人教版初一数学试题]]新人教版初一数学上册期末考试(含答案)--多张-练习
2024年最新人教版初一数学(上册)期末考卷及答案(各版本)

2024年最新人教版初一数学(上册)期末考卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 1B. 0C. 1D. 22. 已知a > b,则下列不等式成立的是()A. a b > 0B. a + b < 0C. a b < 0D. a + b > 03. 下列各数中,是有理数的是()A. √3B. √2C. √5D. √94. 已知2x3=0,则x的值是()A. 0B. 1C. 2D. 35. 下列式子中,计算结果为0的是()A. 5x 5xB. 5x + 5xC. 5x 5xD. 5x / 5x二、判断题5道(每题1分,共5分)1. 任何两个有理数的和仍然是有理数。
()2. 任何两个有理数的积仍然是有理数。
()3. 任何两个整数的商仍然是有理数。
()4. 任何两个整数的和仍然是有理数。
()5. 任何两个整数的差仍然是有理数。
()三、填空题5道(每题1分,共5分)1. 已知a > b,且c > d,则a + c ______ b + d。
2. 若x为正数,则x为______数。
3. 任何数与0相乘,结果都为______。
4. 任何数与1相乘,结果都为______。
5. 任何数与1相乘,结果都为______。
四、简答题5道(每题2分,共10分)1. 简述有理数的定义。
2. 简述整数的定义。
3. 简述分数的定义。
4. 简述正数和负数的定义。
5. 简述相反数的定义。
五、应用题:5道(每题2分,共10分)1. 已知a > b,且c < d,求证:a + c > b + d。
2. 已知a > b,且c > d,求证:a c < b d。
3. 已知a > b,且c < d,求证:a c > b d。
4. 已知a > b,且c > d,求证:a c > b d。
人教版七年级上册数学期末考试试卷含答案

人教版七年级上册数学期末考试试题一、单选题1.下列四个有理数中,绝对值最小的数是()A.-5B.0C.4D.-92.温度由﹣13℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃3.数据202万用科学记数法表示为()A.2.02×105B.0.202×107C.20.2×105D.2.02×1064.已知||1(2)312m m x--+=是关于x 的一元一次方程,则m 的值为()A.1m =B.2m =C.2m =-D.2m =±5.下列方程中,与13x x -=-+的解相同的是()A.20x +=B.230x -=C.22x x-=D.20x -=6.陈老师做了一个周长为()24a b +的长方形教具,其中一边长为()a b -,则另一边长为A.3b B.5a b +C.2a D.35a b-7.如图,点A,O,B 在一条直线上,OE⊥AB 于点O,如果∠1与∠2互余,那么图中相等的角有()A.6对B.5对C.4对D.3对8.若代数式2243(251)ax x y x bx y +-+--+-的值与x 的取值无关,则a b +的值为A.6B.-6C.2D.-29.如图,点C 把线段AB 从左至右依次分成2:3两部分,点D 是AB 的中点,若CD=2,则线段AB 的长是()A.10B.15C.20D.2510.一电子跳蚤在数轴上从原点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第2022次落下时,落点处表示的数为()A.-2022B.2022C.-1011D.1011二、填空题11.若点A、B、C、D 在数轴上的位置如图所示,则-3的相反数所对应的点是_________.12.计算:11||32-=_________.13.点A、B 在数轴上,若数轴上点A 表示-1,且AB=2,则点B 表示的数是_______.14.某企业对应聘人员进行专业考试,试题由50道不定项选择题组成,评分标准规定:每道题全选对得4分,不选得0分,选错或正确选项不全倒扣2分.已知某人有4道题未选,得了172分,则这个人全选对了_________道题.15.如图,将边长为m 的正方形纸片沿虚线剪成两块正方形和两块长方形,若拿掉边长为n 的小正方形后,再把剩下的三块图形拼成一块长方形,则这块长方形周长为_________.16.有一组数:(1,1,0),(2,4,7),(3,9,26),(4,16,63),…,按照其中的规律,第n 组数为_________.17.若方程x+5=7﹣2(x﹣2)的解也是方程6x+3k=14的解,则常数k=_____.18.如图,将一副三角尺的直角顶点O 重合在一起.若∠COB 与∠DOA 的比是2:7,OP 平分∠DOA,则∠POC=_________度.三、解答题19.计算:(1)(+7)+(﹣2)﹣(﹣5)(2)(﹣2)2×(﹣916)÷(﹣32)2(3)20×34+(﹣20)×12+20×(﹣14)(4)﹣|﹣23|﹣|﹣12×23|+320.解方程:(1)2121136x x +--=(2)1(35)2(5)2x x x --=+.21.先化简,再求值:2222734(2)2(32)a ab b b ab a ab --+---,其中2a =-,2b =.22.某同学在黑板上正确解答了一道整式的计算题,但被另一位同学不慎擦掉了算式中的一部分,如图所示:22(475)351x x x x +-+=--+.(1)求被擦掉的多项式;(2)若12x =-,求被擦掉多项式的值.23.已知x,y 为有理数,现规定一种新运算“⊗”,满足2021x y xy ⊗=-.(1)求(25)(4)⊗⊗-的值;(2)记()P a b c =⊗-,Q a b a c =⊗-⊗,请猜想P 与Q 的数量关系,并说明理由.24.如图,已知A、B 两点在数轴上,点A 表示的数为a,点B 表示的数为b,且a、b 满足2++-=,点P以每秒4个单位长度的速度从点A向右运动.点Q以每秒3个单(20)|60|0a b位长度的速度从点O向右运动(点P、点Q同时出发).(1)分别求出点A、B在数轴上对应的数;(2)经过几秒时,点P、点Q分别到原点O的距离相等?(3)当点P运动到什么位置时,恰好使AP=2BQ?25.如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF=AC﹣BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是.26.如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)如果∠AOC=70°,∠COE=50°,求∠BOD的度数;(2)如果∠AOE=160°,求∠BOD的度数;(3)如果OM平分∠AOE,∠COD:∠BOC=2:3,∠COM=15°,求∠BOD的度数.参考答案1.B【分析】根据负数的绝对值为负数的相反数,正数的绝对值是其本身,即可求解.【详解】解:55-=,00=,44=,99-=,且9540>>>,所以绝对值最小的数是0.故选:B.【点睛】本题考查了绝对值的定义,熟练掌握绝对值的定义即可求解.2.B【分析】根据题意列出算式,计算即可出值.【详解】解:由题意得上升后的温度为:﹣13+8=﹣5℃,故选:B.【点睛】本题考查有理数的加法,熟练掌握运算法则是解题的关键.3.D【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:202万62020000 2.0210==⨯.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.C【分析】根据一元一次方程的定义可得到一个关于m 的方程,即可求出m 的值.【详解】解:根据一元一次方程的定义,可得:||11m -=,且20m -≠,可解得2m =-,故选:C.【点睛】本题主要考查一元一次方程的定义,解题的关键是掌握注意x 的系数不等于0.5.D【分析】先求出13x x -=-+的解为2x =,然后再分别求出每个选项中方程的解,即可求解.【详解】解:13x x -=-+,移项合并同类项得:24=x ,解得:2x =,A、20x +=,解得:2x =-,与13x x -=-+的解不相同,故本选项不符合题意;B、230x -=,解得:32x =,与13x x -=-+的解不相同,故本选项不符合题意;C、22x x -=,解得:2x =-,与13x x -=-+的解不相同,故本选项不符合题意;D、20x -=,解得:2x =,与13x x -=-+的解相同,故本选项符合题意;故选:D【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解题的关键.6.A【分析】根据长方形周长公式表示另一边长即可.【详解】解:由题意得,另一边长为()2432a b a b b +--=故选:A.【点睛】此题考查了代数式的问题,解题的关键是掌握长方形周长公式.7.B【分析】根据互余的性质得出相等的角即可得出答案.【详解】解:图中相等的角有1,2,,,COA BOD AOE BOE COD BOE COD AOE ∠=∠∠=∠∠=∠∠=∠∠=∠,共5对故选:B.【点睛】此题考查了找等角的问题,解题的关键是掌握互余的性质.8.D【分析】已知多项式合并后,根据结果与x 的取值无关,求出a 与b 的值,代入计算即可求出值.【详解】解:2243(251)ax x y x bx y +-+--+-2243251ax x y x bx y =+-+-+-+2(2)(4)64a xb x y =-++-+由结果与x 的取值无关,得到a﹣2=0,b+4=0,解得:a=2,b=-4,242a b +=-=-,故选:D.【点睛】此题考查了整式的值与字母无关问题,熟练掌握整式运算法则是解本题的关键.9.C【分析】设AC=2x,则BC=3x,利用线段中点的性质表示出CD,列出方程即可解决.【详解】解:设AC=2x,则BC=3x,∴AB=AC+BC=5x,∵点D 是AB 的中点,∴AD=12AB=2.5x,∴CD=AD −AC=2.5x −2x=0.5x,∵CD=2,∴0.5x=2,∴x=4,∴AB=5x=20,故选:C.【点睛】本题考查了两点间距离,根据题目的已知并结合图形分析是解题的关键.10.C【分析】根据题意得:第1次落点处表示的数为1,第2次落点处表示的数为121-=-,第3次落点处表示的数为132-+=,第4次落点处表示的数为242-=-,第5次落点处表示的数为253-+=,第6次落点处表示的数为363-=-,……,由此发现规律,即可求解.【详解】解:根据题意得:第1次落点处表示的数为1,第2次落点处表示的数为121-=-,第3次落点处表示的数为132-+=,第4次落点处表示的数为242-=-,第5次落点处表示的数为253-+=,第6次落点处表示的数为363-=-,……,由此发现规律,当它跳第偶数次落下时,落点处表示的数为2n -,所以当它跳第2022次落下时,落点处表示的数为202221011-÷=-.故选:C【点睛】本题主要考查了数字类规律题,数轴上两点间的距离,明确题意,准确得到规律是解题的关键.11.A【分析】先求出-3的相反数,再根据所得的结果在数轴上找到对应的点即可.【详解】解:∵-3的相反数是3∴-3的相反数3对应的点是A .故答案为:A【点睛】本题考查了相反数的定义,数轴上点所表示的数等知识,关键在于正确理解相反数的意义.12.16【分析】根据绝对值的性质可得1111||3223-=-,即可求解.【详解】解:11111||32236-=-=.故答案为:16【点睛】本题主要考查了绝对值的性质,有理数的加减运算,熟练掌握绝对值的性质,有理数运算法则是解题的关键.13.-3或1##1或-3【分析】分两种情况:当点B 在点A 的右边时,当点B 在点A 的左边时,即可求解.【详解】解:根据题意得:当点B 在点A 的右边时,点B 表示的数是()211+-=;当点B 在点A 的左边时,点B 表示的数是()123--=-;∴点B 表示的数是-3或1.故答案为:-3或1【点睛】本题主要考查了数轴上两点间的距离,利用分类讨论思想解答是解题的关键.14.44【分析】设这个人全选对了x 道题,那么做错了()504x --道题,根据得了172分,可列方程求解.【详解】解:设这个人全选对了x 道题,根据题意得,()42504172x x ---=,解得44x =.答:这个人全选对了44道题.故答案为:44.【点睛】本题考查一元一次方程的应用,关键设出全选对的题目数,表示出做错的题目数,以分数做为等量关系列方程求解.15.4m【分析】根据题意和矩形的性质列出代数式解答即可.【详解】解:新长方形的周长=2[(m+n)+(m﹣n)]=4m.【点睛】本题考查正方形、矩形等知识,解题的关键是理解题意,学会利用所学知识解决实际问题.16.(n ,2n ,31n -)【分析】根据题意可得第1组数为(1,1,0),第2组数为(2,4,7),即()232,2,21-,第3组数为(3,9,26),即()233,3,31-,第4组数为(4,16,63),即()234,4,41-,……,由此发现规律,即可求解.【详解】解:根据题意得:第1组数为(1,1,0),第2组数为(2,4,7),即()232,2,21-,第3组数为(3,9,26),即()233,3,31-,第4组数为(4,16,63),即()234,4,41-,……,由此发现,第n 组数为(n ,2n ,31n -).故答案为:(n ,2n ,31n -)【点睛】本题主要考查了数字类的规律题,明确题意,准确得到规律是解题的关键.17.23【详解】∵x+5=7-2(x-2)∴x=2.把x=2代入6x+3k=14得,12+3k=14,∴k=23.18.20【分析】根据条件可知90AOB COD ∠=∠=︒,并且180COB DOA AOB COD ∠+∠=∠+∠=︒,再根据COB ∠与DOA ∠的比是2:7,可求DOA ∠,再根据角平分线的定义和角的和差关系即可求解.【详解】解:180COB DOA COB COA COB DOB AOB COD ∠+∠=∠+∠+∠+∠=∠+∠=︒ ,又COB ∠ 与DOA ∠的比是2:7,718014027DOA ∴∠=︒⨯=︒+,OP 平分DOA ∠,70DOP ∴∠=︒,20POC ∴∠=︒.故答案为:20.【点睛】本题考查了余角与补角,角平分线的定义,正确认识COB DOA ∠+∠AOB COD =∠+∠180=︒这一个关系是解题的关键,这是一个常用的关系,需熟记.19.(1)10;(2)﹣1;(3)0;(4)2.【详解】(1)原式=7﹣2+5=12﹣2=10;(2)原式=﹣4××=﹣1;(3)原式=20×(﹣﹣)=0;(4)原式=﹣﹣+3=﹣1+3=2.【点睛】本题考查有理数的混合运算.解体的关键是掌握运算法则,注意符号.20.(1)x=38(2)x=6【分析】(1)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案;(2)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案.【详解】(1)去分母得:2(2x+1)﹣(2x﹣1)=6,去括号得:4x+2﹣2x+1=6,移项得:4x﹣2x=6﹣2﹣1,合并同类项得:2x=3,系数化为1得:x=32;(2)去分母得:2x﹣(3x﹣5)=4(5+x),去括号得:2x﹣3x+5=20+4x,移项得:2x﹣3x﹣4x=20﹣5,合并同类项得:﹣5x=15,系数化为1得:x=﹣3.【点睛】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.222a b -,4-【分析】直接去括号进而合并同类项,再把已知数据代入得出答案.【详解】解:原式2222734264a ab b b ab a ab =--+--+,222a b =-,当2a =-,2b =时,原式222a b =-,22(2)22=--⨯,48=-,4=-.【点睛】此题主要考查了整式的加减——化简求值,解题的关键是正确去括号、合并同类项.22.(1)2724x x -+-(2)274-【分析】(1)设被擦掉的多项式为M,根据题意列出多项式并化简即可.(2)将12x =-代入求解即可.(1)解:设被擦掉的多项式为M,则()22351475M x x x x =--+--+22351475x x x x =--+-+-2724x x =-+-.(2)解:若12x =-,则2724M x x =-+-21172422⎛⎫⎛⎫=-⨯-+⨯-- ⎪ ⎪⎝⎭⎝⎭274=-.【点睛】此题考查了整式的加减运算及求值,解题的关键是掌握整式的加减运算及求值的方法、通过合并同类项将整式进行化简.23.(1)6023(2)2021P Q =-,理由见解析【分析】(1)根据新运算可得()()(25)(4)20114⊗-=⊗-⊗-,再次利用新运算,即可求解;(2)根据新运算可得()2021P a b c ab ac =⊗-=--,Q a b a c ab ac =⊗-⊗=-,即可求解.(1)解:()()()()2542520214⊗⊗-=⨯-⊗-)()()20114=-⊗-()()201142021=-⨯--6023=;(2)解:2021P Q =-,理由如下:∵()()20212021P a b c a b c ab ac =⊗-=--=--,()20212021Q a b a c ab ac ab ac =⊗-⊗=---=-,∴2021P Q =-.【点睛】本题主要考查了有理数的混合运算,整式的混合运算,理解新运算是解题的关键.24.(1)20-、60(2)207秒或20秒(3)28或220【分析】(1)根据绝对值和平方的非负性可得200a +=,600b -=,即可求解;(2)设经过x 秒时,点P、点Q 分别到原点O 的距离相等,分两种情况:当点P、Q 在点O 两侧时,当点P 与Q 重合时,即可求解;(3)设经过y 秒时,恰好使AP=2BQ.分两种情况:当点Q 在点B 的左侧时,当点Q 在点B 的右侧时,即可求解.(1)解:∵()220600a b ++-=(),且()2200a +≥(),600b -≥,∴200a +=,600b -=,∴20a =-,60b =,∴点A、B 在数轴上对应的数分别20-、60.(2)解:设经过x 秒时,点P、点Q 分别到原点O 的距离相等,当点P、Q 在点O 两侧时,依题意得:2043x x -=,解得:207x =;当点P 与Q 重合时,依题意得:4203x x -=,解得:20x =,∴经过207秒或20秒时,点P、Q 分别到原点O 的距离相等.(3)解:设经过y 秒时,恰好使AP=2BQ.当点Q 在点B 的左侧时,依题意得:()42603y y =-,解得:12y =,∴4122028⨯-=,当点Q 在点B 的右侧时,依题意得:()42360y y =-,解得60y =,∴46020220⨯-=,∴当点P 运动到28或220位置时,恰好使AP=2BQ.【点睛】本题主要考查了数轴上两点间的距离,动点问题,一元一次方程的应用,利用分类讨论和数形结合思想解答是解题的关键.25.(1)①如图所示,射线AC 即为所求,见解析;②如图所示,线段AB,BC,BD 即为所求,见解析;③如图所示,线段CF 即为所求,见解析;(2)根据两点之间,线段最短.【分析】(1)①连接AC 并延长即可;②连接AB,BC,BD 即可;③以点A 为圆心,BD 长为半径画弧交AC 于F,则线段CF=AC-BD;(2)根据两点之间,线段最短,可得AB+BC>AC.【详解】(1)①如图所示,射线AC 即为所求;②如图所示,线段AB,BC,BD 即为所求;③如图所示,线段CF 即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为两点之间,线段最短.【点睛】本题主要考查了复杂作图,解决问题的关键是掌握线段、射线的概念以及线段的性质.解题时注意:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.26.(1)60°(2)80°(3)75°【分析】(1)根据OB 平分∠AOC,OD 平分∠COE,可得35BOC ∠= ,25COD ∠= ,即可求解;(2)根据OB 平分∠AOC,OD 平分∠COE,可得∠COD=12∠COE ,∠BOC =12∠AOC,从而得到∠BOD==12(∠COE +∠AOC),即可求解;(3)设∠COD=2x,则∠BOC=3x,可得∠COE =2∠COD =4x,∠AOC=2∠BOC =6x,从而得到∠AOE=10x,进而得到∠EOM=12∠AOE=5x,再由∠COM=15°,可得到x=15°,即可求解.(1)解:∵OB 平分∠AOC,∠AOC=70°,∴1352BOC AOC ∠=∠= ,∵OD 平分∠COE,∠COE=50°,∴1252COD COE ∠=∠= ,∴∠BOD=∠BOC+∠COD=35°+25°=60°.(2)解:∵OB平分∠AOC,OD平分∠COE,∴∠COD=12∠COE,∠BOC=12∠AOC∴∠BOD=∠COD+∠BOC=12∠COE+12∠AOC=12(∠COE+∠AOC)=12∠AOE=80°.(3)解∵∠COD:∠BOC=2:3,∴设∠COD=2x,则∠BOC=3x,∵OB平分∠AOC,OD平分∠COE,∴∠COE=2∠COD=4x,∠AOC=2∠BOC=6x,∴∠AOE=10x,∵OM平分∠AOE,∴∠EOM=12∠AOE=5x,∵∠EOM-∠COE=∠COM=15°,∴5x-4x=15°,∴x=15°,∴∠BOD=∠COD+∠BOC=2x+3x=75°.。
数学版(完整版)人教版七年级数学上册期末试卷及答案

数学版(完整版)人教版七年级数学上册期末试卷及答案一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元2.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22B .70C .182D .2063.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( ) A .0.1289×1011 B .1.289×1010 C .1.289×109 D .1289×107 4.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( ) A .10- B .10 C .5- D .5 5.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( )A .1B .2C .3D .46.在220.23,3,2,7-四个数中,属于无理数的是( ) A .0.23B .3C .2-D .2277.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2 B .2C 2D 328.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( )A .﹣9℃B .7℃C .﹣7℃D .9℃9.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A .1个B .2个C .3个D .4个 10.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( ) A .1B .﹣1C .3D .﹣3 11.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n -12.方程312x -=的解是( ) A .1x =B .1x =-C .13x =-D .13x =13.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC=∠BOC B .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB14.已知105A ∠=︒,则A ∠的补角等于( ) A .105︒B .75︒C .115︒D .95︒15.如图的几何体,从上向下看,看到的是( )A .B .C .D .二、填空题16.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.17.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是_____.18.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.19.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.20.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.21.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.22.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.23.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.24.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.25.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.26.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______. 27.如果A 、B 、C 在同一直线上,线段AB =6厘米,BC =2厘米,则A 、C 两点间的距离是______.28.观察“田”字中各数之间的关系:则c 的值为____________________.29.若2a ﹣b=4,则整式4a ﹣2b+3的值是______.30.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.三、压轴题31.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm到达P点,再向右移动7cm到达Q点,用1个单位长度表示1cm.(1)请你在图②的数轴上表示出P,Q两点的位置;(2)若将图②中的点P向左移动x cm,点Q向右移动3x cm,则移动后点P、点Q表示的数分别为多少?并求此时线段PQ的长.(用含x的代数式表示);(3)若P、Q两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t(秒),当t为多少时PQ=2cm?32.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.33.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?34.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.35.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC的长;(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.36.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是段AB的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;(3)如图②,已知AB=20cm.动点P从点A出发,以2c m/s的速度沿AB向点B匀速移动.点Q从点B出发,以1c m/s的速度沿BA向点A匀速移动.点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s),当t=_____________s时,点Q 恰好是线段AP的“2倍点”.(请直接写出各案)37.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数x的值.(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?38.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t 秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t 的代数式表示) ②求甲乙两小球到原点距离相等时经历的时间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据题意知:花了10a 元,剩下(b ﹣10a )元. 【详解】购买单价为a 元的物品10个,付出b 元(b >10a ),应找回(b ﹣10a )元. 故选D . 【点睛】本题考查了列代数式,能读懂题意是解答此题的关键.2.D解析:D 【解析】 【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案. 【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x + 2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.3.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.D解析:D【解析】【分析】根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k的值.【详解】解:∵方程2k-3x=4与x-2=0的解相同,∴x=2,把x=2代入方程2k-3x=4,得2k-6=4,解得k=5.故选:D.【点睛】本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.5.B解析:B【解析】【分析】根据线段中点的性质,可得AC的长.【详解】解:由线段中点的性质,得AC=12AB=2.故选B.【点睛】本题考查了两点间的距离,利用了线段中点的性质.6.B解析:B【解析】【分析】根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可.【详解】0.23是有限小数,是有理数,不符合题意,是开方开不尽的数,是无理数,符合题意,-2是整数,是有理数,不符合题意,22是分数,是有理数,不符合题意,7故选:B.【点睛】本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.7.C解析:C【解析】【分析】把64代入转换器,根据要求计算,得到输出的数值即可.【详解】,是有理数,∴继续转换,,是有理数,∴继续转换,∵2,是无理数,∴输出,故选:C.【点睛】本题考查的是算术平方根的概念和性质,一个正数的平方根有两个,正的平方根是这个数的算术平方根;注意有理数和无理数的区别.8.D解析:D【解析】【分析】这天的温差就是最高气温与最低气温的差,列式计算.【详解】解:该日的最高与最低气温的温差为8﹣(﹣1)=8+1=9(℃), 故选:D . 【点睛】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数,这是需要熟记的内容.9.C解析:C 【解析】 【分析】根据垂直的定义和同角的余角相等分别计算后对各小题进行判断,由此即可求解. 【详解】∵OA ⊥OC ,OB ⊥OD , ∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°, ∴∠AOB=∠COD ,故①正确;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确; ∠AOB+∠COD 不一定等于90°,故③错误;图中小于平角的角有∠AOB ,∠AOC ,∠AOD ,∠BOC ,∠BOD ,∠COD 一共6个,故④正确;综上所述,说法正确的是①②④. 故选C . 【点睛】本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.10.B解析:B 【解析】 【分析】将1x =-代入2ax x -=,即可求a 的值. 【详解】解:将1x =-代入2ax x -=, 可得21a --=-, 解得1a =-, 故选:B . 【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.11.C解析:C 【解析】根据题意可以用代数式表示m的2倍与n平方的差.【详解】用代数式表示“m的2倍与n平方的差”是:2m-n2,故选:C.【点睛】本题考查了列代数式,解题的关键是明确题意,列出相应的代数式.12.A解析:A【解析】试题分析:将原方程移项合并同类项得:3x=3,解得:x=1.故选A.考点:解一元一次方程.13.D解析:D【解析】A. ∵∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;B. ∵∠AOB=2∠BOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;C. ∵∠AOC=12∠AOB,∴∠AOB=2∠AOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;D. ∵∠AOC+∠BOC=∠AOB,∴假如∠AOC=30°,∠BOC=40°,∠AOB=70°,符合上式,但是OC不是∠AOB的角平分线,故本选项正确.故选D.点睛:本题考查了角平分线的定义,注意:角平分线的表示方法,①OC是∠AOB的角平分线,②∠AOC=∠BOC,③∠AOB=2∠BOC(或2∠AOC),④∠AOC(或∠BOC)=12∠AOB.14.B 解析:B【分析】由题意直接根据互补两角之和为180°求解即可.【详解】解:∵∠A=105°,∴∠A 的补角=180°-105°=75°.故选:B .【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.15.A解析:A【解析】【分析】根据已知图形和空间想象能力,从上面看图形,根据看的图形选出即可.【详解】从上面看是水平方向排列的两列,上一列是二个小正方形,下一列是右侧一个正方形,故A 符合题意,故选:A .【点睛】本题考查了简单组合体的三视图的应用,主要培养学生的观察能力和空间想象能力.二、填空题16.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.17.【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13解析:【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13,第二次输出的结果为:40,第三次输出的结果为:5,第四次输出的结果为:16,第五次输出的结果为:1,第六次输出的结果为:4,第七次输出的结果为:1第八次输出的结果为:4…,∵(2019﹣4)÷2=2015÷2=1007…1,∴第2019次“C运算”的结果是1,故答案为:1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.18.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b +【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系. 19.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为;所以故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 20.2+【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2+2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C表示的数为1+1+2=2+2,故答案为2+2.【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.21.100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】5[32= 5(32+3×2)= 515=(-5)2-(-5)×15=25+75=100. 故答案解析:100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】-5⊗[3⊗(-2)]=- 5⊗(32+3×2)= - 5⊗15=(-5)2-(-5)×15=25+75=100.故答案为100.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.23.6×【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 0解析:6×910【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 000=4.6×109.故答案为4.6×109.24.2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【解析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.25.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.26.【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解x=-解析:5【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解27.8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2c解析:8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2cm=4cm②当C在AB延长线时,如图所示,AC=AB+BC=6cm+2cm=8cm综上所述,A、C两点间的距离是8cm或4cm故答案为:8cm或4cm.【点睛】本题考查线段的和差计算,分情况讨论是解题的关键.28.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a =28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b =15+a =271,右上角的数字正好是右下角数字减1,所以c =b -1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。
新人教版七年级数学上册期末考试题及答案【精编】

新人教版七年级数学上册期末考试题及答案【精编】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.若, 那么的值是( )A. 10B. 52C. 20D. 322.如图, 过△ABC的顶点A, 作BC边上的高, 以下作法正确的是()A. B.C. D.3.若是一个完全平方式, 则常数k的值为A. 6B.C.D. 无法确定4.若x, y的值均扩大为原来的3倍, 则下列分式的值保持不变的是()A. B. C. D.5.如图所示, 点P到直线l的距离是()线段PA的长度 B. 线段PB的长度C. 线段PC的长度D. 线段PD的长度6.如图, 在△ABC中, ∠ABC, ∠ACB的平分线BE, CD相交于点F, ∠ABC=42°, ∠A=60°, 则∠BFC的度数为()A. 118°B. 119°C. 120°D. 121°7. 下列各组线段不能组成三角形的是 ( )A. 4cm、4cm、5cmB. 4cm、6cm、11cmC. 4cm、5cm、6cmD. 5cm、12cm、13cm8.如图,将一副三角尺按不同的位置摆放, 下列摆放方式中与互余的是()A. 图①B. 图②C. 图③D. 图④9.如图, 在△ABC中, AB=AC, D是BC的中点, AC的垂直平分线交AC, AD, AB于点E, O, F, 则图中全等三角形的对数是()A. 1对B. 2对C. 3对D. 4对10. 计算的结果是()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 已知关于x的代数式是完全平方式, 则_________.2.如图, 将三个同样的正方形的一个顶点重合放置, 那么的度数为__________.3. 如图, 点E是AD延长线上一点, 如果添加一个条件, 使BC∥AD, 则可添加的条件为__________. (任意添加一个符合题意的条件即可)4. 若, 则m+2n的值是________.5. 如图, AD∥BC, ∠D=100°, CA平分∠BCD, 则∠DAC=________度.6. 已知一组从小到大排列的数据:2, 5, x, y, 2x, 11的平均数与中位数都是7, 则这组数据的众数是________.三、解答题(本大题共6小题, 共72分)1. 解方程组:2. 如果关于x, y的方程组的解中, x与y互为相反数, 求k的值.3. 已知: O是直线AB上的一点, 是直角, OE平分.(1)如图1. 若. 求的度数;(2)在图1中, , 直接写出的度数(用含a的代数式表示);(3)将图1中的绕顶点O顺时针旋转至图2的位置, 探究和的度数之间的关系.写出你的结论, 并说明理由.4. 如图, 在△ABC和△ADE中, AB=AC, AD=AE, 且∠BAC=∠DAE, 点E在BC上. 过点D作DF∥BC, 连接DB.求证: (1)△ABD≌△ACE;(2)DF=CE.5. “安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况, 在本校学生中随机抽取部分学生作调查, 把收集的数据分为以下4类情形: A. 仅学生自己参与;B. 家长和学生一起参与;C. 仅家长自己参与;D. 家长和学生都未参与.请根据图中提供的信息, 解答下列问题:(1)在这次抽样调查中, 共调查了________名学生;(2)补全条形统计图, 并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果, 估计该校2000名学生中“家长和学生都未参与”的人数.6. 某市出租车的收费标准是: 行程不超过3千米起步价为10元, 超过3千米后每千米增收1.8元. 某乘客出租车x千米.(1)试用关于x的式子分情况表示该乘客的付费.(2)如果该乘客坐了8千米, 应付费多少元?(3)如果该乘客付费26.2元, 他坐了多少千米?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、A2、A3、C4、D5、B6、C7、B8、A9、D10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1.5或-72.20°.3.∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、-15.40°6、5三、解答题(本大题共6小题, 共72分)1、21 xy=⎧⎨=⎩2.x=1, y=-1, k=9.3、(1);(2);(3), 理由略.4.(1)证明略;(2)证明略.5.(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、(1)当行程不超过3千米即x≤3时时, 收费10元;当行程超过3千米即x>3时, 收费为(8x+4.6)元.(2)乘客坐了8千米, 应付费19元;(3)他乘坐了12千米.。
初一数学试题]]新人教版初一数学上册期末考试(含答案)[1]
![初一数学试题]]新人教版初一数学上册期末考试(含答案)[1]](https://img.taocdn.com/s3/m/18b1d5d7710abb68a98271fe910ef12d2af9a98e.png)
人教版2022-2023学年七上期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.截至2021年12月8日,31个省(自治区、直辖市)和新疆生产建设兵团累计报告接种新冠病毒疫苗超过3600000000剂次.用科学记数法表示3600000000是( )A .3.6×109B .0.36×109C .3.6×1010D .0.36×10102.下列各组单项式中,是同类项的是( )A .5a ,3abB .4mn ,﹣nmC .﹣2x 2y ,3xy 2D .3ab ,﹣5ab 23.如图,直线AB 、CD 相交于点O ,则推导出“∠AOD =∠BOC ”,下列依据中,最合理的是( )A .同角的余角相等B .等角的余角相等C .同角的补角相等D .等角的补角相等4.已知关于x 的方程2x ﹣a +5=0的解是x =1,则a 的值为( )A .6B .7C .8D .95.下面四个几何体中,从左面看到的图形是四边形的几何体共有几个?( )A .1个B .2个C .3个D .4个6.若一个角的余角比它的这个角大20°,则这个角等于( )A .25°B .35°C .45°D .55°7.下列说法中错误的是( )A .数字0是单项式B .单项式b 的系数与次数都是1C .12x 2y 2是四次单项式D .−2πab 3的系数是−238.《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人?设共有x 人,则( )A .x+23=x 2−9B .x 3+2=x−92C .x 3−2=x+92D .x−23=x 2+99.(3分)如图,已知∠AOB =∠COD =90°,OB 平分∠DOE ,图中有m 对互余的角;图中有n 对互补的角,则m ,n 的值分别为( )A .m =1,n =2B .m =2,n =3C .m =2,n =5D .m =3,n =610.观察下列等式找出规律①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;…,则(﹣5)3+(﹣6)3+(﹣7)3+…+(﹣15)3的值是( )A .14400B .﹣14400C .14300D .﹣14300二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上.11.计算:(﹣7)﹣(+5)+(+13)= .12.亚贸广场某件农服的售价为240元,若这件衣服的利润率为50%,则该衣服的进价为 元.13.计算72°﹣29°18′33″的结果是 .14.若方程(k +2)x |k +1|+6=0是关于x 的一元一次方程,则k +2023= .15.已知线段AB =16,直线AB 上有一点C ,且BC =4,点M 是线段AC 的三等分点,则AM 的长是 .16.如图,已知∠AOB =90°,∠COD 在∠AOB 内部且∠COD =45°.下列说法:①如果∠AOC =∠BOD ,则图中有两对互余的角;②如果作OE 平分∠BOC ,则∠AOC =2∠DOE ;③如果作OM 平分∠AOC ,ON 在∠AOB 内部,且∠MON =45°,则OD 平分∠BON ;④如果在∠AOB 外部分别作∠AOC 、∠BOD 的余角∠AOP 、∠BOQ ,则∠AOP+∠BOQ ∠COD =3;其中正确的有 .三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程.17.(8分)计算.(1)(5a ﹣3b )+5(a ﹣2b );(2)﹣2×(﹣3)2﹣(﹣2)3÷4.18.(8分)解方程.(1)5(x +2)=14+3x ;(2)x−45+1=x−53.19.(8分)七(31)班有43名志愿者,由于疫情每人捐7个医用口罩或5个抗原检测试剂.现把3个口罩和4个检测试剂配成一套健康包,有意思的是该班捐赠的口罩和抗原试剂刚好配套成整套的健康包,试求该班捐赠口罩和抗原试剂的志愿学生各多少名?20.(8分)按要求完成作图及作答:(1)如图1,请用适当的语句表述点M 与直线l 的关系: ;(2)如图1,画射线PM ;(3)如图1,画直线QM ;(4)如图2,平面内三条直线交于A 、B 、C 三点,将平面最多分成7个不同的区域,点M 、N 是平面内另外两点,若分别过点M 、N 各作一条直线,则新增的两条直线使得平面内最多新增 个不同的区域.21.(8分)如图,∠AOB =110°,OD 平分∠BOC ,∠EOC =3∠AOE .(1)若∠AOD =95°,求∠AOE 的度数.(2)作OF 平分∠EOB ,若∠DOE =65°,求∠FOB 的度数.22.(10分)双十一期间,各大商场进行促销活动,其中“大洋百货”推出了如下活动:活动一:每满300元减50元;活动二:若标价不超过600元时,打九折,若标价超过600元时,则不超过600元的部分打九折,超过600元的部分打六折.设某一商品的标价为x元:(1)x=720时,按方式二应该付多少钱?(2)当300<x<900时,两种方式如何选择才更优惠?23.(10分)如图,数轴上线段AB=2(单位长度),线段CD=4(单位长度),点A在数轴上表示的数是﹣12,点C在数轴上表示的数是14.若线段AB以每秒2个单位长度的速度向右匀速运动,同时线段CD以每秒1个单位长度的速度向左匀速运动.设运动时间为ts.(1)当点B与点C相遇时,点A,D在数轴上表示的数分别为,;(2)当t为何值时,点B刚好与线段CD的中点重合;(3)当运动到BC=9(单位长度)时,求出此时点B在数轴上表示的数.24.(12分)已知∠AOB=120°,OC为∠AOB内部的一条射线,∠BOC=30°.(1)如图1,若OE平分∠AOB,OD为∠BOC内部的一条射线,∠BOD=5∠COD,求∠DOE的度数;(2)如图2,若射线OM绕着O点从OA开始以12度/秒的速度顺时针旋转至OB结束,在旋转过程中,ON 平分∠AOM,试问2∠BON﹣∠BOM是否为定值,若不是,请说明理由;若是,请求出其值;(3)如图3,若射线OE绕着O点从OA开始以15度/秒的速度顺时针旋转至OB结束、OF同时绕着O点从OB开始以3度/秒的速度逆时针旋转至OA结束,运动时间为t秒,当∠EOC=∠FOC时,求t的值.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【解答】解:3600000000=3.6×109.故选:A .2.【解答】解:由“所含的字母相同,且相同字母的指数也相同”可得,选项B 的两个单项式是同类项,故选:B .3.【解答】解:∵∠AOD 与∠BOC 都是∠AOC 的补角,∴∠AOD =∠BOC (同角的补角相等).故选:C .4.【解答】解:把x =1代入方程2x ﹣a +5=0中得:2﹣a +5=0,解得:a =7.故选:B .5.【解答】解:因为圆柱的左视图是矩形,四棱锥的左视图是等腰三角形,圆锥的左视图是等腰三角形,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体;故选:B .6.【解答】解:设这个角等于x °,则它的余角是(90﹣x )°,根据题意得:(90﹣x )°﹣x °=20°,解得:x =35.故这个角等于35°.故选:B .7.【解答】解:A 、数字0是单项式,本选项说法正确,不符合题意;B 、单项式b 的系数与次数都是1,本选项说法正确,不符合题意;C 、12x 2y 2是四次单项式,本选项说法正确,不符合题意;D 、−2πab 3的系数是−2π3,故本选项说法错误,符合题意;故选:D .8.【解答】解:由题意可得:x 3+2=x−92, 故选:B .9.【解答】解:∵OB 平分∠DOE ,∴∠EOB =∠DOB ,∵∠AOB =∠COD =90°,∴∠AOD =∠COB ,∴∠AOE 和∠BOE 互余,∠AOE 和∠BOD 互余,∠BOE 和∠BOD 互余,即m =3;∴∠AOE 和∠AOC 互补,∠AOE 和∠BOC 互补,∠BOE 和∠AOC 互补,∠BOE 和∠BOC 互补,∠AOC 和∠BOD 互补,∠BOC 和∠BOD 互补,即n =6.故选:D .10.【解答】解:∵①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;…,∴(﹣5)3+(﹣6)3+(﹣7)3+…+(﹣15)3=﹣(53+63+73+ (153)=﹣[13+23+33+…+153﹣(13+23+33+43)]=﹣(1202﹣102)=﹣14300,故选:D .二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上.11.【解答】解:(﹣7)﹣(+5)+(+13)=﹣7﹣5+13=﹣12+13=1.故答案为:1.12.【解答】解:设该衣服的进价是x 元,依题意有:(1+50%)x =240,解得x =160.高该衣服的进价为160元.故答案为:160.13.【解答】解:72°﹣29°18′33″=71°59′60″﹣29°18′33″=42°41′27″.故答案为:42°41′27″.14.【解答】解:∵方程(k +2)x |k +1|+6=0是关于x 的一元一次方程,∴{k +2≠0|k +1|=1, 解得:k =0,∴k +2023=0+2023=2023.故答案为:2023.15.【解答】解:当点C 在线段AB 上时,∵AB =16,BC =4,∴AC =AB ﹣BC =12,∵点M 是线段AC 的三等分点,∴AM =13AC =4或AM =23AC =8,当点C 在线段AB 的延长线上时,∵AB =16,BC =4,∴AC =AB +BC =20,∵点M 是线段AC 的三等分点,∴AM =13AC =203或AM =23AC =403,∴AM 的长是4或8或203或403. 故答案为:4或8或203或403.16.【解答】解:∵∠AOB =90°,∠COD =45°,∴∠AOC +∠BOD =∠AOB ﹣∠COD =45°.①∵∠AOC =∠BOD ,∠AOC +∠BOD =45°,∴∠AOC =∠BOD =22.5°,∴∠AOD =∠COB =67.5°,∴∠AOD +∠COB =90°,∠BOC +∠AOC =90°,∴图中有两对互余的角,故①正确;②设∠AOC =x ,则∠BOD =45°﹣x ,∴∠BOC =∠BOD +∠COD =45°﹣x +45°=90°﹣x .∵OE 平分∠BOC ,∴∠BOE =12∠BOC =45°−12x ,∴∠DOE=∠BOE﹣∠BOD=(45°−12x)﹣(45°﹣x)=12x,∴∠AOC=2∠DOE,故②正确;③设∠AOC=x,则∠BOD=45°﹣x,∵OM平分∠AOC,∴∠COM=12∠AOC=12x.∴∠CON=∠MON﹣∠COM=45°−12x,∴∠DON=∠COD﹣∠CON=45°﹣(45°−12x)=12x,∴∠BOD不一定等于∠DON,即ON不是∠BOD的平分线,故③错误;④设∠AOC=x,则∠BOD=45°﹣x,∠AOP=90°﹣x,∠BOQ=90°﹣(45°﹣x)=45°+x,∴∠AOP+∠BOQ=90°﹣x+45°+x=135°,∵∠COD=45°,∴∠AOP+∠BOQ∠COD=3,故④正确.故答案为:①②④.三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程.17.【解答】解:(1)(5a﹣3b)+5(a﹣2b)=5a﹣3b+5a﹣10b=10a﹣13b;(2)﹣2×(﹣3)2﹣(﹣2)3÷4=﹣2×9﹣(﹣8)÷4=﹣18﹣(﹣2)=﹣16.18.【解答】解:(1)去括号得:10x +10=14+3x ,移项得:10x ﹣3x =14﹣10,合并同类项得:7x =4,解得:x =74;(2)去分母得:3(x ﹣4)+15=5(x ﹣5),去括号得:3x ﹣12+15=5x ﹣25,移项得:3x ﹣5x =12﹣15﹣25,合并同类项得:﹣2x =﹣28,解得:x =14.19.【解答】解:设捐赠口罩的有x 人,则捐赠抗原试剂的有(43﹣x )人, 根据题意得:7x 3=5(43−x)4,即28x =15(43﹣x ),解得x =15,∴43﹣x =43﹣15=28,答:该班捐赠口罩的志愿学生有15名,捐赠抗原试剂的志愿学生有28名.20.【解答】解:(1)点M 与直线l 的关系:M 在直线l 外;故答案为:M 在直线l 外;(2)如图1,直线PM 即为所求;(3)如图1,射线QM 即为所求;(4)如图2,新增的两条直线使得平面内最多新增7个交点. 故答案为:7.21.【解答】解:(1)∵∠AOD =95°,∠AOB =110°,∴∠BOD =∠AOB ﹣∠AOD =110°﹣95°=15°,又∵OD 平分∠BOC ,∴2∠COD =2∠BOD =∠BOC ,∴∠BOC =15°+15°=30°,∴∠AOC=∠AOB﹣∠BOC=110°﹣30°=80°,又∵∠EOC=3∠AOE,∴∠AOE=14∠AOC=14×80°=20°;(2)∵∠DOE=65°,∠AOB=110°,∴∠AOE+∠BOD=∠AOB﹣∠DOE=110°﹣65°=45°,设∠AOE=x°,则∠EOC=3x°,又∵OD平分∠BOC,∴∠BOD=∠COD=(45﹣x)°,∵∠EOC+∠COD=∠DOE=65°,∴3x+(45﹣x)°=65°,∴x=10°,∵OF平分∠EOB,∴∠FOB=12∠EOB=12(∠AOB﹣∠AOE)=12×(110﹣10)=50°.22.【解答】解:(1)(720﹣600)×0.6+600×0.9=612(元);(2)①当300<x<600时,活动一可以优惠50元,活动二标价50÷(1﹣0.9)=500元;当x<500时,活动一更优惠;当x=500时,两种方式优惠一样;当500<x<600时,活动二更优惠;②当x=600时,∵活动一优惠50×2=100元,活动二优惠600×0.1=60元,∴活动一更优惠;③当600<x<900时活动一可以优惠50×2=100元,活动二标价600×0.9+100÷(1﹣0.6)=700元;当x <700时,活动一更优惠;当x =700时,两种方式优惠一样;当700<x <900时,活动二更优惠.23.【解答】解:(1)点A 表示的数是4,点D 表示的数是10,故答案为:4,10;(2)由题意可知点B 表示的数是﹣10,线段CD 的中点在数轴上表示的数是16, (2+1)t =16﹣(﹣10),t =263,答:当t =263时,点B 刚好与线段CD 的中点.(3)①当点B 在点C 的左侧时,(2+1)t +9=14﹣(﹣10),t =5,﹣10+2×5=0;②当点B 在点C 的右侧时,(2+1)t =14﹣(﹣10)+9,t =11,﹣10+2×11=12;答:点B 在数轴上表示的数是0或12.24.【解答】解:(1)∵∠BOC =30°,∠BOD =5∠COD ,∴∠BOD =30°×51+5=25°, 又∵∠AOB =120°,OE 平分∠AOB ,∴∠BOE =120°÷2=60°∴∠DOE =60°﹣25°=35°;(2)2∠BON ﹣∠BOM 为定值,理由如下:设OM 运动t 秒,则∠BOM =120﹣12t ,∠AOM =12t ,∵ON 平分∠AOM ,∴∠NOM =12t ÷2=6t ,∠BON =120﹣12t +6t =120﹣6t ,∴2∠BON ﹣∠BOM =2×(120﹣6t )﹣(120﹣12t )=120°,∴2∠BON ﹣∠BOM 为定值;(3)当OE 在∠AOC 内部时,∵∠EOC =∠FOC ,∴120﹣30﹣15t =30﹣3t ,解得t =5,当OE 与OF 重合时,15t +3t =120°,解得t =203,综上所述,当∠EOC =∠FOC 时,t =5秒或203秒。
人教版七年级上册数学期末考试试卷含答案

人教版七年级上册数学期末考试试题一、单选题1.﹣8的相反数是()A .8B .18C .18-D .-82.下列方程为一元一次方程的是()A .538+=B .24x y +=C .30y -=D .22x x =+3.下列几何体中,面的个数最少的是()A .B .C .D .4.整式23xy -的系数是()A .-3B .3C .3x -D .3x5.如图,数轴上A 、B 两点表示的数分别为a 、b ,则a+b 的值是()A .负数B .0C .正数D .无法判断6.将数据3800000用科学记数法表示为()A .63.810⨯B .53.810⨯C .60.3810⨯D .53810⨯7.若5620'A ∠=︒,则A ∠补角的大小是()A .3440'︒B .3340'︒C .12440'︒D .12340'︒8.下列各图中表示射线MN ,线段PQ 的是()A .B .C .D .9.下列是根据等式的性质进行变形,正确的是()A .若a b =,则66a b +=-B .若ax ay =,则x y =C .若11a b -=+,则a b =D .若55a b =--,则a b =10.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D ¢处,若130∠=︒,则2∠的度数为()A .30°B .60°C .50°D .55°二、填空题11.11月24日,某市的最低温度是8-℃,最高温度比最低温度高16℃,则该市的最高温度是__℃.12.如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是_____.13.一件校服,按标价的8折出售,售价是x 元,这件校服的标价是____元.14.已知1x =是关于x 的一元一次方程20x a -=的解,则a 的值为_____.15.若213n x y -与3m x y 是同类项,则m n +=_____.16.如图,甲从点A 出发向北偏东62︒方向走到点B ,乙从点A 出发向南偏西18︒方向走到点C ,则BAC ∠的度数是______.17.观察下列图形,用黑、白两种颜色的五边形地砖按如图所示的规律拼成若干个蝴蝶图案,则第n 个图案中白色地砖有___块.18.若有理数a ,b ,c 在数轴上的位置如图所示,则化简:2a c a b c b +++--=______.三、解答题19.计算:21(4)29()53-÷+⨯---.20.解方程:3x+2(x ﹣2)=6.21.先化简,再求值:7xy+2(3xy ﹣2x 2y )﹣13xy ,其中x =﹣1,y =2.22.把下列各数在数轴上表示出来,并将它们按从大到小的顺序排列.1.5--,3-,0,122+,()22-,12-.23.用简便方法计算:(1)110.53(2.75)742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭(2)31.530.750.534⎛⎫-⨯-⨯- ⎪⎝⎭24.甲每天加工零件80个,甲加工3天后,乙也加入加工同一种零件,再经过5天,两人共加工这种零件1120个,问乙每天加工这种零件多少个?25.如图,点C 为线段AB 上一点,点D 为BC 的中点,且12AB =,4AC CD =.(1)求AC 的长;(2)若点E 在直线AB 上,且3AE =,求DE 的长.26.“文明其精神,野蛮其体魄”,为进一步提升学生体质健康水平,我市某校计划用640元购买12个体育用品,备选体育用品及单价如表:备用体育用品足球篮球排球单价(元)806040(1)若640元全部用来购买足球和排球共12个,求足球和排球各买多少个?(2)若学校先用一部分资金购买了m 个排球,再用剩下的资金购买了相同数量的足球和篮球,此时正好剩余40元,求m 的值.27.如图,某纪念馆要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:m ).(1)求阴影部分的面积(用含x 的整式表示并保留π);(2)当9x =,π取3时,求阴影部分的面积.28.如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=_______(直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=_______(直接写出结果).参考答案1.A【分析】根据相反数的概念:只有符号不同的两个数互为相反数可得答案.【详解】解:-8的相反数是8,故选A.【点睛】此题主要考查了相反数,关键是掌握相反数的定义.2.C【分析】根据一元一次方程的定义进行判断即可.+=不含未知数,所以不是一元一次方程;【详解】538+=含有两个未知数,所以不是一元一次方程;x y24y-=含有一个未知数,且未知数的最高次数为1,所以是一元一次方程;3022x x=+含有一个未知数,且未知数的项的次数为2,所以不是一元一次方程.故选:C.【点睛】本题考查了一元一次方程的定义,即只含有一个未知数,且未知数的项的次数为1的整式方程,叫做一元一次方程.3.C【分析】根据三棱柱、四棱柱、圆锥和圆柱的特点找到答案即可.【详解】三棱柱有5个面;长方体有6个面;圆锥有一个曲面和一个底面共2个面;圆柱有一个侧面和两个底面共3个面,面的个数最少的是圆锥.故选C .【点睛】本题考查了立体图形的概念,根据几何体直观的写出其所有的面是解答本题的关键,属于基础题,比较简单.4.A【分析】根据单项式的系数的定义求解即可.【详解】解:23xy -的系数为-3,故选A .【点睛】本题主要考查了单项式的系数,解题的关键在于能够熟练掌握单项式的系数的定义.5.C【分析】根据数轴判断出a ,b 的取值范围,从而进一步解答问题.【详解】解:根据数轴可得,-1<a<0,1<b<2,且|a|<|b|∴ 0a b +>故选:C【点睛】本题考查了数轴,利用数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,得出a 、b 的大小是解题关键.6.A【分析】根据科学记数法进行改写即可.【详解】63800000 3.810=⨯故选:A .【点睛】本题考查用科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,n 为整数,确定a 与n 的值是解题的关键.7.D【分析】根据补角的定义解答即可.【详解】解:∵∠A =56°20′,∴∠A 的补角=180°−∠A =180°−56°20′=123°40′.故选:D .【点睛】本题主要考查了补角的定义以及角的度分秒换算,正确理解补角的定义是解题的关键.8.B【分析】直线没有端点,射线只有一个端点,线段有两个端点.【详解】解:根据射线MN 有一个端点,线段PQ 有两个端点得到选项B 符合题意,选项A 、C 、D 均不符合题意,故选:B .【点睛】本题考查射线、线段的定义,是基础考点,掌握相关知识是解题关键.9.D【分析】根据等式的性质依次判断即可.【详解】解:A.若a b =,则66a b +=+,原选项错误,不符合题意;B.若ax ay =,当a≠0时x =y ,原选项错误,不符合题意;C.若11a b -=+,则2a b =+,原选项错误,不符合题意;D.若55a b =--,则a b =,原选项正确,符合题意.故选:D .【点睛】本题主要考查了等式的性质,熟记等式的性质是解题的关键.10.B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.11.8【分析】根据题意列出算式,再根据有理数的加法法则计算即可.【详解】解:8168-+=℃所以该市的最高温度是8℃.故答案为:8【点睛】本题主要考查了有理数的运算,掌握有理数的加法法则是解题关键.12.两点之间,线段最短【分析】根据题意可知,A B 两点之间,线段AB 和折线ACB 比较,线段最短【详解】解:点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是两点之间,线段最短故答案为:两点之间,线段最短【点睛】本题考查了线段的性质,掌握两点之间,线段最短是解题的关键.13.54x 或者1.25x【分析】根据售价=标价⨯折扣,即可得到答案.【详解】x =标价0.8⨯∴标价=50.84x x =故答案为:54x .【点睛】本题考查了列代数式,掌握售价、标价和折扣之间的关系式解题的关键.14.2【分析】把x=1代入方程2x-a=0,再求出关于a 的方程的解即可.【详解】解:把x=1代入方程2x-a=0得:2-a=0,解得:a=2,故答案为:2.【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的一元一次方程是解此题的关键,注意:使方程左、右两边相等的未知数的值,叫方程的解.15.0【详解】解:∵213n xy -与3m x y 是同类项,∴2,13m n =-=,解得:2,2m n ==-,∴()220+=+-=m n .故答案为:0【点睛】本题主要考查了同类项的定义,熟练掌握所含字母相同,并且相同字母的次数相同的两个单项式称为单项式是解题的关键.16.136︒##136度【分析】先求得AB 与正东方向的夹角度数,再利用角的和差解题.【详解】解:AB 与正东方向的夹角为90°-62°=28°则BAC ∠=28°+90°+18°=136°故答案为:136︒【点睛】本题考查方向角,正确理解方向角的定义是解题关键.17.()31m +【分析】观察发现:第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1.【详解】解:根据图示得:每个图形都比其前一个图形多3个白色地砖,第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1块.故答案为(3n+1).【点睛】本题考查了图形的变化规律,找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律是解题的关键.18.a【详解】试题解析:根据数轴上点的位置得:c <b <0<a ,且|c|>|a|∴c-b <0,2a+b >0,a+c<0则原式=-(a+c)+(2a+b)+(c-b)=-a-c+2a+b+c-b=a.故答案为a.19.0【分析】先算乘方和绝对值,然后再按有理数的四则混合运算法则计算即可.【详解】解:原式162(3)5=÷+--835=--0=.20.x =2【分析】去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:去括号,可得:3x+2x ﹣4=6,移项,可得:3x+2x =6+4,合并同类项,可得:5x =10,系数化为1,可得:x =2.【点睛】此题主要考查解一元一次方程,解题的关键是熟知方程的解法.21.-4x 2y ,-8【分析】直接去括号合并同类项,再把已知数据代入得出答案.【详解】解:原式=7xy+6xy-4x 2y-13xy=-4x 2y ,当x=-1,y=2时,原式=-4×(-1)2×2=-4×1×2=-8.22.数轴见详解,-3< 1.5--<12-<0<122+<()22-.【分析】先将绝对值及乘方的数化简,再根据有理数与数轴上点的对应关系表示各数.【详解】 1.5--=-1.5,()22-=4,将各数表示在数轴上:∴-3< 1.5--<12-<0<122+<()22-.【点睛】此题考查绝对值的化简,有理数的乘方运算,利用数轴上的点表示有理数的方法,有理数的大小比较.23.(1)1(2)0.75-【分析】(1)根据有理数加法的运算律求解即可;(2)先把分数化为小数,然后根据有理数乘法的结合律求解即可.(1)解:原式110.573(2.75)24⎡⎤⎡⎤⎛⎫⎛⎫=-+++-+- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦()76=+-1=.(2)解:原式 1.530.750.53(0.75)=-⨯-⨯-1.530.750.530.75=-⨯+⨯0.75(1.530.53)=⨯-+0.75(1)=⨯-0.75=-.【点睛】本题主要考查了有理数的计算,熟知有理数的加法和乘法运算律是解题的关键.24.乙每天加工这种零件96个.【分析】直接利用甲加工的零件+乙加工的零件=1120,进而得出等式求出答案.【详解】解:设乙每天加工这种零件x 个,根据题意可得:80×3+5(80+x )=1120,解得:x=96,答:乙每天加工这种零件96个.【点睛】本题主要考查了一元一次方程的应用,正确表示出甲乙加工的零件数是解题关键.25.(1)8;(2)7或13.【分析】(1)根据中点的定义可得22BC CD BD ==,由4AC CD =,12AB =求得CD 进而求得AC ;(2)分情况讨论,①当点E 在线段AB 上时,②当点在线段BA 的延长线上,分别根据线段的和差关系,求得ED .【详解】解:(1)∵点D 为BC 的中点,22BC CD BD∴==,4AB AC BC AC CD =+= ,4212CD CD ∴+=,2CD ∴=4428AC CD ∴==⨯=;(2)由(1)得2BD CD ==①当点E 在线段AB 上时,则12327DE AB AE BD =--=--=②当点在线段BA 的延长线上,则123213DE AB AE BD =+-=+-=12AB = ,∴E 点不在AB 的延长线上,所以DE 的长为7或13.【点睛】本题考查了线段的和差关系,线段中点的定义,数形结合是解题的关键.26.(1)购买足球4个,购买排球8个;(2)8【分析】(1)设购买足球x 个,排球y 个,然后根据题意列出方程求解即可;(2)根据题意求出购买足球和篮球的数量,然后列方程求解即可.【详解】解:(1)设购买足球x 个,排球y 个,根据题意得:128040640x y x y +=⎧⎨+=⎩,解得:48x y =⎧⎨=⎩.答:购买足球4个,购买排球8个.(2)依题意得:购买了m 个排球,则购买足球和排球的数量均为122m -个,所以有:12124080606404022m m m --+⨯+⨯=-解得:8m =.答:m 的值为8.【点睛】本题主要考查了二元一次方程组的实际应用,一元一次方程的实际应用,解题的关键在于能够熟练掌握相关知识进行求解.27.(1)()29620m 2x π--(2)241m 2【分析】(1)根据阴影部分与其它部分面积之间的关系列出代数式即可;(2)代入计算即可.(1)由图形中各个部分面积之间的关系,得221242(22)(42)22S x π+⎛⎫=+--+-⋅ ⎪⎝⎭阴影部分1462492x π=+--⨯()29620m 2x π=--.(2)当9x =,π取3时,()2 27415420m 22S =--=阴影部分.【点睛】本题考查了列代数式、代数式求值、圆的面积公式等知识,正确地列出代数式是正确解答的前提.28.(1)∠MON =45°,原因见解析;(2)35°;(3)12α【分析】(1)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(2)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(3)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可.【详解】解:(1)如图1,∵∠AOB =90°,∠BOC =60°,∴∠AOC =90°+60°=150°,∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC =12∠AOC =75°,∠NOC =12∠BOC =30°∴∠MON =∠MOC ﹣∠NOC =45°.(2)如图2,∵∠AOB=70°,∠BOC=60°,∴∠AOC=70°+60°=130°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=65°,∠NOC=12∠BOC=30°∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.故答案为:35°.(3)如图3,∠MON=12α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=12(α+β),∠NOC=12∠BOC=12β,∴∠MON=∠MOC﹣∠NOC=12(α+β)﹣12β=12α即∠MON=12α.故答案为:12α.。
数学版(完整版)人教版七年级数学上册期末试卷及答案

数学版(完整版)人教版七年级数学上册期末试卷及答案一、选择题1.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( ) A .()121826x x =- B .()181226x x =- C .()2181226x x ⨯=-D .()2121826x x ⨯=-2.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a -3.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .592 4.下列方程是一元一次方程的是( )A .213+x =5xB .x 2+1=3xC .32y=y+2D .2x ﹣3y =15.在实数:3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个B .2个C .3个D .4个6.不等式x ﹣2>0在数轴上表示正确的是( )A .B .C .D .7.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠2 8.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米 B .向北走3米 C .向东走3米 D .向南走3米 9.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180°10.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于( )A .15°B .25°C .35°D .45°11.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+12.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( ) ①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB .A .1个B .2个C .3个D .4个二、填空题13.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.14.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.15.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.16.15030'的补角是______.17.如图,在数轴上点A,B表示的数分别是1,–2,若点B,C到点A的距离相等,则点C所表示的数是___.18.已知A,B,C是同一直线上的三个点,点O为AB的中点,AC2BC=,若OC6=,则线段AB的长为______.19.小马在解关于x的一元一次方程3232a xx-=时,误将- 2x看成了+2x,得到的解为x=6,请你帮小马算一算,方程正确的解为x=_____.20.﹣225abπ是_____次单项式,系数是_____.21.如图,在平面直角坐标系中,动点P按图中箭头所示方向从原点出发,第1次运动到P1(1,1),第2次接着运动到点P2(2,0),第3次接着运动到点P3(3,-2),…,按这的运动规律,点P2019的坐标是_____.22.若x、y为有理数,且|x+2|+(y﹣2)2=0,则(xy)2019的值为_____.23.规定:用{m}表示大于m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}=-1等;用[m] 表示不大于m 的最大整数,例如[72]= 3,[2]= 2,[-3.2]=-4,如果整数x 满足关系式:3{x}+2[x]=23,则x =________________.24.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).三、解答题25.计算:(1)23(1)27|2|-+-+- (2)2311(6)()232-⨯--26.滴滴快车是一种便捷的出行工具,其计价规则如图:(注:滴滴快车车费由里程费、时长费、远途费三部分构成,其中里程费按行车的具体时段标准和实际里程计算:时长费按具体时段标准和行车的实际时间计算,远途费的收取方式:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.3元)(1)小红早上7:00从家出发乘坐滴滴快车到学校,行驶里程2公里,用时8分钟,需付车费 元,傍晚17:00放学乘坐滴滴快车到妈妈单位,行驶里程5公里,用时20分钟,需付车费 元;(2)某人06:10出发,乘坐滴滴快车到某地,行驶里程20公里,用时40分钟,需付车费多少元?(3)某人普通时段乘坐演滴快车到某地,用时30分钟,共花车费39.8元,求他行驶的里程?27.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A 和B 两种款式的瓷砖,且A 款正方形瓷砖的边长与B 款长方形瓷砖的长相等, B 款瓷砖的长大于宽.已知一块A 款瓷砖和-块B 款瓷砖的价格和为140元; 3块A 款瓷砖价格和4块B 款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案).28.计算:(1)31324()864-⨯--(2)43231[2(2)](3)5--⨯----29.解方程:2112 233x x-+=.30.一位同学做一道题:“已知两个多项式A,B,计算.”他误将“”看成“”,求得的结果为.已知,请求出正确答案.四、压轴题31.如图1,已知面积为12的长方形ABCD,一边AB在数轴上。
人教版七年级上册数学期末测试卷及含答案(完整版)

人教版七年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、我国第一艘航空母舰辽宁航空舰的电力系统可提供14 000 000瓦的电力.14 000 000这个数用科学记数法表示为A.14×10 6B.1.4×10 7C.1.4×10 8D.0.14×10 82、一个正方体的表面展开图如图所示,把它折成正方体后,与“我"字相对的字是()A.“细”B.“心”C.“检”D.“查”3、下列运算正确的是()A. B. C. D.4、甲‚乙‚丙三地的海拔高度为20米,-15米,-10米,那么最高的地方比最低的地方高 ( )A.5米B.10米C.25米D.35米5、在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学记数法可以表示为()A. 亿次/秒B. 亿次/秒C. 亿次/秒 D. 亿次/秒6、在北京筹办2022年冬奥会期间,原首钢西十筒仓一片1130000平方米的区域被改建为北京冬奥组委办公区,将130000用科学记数法表条是应为()A.13×10 4B.1.3X10 7C.013x10 6D.1.3x10 57、若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为()A.-1B.0C.1D.8、化简5(2x-3)-4(3-2x)之后,可得下列哪一个结果()A.2x-27B.8x-15C.12x-15D.18x-279、近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是()A.0.65×10 8B.6.5×10 7C.6.5×10 8D.65×10 610、如果有理数a和它的倒数及相反数比较,其大小关系为﹣a<<a,那么有()A.a<﹣1B.﹣1<a<0C.0<a<1D.a>111、从数﹣6,1,﹣3,5,﹣2中任取三个数相乘,则其积最小的是()A.﹣60B.﹣36C.﹣90D.﹣3012、下列各数|-2|,-|2|,-(-2),-|-2|中,负数的个数有( )A.1个B.2个C.3个D.4个13、如图,将一副三角板的直角顶点重合摆放在在桌面上,下列各组角一定能互补的是()A.∠BCD和∠ACFB.∠ACD和∠ACFC.∠ACB和∠DCBD.∠BCF 和∠ACF14、下列说法正确的是( )A.正整数和负整数统称为整数B.互为相反数的两个数的绝对值相等 C.-a一定是负数 D.绝对值等于它本身的数一定是正数15、比-1小2的数是( )A.-3B.-2C.-1D.-二、填空题(共10题,共计30分)16、比较大小:________ .17、有下列各题:①由x=,得x=1;②由=2,得x﹣7=10,解得x=17;③由6x﹣3=x+3,得5x=0;④由2﹣=,得12﹣x﹣5=3(x+3).其中出现错误的是________ .(填序号)18、用“<”连接与:________19、观察下列图形,若将一个正方形平均分成n2个小正方形,则一条直线最多可穿过________个小正方形.20、按如下规律摆放三角形:则第(4)堆三角形的个数为________;第(n)堆三角形的个数为________.21、如果∠1+∠2=90°,而∠2与∠3互余,那么∠1与∠3的数量关系是________.22、00:12:14,天猫双十一总成交额超36200000000元,已超过双十一全天的成交额,其中36200000000用科学记数法表示为:________.23、绝对值大于2且不大于5的所有负整数的和是________,绝对值不大于5的所有整数的积是________.24、猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是________.25、一个数的倒数是它本身,这个数是________.三、解答题(共5题,共计25分)26、计算:27、先化简,再求值:,其中28、在数轴上,点A到原点的距离为3,点B到原点的距离为5,如果点A表示的有理数为a,点B表示的有理数为b,求a与b的乘积.29、如图,平分,求的度数.30、两条平行线上共有k个点,用这k个点恰可以连接1309个三角形,那么k 是多少?参考答案一、单选题(共15题,共计45分)1、B2、B3、A4、D5、B6、D7、A8、D9、B11、B12、B13、A14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上期期末数学模拟试卷一、填空:(每小题2分,共20分)1. 21-的倒数是2.2007年12月21日中央气象台的天气预报,22日(冬至)北京市的最低气温为-4℃,南平市的最低气温为6℃,这一天北京市的最低气温比南平市的最低气温低 ℃ 3.用四舍五入法对下列各数取近似数:(1)0.00356≈ (保留两个有效数字) (2)1.8935≈ (精确到0.001)4.建瓯市约51.5万人口,用科学记数法表示为 人5.一件衣服的进价为50元,若要利润率是20%,应该把售价定为 元6.关于x 的方程132-=-m x 解为1-=x ,则=m7.某校的早读时间是7:30-7:50,在这个时间中,分针旋转的角度为 度 8.若25y x n -与m y x 2312是同类项,则=m ,=n9.若某三位数的个位数字为a ,十位数字为b ,百位数字为c ,则此三位数可表示为 10.写出一个满足“①未知数的系数是21-,②方程的解是3”的一元一次方程为 二、选择题(每小题2分,共12分)11.下列各组数中,互为相反数的是( ) A .1-与2)1(- B. 2)1(-与 1 C.2与21D.2与2- 12.若a 是有理数,则4a 与3a 的大小关系是( )A. 4a >3aB. 4a =3aC. 4a <3aD.不能确定13.如图,OC 是平角∠AOB 的平分线,OD 、OE 分别是∠AOC 和∠BOC 的平分线, 图中和∠COD 互余的角有( )个A.1B.2C.3D.0 14.如果an am =,那么下列等式不.一定成立的是( ) A. 33-=-an am B. an am +=+55 C. n m = D. an am 2121-=-15.下列判断正确的是( )A.锐角的补角不一定是钝角;B.一个角的补角一定大于这个角C.如果两个角是同一个角的补角,那么它们相等;D.锐角和钝角互补16.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏损20%,则本次出售中商场( )A.不赔不赚B.赚160元C.赚80元D.赔80元 三、解答题(共68分)17.按下列语句画出图形(5分) (1)作线段AB=3cmA BCEOE(2)过线段AB 中点C 作射线CD (3)作∠ACD 的平分线CE(4)量出∠BCD 的度数,求∠DCE 的大小。
18.计算(每题4分,共8分) (1)41)4(2)2(3÷-⨯-- (2)]2)31()4[(10223⨯---+-19.化简求值:(6分)]4)32(23[522a a a a ----,其中21-=a 20.(6分)右表列出了几个国外城市与北京的时差(带正号的数表示同一时刻比北京时间晚的时数):例如:在卡塔尔首都多哈举行的第15届亚运会开幕式是在北京时间17:00开始进行的,而此时东京时间是18:00。
①如果现在是北京时间9:00,那么纽约时间是多少? ②如果现在小东在北京想给远在巴黎的姨妈打电话,你认为是否合适,为什么? ③2001年9月11日上午9时许(纽约时间),美国纽约世贸中心姊妹楼先后分别遭恐怖分子劫持的两架飞机的袭击,此时北京是什么时候?21.(6分)如图,将两块直角三角尺的直角顶点C 叠放在一起, ① 若∠DCB=35°,求ACB 的度数 ② 若∠ACB=140°,求DCE 的度数③ 猜想∠ACB 与∠DCE 的大小关系,并写出你的猜想,但不要说明理由。
22.(6分)轮船在点O 测得岛A 在北偏东60°,距离为4千米,以测得岛B 在北偏西30°,距离为3千米。
用1厘米代表1千米画出A 、B 的位置,量出图上线段AB 的长度,并计算岛A 和岛B 间的实际距离。
23.(7分)老师在黑板上出了一道解方程的题421312+-=-x x ,小明马上举起了手,要求到黑板上去做,他是这样做的:)2(31)12(4+-=-x x ①63148--=-x x ②46138+-=+x x ③111-=x ④111-=x ⑤老师说:小明解一元一次方程的一般步骤都掌握了,但解题时有一步做错了,请你指出他错在第 步(填编号0;然后,你自己细心地解下列方程:南西 O 北 东A BC D E231412=--+x x 相信你,一定能做对! 24.(7分)某校整理一批图书,由一个人做要48小时完成,现在计划由一部分人先做4小时,再增加3人和他们一起做6小时,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作? 25.(8分)某中学库存若干套桌椅,准备修理后支援贫困山区学校。
现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费。
该中学库存多少套桌椅?26. (9分)“水是生命之源”,市自来水公司为鼓励用户节约用水,按以下规定收取水费:(1)某用户1月份共交水费65元,问1月份用水多少吨?(2)若该用户水表有故障,每次用水只有60%记入用水量,这样在2月份交水费43. 2元,该用户2月份实际应交水费多少元?参考答案一、填空:1.-2;2.10;3.(1)0.036;(2)1.894;4. 51015.5⨯;5.60;6.-1;7.120;8.1;3;9.100c+10b+a ;10. 2321-=-x ; 二、选择题:11.A ;12.D ;13.C ;14.C ;15.C ;16.D三、解答题:17.正确作出(1)(2)(3)各得1分(4)量出并求出答案各得1分 18.(1)24;(2)-96819.原式=692-+a a ;-2;20.(1)纽约时间是昨天20:00;(2)不合适。
现在巴黎时间是凌晨2:00,姨妈在休息; (3)此时北京时间是22:00 21.(1)∠ACB=∠ACE+∠ECB=90°-35°+90°(2)∠DCE=∠ACD-∠ACE=90°-(140°-90°)=40°(3)∠ACB 与∠DCE 互补22.正确画出OA 、OB 各得2分;量得AB 的长为5cm ,岛A 和岛B 间的实际距离是5千米。
23.错在第①步。
217=x 24.解:设先安排x 人工作4小时,则依题意得:148)3(6484=++x x ;解得x=3;答:应先安排3人工作。
25.解:设该中学库存x 套桌椅,则8162016+=-x x ;解得x=960。
方案C 省时省钱。
26.略。
七年级(上)期末水平测试(三)江西 周光明一、你能填得又快又准吗?(每题3分,共30分)1.某栋楼每层高度为4.8m ,地下室高度为3.5米,如果地面高度为0m ,那么三楼地面高度应记为 米。
2.点A 在数轴上距原点5个单位长度,且位于原点的左侧,若将A 向右移动4个单位长度,再向左移动1个单位长度,此时点A 表示的数是__________。
3、用“>”、“<”填空:-54 _____ -32 ;若0<<b a ,则ba 1____1 。
4.如图是某个几何体的展开图,这个几何体是 .5.废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量)。
某班有53名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学计数法表示为 立方米。
6.按规律填数:1741035221--,,, _________。
7.绝对值大于3但不超过5的整数它们的和为________,积为________。
8.如图,是一个简单的数值运算程序当输入x 的值为-1时,则输出的数值为 。
9.一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,则∠1= 。
10.图1表示某地区2003年12个月中每个月平均气温,图2表示该地区某家庭这年12个月中每月的用电量。
根据统计图,请你说出该家庭用电量 与气温之间的关系(只要求写出一条 信息即可): 。
二、你一定能选对!(每题3分,共30分) 11.下列各数中,是负数的是( )。
(A)-(-3) (B)-|-3| (C) (-3)2 (D) |-3|12.下列四个运算中,结果最小的是( )(A) 1+(-2) (B) 1-(-2) (C) l ³(-2) (D) 1÷(-2)13. 2003年10月15日9时10分,我国神舟五号载人飞船准确进入预定轨道.16日5时59分,返回舱与推进舱分离,返回地面.其间飞船绕地球共飞行了14圈,飞行的路程约60万千米,则神舟五号飞船绕地球平均每圈约飞行 (用科学记数法表示保留三个有效数字) ( )(A) 4.28³104千米 (B) 4.29³104千米 (C) 4.28³105千米 (D) 4.29³105千米14、如果292313a x x --=是关于x 的一元一次方程,则a 的值是( ) (A) 0 (B)3 (C) (D)415.如图,钟表8时30分时,时针与分针所成的角的度数为( ) (A )30° (B )60° (C )75° (D )90°16.如图,在一个正方体的两个面上画了两条对角线AB ,AC ,那么这两条对角线的夹角等于( )(A) 60° ( B) 75° (C) 90° ( D) 135°17、若|x |=-x ,则x 的取值范围是( )(A )x =-1 (B )x <0 (C ) x ≥0 (D ) x ≤018.若|x -12|+(2y -1)2=0,则22x y +的值是( )(A )38 (B )12 (C )-18 (D )-3819.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是( )(A)(B) (C) (D)20.如图是“光明超市”中“丝美”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮助算一算,该洗发水的原价是 ( ) (A )22元 (B )23元 (C )24元 (D )26元 三、你来算一算!千万别出错哟!!!(共18分)(友情提示:请特别注意符号,并要写出必要的演算步骤) 21.计算:(5分³2=10分)(1) )3()4()2(8102-⨯---÷+- (2) ⎥⎦⎤⎢⎣⎡-+-⨯-⨯-522)2()32(32322.(7分)解方程:3252243x x ---=.23.(7分)李司机5次载客行程记录如下:(以向东方向行驶记为正,向西方向记为负,以车站为出发点)+10,-3,-8,+7,-9(单位为公里)问:(1)最后一次载客的目的地离车站有多远?在车站以东还是车站以西? (2)若汽车每公里耗油量0.5升,那么这5次载客从开始到目的地共耗油多少升?M M M M四、拿起画图工具,连一连,画一画 (4+6=10分) 24.分别将下列四个物体与其相应的俯视图连接起来:25.如图,已知∠AOB .(1)画∠AOB 的角平分线OC ; (2)在OC 上任取一点P ,画PE ⊥OA ,PF ⊥OB ,垂足分别为E 和F 。