高中数学3.1和角公式3.1.3两角和与差的正切自我小测新人教B版必修4
人教B高中数学必修四学练测课后拔高提能练:第3章 三角恒等变换 31 3 含解析

第三章 三角恒等变换3.1 和角公式 3.1.3 两角和与差的正切课后拔高提能练一、选择题1.tan70°+tan50°-3tan70°tan50°=( ) A . 3 B .33 C .-33D .- 3解析:选D tan70°+tan50°-3tan70°tan50°=tan120°(1-tan70°tan50°)-3tan70°tan15°=- 3.故选D .2.已知α∈⎝ ⎛⎭⎪⎫π2,π,cos α=-45,则tan ⎝ ⎛⎭⎪⎫α+π4=( )A .17 B .7 C .-17D .-7解析:选A ∵α∈⎝ ⎛⎭⎪⎫π2,π,cos α=-45,∴sin α=35,∴tan α=-34.∴tan ⎝ ⎛⎭⎪⎫α+π4=tan α+11-tan α=-34+11+34=17.故选A . 3.在△ABC 中,C =45°,则(1-tan A )(1-tan B )等于( ) A .1 B .-1 C .2D .-2解析:选C (1-tan A )(1-tan B )=1+tan A tan B -(tan A +tan B )=1+tan A tan B -tan(A +B )(1-tan A tan B )=1+tan A tan B -tan135°(1-tan A tan B )=2.故选C .4.若tan ⎝ ⎛⎭⎪⎫π4-α=3,则cot α等于( )A .-2B .-12C .12D .2解析:选A 由tan ⎝ ⎛⎭⎪⎫π4-α=1-tan α1+tan α=3,得tan α=-12,所以cot α=-2.故选A .5.在△ABC 中,已知tan A ,tan B 是方程3x 2+8x -1=0的两根,则tan C 等于( )A .2B .-2C .4D .-4解析:选A 由于tan A ,tan B 是3x 2+8x -1=0的两根, 得⎩⎪⎨⎪⎧tan A +tan B =-83,tan A ·tan B =-13,∴tan(A +B )=tan A +tan B1-tan A tan B =-831-⎝ ⎛⎭⎪⎫-13=-2.∴tan C =-tan(A +B )=2.故选A .6.已知cos ⎝ ⎛⎭⎪⎫π4+x =-35,且x 是第三象限角,则1+tan x 1-tan x 的值为( ) A .-34 B .-43 C .34D .43解析:选D ∵x 是第三象限角, ∴2k π+π<x <2k π+32π(k ∈Z ),∴2k π+54π<x +π4<2k π+74π(k ∈Z ), 又cos ⎝ ⎛⎭⎪⎫x +π4=-35,∴sin ⎝ ⎛⎭⎪⎫x +π4=-45,tan ⎝ ⎛⎭⎪⎫x +π4=sin ⎝ ⎛⎭⎪⎫x +π4cos ⎝ ⎛⎭⎪⎫x +π4=43. 又1+tan x1-tan x=tan ⎝ ⎛⎭⎪⎫x +π4=43,故选D .二、填空题7.(2018·全国卷Ⅱ)已知tan ⎝ ⎛⎭⎪⎫α-5π4=15,则tan α=________.解析:tan ⎝ ⎛⎭⎪⎫α-5π4=tan α-tan 5π41+tan α·tan 5π4=tan α-11+tan α=15,解方程得tan α=32. 答案:328.(2017·江苏卷)若tan ⎝ ⎛⎭⎪⎫α-π4=16,则tan α=________.解析:tan α=tan ⎝ ⎛⎭⎪⎫α-π4+π4=tan ⎝ ⎛⎭⎪⎫α-π4+tan π41-tan ⎝ ⎛⎭⎪⎫α-π4tan π4=16+11-16=75. 答案:759.在△ABC 中,∠C =120°,tan A +tan B =233,则tan A ·tan B =________. 解析:∵∠C =120°,∴A +B =60°, tan(A +B )=tan A +tan B1-tan A tan B=3,∴tan A +tan B =3(1-tan A tan B )=233,∴1-tan A tan B =23,∴tan A tan B =13. 答案:13 三、解答题10.已知tan ⎝ ⎛⎭⎪⎫π4+α=-12,求2cos α(sin α-cos α)1+tan α的值.解:∵tan ⎝ ⎛⎭⎪⎫π4+α=-12,∴1+tan α1-tan α=-12,得tan α=-3.∴2cos α(sin α-cos α)1+tan α=2cos 2α(tan α-1)1+tan α=2cos 2α(-3-1)-3+1=4cos 2α=4cos 2αsin 2α+cos 2α=4tan 2α+1=4(-3)2+1=25.11.已知锐角△ABC 中,sin(A +B )=35,sin(A -B )=15.(1)求证:tan A =2tan B ; (2)设AB =3,求AB 边上的高.解:(1)证明:∵sin(A +B )=35,sin(A -B )=15. ∴⎩⎪⎨⎪⎧sin A cos B +cos A sin B =35,sin A cos B -cos A sin B =15,∴⎩⎪⎨⎪⎧sin A cos B =25,cos A sin B =15,∴tan Atan B =2, 即tan A =2tan B .(2)∵π2<A +B <π,sin(A +B )=35, ∴cos(A +B )=-45,tan(A +B )=-34. 即tan A +tan B 1-tan A tan B=-34. 将tan A =2tan B 代入得2tan 2B -4tan B -1=0, 得tan B =2±62,舍去负值得tan B =2+62. ∴tan A =2tan B =2+ 6.设AB 边上的高为CD , 则AB =AD +DB =CD tan A +CD tan B =3CD2+6,由AB =3,得CD =2+ 6.所以AB 边上的高等于2+ 6.12.已知tan α,tan β是方程6x 2-5x +1=0的两根,且0<α<π2,π<β<3π2. (1)求tan(α+β)的值; (2)求α+β的值.解:(1)由题可得⎩⎪⎨⎪⎧tan α+tan β=56,tan α·tan β=16.∴tan(α+β)=tan α+tan β1-tan αtan β=561-16=1. (2)∵0<α<π2,π<β<3π2, ∴π<α+β<2π,由tan(α+β)=1,∴α+β=5π4.。
「精品」高中数学第三章三角恒等变换3.1两角和与差的正弦余弦和正切公式3.1.3二倍角的正弦余弦正切公式知识

3.1.3 二倍角的正弦、余弦、正切公式疱工巧解牛知识•巧学 一、倍角公式1.公式的推导:倍角公式是和角公式的特例,只要在和角公式中令α=β,就可得出相应的倍角公式.sin(α+β)=sin αcos β+cos αsin β−−→−=βα令sin2α=2sin αcos α;cos(α+β)=cos αcos β-sin αsin β−−→−=βα令cos2α=cos 2α-sin 2α.由于sin 2α+cos 2α=1,显然,把sin 2α=1-cos 2α代入cos2α=cos 2α -sin 2α,得cos2α=cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1.同理,消去cos 2α,得cos2α=1-2sin 2α. tan(α+β)=αααβαβαβα2tan 1tan 22tan tan tan 1tan tan -=−−→−∙-+=令. 综上,我们把公式叫做二倍角公式.2.二倍角公式中角α的范围由任意角的三角函数的定义可知S 2α、C 2α中的角α是任意的,但公式T 2α即tan2α=αα2tan 1tan 2-中的角是有条件限制的. 要使tan2α有意义,需满足1-tan 2α≠0且tan α有意义.当tan α有意义时,α≠2π+k π(k∈Z );当1-tan 2α≠0,即tan α≠±1时,α≠±4π+k π(k∈Z ).综上,可知要使T 2α有意义,需α≠±4π+k π且α≠2π+k π(k∈Z ).特别地,当α=2π+k π(k∈Z )时,虽然tan α的值不存在,但tan2α的值是存在的,这时求tan2α的值,可用诱导公式进行,即tan2(2π+k π)=tan(π+2k π)=tan π=0. 学法一得 二倍角的切函数是用单角的切函数表示出来的,它的角α除了使解析式有意义外,还应使函数自身也有意义. 3.倍角公式中的倍角是相对的二倍角公式不仅仅可用于将2α作为α的2倍的情况,对于两个角的比值等于2的情况都成立,如8α是4α的二倍角,4α是2α的二倍角,3α是23α的二倍角,2α是4α的二倍角,3α是6α的二倍角等. 在运用倍角公式对半角的三角函数进行变换时,无论正用还是逆用,都可直接使用这一公式.例6cos6sin23sinααα=,6cos 26sin 6cos 3cos222αααα=-=-1=1-2sin26α;sin3α·cos3α=21 (2sin3αcos3α)=21sin6α;cos 22α-sin 22α=cos4α;ααα3sin 4123cos 23sin 21=;︒-︒35tan 135tan 22=tan70°等. 4.倍角公式的几种变形形式(sin α±cos α)2=1±sin2α;1+cos2α=2cos 2α;1-cos2α=2sin 2α;cos 2α=22cos 1α+;sin 2α=22cos 1α-. 学法一得 我们常把1+cos α=2cos 22α,1-cos α=2sin 22α称为升幂换半角公式,利用该公式消去常数项,便于提取公因式化简三角函数式;把cos 2α=22cos 1α+,sin 2α=22cos 1α-称为降幂换倍角公式,利用该公式能使之降次,便于合并同类项化简三角函数式.倍角公式给出了α的三角函数与2α的三角函数之间的关系.对于该公式不仅要会正用,还应会逆用和变用.5.倍角公式与和角公式的内在联系只有理清公式的来龙去脉及公式的变形形式,才能及时捕捉到有价值的信息,完成问题的解答.典题•热题知识点一 直接应用倍角公式求值 例1 求下列各式的值:(1)2sin15°sin105°;(2)︒-15sin 731432;(3)︒-︒5.22tan 15.22tan 2;(4)12cos24cos 24sin πππ. 解:(1)原式=2sin15°·sin(90°+15°)=2sin15°cos15°=sin30°=21.(2)原式=143(1-2sin 215°)=143cos30°=283323143=⨯. (3)原式=.2112145tan 215.22tan 15.22tan 2212=⨯=︒=︒-︒∙. (4)原式=8121416sin 4112cos 12sin 21=⨯==πππ.方法归纳 倍角公式中的角是相对的,对它应该有广义上的理解,即112cos 2sin22++=n n nααα(n∈N *),12sin 2cos 2cos212+-=+n n nααα(n∈N *),1212tan 12tan 22tan++-=n n nααα(n∈N *).知识点二 利用倍角公式给值求值例2 已知x∈(2π-,0),cosx=54,则tan2x 等于( ) A.247 B.247- C.724 D.724- 思路分析:运用三角函数值在各个象限的符号及倍角公式求解. 解法一:∵x∈(2π-,0),cosx=54, ∴sinx=53)54(1cos 122-=--=--x . 由倍角公式sin2x=2sinxcosx=2524-,cos2x=2cos 2x-1=2×(54)2-1=257. 得tan2x=7242cos 2sin -=x x .解法二:∵x∈(2π-,0),cosx=54, ∴sinx=53)54(1cos 122-=--=--x .∴tanx=43cos sin -=x x . ∴tan2x=724)43(1)43(2tan 1tan 222-=---⨯=-xx . 答案:D方法归纳 ①解好选择题的关键在于能否针对题目的特点,选择合理而适当的解法,最忌对任何题目都按部就班地演算求解,小题大做,应力求做到“小题小做”“小题巧做”. ②像这种从题目的条件出发,通过正确地运算推理,得出结论,再与选择肢对照确定选项的方法叫做定量计算法;像这样通过对题干和选择肢的关系进行观察、分析,再运用所学知识,通过逻辑推理作出正确选择的方法叫做定性分析法. 例3 已知sin(4π+α)sin(4π-α)=161,α∈(2π,π),求sin4α的值.思路分析:要求sin4α的值,根据倍角公式可知只需求出sin2α、cos2α的值或sin α、cos α的值即可.由于(4π+α)+(4π-α)=2π,可运用二倍角公式求出cos2α的值. 解:由题设条件得sin(4π+α)sin(4π-α)=sin(4π+α)cos [2π-(4π-α)] =sin(4π+α)cos(4π+α)=21sin(2π+2α)=21cos2α=61,∴cos2α=31.∵α∈(2π,π),∴2α∈(π,2π).又∵cos2α=31>0,∴2α∈(23π,2π).∴sin2α=322)31(12cos 122-=--=--α. ∴sin4α=2sin2α·cos2α=2×92431)322(-=⨯-. 例4 已知cos(4π+x)=53,47127ππ<<x ,求x x x tan 1sin 22sin 2-+的值. 思路分析:由于结论中同时含有切、弦函数,所以可先对结论切化弦,化简后不难发现,只需求出sin2x 和tan(4π+x)的值即可,注意到2(4π+x)=2π+2x ,这样通过诱导公式就容易找到sin2x 同cos(4π+x)的关系了. 解:∵47127ππ<<x ,∴πππ2465<+<x .又∵cos(4π+x)=53>0,∴23π<4π+x <2π.∴sin(4π+x)=54)53(1)4(cos 122-=--=+--x π,345354)4cos()4sin()4tan(-=-=++=+x x x πππ.∵sin2x=-cos2(4π+x)=1-2cos 2(4π+x)=25725181=-, ∴原式=x x x x x x x x x x x xx x x sin cos )sin (cos 2sin sin cos cos sin 2cos 2sin cos sin 1sin 22sin 22-+=-∙+∙=-+7528)34(257)4tan(2sin tan 1tan 12sin -=-⨯=+∙=-+∙=x x x x x π.例5 在△ABC 中,已知AB=AC=2BC(如图3-1-10),求角A 的正弦值.图3-1-10思路分析:由于所给三角形是等腰三角形,所以可通过底角的三角函数值或顶角一半的三角函数值来求解.解:作AD⊥BC 于点D ,设∠BAD=θ,那么A=2θ.∵BD=21BC=41AB ,∴sin θ=41=AB BD . ∵0<2θ<π,∴0<θ<2π.于是cos θ=415)41(1sin 122=-=-θ. 故sinA=sin2θ=2sin θcos θ=815415412=⨯⨯. 巧解提示:作AD⊥BC 于点D ,∵BD=21BC=41AB,又∵AB=AC, ∴∠B=∠C.∴cosB=cosC=41=AB BD . ∵0<B <2π,∴sinB=415.又∵A+B+C=π,∴A=π-(B+C)=π-2B. ∴sinA=sin(π-2B)=sin2B=2sinBcosB=815414152=⨯⨯. 方法归纳 在△ABC 中,由于A+B+C=π,所以A=π-(B+C),222CB A +-=π.由诱导公式可知:sinA=sin(B+C);cosA=-cos(B+C);tanA=-tan(B+C);2cot 2tan ;2sin 2cos ;2cos 2sinCB AC B A C B A +=+=+=. 任意变换A 、B 、C 的位置,以上关系式仍然成立. 例6 已知sin 22α+sin2αcos α-cos2α=1,α∈(0,2π),求sin α、tan α的值. 思路分析:已知是二倍角,所求的结论是单角;已知复杂,结论简单,因此可从化简已知入手,推出求证的结论.解:把倍角公式sin2α=2sin αcos α,cos2α=2cos 2α-1代入已知得4sin 2αcos 2α+2sin αcos 2α-2cos 2α=0,即2cos 2α(2sin 2α+sin α-1)=0,即2cos 2α(2sin α-1)(sin α+1)=0.∵α∈(0,2π),∴sin α+1≠0,cos 2α≠0. ∴2sin α-1=0,即sin α=21.又∵α∈(0,2π),∴α=6π.∴tan α=33.知识点三 利用倍角公式化简三角函数式例7 利用三角公式化简sin50°(1+3tan10°).思路分析:本题给我们的感觉是无从下手,很难看出有什么公式可直接利用.从角的角度去分析,10°、50°除了它们的和60°是特殊角外,别无特点;从函数名称的角度去分析,由于该式子有弦,有切,我们可从化切为弦入手去尝试解决,转化成弦函数.通分后出现asin θ+bcos θ的形式,由于3是一特殊角的三角函数值,可把它拼凑成两角和(差)的正、余弦展开式的形式逆用公式求值.若把50°转化成(60°-10°)从同一角入手,也可以求值. 解:原式=sin(60°-10°)(1+3tan10°)=(23cos10°-21sin10°)(1+3tan10°) =23cos10°+23cos10°tan10°-21sin 10°-23sin10°tan10° =23cos10°+sin10°-23sin10°·tan10°=23(cos10°-︒︒10cos 10sin 2)+sin10° =︒︒︒+︒∙=︒+︒︒∙10cos 10cos 10sin 33220cos 2310sin 10cos 20cos 23 ︒︒+︒∙∙=︒︒+︒∙=10cos 20sin 2120cos 233322310cos 20sin 3320cos 23180sin 80sin 10cos 80sin 10cos 20sin 60cos 20cos 60sin =︒︒=︒︒=︒︒︒+︒︒=.巧解提示:原式=︒︒+︒∙︒=︒︒+︒10cos )10sin 2310cos 21(250sin )10cos 10sin 31(50sin ︒︒︒+︒︒︒=10cos 10sin 30cos 10cos 30sin 50sin 2110cos 10cos 10cos 80sin 10cos 40sin 40cos 2=︒︒=︒︒=︒︒︒=.方法归纳 对于三角整式,基本思路是降次、消项和逆用公式;对三角分式,基本思路是分子与分母约分或逆用公式;对二次根式,要设法使被开方数升次,通过开方进行化简.另外,还可用切割化弦、变量代换、角度归一等方法.对于形如1±sin α、1±cos α的形式,我们可采取升幂换半角的形式,消去常数项1,通过提取公因式化简有理式或通过开方化简无理式. 例8 求cos20°cos40°cos60°cos80°的值. 解:由于cos60°=21,所以原式=21cos20°cos40°cos80° ︒︒︒︒︒∙=20sin 80cos 40cos 20cos 20sin 21 ︒︒︒∙=︒︒︒︒∙=20sin 80cos 80sin 8120sin 80cos 40cos 40sin 41 16120sin 160sin 161=︒︒∙=. 方法归纳 对于可化为cos αcos2αcos4α…cos2n-1α(n∈N 且n>1)的三角函数式,由于它们的角是以2为公比的等比数列,可将分子、分母同乘以最小角的正弦,运用二倍角公式进行化简.巧解提示:此外,本题也可构造一对偶式求解. 设M=cos20°·cos40°·cos60°·cos80°, N=sin20°·sin40°·sin60°·sin80°, 则MN=161sin40°·sin80°·sin120°·sin160° =161sin20°·sin40°·sin60°·sin80° =161N ,∴M=161,即cos20°·cos40°·cos60°·cos80°=161. 知识点四 利用倍角公式证明三角恒等式例9 求证:θθθθθθ2tan 14cos 4sin 1tan 24cos 4sin 1-++=-+. 证明:原式等价于1+sin4θ-cos4θ=αθ2tan 1tan 2-(1+sin4θ+cos4θ), 即1+sin4θ-cos4θ=tan2θ(1+sin4θ+cos4θ). ① 而①式右边=tan2θ(1+cos4θ+sin4θ)=θθ2cos 2sin(2cos 22θ+2sin2θcos2θ)=2sin2θcos2θ+2sin 22θ =sin4θ+1-cos4θ=左边. 所以①式成立,原式得证.例10 求证:︒=︒-︒10sin 3240cos 140sin 322.思路分析:由于分母是三角函数值平方的形式,通分后转化成3cos 240°-sin 240°,按平方差公式展开得(3cos40°+sin40°)(3cos40°-sin40°),恰好是两个辅助角公式的形式,可运用三角函数的和差公式求值;此外,也可对它的分母降幂换倍角进行化简. 证明:左边=︒∙︒︒-︒︒+︒=︒︒︒-︒40cos 40sin )40sin 40cos 3)(40sin 40cos 3(40cos 40sin 40sin 40cos 3222222 2)40cos 40sin 2()40sin 2140cos 23(2)40sin 2140cos 23(24︒︒︒-︒⨯︒+︒⨯= ︒︒︒-︒︒︒︒+︒︒=80sin )40sin 60cos 40cos 60)(sin 40sin 60cos 40cos 60(sin 162︒︒-︒︒+︒=80sin )4060sin()4060sin(162︒=︒︒︒⨯=︒︒=︒︒︒=10sin 3210cos 10cos 10sin 21680sin 20sin 1680sin 20sin 100sin 162=右边, 所以原式成立.方法归纳 对于三角函数式的化简、求值和证明,可从角的角度、运算的角度或函数名称的角度去考虑,其中通过通分,提取公因式、约分、合并同类项等运算的手法去化简是非常必要的.例11 已知3sin 2α+2sin 2β=1,3sin2α-2sin2β=0,求证:cos(α+2β)=0.思路分析:从求证的结论看,cos(α+2β)的展开式中含有cos α、cos2β、sin α、sin2β这样的函数值.由已知条件结合倍角公式的特点,恰好能转化出cos2β、sin2β这样的函数值.证明:由3sin 2α+2sin 2β=1,得1-2sin 2β=3sin 2α,∴cos2β=3sin 2α. 又∵sin2β=23sin2α, ∴cos(α+2β)=cos αcos2β-sin αsin2β=cos α·3sin 2α-sin α·23sin2α=23sin αsin 2α-23sin αsin2α=0. 方法归纳 首先观察条件与结论的差异,从解决某一差异入手.确定从结论开始,通过变换将已知条件代入得出结论;或通过变换已知条件得出结论;或同时将条件与结论变形,直到找到它们间的联系.如果上述方法都难奏效的话,可采用分析法;如果已知条件含有参数,可采用消去参数法;如果已知条件是连比的式子,可采用换元法,等等. 问题•探究 材料信息探究问题 倍角和半角公式:sin α=2tan12tan22αα+,cos α=2tan12tan 122αα+-,tan α=2tan12tan 22αα-,这组公式称为“万能公式”,那么“万能公式”是怎样来的?它真的是“万能”的吗?探究过程:万能公式是一组用tan2α来表示sin α、cos α和tan α的关系式. 这组公式可以利用二倍角公式推导,其中正切tan α=2tan 12tan22αα-,可以由倍角公式直接获得;正弦、余弦只要在倍角公式中添加分母,再分子、分母同除以cos 22α可得: 2tan 12tan22cos 2sin 2cos 2sin 22cos 2sin 2sin 222ααααααααα+=+==, 2tan 12tan 12cos 2sin 2sin 2cos 2sin 2cos cos 22222222ααααααααα+-=+-=-=. 这组“万能公式”为一类三角函数的求值提供了一座方便可行的桥梁,如要计算cos α或sin(α+β)的值,可以先设法求得tan2α或2tan βα+的值.由于公式中涉及角的正切,所以使用时要注意限制条件,即要保证式子有意义.探究结论:所谓的“万能”,是说不论角α的哪一种三角函数,都可以表示成tan 2α的有理式,这样就可以把问题转化为以tan 2α为变量的“一元有理函数”,即如果令tan 2α=t ,则sin α、cos α和tan α均可表达为关于t 的分式函数,这就实现了三角问题向代数问题的转化,为三角问题用代数方法求解提供了一条途径.如ta n15°+cot15°=tan15°+=︒+︒=︒15tan 115tan 15tan 12430sin 2115tan 15tan 222=︒=+︒︒,就较方便的解决了问题.再如求函数2sin cos +=x x y 的值域.令t x=2tan ,则t∈R ,利用万能公式有sinx=212t t +,cosx=2211t t +-,所以=+++-=21211222t t t t y 222221t t t ++-,由此可以建立关于t 的一次或二次函数(2y+1)t 2+2yt+2y-1=0,进一步分类讨论可得函数的值域.。
高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案

tan 60∘ − tan 15∘ 1 + tan 60∘ ⋅ tan 15∘ = tan(60∘ − 15∘ ) = tan 45∘ = 1.
(2)根据tan α + tan β = tan(α + β)(1 − tan α tan β) ,则有 原式 = tan 120 ∘ (1 − tan 55∘ tan 65∘ ) − √3 tan 55∘ tan 65∘
π ),向左平移 m 个单位后,得到的函数为 3 π π π y = 2 sin (x + + m),若所得到的图像关于 y 轴对称,则 + m = + kπ, k ∈ Z ,所以 3 3 2 π π m = + kπ ,k ∈ Z.取 k = 0 时,m = . 6 6
高考不提分,赔付1万元,关注快乐学了解详情。
和差角公式 辅助角公式
三、知识讲解
1.和差角公式 描述: 两角差的余弦公式 对于任意角α,β 有cos(α − β) = cos α cos β + sin α sin β,称为差角的余弦公式,简记C(α−β) . 两角和的余弦公式 对于任意角α,β 有cos(α + β) = cos α cos β − sin α sin β,称为和角的余弦公式,简记C(α+β) . 两角和的正弦公式 对于任意角α,β 有sin(α + β) = sin α cos β + cos α sin β,称为和角的正弦公式,简记S (α+β) . 两角差的正弦公式 对于任意角α,β 有sin(α − β) = sin α cos β − cos α sin β,称为差角的正弦公式,简记S (α−β) . 两角和的正切公式 对于任意角α,β 有tan(α + β) = 两角差的正切公式 对于任意角α,β 有tan(α − β) =
最新高中数学人教B版必修4教案:3.1.3两角和与差的正切3Word版含答案

选做题练习册 B 组
最新精品资料
(1)等号的左边是复角的正切 . 右边为分式, 分子是两单角的正切之和或差, 分母是 1 减去 两单角的正切之积 .
(2)分子中和或差与等号左边相同,分母则与等号左边相异
.
(四)巩固、应用公式
例 2、( 1)求 1 tan 75 的值 . 1 tan 75
(2)求 tan17 tan 43
3 tan17 tan 43 的值 .
2、过程与方法
(1) 通过推导两角和的正切公式,以及公式的灵活应用,增强计算能力和分析能力
(2) 渗透数学研究方法的教育: 认识公式的推导, 及公式的应用, 掌握从一般到特殊的思维
方法。
(3) 经历两角和与差公式探究过程,尝试运用函数间的相互关系问题
;
(4) 发挥教学工具的作用,提高运用数学解决问题的能力
角恒等变换公式的重要组成部分 .
教材主要通过两角和的正弦公式及两角和的余弦公式推导出两角和的正切,
由换元思想
变换出两角差的正切公式。讲解了公式的变形,公式的变形应用是本节课的难点所在
.
二、教学目标分析
(一)、三维目标
1、知识与技能目标
(1)能准确说出两角和与差的正切公式;(2)能够用公Fra bibliotek的变形解决问题
(六)课内自我检测
1. sin15 + cos15 的值为 sin15 -cos15
3 A.
3
26 B.
4
26 C.
4
D. 3
2.在△ ABC中, tanA tan B+ 3= 3 tan A tan B ,则∠ C 等于
2
A.
B.
3
3
(新人教B版必修4)数学:3.1和角公式(课件)

)(
)
(
)
例题1 例题
例题2 例题
例题3 例题
例题4 例题
例题5 例题
例题6 例题
小结
基础应用
1、非特殊角的求值 、 2、角的组合 、 3、公式逆用 、
变形公式
tanα + tan β = tan (α + β ) ⋅ (1− tanα ⋅ tan β ) tanα − tan β = tan (α − β ) ⋅ (1+ tanα ⋅ tan β )
例题1 例题
例题2 例题
例题3 例题
例题4 例题
例题5 例题
例题6 例题
变形应用
变形公式
tanα + tan β = tan (α + β ) ⋅ (1− tanα ⋅ tan β ) tanα − tan β = tan (α − β ) ⋅ (1+ tanα ⋅ tan β )
例题、 1 tan17o + tan43o + 3tan17o tan43o
1 = 12
基础应用
4 4 例题2、(2)已知tan (α + β ) = ,tan(α − β ) = − , 求tan2α. 5 5
解: 2α = (α + β ) + (α − β ) Q
∴ tan 2α = tan ( (α + β ) + (α − β ) )
tan(α + β ) + tan(α − β ) = =0 1 − tan(α + β ) ⋅ tan(α − β )
例题5、已知α、β满足α + β = ,求(1+ tanα )(1+ tan β )的值 . 4
高中数学3.1两角和与差的正弦余弦和正切公式3.1.2第2课时两角和与差的正切公式课件新人教A版必修四1

T(α-β)
[ 基础自测] 1.思考辨析 (1)存在α,β∈R,使tan(α+β)=tan α+tan β成立.( tan α+tan β (2)ቤተ መጻሕፍቲ ባይዱ任意α,β∈R,tan(α+β)= 都成立.( 1-tan αtan β ) )
tan α+tan β (3)tan(α+β)= 等价于tan α+tan β=tan(α+β)· (1-tan αtan β). 1-tan αtan β ( )
[自 主 预 习· 探 新 知]
两角和与差的正切公式 名称 两角和 的正切 两角差 的正切 简记 符号 T(α+β) 公式 tan(α+β)= tan α+tan β 1-tan αtan β _____________ tan(α-β)= tan α-tan β 1+tan αtan β ____________ 使用条件 π α,β,α+β≠kπ+2(k∈Z) 且 tan α· tan β≠1 π α,β,α-β≠kπ+2(k∈Z) 且 tan α· tan β≠-1
第三章
三角恒等变换
3.1 两角和与差的正弦、余弦和正切公式
3.1.2 两角和与差的正弦、余弦、正切公式 第2课时 两角和与差的正切公式
学习目标:1.能利用两角和与差的正弦、余弦公式推导出两角和与差的正 切公式.2.能利用两角和与差的正切公式进行化简、求值、证明.(重点)3.熟悉两 角和与差的正切公式的常见变形,并能灵活应用.(难点)
∵α,β 均为锐角, ∴α+β∈(0,π), π ∴α+β=4. (2)∵AD⊥BC 且 BD∶CD∶AD=2∶3∶6, BD 1 ∴tan∠BAD=AD=3, CD 1 tan∠CAD=AD =2, tan∠BAC=tan(∠CAD-∠BAD)
tan∠CAD-tan∠BAD = 1+tan∠CADtan∠BAD 1 1 2-3 = 1 1 1+2×3 1 =7.]
人教B版高中数学必修四《3.1 和角公式 3.1.1 两角和与差的余弦》_1

学科:数学
课题:《两角差的余弦公式》
模块: 必修4(人教社B版)
教学目标:
1.四基四能:
(1)让学生经历推导两角差余弦公式的过程,知道两角差余弦公式的意义。
教学中强调公理化推理、数形结合和模型思想。
重视教学过程中学生体会完整的教与学的过程:发现现象—提出问题—验证—分析—解决—一般化。
(2)学生能从实际情境中发现问题,抽象并提出数学问题,分析和探究两角差余弦公式的推导过程,最后将问题解决。
2. 数学核心素养:
(1)从实际情境中抽象出数学问题,体会用图形进行无字证明的过程,体现了数学抽象和直观想象的数学核心素养。
(2)对两角差的余弦公式能探究出与学过的向量知识有关联,并严谨准确的进行表述,体现逻辑推理的数学核心素养。
(2)针对运算问题,合理选择运算方法,运算求解,用数学语言直观地进行交流,体现数学运算的数学核心素养。
3. 情感态度价值观:
创设情境,让学生主动探究,成为数学学习活动和展示的主体,给学生展示自我的空间,同时要及时给予认可和鼓励,让学生在乐学的氛围中亲历知识的形成过程,并注重知识间的关联,反复巩固所学的知识。
教学重点:通过探索得到两角差的余弦公式。
教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还
有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等。
教学资源与媒体:传统板书辅助电子白板
教学过程:
(让学生选择一个位置)(动画演示),此时βα-=∠AOB
基于核心素养的“两角差的余弦公式”教学评价表。
高中数学人教版必修四讲义:第三章 3.1 3.1.3 两角和与差的正切 Word版含答案

和角公式3.1.3两角和与差的正切预习课本P140~141,思考并完成以下问题(1)如何利用两角差(和)的正、余弦公式导出两角差(和)的正切公式?(2)公式T()的应用条件是什么?α±β[新知初探]两角和与差的正切公式[点睛] (1)在两角和与差的正切公式中,角α,β,α+β,α-β均不等于k π+π2(k ∈Z),这是由正切函数的定义域决定的.(2)在应用两角和与差的正切公式时,只要tan α,tan β,tan(α+β)(或tan(α-β))中任一个的值不存在,就不能使用两角和(或差)的正切公式解决问题,应改用诱导公式或其他方法解题.如化简tan ⎝⎛⎭⎫π2-β,因为tan π2的值不存在,所以不能利用公式T (α-β)进行化简,应改用诱导公式来化简,即tan ⎝⎛⎭⎫π2-β=sin ⎝⎛⎭⎫π2-βcos ⎝⎛⎭⎫π2-β=cos βsin β. [小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)存在α,β∈R ,使tan(α+β)=tan α+tan β成立.( ) (2)对任意α,β∈R ,tan(α+β)=tan α+tan β1-tan αtan β都成立.( )答案:(1)√ (2)×2.已知tan α=-34,则tan ⎝⎛⎭⎫π4-α等于( ) A .-17 B .-7 C.17 D .7答案:D3.若tan ⎝⎛⎭⎫π4-α=3,则tan α的值为( )A .-2B .-12C.12 D .2答案:B 4.tan 17°+tan 43°1-tan 17°tan 43°=________.答案: 3[典例] 求值:(1)tan(-15°); (2)tan 74°+tan 76°1-tan 74°tan 76°; (3)tan 23°+tan 37°+3tan 23°tan 37°. [解] (1)tan 15°=tan(45°-30°) =tan 45°-tan 30°1+tan 45°tan 30°=1-331+33=3-33+3=12-636=2-3,tan(-15°)=-tan 15°=3-2.(2)原式=tan(74°+76°)=tan 150°=-3 3.(3)∵tan 60=3=tan 23°+tan 37°1-tan 23° tan 37°,∴tan 23°+tan 37°=3-3tan 23°tan 37°,∴tan 23°+tan 37°+3tan 23°tan 37°= 3.利用公式T(α±β)化简求值的两点说明(1)分析式子结构,正确选用公式形式:T()α±β是三角函数公式中应用灵活程度较高的公式之一,因此在应用时先从所化简(求值)式子的结构出发,确定是正用、逆用还是变形用,并注意整体代换.(2)化简求值中要注意“特殊值”的代换和应用:当所要化简(求值)的式子中出现特殊的数值“1”,“3”时,要考虑用这些特殊值所对应的特殊角的正切值去代换,如“1=tan π4”,“3=tan π3”,这样可以构造出利用公式的条件,从而可以进行化简和求值.[活学活用]1.sin 7°+cos 15°sin 8°cos 7°-sin 15°sin 8°的值为________. 解析:原式=sin (15°-8°)+cos 15°sin 8°cos (15°-8°)-sin 15°sin 8°=sin 15°cos 8°cos 15°cos 8°=tan 15°=tan (45°-30°)=tan 45°-tan 30°1+tan 45°tan 30°=1-331+33=2- 3.答案:2- 3 2.tan 18°+tan 42°+tan 120°tan 18°tan 42°tan 60°=________.解析:观察可知18°+42°=60°,可运用两角和的正切公式求值. ∵tan 18°+tan 42°+tan 120°=tan 60°(1-tan 18°tan 42°)+tan 120° =-tan 60°tan 18°tan 42°, ∴原式=-1. 答案:-1[典例] 已知cos α=45,α∈(0,π),tan (α-β)=12,求tan β及tan (2α-β).[解] ∵cos α=45>0,α∈(0,π),∴sin α>0. ∴sin α=1-cos 2α=1-⎝⎛⎭⎫452=35,∴tanα=sinαcosα=3545=34.∴tanβ=tan[α-(α-β)]=tanα-tan(α-β)1+tanα·tan(α-β)=34-121+34×12=211,tan(2α-β)=tan[α+(α-β)]=tanα+tan(α-β) 1-tanα·tan(α-β)=34+121-34×12=2.给值求值问题的两种变换(1)式子的变换:分析已知式子的结构特点,结合两角和与差的三角函数公式,通过变形,建立与待求式间的联系实现求值.(2)角的变换:首先从已知角间的关系入手,分析已知角和待求角间的关系,如用α=β-(β-α),2α=(α+β)+(α-β)等关系,把待求的三角函数与已知角的三角函数巧妙地建立等量关系,从而求值.[活学活用]1.设tanα,tanβ是方程x2-3x+2=0的两根,则tan(α+β)的值为()A .-3B .-1C .1D .3解析:选A ∵tan α,tan β是方程x 2-3x +2=0的两根, ∴tan α+tan β=3,tan αtan β=2, ∴tan (α+β)=tan α+tan β1-tan αtan β=31-2=-3.2.已知sin α+cos αsin α-cos α=3,tan (α-β)=2,则tan (β-2α)=________.解析:由条件知sin α+cos αsin α-cos α=tan α+1tan α-1=3,则tan α=2.因为 tan (α-β)=2, 所以 tan (β-α)=-2, 故 tan (β-2α)=tan [(β-α)-α] =tan (β-α)-tan α1+tan (β-α)tan α=-2-21+(-2)×2=43.答案:43[典例] 已知tan α=2,tan β=-13,其中0<α<π2,π2<β<π.(1)求tan (α-β); (2)求α+β的值.[解] (1)因为tan α=2,tan β=-13,所以tan (α-β)=tan α-tan β1+tan αtan β=2+131-23=7.(2)因为tan (α+β)=tan α+tan β1-tan αtan β=2-131+23=1,又因为0<α<π2,π2<β<π,所以π2<α+β<3π2,所以α+β=5π4.[一题多变]1.[变设问]在本例条件下,求tan (2α-β)的值. 解:因为tan (α-β)=7,tan α=2,所以tan (2α-β)=tan (α-β)+tan α1-tan (α-β)tan α=7+21-7×2=-913.2.[变条件,变设问]若本例条件变为:tan α=13,tan β=17且α,β∈⎝⎛⎭⎫0,π2,求2α+β的值.解:因为tan α=13,tan β=17且α,β∈⎝⎛⎭⎫0,π2, ∴tan (α+β)=tan α+tan β1-tan αtan β=13+171-13×17=12>0,∴α+β∈⎝⎛⎭⎫0,π2,2α+β∈(0,π), ∴tan (2α+β)=tan (α+β)+tan α1-tan (α+β)tan α=12+131-12×13=1,∴2α+β=π4.给值求角问题的解题策略(1)根据题设条件求角的某一三角函数值;(2)讨论角的范围,必要时还需根据已知三角函数值缩小角的范围,从而确定角的大小.层级一 学业水平达标1.1-tan 27°tan 33°tan 27°+tan 33°的值为( )A.33B. 3 C .tan 6°D.1tan 6°解析:选A ∵tan 27°+tan 33°1-tan 27°tan 33°=tan (27°+33°)=tan 60°,∴原式=1tan 60°=33.2.tan 15°+tan 105°等于( )A .-2 3B .2+ 3C .4 D.433解析:选A tan 15°+tan 105°=tan (60°-45°)+tan (45°+60°)=tan 60°-tan 45°1+tan 60°tan 45°+tan 45°+tan 60°1-tan 45°tan 60°=-23,故选A . 3.已知tan (α+β)=25,tan ⎝⎛⎭⎫β-π4=14,则tan ⎝⎛⎭⎫α+π4等于( ) A.1318 B.1322 C.322 D.318解析:选C ∵tan (α+β)=25,tan ⎝⎛⎭⎫β-π4=14, ∴tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=25-141+25×14=322. 4.在△ABC 中,若tan A tan B>1,则△ABC 的形状是( )A .锐角三角形B .钝角三角形C .直角三角形D .不能确定 解析:选A 由tan A tan B>1,知tan A>0,tan B>0,从而A ,B 均为锐角. 又tan (A +B)=tan A +tan B 1-tan A tan B<0,即tan C =-tan (A +B)>0,∴C 为锐角,故△ABC 为锐角三角形.5.若α=20°,β=25°,则(1+tan α)(1+tan β)的值为( )A .1B .2C .1+ 2D .1+ 3 解析:选B ∵tan 45°=tan (20°+25°)=tan 20°+tan 25°1-tan 20°tan 25°=1, ∴tan 20°+tan 25°=1-tan 20°tan 25°,∴(1+tan α)(1+tan β)=1+tan 20°+tan 25°+tan 20°·tan 25°=1+1-tan 20°tan 25°+tan 20°tan 25°=2.6.已知tan α=-2,tan (α+β)=17,则tan β的值为________. 解析:将β化为(α+β)-α,利用两角差的正切公式求解.tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17-(-2)1+17×(-2)=3. 答案:37.cos 15°-sin 15°cos 15°+sin 15°=________. 解析:原式=1-tan 15°1+tan 15°=tan 45°-tan 15°1+tan 45°tan 15°=tan (45°-15°)=tan 30°=33. 答案:33 8.若1+tan α+tan β-tan αtan β=0,且α,β∈⎝⎛⎭⎫π2,π,则α+β=________.解析:因为1+tan α+tan β-tan αtan β=0,所以tan α+tan β=-(1-tan αtan β),所以tan (α+β)=tan α+tan β1-tan αtan β=-1. 又α,β∈⎝⎛⎭⎫π2,π,所以π<α+β<2π,故α+β=7π4. 答案:7π4 9.已知tan (α+β)=2,tan (α-β)=3,求tan (3π+2α)+tan (4π+2β)的值.解:因为tan (α+β)=2,tan (α-β)=3,所以tan 2α=tan [(α+β)+(α-β)]=tan (α+β)+tan (α-β)1-tan (α+β)tan (α-β)=2+31-2×3=-1, tan 2β=tan [(α+β)-(α-β)]=tan (α+β)-tan (α-β)1+tan (α+β)tan (α-β)=2-31+2×3=-17, 所以tan (3π+2α)+tan (4π+2β)=tan 2α+tan 2β=-1-17=-87. 10.已知tan α,tan β是方程x 2+33x +4=0的两根,且-π2<α<π2,-π2<β<π2,求角α+β的大小.解:由已知得⎩⎪⎨⎪⎧ tan α+tan β=-33,tan α·tan β=4,∴tan α,tan β均为负,∴-π2<α<0,-π2<β<0.∴-π<α+β<0,又tan (α+β)=tan α+tan β1-tan αtan β=-331-4= 3.∴α+β=-2π3.层级二 应试能力达标 1.已知tan α=12,tan (α-β)=-25,那么tan (β-2α)的值为( )A .-34B .-112C .-98 D.98解析:选B tan (β-2α)=-tan (2α-β)=-tan [α+(α-β)]=-tan α+tan (α-β)1-tan αtan (α-β)=-12-251+12×25=-112.2.在△ABC 中,tan A +tan B +3=3tan A tan B ,则角C 等于() A.π3 B.2π3C.π6D.π4解析:选A 由已知,得tan A +tan B =3(tan A tan B -1),即tan A +tan B1-tan A tan B =-3,∴tan (A +B)=-3, ∴tan C =tan [π-(A +B)]=-tan (A +B)=3,∴C =π3. 3.已知tan α=12,则tan ⎝⎛⎭⎫π4+α-11+tan ⎝⎛⎭⎫π4+α的值是( ) A .2B.12 C .-1 D .-3解析:选B 法一:因为tan α=12,所以tan ⎝⎛⎭⎫π4+α =tan π4+tan α1-tan π4·tan α=1+tan α1-tan α=3, 所以tan ⎝⎛⎭⎫π4+α-11+tan ⎝⎛⎭⎫π4+α=3-11+3=12.故选B . 法二:tan ⎝⎛⎭⎫π4+α-11+tan ⎝⎛⎭⎫π4+α=tan ⎝⎛⎭⎫π4+α-tan π41+tan ⎝⎛⎭⎫π4+α·tan π4 =tan ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-π4=tan α=12.故选B . 4.(1+tan 1°)(1+tan 2°)·…·(1+tan 44°)(1+tan 45°)的值为( )A .222B .223C .224D .225解析:选B (1+tan 1°)(1+tan 44°)=1+tan 44°+tan 1°+tan 44°tan 1°,∵tan 45°=tan (1°+44°)=tan 1°+tan 44°1-tan 1°tan 44°=1, ∴(1+tan 1°)(1+tan 44°)=1+1-tan 1°tan 44°+tan 44°tan 1°=2,同理,得(1+tan 1°)(1+tan 44°)=(1+tan 2°)(1+tan 43°)= (2)∴原式=222×(1+tan 45°)=223.5.A ,B ,C 是△ABC 的三个内角,且tan A ,tan B 是方程3x 2-5x +1=0的两个实数根,则△ABC 是__________三角形.(填“锐角”“钝角”或“直角”)解析:由已知得⎩⎨⎧ tan A +tan B =53,tan A·tan B =13. ∴tan (A +B)=tan A +tan B 1-tan A·tan B =531-13=52, 在△ABC 中,tan C =tan [π-(A +B)]=-tan (A +B)=-52<0,∴C 是钝角,∴△ABC 是钝角三角形. 答案:钝角6.若(tan α-1)(tan β-1)=2,则α+β的最小正值为______________________________. 解析:(tan α-1)(tan β-1)=2⇒tan αtan β-tan α-tan β+1=2⇒tan α+tan β=tan αtan β-1⇒tan α+tan β1-tan αtan β=-1, 即tan (α+β)=-1,∴α+β=k π-π4,k ∈Z. 当k =1,α+β取得最小正值3π4. 答案:3π4 7.已知tan(π+α)=-13,tan(α+β)=sin α+2cos α5cos α-sin α. (1)求tan(α+β)的值;(2)求tan β的值.解:(1)因为tan(π+α)=-13,所以tan α=-13, 因为tan(α+β)=sin α+2cos α5cos α-sin α=tan α+25-tan α, 所以tan(α+β)=-13+25+13=516.(2)因为tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α, 所以tan β=516+131-516×13=3143.8.在平面直角坐标系xOy 中,以Ox 为始边作两个锐角α,β,它们的终边分别与单位圆相交于A ,B 两点,已知点A ,B 的横坐标分别为13,255. (1)求tan(α+β)的值;(2)求tan (α+β)-tan α2+2tan (α+β)·tan α的值. 解:(1)由题意,得cos α=13,cos β=255. 因为α,β为锐角,所以sin α=223,sin β=55, 因此tan α=22,tan β=12, 所以tan(α+β)=tan α+tan β1-tan αtan β=22+121-22×12=-9+522. (2)tan (α+β)-tan α2+2tan (α+β)·tan α=12×tan (α+β)-tan α1+tan (α+β)·tan α=12×tan[(α+β)-α]=12×tan β1 2=1 4.=1 2×。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.3 两角和与差的正切
自我小测
1.已知tan α=
12
,tan β=1
3,且角α,β为锐角,则α+β的值是( )
A .
34π B .4π或34π C .4
π D .54π
2.在△ABC 中,已知tan A ,tan B 是方程3x 2
+8x -1=0的两根,则tan C 等于( ) A .2 B .-2 C .4 D .-4 3.已知α∈,2ππ⎛⎫ ⎪⎝⎭,tan 4πα⎛
⎫+ ⎪⎝
⎭=17,那么sin α-cos α的值为( )
A .-
15 B .75 C .-75 D .3
4
4.已知tan(α+β)=3,tan(α-β)=2,则角α不可能是( ) A .
38π B .58π C .78π D .118
π
5.在△ABC 中,tan A =
12,cos B =10
,则tan C =( )
A .-1
B .1
C .-2 6.若
sin cos sin cos αα
αα
+-=3,tan(α-β)=2,则tan(β-2α)=__________.
7.在△ABC 中,高AD 把BC 分为长2 cm 和3 cm 的两段,∠A =45°,则S △ABC =__________. 8.已知3tan αtan(α+β)=4[tan(α+β)-tan α-tan β],且cos(π+β)>0,则sin(β-3π)=__________. 9.已知α为第二象限的角,sin α=35,β为第一象限的角,cos β=5
13
,求tan(2α-β)的值.
10.已知在△ABC 中,tan B +tan C B tan C A B +1=tan A tan B ,试判断△ABC 的形状.
参考答案1.答案:C
2.答案:A
3.答案:B
4.答案:B
5.解析:因为cos B
=
10
,且0<B<π,
所以sin B
所以tan B=1
3
,
所以tan C=-tan(A+B)=-
tan tan
1tan tan
A B
A B
+
-
=-
11
23
11
1
23
+
-⨯
=-1.
故选A.答案:A
6.答案:4 3
7.解析:设AD=x cm,由已知得tan∠BAD=BD
AD
=
2
x
,tan∠CAD=
DC
AD
=
3
x
,
又∠BAD+∠CAD=45°,
则tan 45°=
tan tan
1tan tan
BAD CAD
BAD CAD
∠+∠
-∠∠
=
2
23
6
1
x x
x
+
-
=1,
化简得x2-5x-6=0,解得x=6,x=-1(舍去).
所以S△ABC=1
2
×AD×BC=
1
2
×6×5=15(cm2).
答案:15 cm2
8.答案:3 5
9.解:因为α为第二象限的角,且sin α=
35
, 所以cos α=-
45,所以tan α=34
-. 又因为β为第一象限的角,且cos β=
5
13
, 所以sin β=
1213,所以tan β=125
. 所以tan(α-β)=
tan tan 1tan tan αβ
αβ
-+
=31245312145
--⎛⎫+-⨯ ⎪⎝⎭=6316. 所以tan(2α-β)=tan[α+(α-β)] =
tan tan()
1tan tan()
ααβααβ+---
=
3634163631416
-+
⎛⎫--⨯ ⎪⎝⎭=204253. 10.解:由tan B +tan C
B tan C
tan B +tan C
-tan B tan C )=tan(B +C )·(1-tan B tan C ). 若tan B tan C =1,则tan B =cot C , 故在△ABC 中,B =
2
π
-C , 故B +C =
2π,所以A =2
π
,tan A 无意义,与题设矛盾. 所以tan B tan C ≠1,所以tan(B +C )
所以B +C =
3
π
.
A
B +1=tan A tan B ,
A +tan
B )=-(1-tan A tan B ). 所以tan(A +B )
A +
B =56π.
最新中小学教案、试题、试卷
又由A +B +C =π, 得B =C =
6
π,A =23π.
所以△ABC 为等腰三角形.。