.6C. 0.5D. 0.47.如果x a y b⎧=⎨=⎩是方程x-3y=-3的一组解,那么代数5-a+3b 的值是 A. 8 B.5 C.2 D.08.关于x 的一元二次方程2210kx x +-=有两个不相等实数根,则k 的取值范围是A. k >-1B. k >-1且k ≠0C. k ≠0D. k ≥-19.如图,已知ABCD 的对角线BD=4cm ,将ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为A. 4π cmB. 3π cmC. 2π cmD. π cm10.给出下列命题及函数y x =,2y x =和1y x =的图像 ①如果21a a a>>时,那么01a <<; ②如果21a a a >>时,那么1a >;③如果21a a a>>时,那么10a -<<; ④如果21a a a >>时,那么 1a <-.A.正确的命题是①②B.错误..的命题是②③④ C.正确的命题是①④D.错误..的命题只有③二、填空题(本大题共8题,每小题3分,共24分,不需要写出解答过程,请把最后结果填在答题卷相应的位置上)11.计算:1(3)3-⨯=_________________________. 12.有一组数据:3,5,5,6,7,这组数据的中位数是________________________.13.如图,AB 是圆O 的直径,点C 在圆O 上,若∠A=40°,则∠B 的度数为___________.14.在平面直角坐标系中,点A 的坐标是(3,-2),则点A 关于原点O 的对称点的坐标是__________.15.抛物线223y x x =++的顶点左边是____________.16.热气球的探测器显示,从热气球A 处看一栋高楼顶部的仰角为45°,看这栋高楼底部的俯角为60°,这栋高楼是100米,A 处与高楼的水平距离是______________米(结果保留根号).17.如图,半圆O 的直径AE=4,点B ,C, D 均在半圆上,若AB=BC ,CD=DE ,连接OB ,OD ,则图中阴影部分的面积为_____________.18.如图,在矩形ABCD 中,AB=10,BC=5,若点M 、N 分别是线段AC 、AB 上的两动点,则BM+MN 的最小值为________________.三、解答题(本大题共10小题,共76.解答时应写出文字说明、证明过程或演算步骤.)19.(本题满分5分)计算:8 — | —1| + (—π)020.(本题满分5分) 解不等式组:312(1)312x x x ⎧-<+⎪⎨+≥⎪⎩21.(本题满分6分) 先化简,再求值:232()224x x x x x x -÷+--,其中43x =-.22.(本题满分6分)某商场销售A 、B 两种型号的U 盘,两种U 盘的进货价格分别为每只30元,40元.商场销售5只A 型号和1只B 型号U 盘,可获利润76元;销售6只A 型号和3只B 型号U 盘,可获利润120.求商场销售A 、B 两种型号的U 盘的销售价格分别是多少元?(利润=销售价-进货价)23.(本题满分8分)有3个完全相同的小球,把他们分别标号为1,2,3,放在一个口袋中,随机摸出一个小球不放回,再随机地摸出一个小球.(1)采用树形图法(或列表法)列出两次摸球出现的所有可能结果;(2)求摸出的两个球号码之和等于5的概率.24. (本题满分8分)已知:如图,AB=AC ,点D 是BC 的中点,AD=AE, AE⊥BE,垂足为E ,连接DE.(1)求证:AB 平分∠DAE;(2)若△ABC 是等边三角形,且边长为2cm ,求DE 的长.25.(本题满分8分)(2015泸州)如图,一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.(1)求该一次函数的解析式;(2)若反比例函数myx=的图象与该一次函数的图象交于二、四象限内的A、B两点,且AC=2BC,求m的值.26. (本题满分10分)如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O 的切线交AB的延长线于F.切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若3sin5E∠=,25AK=,求圆O的半径.27.(本题满分10分)如图,二次函数2y ax bx c =++(0a ≠)的图像经过A(0,3)、C(3,0)、D (2,3)三点.(1)求过A 、D 、C 三点的抛物线的解析式;(2)设Q 为x 轴上任意一点,点P 是抛物线上的点,且在抛物线对称轴左侧,满足∠QCP=45°,问是否存在这样的点P 、Q ,使得以P 、Q 、C 为顶点的三角形与△ADC 相似?若存在,求出点P 、Q 的坐标;若不存在,则说明理由.28.(本题满分10分)(2015•衢州)如图,在△ABC 中,AB=5,AC=9,S△ABC=272,动点P 从A 点出发,沿射线AB 方向以每秒5个单位的速度运动,动点Q 从C 点出发,以相同的速度在线段AC 上由C 向A 运动,当Q 点运动到A 点时,P 、Q 两点同时停止运动,以PQ 为边作正方形PQEF (P 、Q 、E 、F 按逆时针排序),以CQ 为边在AC 上方作正方形QCGH .(1)求tanA 的值;(2)设点P 运动时间为t ,正方形PQEF 的面积为S ,请探究S 是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;(3)当t 为何值时,正方形PQEF 的某个顶点(Q 点除外)落在正方形QCGH 的边上,请直接写出t 的值.江苏省吴中市2016届中考第一次模拟数学测试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案填在答题卡相应的位置上.)1. 2的倒数是A. -2B. -12C. 2D. 12考点:有理数混合运算分析: 有理数四则运算法则解答: D2.下列运算正确的是A. 236a a a ⋅=B. 32a a a ÷=C. 329()a a =D. 235a a a += 考点: 幂的运算分析: 幂的的乘除运算解答:B3.PM2.5是指大气中直径小于或等于0.0000025 m 的颗粒物,将0.0000025用科学记数法表示为A. 50.2510-⨯B. 60.2510-⨯C. 52.510-⨯D. 62.510-⨯ 考点: 科学计算法分析: 用科学技术发表示数解答:D4.如图,△ABC ,∠B=90°,AB=3,BC=4,则cosA 等于A. 43B. 34C. 45D. 35 考点: 三角函数与勾股定理分析: 勾股定理求边的长以及特殊三角函数的值解答:cosA=邻边/斜边=3/55.如图,直线AC//BD ,AO 、BO 分别是 ∠BAC 、∠ABD 的平分线,那么∠BAO 与∠ABO 之间的大小关系一定为A. 互余B. 相等C. 互补D. 不等考点: 角平分线的性质,平行线的性质分析: 先用平行线的性质,再结合平行线的性质去求解解答:A6.为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15-20,包括15,不包括20,以下同),请根据统计计算成绩在20-30次的频率是A. 0.7B. 0.6C. 0.5D. 0.4考点: 统计分析: 条形统计图解答:A7.如果x a y b⎧=⎨=⎩是方程x-3y=-3的一组解,那么代数5-a+3b 的值是A. 8B.5C.2D.0考点: 代数式求值分析: 方程的解含义以及真题思想,代入求值。
解答:A8.关于x 的一元二次方程2210kx x +-=有两个不相等实数根,则k 的取值范围是A. k >-1B. k >-1且k ≠0C. k ≠0D. k ≥-1考点: 一元二次方程的判别式分析:注意在0a ≠下,▲=-24b ac 与0的关系判断方程根的情况解答:B9.如图,已知ABCD 的对角线BD=4cm ,将ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为A. 4π cmB. 3π cmC. 2π cmD. π cm考点: 旋转以及弧长公式分析:运用弧长公式 180n r l π=求路径长 解答:C10.给出下列命题及函数y x =,2y x =和1y x =的图像 ①如果21a a a>>时,那么01a <<; ②如果21a a a >>时,那么1a >;③如果21a a a>>时,那么10a -<<; ④如果21a a a >>时,那么 1a <-.A.正确的命题是①②B.错误..的命题是②③④ C.正确的命题是①④D.错误..的命题只有③ 考点: 一次函数的图象 反比例函数的图象 二次函数的图象 数形结合分析: 三个函数图象的交点为(1,1),且二次函数和一次函数都经过(0,0).①如果21a a a >>,说明反比例函数图象在一次函数图象上方,一次函数图象在二次函数图象上方,对应a 的取值范围是0<a<1;②如果21a a a >>,说明二次函数图象在一次函数图象上方,一次函数图象在反比例函数图象上方,对应a 的取值范围是-1<a<0或a>1;③如果21a a a >>,说明反比例函数图象在二次函数图象上方,二次函数图象在一次函数图象上方,没有对应的a 值;④如果21a a a >>,说明二次函数图象在反比例函数图象上方,反比例函数图象在一次函数图象上方;对应a 的取值范围是a<-1.故选A .解答:C二、填空题(本大题共8题,每小题3分,共24分,不需要写出解答过程,请把最后结果填在答题卷相应的位置上)11.计算:1(3)3-⨯=_________________________. 考点:有理数混合运算分析: 有理数四则运算法则解答:-112.有一组数据:3,5,5,6,7,这组数据的中位数是________________________.考点: 中位数分析: 一组数据按从小到大或者从大到小的顺序 排列,中间的数解答:513. 如图,AB 是圆O 的直径,点C 在圆O 上,若∠A=40°,则∠B 的度数为_________. 考点: 圆周角分析: 直径所对的圆周角是直角解答:∵AB 是⊙O 的直径,∴∠C=90°,∵∠A=40°,∴∠C=90°-∠B=50°.14.在平面直角坐标系中,点A 的坐标是(3,-2),则点A 关于原点O 的对称点的坐标是__________. 考点: 平面直角坐标系中求对称点的坐标分析: 关于原点对称的点是横纵坐标都改变,变为原来的相反数解答:(-3,2)15.抛物线223y x x =++的顶点左边是____________.考点: 二次函数的顶点坐标分析: 配方法求顶点坐标或者用对称轴求解解答:(-1,2)16.热气球的探测器显示,从热气球A 处看一栋高楼顶部的仰角为45°,看这栋高楼底部的俯角为60°,这栋高楼是100米,A 处与高楼的水平距离是______________米(结果保留根号).解:过点A作BC的垂线,垂足为D点,由题意知:∠CAD=45°,∠BAD=60°,AD=xm,在Rt△ACD中,∠CAD=45°,AD⊥BC,∴CD=AD=x,在Rt△ABD中,∵,∴BD=AD·tan∠BAD=3xBC=CD+BD=(x+3x)m=100m,X=50(31)答:这栋高楼约有163.9m。