Thin layer Chromatography (TLC) Guide

合集下载

TLC薄层色谱法

TLC薄层色谱法

TLC薄层色谱法TLC(thin layer chromatography)是一种常用的薄层色谱法。

它是一种简单快速的分离技术,常用于分析和鉴定不同化合物的组分。

TLC的原理是在经过修饰的硅胶或氧化铝等固定相上进行分离。

样品溶液在薄层板上涂抹成薄层,然后将薄层板放入溶剂中进行运动。

溶剂沿薄层板上升,样品组分因吸附和流动速度差异而分离。

最后通过观察薄层板上的斑点,可以确定样品中的化合物。

TLC的操作简单,常用的仪器设备较少,所以被广泛应用于化学、药学、生物学等领域中。

下面我将详细介绍TLC的步骤和应用。

TLC操作步骤:1.准备薄层板:选择合适的固定相薄层板,如硅胶或氧化铝薄层板。

将薄层板根据需要切割为适当大小,并在板的底端画一个起始线。

2.准备样品溶液:将待分析的样品溶解在合适的溶剂中,经过充分的溶解后,可以使用微量移液管或吸管将样品溶液涂抹在起始线上。

3.运行:将涂有样品溶液的薄层板放入含有适当溶剂的槽中,使溶剂沿薄层板上升。

在运行过程中,在合适的距离上标记溶剂的前移距离,以保证足够的分离效果。

4.上样和开发:在溶剂前移到标记线附近时,将薄层板从溶剂槽中取出。

使用暗室或紫外灯观察薄层板上的斑点。

可以通过对比标准物质的斑点位置来确认化合物。

5.测量和分析:使用尺子或色谱扫描仪测量TLC板上各斑点的Rf值(移动度)。

Rf值是化合物移动距离与溶剂前行距离的比值,可以用于定量或比较分析。

TLC的应用:1.分析和鉴定化合物:TLC广泛应用于分析和鉴定化合物,通过观察斑点的颜色、形状和位置来确定化合物的组分。

2.纯化化合物:TLC也可用于纯化化合物。

当溶剂前移到一定位置时,可以用吸管垂直吸取斑点,将其转移到其他试管中,然后通过进一步的分离过程来分离纯化化合物。

3.制备层析:TLC还可以用于制备层析,即使用溶剂系统分离多个化合物,然后通过抽吸器或预柱收集纯化化合物。

4.检测杂质:TLC也可以用于检测杂质的存在,通过对比分析样品与标准溶液的斑点位置和Rf值,可以检测样品中的杂质。

TLC

TLC


展开剂的比例要靠尝试. 展开剂的选择条件: ①对所需成分有良好的溶解性; ②可使成分间分开; ③不与待测组分或吸附剂发生化学反应; ④沸点适中,黏度较小; ⑤展开后组分斑点圆且集中; ⑥混合溶剂最好用新鲜配制。
单一溶剂的极性从小到大顺序为:

石油醚→环己烷→四氯化碳→三氯乙烯→苯→甲 苯→二氯甲烷→氯仿→乙醚→乙酸乙酯→乙酸甲 酯→丙酮→正丙醇→甲醇→吡啶→乙酸

4.比移值的计算与定性、定量:展开结束后,经 过各种显色操作后,样品中各个成分的斑点可能 出现了不同程度的分离,为了表达各成分的相对 位置(极性)通常以比移值作为称量斑点位置的 指标。 比移值Rf=(斑点中心与原始样点之间的距 离)/(溶剂前沿与原始样点之间的距离)
各种物质的Rf 随要分离化合物的结构,滤纸或薄 层板的种类、溶剂、温度等不同而不同,但在条 件固定的情况下,Rf对每一种化合物来说是一个 特定数值。
薄层色谱常用的固定相是氧化铝或硅胶。硅胶略 带酸性,适用于酸性和中性物质的分离;碱性物 质则能与硅胶作用,不易展开或发生拖尾的斑点, 不好分离。对于氧化铝则相反。流动相则是一种 极性待选的溶剂。大多数实验室实验中都使用标 准硅胶板。 应该根据化合物的极性大小来选择吸附活性合适 的吸附剂,对极性小的试样可选择吸附活性较高 的吸附剂,对极性大的试样,选择活性较低的吸 附剂。



2.展开:


展开方式可分为三类:上行展开和下行展开;单次展开和多 次展开;单向展开和多向展开 常用的是上行展开,就是使展开剂从下往上展开:当样点上 的溶剂充分挥干后,将薄层置于盛有适当展开剂的标本缸、 大量筒或方形玻缸中,使展开剂浸入薄层的高度约为0.5cm。 注意事项:先悬空饱和、再入液展开;样点不能泡在展开剂 中;薄层浸入时不能歪斜进入。

薄层色谱的原理

薄层色谱的原理

薄层色谱的原理
薄层色谱(thin layer chromatography,TLC)是一种常用的色谱技术,其原理基于化合物在静止相(固定在玻璃或塑料基底上)和流动相(液体或气体)之间的分配行为。

利用该分配行为,可以将不同的化合物分离并检测。

在薄层色谱中,首先需要准备一层薄的静止相涂覆在玻璃或塑料基底上,这层涂层通常是硅胶或氧化铝。

准备好的薄板即为薄层色谱板。

然后将待分离的混合物溶解在流动相中,流动相通常是有机溶剂或混合溶液。

接下来,将薄层色谱板浸入流动相中,使浸湿并等待流动相上升。

当流动相从底部向上渗透时,化合物会根据其亲水性或亲油性在静止相和流动相之间发生分配。

亲水性较强的化合物会更多地留在静止相中,而亲油性较强的化合物则会随流动相上升。

这样,不同化合物在薄层色谱板上会形成不同的斑点。

为了可视化这些斑点,通常会使用染料或化学试剂对化合物进行标记。

染料或化学试剂与化合物发生反应后,能产生明显的色斑或荧光。

通过比较样品中斑点的相对位置、颜色或荧光强度,可以对待分离的化合物进行鉴定。

薄层色谱因其简便、快速且经济的特点,在实验室常用于药物分析、有机合成、食品检测、环境监测等领域。

它不仅可以用于分离化合物,还可以确定某一物质的纯度、判断反应的进行以及监测反应的过程。

它是一种常用的分离和分析工具,广泛应用于化学、生物化学和药学等领域。

薄层色谱名词解释

薄层色谱名词解释

薄层色谱名词解释薄层色谱(Thin-Layer Chromatography,简称TLC)是一种分离、鉴定和质量检测分子间差别的实验技术,是按照分子大小、结合强弱及极性差异来分离和鉴定有机物质的一种实验技术,是现代分析实验中经常所用的一种为主的技术。

一、基本原理薄层色谱是一种浸透分析方法,它利用分子结合性大小和极性的差异,使混合物在固体涂布的表面中分离。

它是将样品淋到固定相(薄层沉积物)上,集中并在表面形成握样带,然后溶剂沿固定相传播和扩散,物质磁通的距离随着溶剂的运动而不断增加而发生分离,形成多条相峰,且每种物质出现的位置不同,因此可以用来鉴定其组成及监测已知物质在混杂物中的含量。

二、相关仪器薄层色谱所使用的关键仪器包括色谱柜、柜内溶剂槽、棉球、料筒、制备紫外线的拉曼管、微波辐照仪等。

其中,色谱柜用于分离混合物;柜内溶剂槽用于储存溶剂,一般选用四甲基橡皮筋或过滤纸固定;棉球可以帮助溶剂从料筒释放;料筒用来储存混合物;拉曼管可以用来制备紫外线用来无刺激地检测样品;微波辐照仪可以使混合物在固体表面样品重新分离。

三、步骤(1)准备固体涂布溶剂:取一定体积的固定相(例如硅胶、石英粉、均质膏),用溶剂在玻璃容器中调节,使其形成涂布液。

(2)涂布:在检测板上加入涂布液,使其稳定形成涂布,以便将混合物分离和拖提形成斑点。

(3)测试:将样品加在涂布板上,经过加热处理,取出产物后进行光学或电子观察。

(4)分析:分析各物质形成的斑点和拖提线之间的距离,用以检测混合物中物质的含量。

四、应用薄层色谱可以应用于天然产物、制药、食品、生物学等领域,可以用来检测毒素、除草剂、营养素、激素、抗生素,用于鉴定医药制剂中有效成份、白蛋白活性型/氧化型分析、杂质检测,另外,还可以用来检测食品中的色素、添加剂等。

薄层色谱跟踪反应的原理

薄层色谱跟踪反应的原理

薄层色谱跟踪反应的原理
薄层色谱(Thin Layer Chromatography,TLC)是一种常见的分离和分析技术,其原理是基于化学物质在固定相和流动相之间的差异分配行为实现物质分离。

当用于跟踪反应时,薄层色谱可以实时观察反应物质随时间的变化,以确定反应进程和产物生成情况。

具体而言,薄层色谱跟踪反应的原理如下:
1. 准备反应混合物:将反应所需的化学物质按照一定比例混合在一起,通常会加入适当的溶剂来促进反应。

2. 吸附剂涂层:将一层薄薄的吸附剂(例如硅胶或氧化铝)均匀涂在玻璃、铝箔或塑料片上,形成薄层色谱板。

3. 样品加载:将预处理好的反应混合物在色谱板上加载成点状或线状,并保证加载位置一致。

4. 色谱试剂:将加载好的样品板浸入一个封闭的容器中,使用特定的气氛或液体色谱试剂,试剂能够辅助分离和可视化反应产物。

5. 试剂蒸发:置放一段时间,待试剂蒸发,反应物在吸附剂上留下可见的斑点。

6. 开发过程:将试剂蒸发后的色谱板以特定溶剂为流动相,通过静态法或上升法,将溶剂慢慢沿着吸附剂上升,将目标物质
分离开来。

7. 观察和记录:观察沿着吸附剂上升过程中的斑点变化,根据斑点的迁移距离和颜色的变化来判断反应的进程和产物的生成情况。

通常会使用紫外光或发色剂等技术使产物呈现出明显的视觉特征,便于观察和记录。

通过监测反应混合物中不同成分在薄层色谱板上的分离和迁移情况,薄层色谱可以帮助确定反应物质的纯度和分离效果,并提供反应进程中产物生成的信息。

薄层色谱法

薄层色谱法

选择:分离亲脂性化合物,选择氧化铝,硅 胶,乙酰化纤维素以及聚酰胺 分离亲水性化合物,选择纤维素和离 子交换纤维素及硅藻土。 一般,被分离组的极性强,选择吸附 能力弱的吸附剂;反之,选吸附能力较强 者。
种类: • 硅胶—为使用最广泛的薄层材料 • 氧化铝—有碱性、中性、酸性 • 硅藻土—为化学中性吸附剂 • 纤维素—天然多糖类 • 聚酰胺—为特殊类型有机薄层材料,对能形 成氢键的物质有特别的选择性
什么是TLC?
薄层色谱法(thin layer chromatography,TLC) 是将适宜的固定相喷涂(或喷雾)于玻璃板, 塑料或铝基片上,成一均匀薄层。干燥后 进行点样,展开,斑点定位;或与适宜的 对照物随行对照比较,或用薄层扫描仪扫 描,用于药物或其他化合物的分离,鉴别, 检查或含量测定等。
– 通过板上光谱图定性
• 直接测定薄层板上斑点的紫外或可见吸收光 谱图,与平行点加的标准斑点的图谱对照。 • 可建立标准条件下的化合物的光谱图库,用 计算机检索定性。
– 与其他技术连用
• TLC-付里叶变换IR联用 • TLC-MS联用
• 定量方法
– 间接定量——将薄层分离后物质斑点定量地洗 脱下来,再对洗脱液定量。 • 分光光度法、HPLC法、GC法、质谱法
• TLC是一种简单、快速的色谱技术。TLC法特 别适用于挥发性较小或在较高温度易发生变 化的物质的分离。 • 薄层色谱不需要特殊设备,操作简单,试样 和展开剂用量少,展开速度快。 • TLC经常被用于探索柱色谱分离条件和监测 柱色谱过程 。 • 在进行化学反应时,可利用薄层色谱观察原 料斑点的逐步消失来判断反应是否完成。
• 选择:“相似相溶”原则 同吸附柱色谱 极性强的溶剂洗脱能力强 常用溶剂的极性强弱顺序: 水>酸>吡啶>甲醇>乙醇>正丙醇 >丙酮>乙酸乙酯>乙醚>氯仿>二氯甲 烷>甲苯>苯>三氯乙烷>四氯化碳>环己 烷>石油醚。

薄层色谱(TLC)

薄层色谱(TLC)

薄层色谱薄层色谱(Thin Layer Chromatography)常用TLC表示,又称薄层层析,属于固-液吸附色谱。

是近年来发展起来的一种微量、快速而简单的色谱法。

它兼备了柱色谱和纸色谱的优点,一方面适用于少量样品(几到几微克,甚至0.01微克)的分离;另一方面在制作薄层板时,把吸附层加厚加大,将样品点成一条线,则可分离多达500mg的样品。

因此,又可用来精制样品,此法特别适用于挥发性较小或较高温度易发生变化而不能用气相色谱分析的物质。

此外,在进行化学反应时,薄层色谱法还可用来跟踪有机反应及进行柱色谱之前的一种“预试”,常利用薄层色谱观察原料斑点的逐步消失来判断反应是否完成。

一、基本原理色谱法的基本原理是利用混合物中各组分在某一物质中的吸附或溶解性能的不同,或和其它亲和作用性能的差异,使混合物的溶液流经该种物质,进行反复的吸附或分配等作用,从而将各组份分开。

薄层色谱是一种微量、快速和简便的色谱方法。

由于各种化合物的极性不同,吸附能力不相同,在展开剂上移动,进行不同程度的解析,根据原点至主斑点中心及展开剂前沿的距离,计算比移值(Rf)。

化合物的吸附能力与它们的极性成正比,具有较大极性的化合物吸附较强,因此Rf值较小。

在给定的条件下(吸附剂、展开剂、板层厚度等),化合物移动的距离和展开剂移动的距离之比是一定的,即Rf值是化合物的物理常数,其大小只与化合物本身的结构有关,因此可以根据Rf值鉴别化合物,薄层色谱可适用小量样品(几到几十微克甚至0.01μg)的分离:也可用于多达500mg样品的分离,是近代有机化学中用于定性,定量的一种重要手段。

特别适用于那些挥发性小的化合物,以及在高温下易发生化学变化而不能用气相色谱分析的物质。

二、实验基本流程铺板点样展开显色计算Rf值铺板取7.5x2.5cm左右的载玻片5片,洗净晾干。

在50mL烧杯中,放置3g硅胶G,逐渐加入0.5﹪羧甲基纤维素钠水溶液(CMC)8mL,调成均匀的糊状,涂于上述洁净的载玻片上,用手将带浆的玻片在水平的桌面上做上下轻微的颠动,制成薄厚均匀、表面光洁平整的薄层板,涂好的硅胶G的薄层板置于水平的玻璃板上,在室温放置0.5h后,放入烘箱中,缓慢升温至110℃,恒温0.5h 后取出,稍冷后置于干燥器中备用。

TLC薄层色谱法

TLC薄层色谱法

TLC薄层色谱法
包括介绍原理原理、原理图示、步骤介绍、优缺点、应用等
薄层色谱法(Thin Layer Chromatography, TLC)是一种在溶剂中进行二次溶剂不相溶混合物体色谱分离的方法,它是一种具有《小量样品,大量应用》的理想体色谱分离方法。

一、薄层色谱(TLC)原理
薄层色谱是一种属于液-液色谱分离技术的一种,它是溶剂在平板上水平运动,混合物在溶剂的作用下而被分离的。

薄层色谱是根据混合物中各成分在不同溶剂中的挥发速率不同而决定的。

各成分在溶剂的等张边界上逐渐散开,最后各个成分分散在溶剂中的位置不同,在同一溶剂中反映出各自的条带图象,这就是分离反应现象。

二、薄层色谱(TLC)步骤
1、膜制备:在平板上涂布膜,将膜沾湿液。

2、样品加样:将被分离物质溶液(样品或样品混合溶液)通过滴移管滴在膜上,形成一个小胶斑,然后以热风吹干。

3、烘干:将膜放在干燥无油的金属箱内,将恒温烘箱或水浴中,均匀加热干燥膜,以保持平地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

WARNING NOTICE: The experiments described in these materials are potentially hazardous and require a high level ofsafety training, special facilities and equipment, and supervision by appropriate individuals. You bear the soleresponsibility, liability, and risk for the implementation of such safety procedures and measures. MIT shall have noresponsibility, liability, or risk for the content or implementation of any of the material presented. Legal Notices7.3. Thin layer Chromatography (TLC) GuideOverview:Thin Layer Chromatography (TLC) is an extremely useful technique for monitoring reactions. It is also used to determine the proper solvent system for performing separations using column chromatography. TLC uses a stationary phase, usually alumina or silica, that is highly polar (standard) or non-polar (reverse phase). The mobile phase is a solvent whose polarity you will choose. In 5.301, and in most lab applications, you will use standard phase silica plates. You will apply your reaction mixture in solution to the plate and then "run" the plate by allowing a solvent (or combination of solvents) to move up the plate by capillary action. Depending on the polarity of the components of the mixture, different compounds will travel different distances up the plate. More polar compounds will "stick" to the polar silica gel and travel short distances on the plate. Non-polar substances will spend more time in the mobile solvent phase and travel larger distances on the plate. The measure of the distance a compound travels is called the R f value. This number, between zero and one, is defined as the distance the compound moved from the baseline (where it was originally spotted) divided by the distance the solvent front moved from the baseline.Reference:For a thorough discussion see LLP pages 145-152.Steps for TLC:1) Cut TLC plates. Usually silica plates are bought as square glass pieces that must becut using a diamond tipped glass cutter and following a template. Before scoring the glass, use a ruler and a pencil to lightly mark baselines on the silica side of the plate (be careful not to remove any silica from the plate). Using a sharp glass cutter and a ruler as a guide, you should have no problem scoring the glass. Once the entire plate is scored, you can then break the glass into individual pieces. (In the beginning this may be frustrating, but after some practice, you should become comfortable with this technique.)2) Determine an appropriate solvent system. Your compounds will travel differentdistances up the plate depending on the solvent you choose. In non-polar solvents like pentane and hexane, most polar compounds will not move, while non-polar compounds will travel some distance up the plate. In contrast, polar solvents will usually move non-polar compounds to the solvent front and push the polar compounds off of the baseline. A good solvent system is one that moves all components of your mixture off the baseline, but does not put anything on the solvent front - R f values between 0.15 and 0.85. This is not alwayspossible, but should be your goal when running a TLC. (For column chromatography the correct solvent system should give an R f between 0.2 and 0.3.) Now, which solvents to pick? Here is a list of some standard solvents and their relative polarity (from LLP):Very polar additives:Methanol > Ethanol > IsopropanolModerately polar additives:Acetonitrile > Ethyl Acetate > Chloroform > Dichloromethane > Diethyl Ether > Toluene Non-polar additives:Cyclohexane, Petroleum Ether, Hexane, PentaneCommon solvent combinations:Ethyl Acetate/Hexane : 0–30% most popular combination, sometimes tough toremove solvents completely on rotary evaporatorEther/Pentane: 0–40% very popular, easy to remove on the rotary evaporatorEthanol/Hexane or Pentane: 5–30% useful for very polar compounds Dichloromethane/Hexane or Pentane : 5–30% sometimes useful when other mixtures fail3) Fill TLC chamber with 1–2 mL of the desired solvent system. Place a large piece of cut filter paper in the chamber as well.4) Spot the c ompound on the baseline of the TLC plate. We will use commercial spotters, but spotters can be pulled from hot Pasteur pipets (you may see this in your UROP). If you are monitoring a reaction make sure to spot the starting material the reaction mixture, and a co-spot of both.5) Run the TLC. Let the solvent go about 90% of the way up the plate.6) Remove the plate from the c hamber and mark the solvent front immediately with a pencil. You will use this to calculate the R f.7) Let the solvent dry off of the plate.8) Visualize the TLC using non-destruc tive tec hnique(s). The best non-destructive method is the UV lamp. Place your plate under the UV lamp and circle any UV active spots with your pencil. Although we won't do this in 5.301, another popular non-destructive method is staining with iodine. (You might see this in your UROP.)9) Visualize the TLC using a destructive method. This will be critical for compounds that are not UV-active. There are several varieties of stains that are very useful and will be available to you in 5.301. To use the stain, pick up the dried TLC plate with a pair of tweezers and dip it into the stain, making sure to cover the area from the baseline to the solvent front. Completely dry the back of the plate with a paper towel. Place on a hot plate and watch the development of the spots. Remove the TLC plate from the heat once the spots are visible and before the background color obscures the spots.9) Revise your c hoic e of solvent system based on the results of your initial TLC. Make the solvent system more polar if you want a larger R f or make it less polar if you want to decrease the R f. Also, if there is "streaking" of your compound on the plate -basically you see large streaks instead of sharp circles -your sample is probably too concentrated. Try diluting your sample and running the TLC again. If this doesn't work, you will have to move to a different solvent system.10) Label your TLC, calculate the R f for each spot and draw a picture of it in your notebook.。

相关文档
最新文档