北师大版数学九上同步练2.5 一元二次方程的根与系数的关系2
数学北师大版九年级上册2.5一元二次方程的根与系数的关系

2.5一元二次方程的根与系数的关系(韦达定理)【作业稿】1、已知:,2,522==+ab b a 那么=+2)(b a ,=-2)(b a2、已知:,2,15)(2==+ab b a 那么=+22b a ,=-2)(b a3、一般地,对于一元二次方程ax 2+bx+c=0(a ≠0),它的根是 (公式)4、若一元二次方程x 2-ax+1=0有两个相等的实数根,则a 的值是5、.解下列方程(1)03722=+-x x (2)01322=+-x x (3)01032=--x x6、已知方程0122=-+kx x 的一个根是3,求它的另一个根及k 的值。
7、如图3,四边形ABCD 是边长为13cm 的菱形,其中对角线BD 长为10cm. 求:(1)对角线AC 的长度;(2)菱形ABCD 的面积.【预习稿】 2.5一元二次方程的根与系数的关系(韦达定理)【学习目标】1、在已有的一元二次方程解法的基础上,探索出一元二次方程根与系数的关系,及其此关系的运用。
2、通过观察、实践、讨论等活动,经历发现问题,发现关系的过程。
【学习重点】观察数字系数的一元二次方程的两个根之和,及两个根之积与原方程系数之间的关系 【学习难点】对根与系数这一性质进行应用。
一、合作探究:1观察上面的表格,思考以下问题:(1)每个方程的两根之和与它的什么关系?(2)每个方程的两根之积与它的系数有什么关系?(3)猜想:关于x 的方程20(0)ax bx c a ++=≠的两根1x ,2x 与系数a ,b ,c 之间又有何关系呢?你能证明你的猜想吗?解:关系:1x +2x = ,12x x ⋅= 证明如下:∵20(0)ax bx c a ++=≠当240b ac -≥时根为:2b x a-±=∴设12b x a -+=,22b x a --=,∴1x +2x ====21x x【学案稿】 2.5一元二次方程的根与系数的关系(韦达定理)一、韦达定理:如果方程20(0)ax bx c a ++=≠有两个实数根为1x ,2x , 那么=+21x x ,=21x x二、定理应用:例1:不解方程,求下列方程0672=++x x 的两根和与两根积: 1、对应练习:根据根与系数的关系写出下列方程的两根之和与两根之积: (方程两根为x 1,x 2、k 是常数)(1)2x 2-3x-1=0 x 1+x 2= __ _ x 1x 2= _ __ (2)3x 2+5x=0 x 1+x 2= __ _ x 1x 2 _ __ (3)220x -= x 1+x 2= __ _ x 1x 2= _ __ (4)1)13(=-x x x 1+x 2= __ _ x 1x 2= ___例2:已知方程0122=-+kx x 的一个根是3,求它的另一个根及k 的值。
北师大初中数学九上《2.5 一元二次方程的根与系数的关系》课件 (二)

2 = -1.
1-2 = 1,
答案
2
则 m=
.
关闭
1
3
答案
轻松尝试应用
1
2
3
4
5
6
4.一个一元二次方程的两个根是 2+ 6和 2- 6,那么这个一元二次方
程为.关闭 Nhomakorabeax2 -4x-2=0
答案
轻松尝试应用
1
2
3
4
5
6
2
5.已知 x1,x2 是方程 2x -3x-1=0 的两个根,利用根与系数的关系,求
31 x2+x1 32 的值.
分以下两种情况:
-1
=5,x1 -x2=1,
2
①当 m 1=11 时,x1+x2=
组成方程组
1 + 2 = 5,
= 3,
解这个方程组,得 1
2 = 2.
1-2 = 1,
-1
=-1,x1 -x2=1,
2
②当 m 2=-1 时,x1+x2=
组成方程组
1 = 0,
1 + 2 = -1,
)
A.-10
B.4
C.-4
D.10
关闭
C
答案
轻松尝试应用
1
2
3
4
5
6
2.已知关于 x 的一元二次方程(a2 -1)x2-(a+1)x+1=0 两根互为倒数,则
a=
.
关闭
±2
答案
轻松尝试应用
1
2
3
4
1
1
5
1
2
6
北师大版数学九年级上册《一元二次方程的根与系数的关系》同步练习题含答案

北师⼤版数学九年级上册《⼀元⼆次⽅程的根与系数的关系》同步练习题含答案第⼆章⼀元⼆次⽅程 2.5 ⼀元⼆次⽅程的根与系数的关系1.已知关于x的⼀元⼆次⽅程x2-x-3=0的两个实数根分别为α,β,则(α+3)(β+3)等于( )A. 8B. 9C. 10D. 122. 设x1,x2是⽅程5x2-3x-2=0的两个实数根,则1x1+1x2的值为( )A. -4B. -3C. -2D. -323. 若关于x的⼀元⼆次⽅程x2-(a+5)x+8a=0的两个实数根分别为2和b,则ab等于( )A. 4B. 3C. 2D. 14. 已知a,b是⽅程x2-x-3=0的两个根,则代数式5a2+b2-5a-b+5的值为( )A. 20B. 22C. 23D. 255. 设m,n是⼀元⼆次⽅程x2+2x-7=0的两个根,则m2+3m+n等于( )A. 9B. 7C. 5D. 36. 已知⼀元⼆次⽅程-4x +3=0两根为x1、x2,则x1?x2=( )A. 4B. 3C. -4D. -37. 判断⼀元⼆次⽅程式x2-8x-a=0中的a为下列哪⼀个数时,可使得此⽅程式的两根均为整数?( )A. 12B. 16C. 20D. 248. 若关于x的⼀元⼆次⽅程x2-4x+5-a=0有实数根,则a的取值范围是( )A. a≥1B. a>1C. a≤1D. a<19. 已知x1,x2是⼀元⼆次⽅程x2-4x+1=0的两个实数根,则x1x2-x1-x2的值等于( )A. -3B. 0C. 3D. 510. 如果⼀元⼆次⽅程x2-3x-1=0的两根为x1、x2,那么x1+x2=( )A. -3B. 3C. -1D. 111. 若关于x的⽅程x2+3x+a=0有⼀个根为-1,则另⼀个根为12. 设x1,x2是⼀元⼆次⽅程-2x-3=0的两根,则 =13. 设α,β是⼀元⼆次⽅程x2+2x-1=0的两个根,则αβ的值是14. 若m,n是⼀元⼆次⽅程x2=5x+2的两个实数根,则m-mn+n的值是15. 关于x的⽅程x2-ax+2a=0的两根的平⽅和是5,则a的值是16. 已知x1,x2是关于x的⽅程x2+ax-2b=0的两实数根,且x1+x2=-2,x1·x2=1,则b a的值是17. 已知关于x的⽅程x2+3x+a=0有⼀个根为-2,则另⼀个根为18. 已知m,n是关于x的⼀元⼆次⽅程x2-3x+a=0的两个根,若(m-1)(n -1)=-6,则a=19. 若关于x⼀元⼆次⽅程x2-x-m+2=0的两根x1,x2满⾜(x1-1)(x2-1)=-1,则m的值为20. 已知⽅程x2+mx+3=0的⼀个根是1,则它的另⼀个根是_______,m的值是_______21. 已知关于x的⼀元⼆次⽅程x2+2x+m=0有实数根,则m的取值范围是_______22. 在解⽅程x2+px+q=0时,甲同学看错了p,解得⽅程的根为x1=1,x2=-3;⼄同学看错了q,解得⽅程的根为x1=4,x2=-2,则⽅程中的p=______,q=________.23. 已知直⾓三⾓形的两条直⾓边的长恰好是⽅程2x2-8x+7=0的两个根,则这个直⾓三⾓形的斜边长是_________24. 关于x 的⼀元⼆次⽅程(m-2)x 2+2x+1=0有实数根,求m 的取值范围.25. 设x 1,x 2是⼀元⼆次⽅程2x 2-x -3=0的两根,求下列代数式的值.(1)x 12+x 22;(2)x 2x 1+x 1x 2;(3)x 12+x 22-3x 1x 2.26. 若关于x 的⼀元⼆次⽅程x 2-4x +k -3=0的两个实数根为x 1,x 2,且满⾜x 1=3x 2,试求出⽅程的两个实数根及k 的值.27. 已知关于x 的⼀元⼆次⽅程x 2-6x +(2m +1)=0有实数根.(1)求m 的取值范围;(2)如果⽅程的两个实数根为x 1,x 2,且2x 1x 2+x 1+x 2≥20,求m 的取值范围.。
北师大新版数学初三上册《一元二次方程的根与系数的关系》同步练习(有解析)

北师大新版数学初三上册《2一.选择题(共12小题)1.若一元二次方程x2+2x+m=0中的b2﹣4ac=0,则那个方程的两根为()A.x1=1,x2=﹣1 B.x1=x2=1 C.x1=x2=﹣1 D.不确定2.已知关于x的方程kx2+(2k+1)x+(k﹣1)=0有实数根,则k的取值范畴为()A.k≥﹣B.k>﹣C.k≥﹣且k≠0 D.k<﹣3.若关于x的方程kx2﹣6x+9=0有实数根,则k的取值范畴是()A.k<1 B.k≤1 C.k<1且k≠0 D.k≤1且k≠04.关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A.2 B.1 C.0 D.﹣15.假如关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范畴是()A.k<B.k<且k≠0 C.﹣≤k<D.﹣≤k<且k ≠06.关于x的一元二次方程x2﹣2x+k+2=0有实数根,则k的取值范畴在数轴上表示正确的是()A.B.C.D.7.关于x的方程rx2+(r+2)x+r﹣1=0有根只有整数根的一切有理数r的值有()个.A.1 B.2 C.3 D.不能确定8.若实数a、b满足a2﹣8a+5=0,b2﹣8b+5=0,则的值是()A.﹣20 B.2 C.2或﹣20 D.9.下列一元二次方程中,只有方程()的根为1与﹣2.A.x2﹣x﹣2=0 B.x2+x﹣2=0 C.x2﹣x+2=0 D.x2+x+2= 010.若函数y=kx﹣3的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情形是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定11.设x1、x2是二次方程x2+x﹣3=0的两个根,那么x13﹣4x22+19的值等于()A.﹣4 B.8 C.6 D.012.已知α,β满足α2+2α﹣1=0,β2+2β﹣1=0,则的值为()A.2 B.﹣6 C.2或﹣6 D.﹣2或6二.填空题(共10小题)13.已知关于x的方程x2+(a﹣6)x+a=0的两根差不多上整数,则a 的值等于.14.关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是.15.若方程x2+2(1+a)x+3a2+4ab+4b2+2=0有实根,则=16.假如关于x的一元二次方程x2+bx+c=0没有实数根,则符合条件的一组b,c的实数值能够是b=,c=.17.若实数a、b、c满足,b+c﹣1=0,a﹣bc﹣1=0,则a的取值范畴是.18.假如关于x的方程(m﹣2)x2﹣2x+1=0有实数根,那么m的取值范畴是.19.若a>b>c>0,一元二次方程(a﹣b)x2+(b﹣c)x+(c﹣a)=0的两个实根中,较大的一个实根等于.20.已知关于x的方程x2+2kx+k2+k+3=0的两根分别是x1、x2,则(x 1﹣1)2+(x2﹣1)2的最小值是.21.关于一切正整数n,关于x的一元二次方程x2﹣(n+3)x﹣3n2=0的两个根记为an、bn,则++…+=.22.若,若x1,x2是一元二次方程kx2+ax+b=0的两个实数根且满足,则k=.三.解答题(共6小题)23.已知:关于x的一元二次方程x2﹣2(2m﹣3)x+4m2﹣14m+8=0,(1)若m>0,求证:方程有两个不相等的实数根;(2)若12<m<40的整数,且方程有两个整数根,求m的值.24.已知关于x的方程(x﹣1)(x﹣4)=k2,k是实数.(1)求证:方程有两个不相等的实数根:(2)当k的值取时,方程有整数解.(直截了当写出3个k的值)25.已知关于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根.(1)求k的取值范畴;(2)假如k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0与x 2+mx﹣1=0有一个相同的根,求现在m的值.26.已知关于x的方程x2﹣5x﹣m2﹣2m﹣7=0.(1)若此方程的一个根为﹣1,求m的值;(2)求证:不管m取何实数,此方程都有两个不相等的实数根.27.已知关于x一元二次方程x2﹣4x+c=0.(1)当c=1时,试解那个方程;(2)若方程的两个实数根为x1,x2,且x12﹣2x1x2+x22=0,求c的值.28.已知关于x的方程x2﹣(k+2)x+2k=0.①小明同学说:不管k取何实数,方程总有实数根,你认为他说的有道理吗?②若等腰三角形的一边a=1,另两边b、c恰好是那个方程的两个根,求△ABC的周长和面积.参考答案一.选择题1.C.2.A.3.B.4.C.5.D.6.C.7.B.8.C.9.B10.A.11.D.12.C.二.填空题13.0或16.14.m=4.15.﹣.16.b=2,c=3.答案不唯独.17.a≤.18.m≤3.19.1.20.8.21.﹣22.﹣2或1.三.解答题23.证明:(1)△=b2﹣4ac=[﹣2(2m﹣3)]2﹣4(4m2﹣14m+8)=8 m+4,∵m>0,∴8m+4>0.∴方程有两个不相等的实数根.(2)解:由求根公式得:∵方程有两个整数根,∴必须使为整数且m为整数.∴2m+1必是奇数,∴是奇数又∵12<m<40,∴25<2m+1<81.∴5<<9.∴m=24.24.(1)证明:原方程可变形为x2﹣5x+4﹣k2=0.∵△=(﹣5)2﹣4×1×(4﹣k2)=4k2+9>0,∴不论k为任何实数,方程总有两个不相等的实数根;(2)解:原方程可化为x2﹣5x+4﹣k2=0.∵方程有整数解,∴x=为整数,∴k取0,2,﹣2时,方程有整数解.25.解:(1)△=(2k﹣3)2﹣4×(k﹣1)(k+1)=4k2﹣12k+9﹣4k2+4=﹣12k+13,∵方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根,∴﹣12k+13>0,解得,k<,又k﹣1≠0,∴k<且k≠1时,方程有两个不相等的实数根;(2)∵k是符合条件的最大整数,x2﹣4x=0,x=0或4,当x=0时,x2+mx﹣1=0无意义;当x=4时,42+4m﹣1=0m=.26.(1)解:把x=﹣1代入x2﹣5x﹣m2﹣2m﹣7=0得1+5﹣m2﹣2m ﹣7=0,解得m1=m2=﹣1,即m的值为1;(2)证明:△=(﹣5)2﹣4(﹣m2﹣2m﹣7)=4(m+1)2+49,∵4(m+1)2≥0∴△>0,∴方程都有两个不相等的实数根.27.解:(1)当c=1时,原方程为x2﹣4x+1=0,解得:x===2±,∴x1=2+,x2=2﹣.(2)∵x12﹣2x1x2+x22=0,∴(x1﹣x2)2=0,∴x1=x2,∴△=(﹣4)2﹣4c=16﹣4c=0,解得:c=4.∴c的值为4.28.解:(1)∵△=(k+2)2﹣4×1×2k=k2+4k+4﹣8k=k2﹣4k+4=(k ﹣2)2≥0,∴方程不管k取何值,总有实数根,∴小明同学的说法合理;(2)①当b=c时,则△=0,即(k﹣2)2=0,方程可化为x2﹣4x+4=0,∴x1=x2=2,而b=c=2,∴C△ABC=5,S△ABC=;②当b=a=1,∵x2﹣(k+2)x+2k=0.∴(x﹣2)(x﹣k)=0,∴x=2或x=k,∵另两边b、c恰好是那个方程的两个根,∴k=1,∴c=2,∵a+b=c,∴不满足三角形三边的关系,舍去;综上所述,△ABC的周长为5.。
数学北师大版九年级上册2.5 一元二次方程的根与系数的关系

《一元二次方程的根与系数关系》课后作业
是方程
是一元二次方程
)
为何值时,关于的一元二次方程
、在解方程
与
、一元二次方程
、
第三边的长为二次方程的一根
1.已知方程x2+(2k+1)x+k2-2=0的两实根的平方和等于11,k 的取值是()
A.-3或1 B.-3 C.1 D.3
2.若是方程的两个实数根,则的值为()A.2005 B.2003 C.-2005 D.4010
3.已知一元二次方程x2-2x-1=0的两个根是x1,x2,则x1+x2= ,x1x2= ,
x12+x22= ;
4.若是m,n方程x2+2002x-1=0的两个实数根,则m2n+mn2-mn的值为
5、若α、β为实数且|α+β-3|+(2-αβ)2=0,则以α、β为根的一元二次方程
为。
(其中二次项系数为1)
6、已知关于的方程
(1)当取何值时,方程有两个不相等的实数根?
(2)设、是方程的两根,且,求的值。
北师大版-数学-九年级上册-2.5 一元二次方程的根与系数的关系 名优练习

一元二次方程的根与系数的关系1. 一元二次方程的一般形式是;2. 一元二次方程的两个根是, .【探究】1. 解下列一元二次方程,完成下列问题:(1),得,,因此,.(2),得,,因此,.(3),得,,因此,.观察你的结果,你能发现,与一元二次方程的系数有什么关系吗?即:※(韦达定理)一元二次方程的两个根若为,则有:, .2. 你能证明你的结论吗?※推论:以两个数为根的一元二次方程(二次项系数为1)是【自主完成】根据一元二次方程的根与系数的关系,求下列方程两根的和与积:(1) (2)(3)练习. 不解方程,求下列方程两根的和与积:(1)(2) (3)【当堂巩固】1.已知方程22=+x x ,则下列说法中,正确的是( )A. 方程两根和是1B. 方程两根积是2C. 方程两根和是1-D. 方程两根积比两根和大22.关于x 的一元二次方程x 2+bx +c =0的两个实数根分别为1和2,则b =____;c =_ _.3.若一元二次方程ax 2+bx+c=0(a ≠0)有一个根为-1,则a 、b 、c 的关系是__ ____.4.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.【课后训练】1. 已知一元二次方程01322=--x x 的两根为1x 、2x ,则=+21x x .2.已知是方程的两个根,则 _____ _____. 3. 一元二次方程x 2-3x-1=0与x 2-x+3=0的所有实数根的和等于__ __.4. 已知1x ,2x 是方程2630x x++=的两实数根,则2112x xx x+的值为_____.5. 关于x的方程20x px q++=的两根同为负数,则()A.且B.且C.且D.且6. 若关于x的一元二次方程22430x kx k++-=的两个实数根是12,x x,且.则k的值为()A. -1或34B. -1C.34D. 不存在7. 若α、β为实数且|α+β-3|+(2-αβ)2=0,则以α、β为根的一元二次方程为。
北师大版九年级数学上册 2.5 一元二次方程的根与系数的关系 同步练习题(含答案,教师版)

北师大版九年级数学上册第二章2.5 一元二次方程的根与系数的关系同步练习题一、选择题1.已知x1,x2是一元二次方程x2+2x-k-1=0的两根,且x1x2=-3,则k的值为(B) A.1 B.2 C.3 D.42.若一元二次方程x2-2x-1=0的两根分别为x1,x2,则1x1+1x2的值为(B)A.1 B.-2 C.3 D.-43.已知关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1,x2.若b+2c=0,则1x1+1x2+x1x2x1+x2的值为(D).A.52B.-32C.32D.-524.若一元二次方程x2-3x-2=0的两根分别是m,n,则m3-3m2+2n=(A)A.6 B.5 C.3 D.45.对于任意实数a,b,定义:a◆b=a2+ab+b2.若方程(x◆2)-5=0的两根记为m,n,则m2+n2=(D).A.3 B.4 C.5 D.66.已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b(x+1)+1=0的两根之和为(A).A.1 B.2 C.3 D.4二、填空题7.已知关于x的一元二次方程x2-2kx-8=0的一个根是2,则此方程的另一个根是-4.8.已知关于x的方程x2+mx-2n=0的两根之和为-2,两根之积为1,则m+n的值为32.9.写一个以5,-2为根的一元二次方程(化为一般形式)x2-3x-10=0.10.已知m,n是一元二次方程x2-2x-3=0的两根,则m+n+mn=-1.11.若x1+x2=3,x21+x22=5,则以x1,x2为根的一元二次方程是x2-3x+2=0.12.已知实数m ,n 满足条件m 2-7m +2=0,n 2-7n +2=0,则n m +m n 的值是452或2.13.已知a ,b 是方程x 2+2x -5=0的两个实数根,则a 2b +ab 2的值为10.14.已知关于x 的方程kx 2-3x +1=0有两个实数根,分别为x 1和x 2.当x 1+x 2+x 1x 2=4时,k =1.15.若方程2x 2+4x -3=0的两根为x 1,x 2,则1x 21+1x 22=289.三、解答题16.已知x 1,x 2是一元二次方程x 2-3x -1=0的两根,不解方程求下列各式的值: (1)x 21+x 22;解:x 21+x 22=(x 1+x 2)2-2x 1x 2 =32-2×(-1) =11.(2)1x 1+1x 2. 解:1x 1+1x 2=x 1+x 2x 1x 2=3-1=-3.17.已知关于x 的一元二次方程x 2-2(a -1)x +a 2-a -2=0有两个不相等的实数根x 1,x 2.(1)若a 为正整数,求a 的值;(2)若x 1,x 2满足x 21+x 22-x 1x 2=16,求a 的值.解:(1)∵关于x 的一元二次方程x 2-2(a -1)x +a 2-a -2=0有两个不相等的实数根, ∴Δ=[-2(a -1)]2-4(a 2-a -2)>0.解得a <3. ∵a 为正整数, ∴a =1或2.(2)∵x 21+x 22-x 1x 2=16, ∴(x 1+x 2)2-3x 1x 2=16.∵x 1+x 2=2(a -1),x 1x 2=a 2-a -2, ∴[2(a -1)]2-3(a 2-a -2)=16. 解得a 1=-1,a 2=6. 又由(1)知a <3, ∴a =-1.18.已知x 1,x 2是一元二次方程4kx 2-4kx +k +1=0的两个实数根,求使x 1x 2+x 2x 1-2的值为整数的实数k 的整数值.解:根据题意,得Δ=(-4k)2-4×4k(k+1)≥0,且k≠0,解得k <0. ∵x 1+x 2=1,x 1x 2=k +14k ,∴x 1x 2+x 2x 1-2=(x 1+x 2)2-2x 1x 2x 1x 2-2 =(x 1+x 2)2x 1x 2-4=1k +14k-4 =-4k +1.∵k 为整数,且-4k +1为整数,∴k +1=±1,±2,±4. 又∵k<0,∴k =-5,-3,-2.19.已知关于x 的方程3x 2+2x -m =0没有实数解,求实数m 的取值范围. 解:∵3x 2+2x -m =0没有实数解, ∴Δ=4-4×3×(-m)<0,解得m <-13.故实数m 的取值范围是m <-13.20.已知实数m ,n 满足3m 2+6m -5=0,3n 2+6n -5=0,求m n +n m 的值.解:若m≠n,∵实数m ,n 满足3m 2+6m -5=0,3n 2+6n -5=0, ∴m ,n 是方程3x 2+6x -5=0的两根. ∴m +n =-2,mn =-53.∴m n +n m =m 2+n 2mn =(m +n )2-2mn mn (-2)2-2×(-53)-53=-225. 若m =n ,则m n +nm =1+1=2.综上可知,m n +n m 的值为-225或2.21.已知关于x 的一元二次方程x 2-2x +m -1=0. (1)当m 取何值时,方程有两个不相等的实数根? (2)若方程的两根都是正数,求m 的取值范围;(3)设x 1,x 2是这个方程的两个实数根,且1+x 1x 2=x 21+x 22,求m 的值. 解:(1)∵方程有两个不相等的实数根,∴Δ=(-2)2-4(m -1)=-4m +8>0.∴m<2. ∴当m <2时,方程有两个不相等的实数根.(2)设x 1,x 2是这个方程的两个实数根,则x 1>0,x 2>0,∴x 1x 2=m -1>0.∴m>1. ∵方程的两根都是正数,∴Δ≥0.∴m ≤2.∴m 的取值范围是1<m≤2. (3)由题意可得x 1+x 2=2,x 1x 2=m -1. ∵1+x 1x 2=x 21+x 22,∴1+x 1x 2=(x 1+x 2)2-2x 1x 2, 即1+m -1=22-2(m -1).解得m =2.22.已知k 为非负实数,关于x 的方程x 2-(k +1)x +k =0和kx 2-(k +2)x +k =0. (1)求证:前一个方程必有两个非负实数根;(2)当k 取何值时,上述两个方程有一个相同的实数根? 解:(1)证明:x 2-(k +1)x +k =0,Δ=[-(k +1)]2-4k =k 2-2k +1=(k -1)2≥0,∴方程x 2-(k +1)x +k =0的根为x =(k +1)±(k -1)22.∴x 1=k ,x 2=1. ∵k 为非负实数,∴方程x 2-(k +1)x +k =0必有两个非负实数根. (2)方程kx 2-(k +2)x +k =0中,∵k ≥0,当k≠0时,Δ=(k +2)2-4k 2=(k +2+2k)(k +2-2k)=(3k +2)(2-k). ∵k >0,∴3k +2>0.∴要使(3k +2)(2-k)≥0,需满足2-k≥0, 即k≤2,且k≠0.当k =0时,x =0.∴k ≤2时,方程有实数根.当相同的根是k 时,把x =k 代入方程kx 2-(k +2)x +k =0,得k 3-(k +2)k +k =0, 解得k =0或k =1+52或k =1-52.∵k 为非负实数,∴k =0或1+52.满足k≤2. 当相同的根是1时,把x =1代入方程kx 2-(k +2)x +k =0,得k -(k +2)+k =0,解得k =2.满足k≤2.∴当k =2或0或1+52时,上述两个方程有一个相同的实数根.。
北师大版数学九年级上册:2.5 一元二次方程的根与系数的关系 同步练习(含答案)

2.5 一元二次方程的根与系数的关系一、选择题1.设方程x2-3x+2=0的两根分别是x1,x2,则x1+x2的值为()A.3B.-32C.32D.-22.已知x1,x2是关于x的方程x2-ax-2=0的两根,下列结论一定正确的是 ()A.x1≠x2B.x1+x2>0C.x1·x2>0D.x1<0,x2<03.已知实数x1,x2满足x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程可以是()A.x2-7x+12=0B.x2+7x+12=0C.x2+7x-12=0D.x2-7x-12=04.关于x的一元二次方程x2-(k-1)x-k+2=0有两个实数根x1,x2,若(x1-x2+2)(x1-x2-2)+2x1x2=-3,则k的值为()A.0或2B.-2或2C.-2D.2二、填空题5.若关于x的一元二次方程x2-kx-2=0的一个根为1,则这个一元二次方程的另一个根为.6.若关于x的一元二次方程x2+2x-2m+1=0的两实数根之积为负,则实数m的取值范围是.7.若x1,x2是方程x2-4x-2020=0的两个实数根,则代数式x12-2x1+2x2的值等于.三、解答题8.不解方程,求下列方程的两根之和与两根之积:(1)x2-3x-11=0;(2)3x2-1=2x2-5x.9.已知方程3x2-x-1=0的两根分别为α,β,求下列各式的值:(1)α2+β2;(2)1α+1β.10.已知关于x的一元二次方程x2-(t-1)x+t-2=0.(1)求证:对于任意实数t,方程都有实数根;(2)当t为何值时,方程的两个根互为相反数?请说明理由.11. 已知一直角三角形的两条直角边长是关于x的一元二次方程x2+(2k-1)x+k2+3=0的两个不相等的实数根,如果此直角三角形的斜边长是5,求它的两条直角边长.详解详析1.A[解析] 由x2-3x+2=0可知,其二次项系数a=1,一次项系数b=-3,由根与系数的关系,得x1+x2=-ba =--31=3.故选A.2.A[解析] A项,∵Δ=(-a)2-4×1×(-2)=a2+8>0,∴x1≠x2,A项正确.B项,∵x1,x2是关于x的方程x2-ax-2=0的两根,∴x1+x2=a.∵a的正负不确定,∴B项不一定正确.C项,∵x1,x2是关于x的方程x2-ax-2=0的两根,∴x1·x2=-2<0,C项错误.D项,∵x1·x2=-2,∴x1,x2异号,D项错误.故选A.3.A4.D[解析] ∵关于x的一元二次方程x2-(k-1)x-k+2=0有两个实数根x1,x2, ∴x1+x2=k-1,x1x2=-k+2.∵(x1-x2+2)(x1-x2-2)+2x1x2=-3,即(x1+x2)2-2x1x2-4=-3,∴(k-1)2+2k-4-4=-3,解得k=±2.当k=2时,原方程为x2-x=0,∴Δ=(-1)2-4×1×0=1>0,∴该方程有两个不相等的实数根,∴k=2符合题意;当k=-2时,原方程为x2+3x+4=0,∴Δ=32-4×1×4=-7<0,∴该方程无解,∴k=-2不合题意,舍去.故k=2.故选D.5.-2[解析] ∵a=1,b=-k,c=-2,∴x1·x2=ca=-2.∵关于x 的一元二次方程x 2-kx-2=0的一个根为1, ∴另一个根为-2÷1=-2. 故答案为-2.6. m>12 [解析] 设x 1,x 2为关于x 的方程x 2+2x-2m+1=0的两个实数根.由题意,得{Δ>0,x 1x 2<0,即{4-4(1-2m )>0,-2m +1<0, 解得m>12. 故答案为m>12.7.2028 [解析] ∵x 1,x 2是方程x 2-4x-2020=0的两个实数根,∴x 1+x 2=4,x 12-4x 1-2020=0,即x 12-4x 1=2020,则原式=x 12-4x 1+2x 1+2x 2=x 12-4x 1+2(x 1+x 2)=2020+2×4=2020+8=2028. 故答案为2028. 8.解:(1)a=1,b=-3,c=-11, Δ=b 2-4ac=(-3)2-4×1×(-11)=53>0, ∴方程有两个实数根. 设方程的两个根为x 1,x 2,根据根与系数的关系得x 1+x 2=3,x 1x 2=-11. (2)原方程可变形为x 2+5x-1=0. a=1,b=5,c=-1,Δ=b 2-4ac=52-4×1×(-1)=29>0, ∴方程有两个实数根.设方程的两个根为x 1,x 2,根据根与系数的关系得x 1+x 2=-5,x 1x 2=-1. 9.解:由根与系数的关系,得α+β=13,αβ=-13. (1)α2+β2=(α+β)2-2αβ=132-2×-13=19+23=79.(2)1α+1β=α+βαβ=13-13=-1.10.解:(1)证明:∵在方程x 2-(t-1)x+t-2=0中,Δ=[-(t-1)]2-4×1×(t-2)=t 2-6t+9=(t-3)2≥0,∴对于任意实数t,方程都有实数根.(2)当t=1时,方程的两个根互为相反数.理由:设方程的两个根分别为m,n.∵方程的两个根互为相反数,∴m+n=t-1=0,解得t=1.∴当t=1时,方程的两个根互为相反数.11.[解析] 首先根据根的判别式求出k的取值范围,再根据根与系数的关系得到x1+x2=1-2k;x1x2=k2+3,再根据勾股定理得到x12+x22=52,接着利用完全平方公式变形得到(x1+x2)2-2x1x2=25,则(1-2k)2-2(k2+3)=25,求出k的值,进而求出两条直角边长.解:∵关于x的一元二次方程x2+(2k-1)x+k2+3=0有两个不相等的实数根,∴Δ>0,即(2k-1)2-4(k2+3)>0,.∴-4k-11>0,∴k<-114令方程的两根分别为x1,x2,则x1+x2=1-2k,x1x2=k2+3.∵此方程的两个根分别是一直角三角形的两条直角边长,且此直角三角形的斜边长为5, ∴x12+x22=52,∴(x1+x2)2-2x1x2=25,即(1-2k)2-2(k2+3)=25,∴k2-2k-15=0,解得k1=5,k2=-3.∵k<-11,∴k=-3.4把k=-3代入原方程,得x2-7x+12=0,解得x1=3,x2=4,∴直角三角形的两条直角边长分别为3和4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.5 北师版数学八年级上册
2.6
2.7 一元二次方程的根与系数的关系
回顾一元二次方程根与系数的关系,又快又准地完成下列各题。
1. 如果x x 12、是方程4x x 2720-+=的两个根,那么x x 12+=____x x 12=_____。
2. 如果x x 12、是方程x x 2350--=的两个根,那么x x 12+=____x x 12=_____。
3. 下列方程中,两实数根之和等于2的方程是( )
A. x x 2230+-=
B. x x 2230-+=
C. 22302x x --=
D. 3610
2x x -+= 4. 如果一元二次方程x x 2320+-=的两个根为x x 12、,那么x x 12+与x x 12的值分别为(
) A. 3,2 B. --32, C. 32,- D. -32,
请同学们结合方程根(解)的概念及利用根与系数的关系,偿试完成下列各题。
5、已知方程02=++b ax x 的两个根分别是2与3,则=a ,=b .
6、已知方程022=-+kx x 的一个根是1,则另一个根是 ,k = .
7. 如果x x 12、是方程x x 2310-+=的两个根,则求出下列代数式的值。
①11
12x x +
②x12x2+x1x22 ③x21+x22
8、已知方程032=+-m x x 的一个根是1,则它的另一个根是 ,m 的值是
9、已知方程0452=+-mx x 的两实根差的平方为144,则m = 。
10、已知1x 、2x 是方程0132=+-x x 的两根,则1112422
1++x x 的值为。