LTE干扰处理要点
TD-LTE上行干扰定位方法与排查指导手册

TD-LTE上行干扰定位方法与排查指导手册引言TD-LTE(Time Division-Long Term Evolution)是一种4G移动通信技术,其上行信号受到干扰会影响网络性能和用户体验。
这篇文档旨在介绍TD-LTE上行干扰的定位方法和提供排查指导手册,帮助网络运维人员快速定位和解决干扰问题。
TD-LTE上行干扰的定义TD-LTE上行干扰是指在TD-LTE系统的上行频带中,由于外部因素导致信号质量下降,从而影响到正常设备的通信质量。
常见的干扰源包括其他无线通信设备、电磁干扰、天气条件等。
TD-LTE上行干扰的定位方法现场勘测1.使用专业的功率分析仪进行场强测试,记录各个位置的信号强度。
根据测试结果,可以初步判断干扰源的方位和强度。
2.根据勘测结果,在网络管理系统中标记出干扰源所在的区域,并记录对应的信息,便于后续排查和干扰源的定位。
特殊干扰事件分析1.根据用户投诉或网络性能异常的事件记录,对特定时间段的数据进行分析。
通过分析这些事件发生的时间、地点和规律,可以初步确定干扰源的可能性和范围。
2.基于事件发生的时段和地点,对相关设备进行深度排查和监测,利用网络管理系统提供的工具分析干扰源的特征和影响范围。
频谱监测与分析1.使用频谱分析仪对TD-LTE上行频段进行监测,识别异常频谱特征。
干扰源通常具有特殊的频谱分布,通过频谱分析可以帮助定位干扰源。
2.借助频谱分析仪提供的功率谱图、水平图和瀑布图等视图,可以更直观地观察到频谱上的干扰特征,进一步确定干扰源的方位和类型。
其他辅助工具1.利用网络管理系统提供的相关工具,如无线性能监控、用户分析等,结合干扰事件发生时的数据记录,进行数据分析,找出与事件相关的关键信息,以帮助确定干扰源的位置。
2.配合现场勘测和频谱监测的结果,利用数学建模和计算机仿真等方法,进一步提高定位干扰源的准确性。
TD-LTE上行干扰的排查指导手册前期准备1.确认干扰事件的特征和范围。
LTE网络优化-干扰问题处理(干扰特征规律总结及整改经验总结)

方位角、安装DCS1800滤波器及更换D频段天线的顺序整改。
增加DCS1800 滤波器 21% 调整方位角 7%
按图施工 21%
其他 3%
更换天线位臵 17%
更换为D频段 14% 调整天线平台 17%
22
1、DCS1800杂散干扰的解决方案-按图施工
与设计院会审整改方案时发现存在工程未按设计图纸施工的现象,如宿迁宿城 中豪国际星城LF三个小区均存在上行干扰,现场勘查与DCS1800隔离度仅有 1.2米,与设计图纸不符,已要求按图整改:
龙LF-3小区提升至第一平台
思考:目前宿迁DCS1800暂未发现由于垂直隔离度低导致的杂散干扰,因此在平台 有空余空间的情况可以更换至其他平台。
24
1、DCS1800杂散干扰的解决方案-调整效果
8月10日对3小区更换平台,整改前后指标对比如下:
FTP吞吐率测试 整改前 下载 整改后 宿豫来 龙LF-3 提升 整改前 上传 整改后 提升 RSRP Average SINR 下行吞吐率 RSRP Average SINR 下行吞吐率 下行吞吐率 RSRP Average SINR 上行吞吐率 RSRP Average SINR 上行吞吐率 上行吞吐率 好点 -68 31 60.2 -71 27.3 60.4 0.2 -67 30 9.46 -72 27.3 11.9 2.44 中点 -90 14.75 28.7 -89 15.5 45.7 17 -85 17.3 4.52 -90 15.3 7.91 3.39 差点 -102 5.7 8.6 -99 7.9 29.8 21.2 -97 5.2 1.87 -99 6.7 6.19 4.32
用户 感知
3
系统间干扰-杂散干扰特征
LTE无线网络中的干扰协调技术

LTE无线网络中的干扰协调技术近年来,随着移动通信用户数量的不断增加和频谱资源的紧张,无线网络中的频谱资源利用率成为了一个重要的课题。
对于LTE无线网络来说,由于其使用的是频分复用技术,因此会存在大量的干扰问题。
为了解决这个问题,干扰协调技术应运而生。
一、LTE无线网络中的干扰问题在LTE无线网络中,由于多个用户同时使用同一频段,必然会产生相互之间的干扰。
具体来说,干扰主要分为两种情况:一种是同步干扰,另一种是异步干扰。
同步干扰是指来自同一基站传输的信道之间发生的干扰,多数情况下是由于基站内部时序同步不达规定水平所引起的。
而异步干扰主要指与不同基站传输信道之间相互抵触招致的干扰。
当信道之间存在干扰的情况时,信号质量就会严重下降,从而影响通信质量。
二、干扰协调技术的分类干扰协调技术可以分为两大类,一类是基于协作的干扰协调技术,另一类是基于信道质量的干扰协调技术。
基于协作的干扰协调技术主要是通过在不同基站间进行通信协同,减少互相之间的干扰。
其中,最常见的技术包括动态频谱共享技术、传输干扰协调技术等。
而基于信道质量的干扰协调技术则是通过监测无线信道的质量情况,根据不同用户之间的信道质量差异来实现干扰协调。
技术手段主要包括功率控制、资源块分配优化、信道跟踪技术等。
三、功率控制技术功率控制技术是干扰协调技术中的一种重要技术。
实际上,它也是目前应用最为广泛的技术之一。
通过对各个用户的发送功率进行控制,就可以减少同一频率的用户之间的干扰。
在LTE无线网络中,功率控制技术通常分为两种类型:第一种是基于控制信号的功率控制技术。
在该技术中,传输端和接收端之间通过控制信号的变化来实现功率的调节。
具体来说,就是根据接收到的信号功率信息,发送一定的控制信号,通知发送端正确设置发送功率。
第二种是基于调整开关时间的功率控制技术。
该技术主要是通过改变信道开关时间的长短来实现功率的调节。
具体来说,就是通过动态调整信道开启的时间,在保证通信质量的前提下达到功率控制的目的。
LTE多系统互调干扰解决方案

LTE多系统互调干扰解决方案随着移动通信技术的发展,LTE多系统互调干扰问题成为运营商面临的一个重要挑战。
在现有的网络中,由于LTE与其他无线通信系统共用频段,可能会导致互调干扰,进而降低用户通信质量。
为了解决这一问题,需要采取一系列的技术手段和规范措施。
本文将介绍LTE多系统互调干扰的解决方案。
1.频域资源规划在LTE系统中,通过对频谱进行动态管理和分配,可以减少与其他系统之间的互调干扰。
首先,需要对不同系统的频段进行合理划分,避免频段交叠。
其次,可以采用跳频技术,即在一定时间间隔内,动态改变频率使用情况,从而降低互调干扰的可能性。
2.功率控制合理的功率控制策略可以减少互调干扰的发生。
LTE系统中可以根据实际情况,动态调整功率水平,使得发射功率不超过允许的最大值。
同时,可以通过设备间的协调,控制系统之间的功率差异,从而降低互调干扰。
3.空域资源规划通过合理的空域资源规划,可以将相邻系统之间的载波分配得更加均匀,从而减少互调干扰的概率。
可以利用网络规划工具进行仿真分析,确定不同站点的位置和天线方向,使得站点之间的干扰最小化。
4.前向误差校正(FEIC)前向误差校正是一种通过提前对LTE信号进行处理的技术手段,从而降低与其他系统之间的互调干扰。
通过对信号进行数字预处理,可以有效地降低互调干扰带来的负面影响。
5.信号过滤通过在LTE系统中增加过滤器,可以实现对其他系统产生的互调干扰信号的滤波。
这样可以阻止互调干扰信号进入LTE系统,从而提高系统的抗干扰能力。
6.接收端敏感度控制在LTE系统中合理控制接收机的灵敏度,可以减少来自其他系统的信号带来的互调干扰。
通过动态调整接收机的灵敏度级别,可以使其能够更好地抵抗互调干扰带来的影响。
总结起来,LTE多系统互调干扰问题的解决方案包括频域资源规划、功率控制、空域资源规划、前向误差校正、信号过滤和接收端敏感度控制等。
通过采取这些措施,可以有效地降低多系统互调干扰的概率,提高用户通信质量。
LTE同频干扰

L TE解决同频干扰的方法很多:方法一:LTE采用OFDM技术,小区内用户的信号都是正交的,各用户之间信号互不干扰,遮掩避免了小区内的干扰方法二:加扰,这个2G就有的技术方法三:跳频技术,这个2G就有的技术方法四:发射端波束赋形:它的思想就是通过波束赋形技术的运用,提高目标用户的信号强度,同时主动降低干扰用户方向的辐射能量(假如能判断出干扰用户的位置),此消彼长来解决小区间干扰。
方法五:IRC 抑制强干扰技术,当接收端也是多天线的话,就可以利用多天线来降低用户间干扰,其主要原理估计目标基站和干扰基站的信号,通过对接收信号进行加权来抑制干扰。
这个技术目前比较复杂,实际中应用很少采用。
方法六:也是LTE避免同频干扰的主要、关键技术 :小区间的干扰协调,基本思想就是以小区协调的方式对资源使用进行限制,包括限制时频资源的可用性,或者限制功率资源可用性来是边缘用户得以区分。
主要分为2 种方式,频率资源协调和功率资源协调。
1)频率资源协调:将频率分为3 份,保证边缘用户始终处于异频的状态,从而避免小区间干扰.小区中间用户全部使用频率,而小区边缘的用户则只使用三分之一的频率,从而是覆盖边界形成异频。
当然,这样做牺牲频率资源,也牺牲了平均吞吐量但是保证了边缘的吞吐量。
2)功率资源协调:和上面的原理一样,也是保证边缘异频,但是是通过功率来控制覆盖实现。
每个小区都会在某一个频率上加强功率,其余 2 个频率上降低功率,从而使小区边缘的频率不同,实现异频来解决干扰。
基本原理同频率协调,它的好处是频率资源得到了全部的使用,缺点是功率资源没用完,浪费了。
IUV-4G全网规划部署V2.0(公测版)新增功能说明一、无线性能优化功能无线增加网络系统性能优化功能,优化参数配置适配场景参数,达到系统速率性能最优化。
优化参数描述如下:1. PCIa) 功能描述:标识小区的物理层标识号,LTE中终端以此区分不同小区的无线信号,PCI取值范围(0-503),分成168组,每组包含3个小区ID。
LTE网络优化-干扰问题处理(干扰特征规律总结及整改经验总结)

方位角、安装DCS1800滤波器及更换D频段天线的顺序整改。
增加DCS1800 滤波器 21% 调整方位角 7%
按图施工 21%
其他 3%
更换天线位臵 17%
更换为D频段 14% 调整天线平台 17%
22
1、DCS1800杂散干扰的解决方案-按图施工
与设计院会审整改方案时发现存在工程未按设计图纸施工的现象,如宿迁宿城 中豪国际星城LF三个小区均存在上行干扰,现场勘查与DCS1800隔离度仅有 1.2米,与设计图纸不符,已要求按图整改:
南通麦客隆C PRB干扰对比
0 -20 1 4 7 1013161922252831343740434649525558616467707376798285889194 -40 -60 -80 -100 -120 -140 关闭电信FDDLTE前 关闭电信FDDLTE后
12
1、电信FDD-LTE阻塞干扰
思考:现网未按图施工的站点绝不仅有这一个站点,为什么站点建设时不按图施 工?后期单验为什么未发现?为什么会通过验收?
23
1、DCS1800杂散干扰的解决方案-调整天线平台
宿迁宿豫来龙LF-3小区后台指标统计存在较强的上行干扰,现场勘查发现L3小 区与DCS1800隔离度较小导致:
整改方案:现场发现宿宿豫来龙LF-2小区在第一平台,而1、3小区在第二平台,与 结合设计图纸对比一致,同时发现在第一平台240度方向上有空抱杆,建议将宿豫来
影响范围:单个小区
4
系统间干扰-宽频干扰特征
宽频干扰主要是阻塞干扰和设备故障等造成。 频域100个RB的典型特征为绝大部分RB均受到强干扰。
主要干扰源:电信联通FDD使用1880MHz频段,自身接收机性能较差;设备 故障等
LTE覆盖干扰分析及优化

LTE覆盖干扰分析及优化文章主要研究LTE覆盖干扰优化思路,通过弱覆盖优化、模三干扰分析、重叠覆盖率优化、网络拓扑结构优化、邻区优化,改善LTE干扰水平,提升4G 网络质量。
标签:FDD-LTE;覆盖;干扰;优化;模三;邻区漏配1 概述LTE采用同频组网,整个系统覆盖范围内的所有小区可以使用相同的频带为本小区内的用户提供服务,频谱效率高,但是相邻小区在小区的交界处由于使用了相同的频谱资源,则容易产生较强的小区间干扰。
2 干扰分类根据干扰产生的原因,LTE干扰可分为系统内干扰、系统间干扰和外部干扰三个部分:(1)系统内干扰:主要指LTE系统内因邻区数据配置错误、PCI越区覆盖、重叠覆盖等带来的小区与小区之间的干扰;对于LTE而言,系统内干扰还可能存在交叉时隙干扰,GPS失步干扰,超远覆盖干扰等。
(2)系统间干扰:主要指LTE与其他不同系统之间因隔离度、互调等问题造成的系统与系统之间的干扰。
(3)外部干扰:通常为非通信系统的未知干扰源。
2.1 系统内干扰OFDM技术,LTE系统较好的解决了小区内同频干扰,但存在较严重的小区间同频干扰。
造成邻区同频干扰的主要原因是:(1)邻区漏配无法切换导致的邻区干扰;(2)PCI冲突、PCI模三冲突导致RS在频域上的干扰;(3)重叠覆盖区域过大导致的邻区干扰;(4)越区覆盖导致的干扰。
2.2 系统间干扰当LTE和GSM900、DCS1800、WCDMA2100、CDMA800、TD SCDMA(A频段、E频段)共存时,这些系统和LTE之间都有可能产生相互干扰。
这些干扰主要有以下几类:(1)邻频干扰:如果不同的系统工作在相邻的频率,由于发射机的邻道泄漏和接收机邻道选择性的性能的限制,就会发生邻道干扰;(2)杂散干扰:由干扰源在被干扰接收机工作频段产生的噪声,使被干扰接收机的信噪比恶化;(3)互调干扰:种类包括多干扰源形成的互调、发射分量与干扰源形成的互调和交调干扰;(4)阻塞干扰:阻塞干扰并不是落在被干扰系统接收带内的,但由于干扰信号过强,超出了接收机的线性范围,导致接收机饱和而无法工作。
LTE干扰处理分析

LTE干扰处理分析LTE(Long Term Evolution)是一种高速无线通信技术,广泛应用于4G移动通信系统中。
然而,在实际应用中,LTE信号的传输可能会受到各种干扰,从而影响通信质量和性能。
为了解决这个问题,必须进行干扰处理的分析。
首先,我们来分析一下可能导致LTE信号干扰的原因。
LTE信号在传输过程中容易受到同频干扰和邻频干扰的影响。
同频干扰指的是不同LTE基站之间频率资源的冲突,当多个基站在相同频率上工作时,信号会相互干扰。
邻频干扰是指邻近频段的信号对LTE信号的影响,例如邻近的WiFi信号或其他无线通信系统的信号。
针对同频干扰问题,有几种常见的干扰处理方法。
一种是通过改进天线设计和布局来减小同频干扰。
例如,可以采用不同方向的天线,使得信号在特定方向上干扰最小化。
另一种方法是增加基站的解调复杂度,在接收端使用更加复杂的信号处理算法,提高信号的建模和估计能力,从而减小同频干扰。
对于邻频干扰问题,一种常见的解决方法是采用频谱规划和频谱监测技术。
通过将LTE系统的频段与其他无线通信系统的频段进行合理的划分,可以尽量减小邻频干扰的可能性。
此外,频谱监测技术可以实时监测周围环境中的邻近信号强度和频率使用情况,及时调整LTE系统的工作频段,避免与其他系统的频段产生冲突。
除了同频干扰和邻频干扰外,LTE信号还可能受到其他干扰的影响,例如多径衰落、多用户干扰和自身信号质量问题。
多径衰落是由于信号在传播过程中经历多个路径,抵达接收端时产生干扰。
为了处理这个问题,可以采用多天线传输技术,例如MIMO(Multiple-Input Multiple-Output)技术,以减小多径干扰的影响。
多用户干扰是指当多个用户同时使用LTE系统时,由于资源分配不合理或者用户间距离过近而产生互相干扰的问题。
为了解决这个问题,可以考虑合理的资源调度和功率控制策略,避免用户之间的干扰。
自身信号质量问题是指LTE系统自身的信号质量不佳,例如信号衰减或者过强的干扰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2) 确认方式
通过网管确认阻塞干扰通常采用降低同一基站相同及相邻扇区 GSM900/1800 基站功率 20dB 以上,对受干扰 TD-LTE 小区前后各一段时间如 十分钟的 PRB 进行轮询来完成确认。
会稍微升高
判断为二阶互调 干扰
降低 GSM900 基站时干 扰波干扰波峰继续降低
判断为阻塞干扰
小区级干扰曲线较 为平直,而和 PRB 轮询 干扰波形呈现左低右高 或右低左高的平滑曲线
判断为杂散干扰
小区级干扰曲线和 PRB 轮询 干扰波形都呈波浪形
③ D 频段干扰状况
从频谱状况来说,存有各运营商 TD-LTE 间的干扰、与雷达间、射频天文、北斗、 Wifi 以及 MMDS 、 Wimax 间的干扰
MMDS 和 WiMAX 对 D 频段的同频干扰,可使底噪抬升 20dB 以上,严重时更会 导致 TD-LTE 业务无法建立连接
5 / 21
TDLTE优化文档 ——干扰处理 ——王楠
判断为 LTE 网内干扰
6 / 21
TDLTE优化文档 ——干扰处理 ——王楠
2. 阻塞干扰
阻塞干扰一般为附近的无线电设备发射的较强信号被 TD-LTE 设备接收导 致的,现阶段发现的阻塞干扰主要为中国移动 GSM900/1800 及距离较近的友 商基站系统带来的。
1) 特点 ① 话务相关
小区级平均干扰电平跟干扰源话务关联大,干扰源话务忙时 TD-LTE 干 扰越大
TDLTE优化文档 ——干扰处理 ——王楠
LTE干扰处理 _ 王楠
一、 TD-L TE 干扰概述 1. TD-LTE频段分析
目前 TD-LTE 主要使用三个频段, F、 D、 E。
1 / 21
TDLTE优化文档 ——干扰处理 ——王楠
2. TD-LTE内外干扰分析
1) 内部干扰
交叉时隙干扰:上下行时隙干扰 远距离同频干扰:站 A 和站 B 间距> GP 传播距离 GPS 失步:失步基站与周围基站上下行收发不一致,相互干扰 小区间同频干扰:同 PCI 同 mod3 设备故障: RRU 故障;天馈故障
与话务忙闲正相关
否
否
先对干扰小区 PRB 轮询 10分钟,然
后降低水平方位角更接近的两个
GSM900
小区下行输出功率 10dB 10 分钟,再降低
相同方向两个 GSM1800 基站功率 10dB10
分钟,并同时轮询 PRB
小区级干扰曲线和 PRB 轮询干扰波形都 较为平直
判断为外部干扰
降低 GSM900 基站时 干扰波峰干扰降低, 而降低 GSM1800 基站 输出功率时干扰波峰
3 / 21
TDLTE优化文档 ——干扰处理 ——王楠
① F 频点干扰状况
DCS1800 阻塞干扰: 16~30dB 底噪抬升, UL 吞吐量损失严重,甚至无法建立连 接
DCS1800 杂散干扰: 5dB 的底噪抬升, UL 吞吐量损失约 10% DCS1800 互调干扰: 8~16dB 的底噪抬升, UL 吞吐量损失超过 30% GSM900 谐波干扰:约 5dB 的底噪抬升 PHS 杂散:一般情况下轻微干扰,严重时 TD-S 或 TD-L 无法建立连接
踪 PRB干扰波形,观察是否有变化; 5. 对非共址 2G 站引起的干扰进行天面勘察和现场扫频,观察是否有天线对打,隔离
度不够的情况; 6. 如果隔离度足够且现场扫频无外部干扰源,则判断为硬件原因。
TD-LTE 上行干扰分析
是
同站点是否有
否
中国移动 2G 基站
小区级干扰是否
小区级干扰是否
是
是
与话务忙闲正相关
二、 TD-L TE 外部处理
1. 干扰排查流程
1. 提取全网 PRB干扰值,筛选存在干扰的小区; 2. 根据实时跟踪 PRB干扰波形,初步判断干扰类型 3. 由于 DCS1800M 和 GSM900M 产生的杂散, 谐波均为固定频率的干扰, 所以可以通
过更改 LTE小区的中心载频来确定是否为固定频域上的干扰; 4. 将怀疑为 DCS1800M 和 GSM900M 干扰的小区,对 2G 站分别进行闭解,并实时跟
2) 外部干扰
同频干扰:杂散干扰,互调干扰,谐波干扰 异频干扰:阻塞干扰
2 / 21
3) 干扰表现
TDLTE优化文档 ——干扰处理 ——王楠
上行底噪≥ =105db ping 包延时大于正常小区,或无法 ping 成功 KPI:切换、接通、掉线
4) 外部干扰分频段分析
TD-LTE 频段
容易受到的干扰
4 / 21
TDLTE优化文档 ——干扰处理 ——王楠
② E 频段干扰状况
E 频段和 Wifi 相隔 30MHz ,比较近, 且 Wifi 不遵循 3GPP 协议, 射频指标比较差 普通室分系统下, 80dB 的合路器基本可以消除干扰,两者频率越远,受到的影响
越小。 外挂情况下,空间隔离需 1m 以上
② 隔离度低
干扰基站天线与 TD-LTE 小区天线隔离度越小,干扰越严重。当然仅仅 通过工参信息无法得知系统间天线隔离度大小, 但可以从天线高度和天 线水平方位角大致了解天线隔离度。
7 / 21
③ PRB前高后低
TDLTE优化文档 ——干扰处理 ——王楠
PRB 级干扰呈现的特点是 PRB10 之前有一个明显凸起, 凸起的 PRB 后 没有明显的干扰波形。
F频段 ( 1880 ~ 1900MHz )
D 频段 ( 2575 ~ 2635MHz )
E频段 ( 2320 ~ 2370MHz )
① GSM900/GSM1800 系统和 PHS 系统带来的阻塞干扰 ② GSM900 系统带来的二阶互调干扰 ③ GSM1800 系统和 1.8FDD-LTE 系统带来的杂散干扰 ④ PHS 系统、手机信号屏蔽器和其他电子设备带来的外部干扰 ⑤ 因基站过覆盖带来的 LTE 网内干扰 ① GSM900/GSM1800 系统带来的阻塞干扰 ② 800M Tetra 系统和 CDMA800MHz 系统带来的三阶互调干扰 ③ 手机信号屏蔽器和其他电子设备带来的外部干扰 ④ 因基站过覆盖带来的 LTE 网内干扰 ① GSM900/GSM1800 系统带来的阻塞干扰 ② WLAN AP 带来的杂散和阻塞干扰 ③ 手机信号屏蔽器和其他电子设备带来的外部干扰 ④ 因基站过覆盖带来的 LTE 网内干扰