土体破坏与土的抗剪强度理论

合集下载

土力学-土的抗剪强度

土力学-土的抗剪强度
而是变化的,并且随相应 作用面上的σ 而变化, 在一定范围内,τ随σ 持续增长。
σ =0时, τf未必是零。
2)库仑定律------又名抗剪强度定律
1776年,法国库仑经过一系列试验总结了土的强度规律: 砂 土:τf=σ tgφ …....① 粘性土:τf=σ tgφ + c ………② 式中:τf:剪切面(破坏面)上的剪应力, 即土的抗剪强度,破坏剪应力,Kpa σ :剪切面(破坏面)上的法向应力, Kpa φ :土的内摩擦角,度.不同土,φ 值不相同. c :土的粘聚力(内聚力),(注意C是有量纲的参数) Kpa
①,②二式即为著名的库仑定律。它表明在法向应力变 化范围不大的时候,τ与σ 成线性关系。如下图示。因 此库仑定律是莫尔理论的特例。以库仑定律表示的莫 尔破坏包线是一条直线。 即:τ=f (σ )=σ tgφ + c。 评价:库仑定律有着巨大的理论和实用价值。
土的极限平衡条件
土的强度破坏一般指剪切破坏.那么作用在土体中某 一个面上的实际剪力 和土体中相应面上的抗剪强度f 可能 存在以下三种关系:
极限平衡条件的应用
例4.2 判断土体中某点是否剪损的方法 情况1:已知1 3 c
方法(1):计算达极限平衡所需要的(1)限 方法(2):计算达极限平衡所需要的(3)限 方法(3):作图法 相离(弹性) 相切(极限) 相割(剪损) 方法(4):计算摩尔圆的最大倾角max
与 比较.
情况2:已知x z c
如果把这两条σ -τ曲线画在同一个坐标系中,比较 τ与τf的相对大小,则可判断土体中任一点所处的应 力状态(或者说可判别沿 某个面是否发生剪切破坏)
1)相离关系(< f ):曲线I位于曲线II下方. 2)相切关系(=f ):曲线I与曲线II有一个公共点. 思考:切点一般并非剪应力最大的点,为什么? 何时切点是剪应力最大的点?

土力学-土的抗剪强度

土力学-土的抗剪强度

液化时的冒砂现象
台中地震(1999)砂土液化造成的破坏
五、黏性土的抗剪强度
1. 主要特点和影响因素
(1)黏性土的抗剪强度主要来源于内摩擦力和黏聚力。 (2)峰值强度:超固结土>正常固结土>重塑土。残余强度:相同(与土 的受力历史无关)。 无论是黏性土还是砂土,残余强度对应于土体发生较大的剪切变形时, 此时,对黏性土:土粒间的联结破坏,黏聚力丧失,故其强度线通过原点; 对砂土:咬合作用丧失,以摩擦作用为主,内摩擦角降低。
1. 砂土抗剪强度的特点及主要影响因素
(1)颗粒较粗,相互之间为机械作用而无黏聚力:c =0。内摩擦 角 =29o~42o(大于休止角)。 颗粒表面的滑动摩擦 (2)砂土抗剪强度的主要来源于
剪切方向
颗粒之间的咬合作用 剪切过程中颗粒的重新排列
颗粒移动方向 摩擦
剪切面
咬合
剪切方向
(3)主要影响因素:颗粒矿物成分、形状和级配、沉积条件等。
土压力
滑移面 挡土墙
(3)挡土结构:确定墙后土体处于极 限状态时,作用在挡土结构上的土压力。
二、土的抗剪强度shear strength和破坏理论
1. 直接剪切试验和Coulomb定律
(1)直接剪切试验 取多个土样,分别施加不同竖向应力,剪切至破坏。结果表明, 破坏时的剪应力f与法向应力 呈线性关系。
σ
( 1f )i
n pi2 ( pi )2
土样数
c
1 i pi sin cos n n
pi
( 1f )i ( 3f )i 2
i
( 1f )i ( 3f )i 2
土样破坏时的大、小主应力
四、砂土的抗剪强度

土的抗剪强度理论

土的抗剪强度理论

土的抗剪强度理论
土的抗剪强度理论主要有两种:摩尔-库伦理论和塔努达克斯理论。

1. 摩尔-库伦理论:
摩尔-库伦理论是最广为接受的土的抗剪强度理论之一。

它假设土体是由许多颗粒组成的,这些颗粒之间存在着一定的内摩擦力。

当土体受到剪切力作用时,土体内部就会发生剪切破坏,这时剪切破坏面的形状就取决于内摩擦角。

摩尔-库伦理论的公式为:
τ = c + σ tanφ
其中,τ为土体的抗剪强度; c为土体的内聚力;σ为剪应力,即水平方向的应力;φ为土体的内摩擦角。

2. 塔努达克斯理论:
塔努达克斯理论通过分析土体内部的颗粒间力学作用关系,将土体分成多个不同的区域,每个区域内部存在着不同的应力状态和内部摩擦力。

塔努达克斯理论认为,土体的强度与颗粒之间的粘结力和内摩擦力有关。

其公式为:
τ = c' + σ tan(φ'-α)
其中,τ为土体的抗剪强度;c'为粘聚力;σ为剪应力,即水平方向的应力;φ'为土体的内摩擦角;α为土体颗粒的倾斜角。

这两种理论在工程实践中都有应用,选择哪种理论需要根据具体情况考虑。

《土质学与土力学》7土的抗剪强度

《土质学与土力学》7土的抗剪强度

土质学与土力学 7土的抗剪强度《土质学与土力学》第七章 土的抗剪强度第一节 概述建筑物由于土的原因引起的事故中,一部分是沉降过大,或是差异沉降过大造成的;另一方面是由于土体的强度破坏而引起的。

对于土工建筑物(如:路堤、土坝等)来说,主要是后一个原因。

从事故的灾害性来说,强度问题比沉降问题要严重的多。

而土体的破坏通常都是剪切破坏;研究土的强度特性,就是研究土的抗剪强度特性。

①土的抗剪强度(τf ):是指土体抵抗抗剪切破坏的极限能力,其数值等于剪切破坏时滑动的剪应力。

②剪切面(剪切带):土体剪切破坏是沿某一面发生与剪切方向一致的相对位移,这个面通常称为剪切面。

其物理意义:可以认为是由颗粒间的内摩阻力以及由胶结物和束缚水膜的分子引力所造成的粘聚力所组成。

无粘性土一般无连结,抗剪强度主要是由颗粒间的摩擦力组成,这与粒度、密实度和含水情况有关。

粘性土颗粒间的连结比较复杂,连结强度起主要作用,粘性突的抗剪强度主要与连结有关。

决定土的抗剪强度因素很多,主要为:土体本身的性质,土的组成、状态和结构;而这些性质又与它形成环境和应力历史等因素有关;此外,还决定于它当前所受的应力状态。

土的抗剪强度主要依靠室内经验和原位测试确定,试验中,仪器的种类和试验方法以及模拟土剪切破坏时的应力和工作条件好坏,对确定强度值有很大的影响。

第二节 抗剪强度的基本理论一、库仑定律(剪切定律) 1773年 法国学者在法向应力变化范围不大时,抗剪强度与法向应力的关系近似为一条直线,这就是抗剪强度的库仑定律。

无粘性土:φστtg f ⋅= 粘性土:φστtg f ⋅=+c式中:f τ:土的抗剪强度,Kpa ;σ:剪切面的法向压力,Kpa ;φtg :土的内摩擦系数;φ:土的内摩擦角,度;c :土的内聚力,Kpa 。

σφtg :内摩擦力。

库仑定律说明:(1)土的抗剪强度由土的内摩擦力σφtg 和内聚力c 两部分组成。

(2)内摩擦力与剪切面上的法向应力成正比,其比值为土的内摩擦系数φtg 。

土体破坏与土的抗剪强度理论

土体破坏与土的抗剪强度理论

(1)e> ek ,松散 ,剪缩;(2)e< ek ,紧密,剪胀
高压下无粘性土的剪切特性
土的抗剪强度 及破坏理论
岩土材料的屈服、强度、破坏
• 1、屈服: • 材料受力后,内部应力达到一定程度,材料内部的晶格与 晶格之间开始在最大应力作用面上产生错动或滑移(塑性 变形的开始)。 • 2、强度 • 材料或杆件对荷载的抵抗能力。 • 3、破坏 • 指材料或杆件在荷载作用下发生断裂或因较大的塑性变 形而不能正常使用。 • 屈服、破坏是一种现象,强度是一个控制界限。长期以 来,人们根据对材料破坏现象及机理的认识和分析,提 出了一些科学假设,作为工程安全的控制标准。这就是 破坏准则或强度理论。
f c tan

1 3
2
c
O
3
1f

c ctg
1 3
2
莫尔-库仑强度理论表达式 :应力表达式
1 f 3 f
3tg 45 2c tg 45 2 2 2 1tg 45 2c tg 45 2Mises)理论 4、德鲁克(Drucker)-普拉 格(Prager)理论 1952年,应变能
( 1 2 ) 2 ( 2 3 ) 2 ( 3 1 ) 2 6 K 2
与土有关的常 系数
1913年,应变能
I1 J 2 K 0

判断破坏可能性

由σ1计算σ3f 比较σ3与σ3f σ3>σ3f 弹性平衡状态 σ3=σ3f σ3<σ3f 极限平衡状态 破坏状态
O 3 3f
c
3
1

(1 + 3)/2 = 常数:圆心保持不变:

土力学第五章土的抗剪强度

土力学第五章土的抗剪强度
第五章 土的抗剪强度
编辑ppt
本章主要内容
5.1 抗剪强度概述 5.2 土的抗剪强度试验 5.3 土的抗剪强度及破坏理论 5.4 砂类土的抗剪强度特征 5.5 粘性土的抗剪强度特征 5.6 特殊粘性土的抗剪强度特征 5.7 粘性土的流变特性 5.8 土的动力强度特性
编辑ppt
土工结构物或地基

▪渗透问题 ▪变形问题 ▪强度问题
随着轴向应变的增 加,松砂的强度逐渐增 加,曲线应变硬化。
体积开始时稍有 减小,继而增加,超 过它的初始体积 体积逐渐减小
编辑ppt
§ 5.5 粘性土的抗剪强度特征
一.不排水试验(UU试验)
在不排水条件下,施加周围压力增量σ3 , 然后在不允许水进出的条件下,逐渐施加附 加轴向压力q,直至试样剪破 工程背景:应用与饱和粘土、软粘土快速
土的破坏主要是由于剪切所引起的,剪切破坏是土体破坏的 主要特点。
与土体强度有关的工程问题:建筑物地基稳定性、填方或挖 方边坡、挡土墙土压力等。
编辑ppt
概述
崩塌
平移滑动
旋转滑动
流滑
编辑ppt
概述
乌江武隆县兴顺乡 鸡冠岭山体崩塌
• 1994年4月30日上午11时 45分
• 崩塌体积530万m3,30万 m3堆入乌江,形成长110m、 宽100m、高100m的碎石 坝,阻碍乌江通航达数月 之久。
剪应力τ= (σ1- σ3 )/2=130kPa 由于τ< τf,说明土单元中此编点辑p尚pt 未达到破坏状态。
§ 5.3 抗剪强度实验
按常用的试验仪器可将剪切试验分:
直接剪切试验 三轴压缩试验 无侧限抗压强度试验 十字板剪切试验四种
编辑ppt
一、直接剪切试验

(完整版)土的抗剪强度

(完整版)土的抗剪强度

一、土的抗剪性
土是由固体颗粒组成的,土粒间的连结强度远远小于土粒本身的强度,故在外力作用下土粒 之间发生相互错动,引起土中的一部分相对另一部分产生滑动。土粒抵抗这种滑动的性能, 称为土的抗剪性。 土的抗剪性是由土的内摩擦角 φ 和内聚力 c 两个指标决定。对于高层建筑地基稳定性分析、 斜坡稳定性分析及支护等问题,c、φ 值是必不可少的指标。 无粘性土一般没有粘结力,抗剪力主要由颗粒间的滑动摩擦以及凹凸面间镶嵌作用所产生的 摩擦力组成,指标"内摩擦角 φ"值的大小,体现了土粒间摩擦力的强弱,也反映了土的抗 剪能力; 粘性土的抗剪力不仅有颗粒间的摩擦力,还有相互粘结力,不同种类的粘性土,具有不同的 粘结力,指标"内聚力 c"值的大小,体现了粘结力的强弱。因此,对于粘性土的抗剪能力, 由内摩擦角 φ 和粘聚力 c 两个指标决定。
三、影响土体抗剪强度的因素分析
决定土的抗剪强度因素很多,主要为:土体本身的性质,土的组成、状态和结构;而 这些性质又与它形成环境和应力历史等因素有关;此外,还决定于它当前所受的应力状态。
土的抗剪强度主要依靠室内经验和原位测试确定,试验中,仪器的种类和试验方法以 及模拟土剪切破坏时的应力和工作条件好坏,对确定强度值有很大的影响。
一、直接剪切试验
直接剪切仪分为应变控制式和应力控制式两种,前者是等速推动试样产生位移,测定相应的 剪应力,后者则是对试件分级施加水平剪应力测定相应的位移,目前我国普遍采用的是应变 控制式直剪仪。
应变控制式直剪仪主要部件由固定的上盒和活动的下盒组成,试样放在盒内上下两块透 水石之间。试验时,由杠杆系统通过加压活塞和透水石对试件施加某一垂直压力 σ,然后等 速转动手轮对下盒施加水平推力,使试样在上下盒的水平接触面上产生剪切变形,直至破坏, 剪应力的大小可借助与上盒接触的量力环的变形值计算确定。假设这时土样所承受的水平向 推力为 T,土样的水平横断面面积为 A,那么,作用在土样上的法向应力则为σ=P/A,而 土的抗剪强度就可以表示为 f =T/A。ຫໍສະໝຸດ 主要内容第一节 概述

工程地质及土力学第5章土的抗剪强度

工程地质及土力学第5章土的抗剪强度

一、不固结不排水抗剪强度
1. 三轴仪不排水强度UU
土 的 抗 剪 强 度
u 0 f
1 c u 1 3 2
1 u f 3 u f 1 3 1 3 3 ) f ( 1 3 ) fA ( 1 3 ) fB ( 1 在不排水条件下,饱和土体孔隙水压力系数B 1,改变周围 压力增量只会引起孔隙水压力的变化,而不会引起土体中的 有效应力的变化,各试样在剪切破坏前的有效应力相等,所 以抗剪强度不变。
(二)摩尔库伦极限平衡条件
土 的 抗 剪 强 度

根 据 Mohr-Coulomb 破坏理论,破坏时 的 Mohr 应力圆必定 与破坏包线相切。 切点所代表的平面 满足τ=τf的条件,该 点处于极限平衡状 态。
f 45

2
AD RD sin
即:
1 1 ( 1 3) [c ctg ( 1 3 )]sin 2 2 2 1 3tg 45 2c tg 45 2 2
• 砂土: τf=σtg • 粘性土: τf=c+σtg • 式中:c 和为抗剪强度指标(抗剪强度参数) • c-土的粘聚力 -土的内摩擦角
土的抗剪强度机理
土 的 抗 剪 强 度
1、摩擦强度(摩擦力)包括滑动摩擦和咬合摩擦 滑动摩擦由颗粒间接触面粗糙不平所引起。 咬合摩擦是指相邻颗粒对于相对移动的约束作用。 • 摩擦强度的影响因素有: • 颗粒形状、矿物成分、 粒径级配、密度等。 2、粘聚强度(粘聚力) • 取决于土粒间的各种 胶结作用和静电引力。 •用有效应力表达


土 的 抗 剪 强 度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

c
= 极限平衡状态
O
< 不可能状态
滑裂面的位置的判别
与大主应力面夹角
α=45 + /2
45°+/2
1f 3
c
O
3
破裂面
2
2 1f
无粘性土的剪切特性
一、无粘性土的摩擦强度
1.摩擦的物理过程
(1)滑动摩擦 (2)咬合摩擦
摩擦强度的影响因素
1.滑动摩擦 —颗粒形状和粗糙
度、粒径、级配 2.咬合摩擦
J2
1 6
[(1
2 )2
( 2
3)2
( 3
1)2 ]
库伦-莫尔理论
库伦-摩尔理论
c
O
库仑公式:
c 粘聚力 内摩擦角
σ = 300KPa
σ = 200KPa
σ = 100KPa
S
f :
土的抗剪强度
tg:
摩擦强度-正比于压力 c:
粘聚强度-与所受压力无关
库伦-莫尔理论
1.任一截面上的法向应力和剪应力
岩土材料的屈服、强度、破坏
• 1、屈服: • 材料受力后,内部应力达到一定程度,材料内部的晶格与
晶格之间开始在最大应力作用面上产生错动或滑移(塑性 变形的开始)。
• 2、强度 • 材料或杆件对荷载的抵抗能力。
• 3、破坏 • 指材料或杆件在荷载作用下发生断裂或因较大的塑性变
形而不能正常使用。
• 屈服、破坏是一种现象,强度是一个控制界限。长期以 来,人们根据对材料破坏现象及机理的认识和分析,提 出了一些科学假设,作为工程安全的控制标准。这就是 破坏准则或强度理论。
3、米泽斯(Mises)理论
1913年,应变能
4、德鲁克(Drucker)-普拉 格(Prager)理论
1952年,应变能
(1 2 )2 ( 2 3)2 ( 3 1)2 6K 2
与土有关的常 系数
I1 J2 K 0
应 力 张 量 的 第 一 不 变 量:
I1 1 2 3
应 力 偏 张 量 的 第 二 不 变量 :
3.临界孔隙比ek—随围压的增大而减小
(1)e> ek ,松散 ,剪缩;(2)e< ek ,紧密,剪胀
高压下无粘性土的剪切特性
1.Φ降低 2.砂土液化
1 2
(
1
3
)
1 2
(
1
3
)
c
os2
1 2
(
1
3 ) sin 2
库伦-莫尔理论
2.应力圆
整理得
1
3
2
2
2
1
3
2
2
莫尔-库仑强度理论表达式:极限平衡条件
c
O
3
1f
莫尔-库仑强度理论表达式 :应力表达式
c
O
3
1f
应力状态与摩尔圆
(1-)/2
c
(1+)/2
极限平衡应力状态
应力圆与强度包络线是否相切来判断土体的应力状态
—相对密度和孔隙 比
图6-38
土粒组成对内摩擦角的影响
1.颗粒形状—角砾的φ>圆砾
2.级配(Grading)—良好的φ>均匀的φ 3.矿物成份—含云母φ较小
砂土的孔隙比及剪胀性
1.e0对φ的影响—φ随e0的减小而增大 2.砂土在剪切过程中体积和强度的变化
(1)体积—剪缩和剪胀;(2) 应力—硬化和软化
σ1、σ3
c O 3 3f 3
1
判断破坏可能性
由σ1计算σ3f 比较σ3与σ3f
σ3>σ3f 弹性平衡状态 σ3=σ3f 极限平衡状态 σ3<σ3f 破坏状态
(1 + 3)/2 = 常数:圆心保持不变:
土体破坏判断方法
根据应力状态计算出大 小主应力σ1、σ3
判断破坏可能性
由σ1、σ3计算与比较
> 安全状态
强度理论简介
1、最大剪应力理论:
2、库伦-摩尔(Mohr)理论
• 1773年,库伦,危险 状态为剪断。1864年 特雷斯卡(Tresca) 将它应用到了塑性流 动情况。
• 1882~1900年间,库伦、 摩尔,危险状态为剪断 和塑性破坏。max13
2
常量
f ( ) c tg
强度理论简介
土体破坏判断方法
判别对象:土体微小单元(一点)
3= 常数:
根据应力状态计算出大 小主应力σ1、σ3
由σ3计算σ1f 比较σ1与σ1f
σ1<σ1f 弹性平衡状态 σ1=σ1f 极限平衡状态 σ1>σ1f 破坏状态
判断破坏可能性
c
O
3
1 1f 1
1= 常数:
土体破坏判断方法
根据应力状态计 算出大小主应力
相关文档
最新文档