奥数新讲义-一次函数-4师
(完整)新北师大版八年级上第四章一次函数讲义绝对经典

第四章一次函数1、函数的观点一般地,设在一个变化过程中有两个变量x 和 y,而且关于 x 每一个确立的值,y 都有独一的值与它对应,那么就说x 是自变量, y 是 x 的函数。
对函数观点的理解:(1)有两个变量(2)一个变量的数值跟着另一个变量的变化而变化(3)自变量每确立一个值,函数有一个而且只有一个值与之对应(或多个x 的值能够对应一个 y 值但不可以一个 x 值对应多个 y 值,如 y=x2和 x2 =y)2、自变量的取值范围自变量的取值一定使含自变量的代数式都存心义。
(1)关系式为整式时,自变量的取值为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实质问题中,自变量的取值还要和实质状况相切合,使之存心义。
如: S r 2中,r表示圆的半径时,r>03、一次函数和正比率函数一次函数 y=kx+b特点:k0x 的次数是 1常数项 b 是随意实数正比率函数: y=kx特点:k0x 的次数是 1常数项 b=0正比率函数是一种特别的一次函数。
4、一次函数图像性质一次函数 y=kx+ b 的图象的画法 .依据几何知识:经过两点能画出一条直线,而且只好画出一条直线,即两点确立一条直线,因此画一次函数的图象时,只需先描出两点,再连成直线即可 .一般情况下:是先选取它与两坐标轴的交点:( 0 , b ),.即横坐标或纵坐标为 0的点 .k 表示直线y=kx+b(k 0) 向上的方向与x 轴正方向夹角的大小,即直线倾斜的程度;b 表示直线 y=kx+b(k 0)与 y 轴交点的纵坐标一次函数 Y=kx+b k 0 的图象,当 b>0 时,图象与 y 轴的交点在 x 轴的上方;当b<0 时,图象与 y 轴的交点在 x 轴的下方;2两直线 y= k 1 x+ b 1 (k 0)的图象与 y= k 2 x+ b 2 (k 0)的地点关系:( 1) 当 k 1 = k 2 时,且 b 1 b 2 时,两直线平行( 2) 当 k 1 = k 2 时,且 b 1 =b 2 时,两直线重合( 3) 当 k 1 k 2 时,两直线订交( 4) 当 k 1 k 2 时,且 b 1 =b 2 时,两直线交于 y 轴上一点( 0,b 1 )或( 0,b 2 )【稳固训练】 一、选择题1 、 下 列 各 图 给 出 了 变 量 x 与 y 之 间 的 函 数 是 :( )yyyyo xoxoxo xABCD2、已知油箱中有油 25 升,每小时耗油 5 升,则剩油量 P(升)与耗油时间 t(小时 ) 之间的函数关系式为 ( ) A . P=25+5tB . P=25-5tC .P=25D . P=5t - 255t3、函数 y =3x + 1 的图象必定经过点 ().A .(3,5)B .(-2,3)C .(2,7)D . (4,10)4、以下函数关系式 : ① yx ;② y2x11;③ yx 2x 1; ④ y1 .此中一次函数的个数是 ( )xA. 1 个B.2 个C.3 个D.4个 5、假如 y=x -2a +1 是正比率函数,则 a 的值是( )(A)1(B)0(C)-1(D)- 2226. 一次函数 y=kx+b 图象如图,正确的是()(A )k>0,b >0 ( B ) k>0,b <0 ( C ) k<0,b>0(D )k<0, b <07.已知一次函数的图象与直线 y=-x+1 平行,且过点( 8,2),那么此一次函数 的分析式为( )A .y=-x-2B . y=-x-6C . y=-x+10D .y=-x-1 8、若直线 yx n不经过第四象限,则( )mA.m >0,n <0B.m <0,n <0C.m <0,n > 0D.m >0,n ≤09、函数 y=kx+b(k < 0, b > 0)的图象可能是以下图形中的( )y y yyo xo xo xox[A.B.C.D.10、若函数 y=2x+3 与 y=3x -2b 的图象交 x 轴于同一点,则 b 的值为 ( )A .- 3B .-3C . 9D .-92 411 一次函数 y=kx+6,y 随 x 的增大而减小,则这个一次函数的图象不经过 ()A. 第一象限B. 第二象限C.第三象限D. 第四象限12 如图 , 直线 y kx b 经过 A(0,2) 和 B(3,0) 两点 , 那么这个一次函数关系式是 ( ) A. y 2x 3 B. y2x 2 C. y 3x 2 D. y x 1313.李老师骑自行车上班,最先以某一速度匀速前进, ?半途因为自行车发生故障,停下修车耽搁了几分钟,为了准时到校,李老师加速了速度,仍保持匀速前进,假如准时到校. 在讲堂上,李老师请学生画出他前进的行程 y?(千 米)与前进时间 t (小时)的函数图象的表示图,同学们画出的图象如图所 示,你以为正确的选项是( )14、一次函数 y=ax+b ,若 a+b=1,则它的图象必经过点()A 、(-1,-1)B、(-1, 1)C、(1, -1)D、 (1, 1)115、已知点( -4,y 1),(2,y 2)都在直线 y=- 2 x+2 上,则 y 1 y 2 大小关系是 ()(A )y 1 >y 2 (B ) y 1 =y 2(C ) y 1 <y 216.如图一次函数 y=kx+b 的图象经过点 A 和点 B .(1)写出点 A 和点 B 的坐标并求出 k 、 b 的值; (2)求出当 x= 3时的函数值.217、已知,函数 y 1 3k x 2k 1 ,试回答:(1) k 为什么值时,图象交 x 轴于点(3,0)?4(2)k 为什么值时, y 随 x 增大而增大?18、如图,是某汽车行驶的行程 S(km)与时间 t(min)的函数关系图.察看图中所供给的信息,解答以下问题:( 1)汽车在前 9 分钟内的均匀速度是(2)汽车在半途停了多长时间?S/km(3)当 16≤t≤30 时,求 S 与 t 的函数关系式.40129 1630t/min19、某自来水企业为了鼓舞市民节俭用水,采纳分段收费标准,若某用户居民每个月应交水费y(元)是用户量x(方)的函数,其图象如下图,依据图象回答以下问题:( 1)分别求出 x≤5 和 x>5 时, y 与 x 的函数关系式;( 2)自来水企业的收费标准是什么?y(元)( 3)若某户居民交水费9 元,该月用水多少方6.6320.如图信息, l 1为走私船, l 2为我公安快艇,航行时行程与时间的函数图象,问:( 1)在刚出发时我公安快艇距走私船多少㎞?(2)计算走私船与公安快艇的速度分别是多少?( 3)写出 l 1 , l 2的分析式 .( 4)问 6 分钟时两艇相距几千米。
一次函数培训讲义全

(A)()A (A)(A)(A)一次函数培训讲义一 平面直角坐标系中的坐标问题例1 如图,边长为2的正方形OABC 顶点O 与坐标原点重合,且OA 与x 轴正方形的夹角为30.求点,,A B C 的坐标练习 1、点(,)A x y 关于x 轴的对称点坐标为 ,关于y 轴的对称点坐标为 ,关于原点的对称点坐标为 ,关于直线yx 的对称点是2、在平面直角坐标系中,已知点(3,3)A ,P 是y 轴上一点,则使AOP 为等腰三角形的点P 有( )个.(A). 2 (B). 3 (C). 4 (D). 53、在平面直角坐标系中有点(2,2),(3,2)A B ,C 是坐标轴上一点,已知ABC 是直角三角形,求点C 的坐标.二 一次函数的图像性质问题 例 2 若a b c t bccaab,则一次函数2y txt 的图像必经过的象限是( )(A). 第一、二象限 (B). 第一、二、三象限 (C).第二、三、四象限 (D). 第三、四象限 练习设a b >,在同一平面直角坐标系,一次函数a bx y +=与b ax y +=的图象最有可能的是( ).三 一次函数的解析式 1、对称问题 例3 如图,直线210yx 与,x y 轴分别交于,A B ,把AOB 沿直线翻折,点O 落在C 处,则点C 的坐标是2、面积问题 例4 设直线(1)1kxk y(k 是正整数)与两坐标轴所围成的图形面积为k S ,则122011S S S3、整点问题例 5 在直角坐标系中,横纵坐标都是整数的点称为整点,设k 是整数,当直线3y x 与ykx k 的交点为整点时,满足条件的k 的值有 个4、定点问题例6 不论k 为何值,解析式(21)(3)(11)0kx k y k 表示的函数的图像经过一定点,则这个定点是5、最值问题例7 已知,,a b c 是非负实数,且满足30,350,ab c a b c 求42M a b c 的最大值和最小值.三 一次函数的应用题例8 某家电企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少60台,已知这些家电产品每台所需的工时和每台产值如表问每周应生产空调器、彩电、冰箱个多少台才能使产值最高?最高产值是多少(以千元为单位)?四 可化为一次函数的绝对值函数 例8 (1)作函数13y x x 的图像(2)13y x x五 构造一次函数解题 例9 已知关于x 的方程13x x a ,(1)若方程仅有两个解,求a 的取值围. (2) 若方程有无数个解,求a 的取值围. (3)若方程无解,求a 的取值围.例10 若已知关于x 的方程1kx x 有且仅有一个负根,求k 的取值围.练习题1、在直角坐标系中,x 轴上的动点(,0)M x 到定点(5,5),(2,1)P Q 的距离分别为,MP MQ ,求MP MQ 的最小值,并求此时点M 的坐标.2、已知一个六边形OABCDE 六个顶点的坐标如图所示,直线l 平分该六边形的面积,写出满足条件的一条直线l 的解析式.3、小刚和小强在一条由西向东的公路上行走,出发时间相同,小强从 A 出发,小刚从A 往东的B 处出发,两人到达C 地后都停止。
一次函数详细讲义

1变量和函数一、变量1.变量:在一个变化过程中,我们称数值发生变化的量为变量.2.常量:在一个变化过程中,数值始终不变的量为常量。
注意:(1)变量和常量是相对的,前提条件是在一个变化过程中;(2)常数也是常量,如圆周率要作为常量二、函数1.函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
注意:①函数是相对自变量而言的,如对于两个变量x,y,y是x的函数,而不能简单的说出y是函数。
②判断一个关系式是否为函数关系:一看是否在一个变化过程中,二看是否只有两个变量,三看对于一个变量没取到一个确定的值时,另一个变量是否有唯一的值与其对应。
③函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系④“y有唯一值与x对应”是指在自变量的取值范围内,x每取一个确定值,y都唯一的值与之相对应,否则y不是x的函数.⑤判断两个变量是否有函数关系,不仅要有关系式,还要满足上述确定的对应关系.x取不同的值,y的取值可以相同.例如:函数2(3)y x=-中,2x=时,1y=;4x=时,1y=.2.函数的三种表示形式(1)解析法:用数学式子表示函数的方法叫做解析法.(2)列表法:通过列表表示函数的方法.(3)图象法:用图象直观、形象地表示一个函数的方法.3确定函数解析式的步骤(1)根据题意列出两个变量的二元一次方程(2)用汉字变量的式子表示函数4确定自变量的取值范围(1)分母不为0(2)开平方时,被开方数非负性(3)实际问题对自变量的限制。
注意:(1)整式型:一切实数(2)根式型:当根指数为偶数时,被开方数为非负数.(3)分式型:分母不为0.(4)复合型:不等式组(5)应用型:实际有意义即可2.函数图象一、函数图象的概念一般地,对于一个函数,如果把自变量与函数的每对对应诃子分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。
北师大版初二上_一次函数讲义全

第四章:一次函数◆4.1函数1.函数的概念一般地,在一个变化过程中有两个变量x和y,如果给定一个x值,相应地就确定了一个y 值,那么我们称y是x的函数.其中x是自变量,当自变量取一个值时,另一个变量就有唯一确定的值与它对应,这也是我们判断两个变量是否构成函数关系的依据.辨误区自变量与另一个变量的对应关系若y是x的函数,当x取不同的值时,y的值不一定不同.如:y=x2中,当x=2,或x=-2时,y的值都是4.[例1-1] 下列关于变量x,y的关系式:①x-3y=1;②y=|x|;③2x-y2=9.其中y是x 的函数的是< >.A.①②③ B.①② C.②③ D.①②[例1-2] 已知y=2x2+4,<1>求x取错误!和-错误!时的函数值;<2>求y取10时x的值..谈重点函数中变量的对应关系当自变量取一个值时,另一个变量就会有唯一的值与之相对应;当另一个变量取某一数值,则自变量并不一定有唯一的值与之相对应,所以另一个变量与自变量并不是一一对应的关系.2.函数关系式用来表示函数关系的等式叫做函数关系式,也称为函数解析式或关系表达式.谈重点函数关系式中的学问①函数关系式是等式.②函数关系式中指明了哪个是自变量,哪个是函数.通常等式右边的代数式中的变量是自变量,等式左边的一个字母表示函数.③函数的解析式在书写时有顺序性.例如,y=x+1是表示y是x的函数.若写成x=y-1就表示x是y的函数.也就是说:求y与x的函数关系式,必须是用只含变量x的代数式表示y,即得到的等式<解析式>左边只含一个变量y,右边是含x的代数式.[例2]已知等腰三角形的周长为36,腰长为x,底边上的高为6,若把面积y看做腰长x的函数,试写出它们的函数关系式.3.自变量的取值范围<1>使函数有意义的自变量的全体取值叫做自变量的取值范围.<2>自变量的取值范围的确定方法:首先,要考虑自变量的取值必须使解析式有意义.当解析式是整式时,自变量的取值范围是全体实数;当解析式是二次根式时,自变量的取值范围是使被开方数不小于0的实数;当解析式中含有零整数幂或负整数指数幂时,自变量的取值应使相应的底数不为0;其次,当函数解析式表示实际问题时,自变量的取值还必须使实际问题有意义.[例3]若等腰三角形的周长为50 cm,底边长为x cm,一腰长为y cm,y与x的函数关系式为y=错误!<50-x>,则变量x的取值范围是__________.4.函数的表示方法函数的表示方法一般有三种:列表法、图象法、解析法,以解析法应用较多.有的函数可以用三种方法中的任何一种来表示,而有的只能用其中的一种或两种来表示.<1>列表法:列一张表,第一行表示自变量取的各个值,第二行表示相应的函数值,这种表示函数关系的方法称为列表法.<2>图象法:通过建立平面直角坐标系,以自变量取的每一个值为横坐标,以相应的函数值为纵坐标,描出每一个点,由所有这些点组成的图形称为这个函数的图象,这种表示函数关系的方法称为图象法.<3>解析法:用式子表示函数关系的方法称为解析法,这样的式子称为函数的解析式.析规律函数的三种表示方法三种表示方法各有优缺点,应用时要视具体情况,选择适当的表示方法,或将三种方法结合使用.①列表法:优点是能明显地显现出自变量与对应的函数值,缺点是取值有限;②图象法:优点是形象、直观、清晰地呈现出函数的一些性质,缺点是求得的函数值是近似的;③解析法:优点是简明扼要、规范准确,并且可以根据解析式列表、画图象,进而研究函数的性质;缺点是有些函数无法写出解析式,只能列出表格或画出图象来表示.[例4]你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x ,瓶中水面的高度为y ,下面能大致表示上面故事情节的图象是< >.5.怎样判定函数关系<1>从关系式判定函数由函数的定义知道,在某个变化过程中,有两个变量x 和y ,对于x 每一个确定的值,y 都有且只有一个值与之对应,当x 取不同的值时,y 的值可以相等也可以不相等,但如果一个x 的值对应着两个不同的y 值,那么y 一定不是x 的函数.根据这一点,我们可以判定一个关系式是否表示函数.<2>从表格中判定函数根据函数的定义知道,从表格中理解函数仍然是先看是否只有两个变量,再看对于变量x 每一个确定的值,y 是否都有唯一的值和它对应,也就是说x 若取相同的值,y 必须是相同的值.<3>从图象上判定函数根据函数的定义知道,每一个x 值只能对应唯一的一个y 值,因此要判断哪些图形表示的是函数,只要在所给的自变量的取值范围内任作一条垂直于x 轴的直线,若直线与所给图形只有一个交点,则说明这个图形表示的是函数,若交点不止一个,则一定不是函数.[例5-1] 下列表格中能反映y 是x 的函数的是< >.A x -1 1 2 3 -1 y 0 2 4 8 10B x 0 1 2 3 0 y -2 2 3 4 6C x 2 2 2 2 2 y -1 0 1 1 3D x -1 1 2 3 4 y 0 2 4 8 10[例5-2] y x 6.如何判断同一函数学习了函数的概念,判断两个函数是否表示同一函数要看它们是不是满足以下三个条件:<1>自变量的取值范围完全相同.<2>函数值的取值范围完全相同.<3>变形后,两个函数的解析式是一致的,即自变量和函数的对应关系完全相同.如果两个函数满足以上三个条件,那么它们是同一函数.解答这类问题的关键是正确理解上述的三个条件.☆函数的自变量取值范围和解析式为函数的两个基本条件,判断两个函数是否相等的关键是看自变量取值范围和解析式.自变量取值范围和函数值分别相同的函数不一定是相等函数.[例6-1] 下列函数中,与y =x 表示同一个函数的是< >.A .y =错误!B .y =|x |C .y =<错误!>2D .y =错误![例6-2]下列各组函数中,哪些是同一函数:①y x =与1y x =+;②1,y x x =-为实数,与1,y x x =-为自然数;③24y x =-与22y x x =-+④11y x =+与11u x =+; ⑤2y x x =2y x =; ⑥2||y x =与2,02,0x x y x x ≥⎧=⎨-<⎩; 7.函数图象的实际应用函数的图象是由点组成的,每个点都具有实际意义,利用函数的图象可以反映实际问题中的关系,同样通过观察函数的图象也可以得到关于实际问题的相关信息.可以说,函数的图象是我们解决实际问题的有效手段和重要的工具.解决函数图象选择问题的关键是在阅读反映实际问题的文字语言的同时,对图象进行观察、分析,获取有效的解题信息.解答这类问题主要是利用数形结合的思想分析问题、解决问题.[例7]父亲节,学校"文苑"专栏登出了某同学回忆父亲的小诗:"同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还."如果用纵轴y表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,那么下面与上述诗意大致吻合的图象是< >.………………………………………………………………………………◆4.2一次函数与正比例函数1.一次函数的定义若两个变量x,y之间的关系式可以表示成y=kx+b<k,b为常数,k≠0>的形式,则称y是x的一次函数<x是自变量>.谈重点一次函数的条件函数是一次函数必须符合下列两个条件:<1>关于两个变量x,y的次数是1;<2>必须是关于两个变量的整式.[例1]下列函数中,是一次函数的是< >.A.y=7x2B.y=x-9 C.y=错误! D.y=错误!2.正比例函数的定义对于一次函数y=kx+b,当b=0,即y=kx<k为常数,且k≠0>时,我们称y是x的正比例函数.辨误区一次函数与正比例函数的关系需要注意的是正比例函数是一次函数的特殊情况,特殊之处在于b=0,且k≠0,因此,正比例函数一定是一次函数,但一次函数并不一定是正比例函数.[例2]下列函数中,是正比例函数的是< >.A.y=-2x B.y=-2x+1 C.y=-2x2D.y=-错误!辨误区正比例函数的判断要判断一个函数是否是正比例函数,首先看它是否为一次函数,也就是能否转化为y=kx +b<k≠0>的形式;其次要清楚正比例函数是特殊的一次函数,函数解析式能否转化为y=kx<k≠0>的形式.3.根据条件列一次函数关系式列函数关系式是培养数学应用能力和抽象思维能力的一种方法,解决这类问题的基本思路为:首先要认真审题,抓住关键词,找出问题中的变量并用字母表示,然后根据题意列出函数关系式.点技巧如何列函数关系式列关系式时,一定要先知道两个变量,并且弄清谁是自变量.[例3] 甲、乙两地相距30 km,某人从甲地以每小时4 km的速度走了t h到达丙地,并继续向乙地走.<1>试分别确定甲、丙两地距离s1<km>及丙、乙两地距离s2<km>与时间t<h>之间的函数关系式.<2>它们是什么函数.4.一次函数与正比例函数的联系与区别若两个变量x,y之间的关系可以表示成y=kx+b<k,b为常数,k≠0>的形式,则称y是x 的一次函数,特别地当b=0时,称y是x的正比例函数,显然正比例函数是一次函数,而一次函数不一定是正比例函数,正比例函数是一次函数的特殊情况.区别:①正比例函数是一次函数,但一次函数不一定是正比例函数;②正比例函数的图象一定经过原点及经过两个象限,但一次函数一般不经过原点,通常情况下要经过三个象限.__①两种函数的图象都是一条直线;②两种函数的增减性相同;③当b=0时,一次函数转化为正比例函数,因此正比例函数是一次函数的特例.[例4-1]在下列函数中,x是自变量,哪些是一次函数?哪些是正比例函数?<1>y=3x;<2>y=错误!;<3>y=-3x+1;<4>y=x2.[例4-2] 已知正比例函数中自变量每增加一个单位,函数值就减少2个单位,求函数的解析式.5.用一次函数解决实际问题函数与我们的生活息息相关,生活中的许多问题可以通过函数得以解决,如何才能正确地确定两个变量之间的函数关系式呢?具体地说和列一元一次方程解应用题基本相似,即弄清题意和题目中的数量关系,找到能够表示应用题全部含义的一个相等的关系,根据这个相等的数量关系式,列出所需的代数式,从而列出两个变量之间的关系式.辨误区写解析式,定自变量的范围通常确定一个函数,不仅要确定这个函数的解析式,还要确定这个函数的自变量的取值范围.[例5] 一天老王骑摩托车外出旅游,刚开始行驶时,油箱中有油9 L,行驶了1 h后发现已耗油1.5 L.<1>求油箱中的剩余油量Q<L>与行驶的时间t<h>之间的函数关系式,并求出自变量t的取值范围;<2>如果摩托车以60 km/h的速度匀速行驶,当油箱中的剩余油量为3 L时,老王行驶了多少千米?………………………………………………………………………………◆4.3一次函数的图象1.函数的图象对于一个函数,我们把它的自变量x与对应的变量y的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组成的图形就叫做该函数的图象.谈重点函数图象与点的坐标的关系<1>函数图象上的任意点P<x,y>必满足该函数关系式.<2>满足函数关系式的任意一对x,y的值,所对应的点一定在该函数的图象上.<3>判定点P<x,y>是否在函数图象上的方法是:将点P<x,y>的坐标代入函数表达式,如果满足函数表达式,这个点就在函数的图象上;如果不满足函数的表达式,这个点就不在函数的图象上.[例1] 判断下列各点是否在函数y=2x-1的图象上.A<2,3>, B<-2,-3>.2.函数图象的画法画函数图象的一般步骤:<1>列表:列表给出自变量与函数的一些对应值,通常把自变量x的值放在表的第一行,其对应函数值放在表的第二行,其中x的值从小到大.<2>描点:以表中每对对应值为坐标,在平面直角坐标系内描出相应的点.描点时一般把关键的点准确地描出,点取得越多,图象越准确.<3>连线:按照自变量从小到大的顺序,把所描的点用平滑的曲线连接起来.释疑点平滑曲线的特点所谓的"平滑曲线",现阶段可理解为符合图象的发展趋势、让人感觉过渡自然、比较"平""滑"的线,实际上有时是直线.[例2] 作出一次函数y=-2x-1的图象.分析:取几组对应值,列表,描点,连线即可.解:列表:x …-2-101…y …31-1-3…描点:以表中各组对应值作为点的坐标,在坐标系中描出相应的点.连线:把这些点连起来.注:一次函数y=-2x-1的图象是直线,连线时,两端要露头.3.一次函数的图象和性质<1>一次函数的图象和性质①一次函数的图象:一次函数y=kx+b<k≠0>的图象是一条直线.由于两点确定一条直线,因此画一次函数的图象,只要描出图象上的两个点错误!,过这两点作一条直线就行了.我们常常把这条直线叫做"直线y=kx+b".②一次函数中常量k,b<k≠0>:直线y=kx+b<k≠0>与y轴的交点是<0,b>,当b>0时,直线与y轴的正半轴相交;当b<0时,直线与y轴的负半轴相交;当b=0时,直线经过原点,此时一次函数即为正比例函数.一次函数y=kx+b中的k,决定了直线的倾斜程度,k的绝对值越大,则直线越接近y轴,反之,越靠近x轴.③一次函数y=kx+b<k≠0>的性质:当k>0时,直线y=kx+b从左向右上升,函数y的值随自变量x的增大而增大;当k<0时,直线y=kx+b从左向右下降,函数y的值随自变量x的增大而减小.<2>正比例函数的图象和性质①正比例函数的图象:一般地,正比例函数y=kx<k是常数,k≠0>的图象是一条经过原点的直线,我们称它为直线y=kx.在画正比例函数y=kx的图象时,一般是经过点<0,0>和<1,k>作一条直线.②正比例函数y=kx的性质:当k>0时,直线y=kx经过第一、三象限,从左往右上升,即y随x的增大而增大;当k<0时,直线y=kx经过第二、四象限,从左往右下降,即y随x 的增大而减小.[例3-1]作出一次函数y=-3x+3的图象.[例3-2]若一次函数y=<2m-6>x+5中,y随x增大而减小,则m的取值范围是________.[例3-3]下图表示一次函数y=kx+b与正比例函数y=kx<k,b是常数,且k≠0>图象的是< >.4.k,b的符号与直线所过象限的关系学习了一次函数y=kx+b<k≠0>,我们知道一次函数图象经过哪些象限是由k,b的符号决定的.一般分为四种情况:<1>k>0,b>0时,图象过第一、二、三象限;<2>k>0,b<0时,图象过第一、三、四象限;<3>k<0,b>0时,图象过第一、二、四象限;<4>k<0,b<0时,图象过第二、三、四象限.析规律 k,b的符号与直线的关系根据一次函数y=kx+b中k,b的符号可以确定图象所经过的象限;根据函数图象所经过的象限,可以确定k,b的符号.解决有关问题,应熟练把握k,b的符号与函数图象所经过象限的几个类型,并能灵活应用.[例4-1] 一次函数y=kx+b的图象经过第二、三、四象限,则正比例函数y=kbx图象经过哪个象限?[例4-2]如图是一次函数y=kx+b的图象的大致位置,试分别确定k,b的正负号,并判断一次函数y=<-k-1>x-b的图象所经过的象限.5.一次函数图象与坐标轴的交点一次函数的图象是直线,这条直线与x轴交于点错误!,与y轴交于点<0,b>.考查直线与两坐标轴的交点的问题常见的有三类:<1>判定直线所过的象限,一般给出函数关系式,判定直线经过哪几个象限或确定不经过哪个象限.<2>求直线的解析式,一般先设出函数关系式为y=kx+b<k≠0>,把已知的两点的坐标分别代入,求出k,b的值即可.<3>求两交点与坐标轴围成的三角形的面积,由于这个三角形是直角三角形,利用面积公式即可.[例5] 如图,已知直线y=kx-3经过点M<-2,1>,求此直线与x轴,y轴的交点坐标,并求出与坐标轴所围的三角形的面积.6.关于一次函数的最值问题对于一般的一次函数,由于自变量的取值范围可以是全体实数,因此不存在最大、最小值<简称"最值">,但在实际问题中,因题目中的自变量受到实际问题的限制,所以就有可能出现最大值或最小值.求解这类问题,先分析问题中两个变量之间的关系是否适合一次函数模型,再在自变量允许的取值范围内建立一次函数模型.运用一次函数解决实际问题的关键是根据一次函数的性质来解答.除正确确定函数表达式外,利用自变量取值范围去分析最值是解题的关键."在生活中学数学,到生活中用数学",是新课标所倡导的一个主旨之一,在考题中,有许多利用数学知识求解生活中的实际问题的试题,考查同学们利用所学知识求解实际问题的能力.[例6] 某报刊销售亭从报社订购晚报的价格是0.7元,销售价是每份1元,卖不掉的报纸可以以每份0.2元的价格退回报社,若每月按30天计算,有20天每天可卖出100份报纸,其余10天每天只能卖出60份,但每天报亭从报社订购的份数必须相同,报亭每天从报社订购多少份报纸,才能使每月所获得的利润最大?………………………………………………………………………………◆4.4一次函数的应用1.确定一次函数表达式<1>借助图象确定函数的表达式先观察直线是否过坐标原点,若过原点,则为正比例函数,可设其关系式为y=kx<k≠0>;若不过原点,则为一次函数,可设其关系式为y=kx+b<k≠0>;然后再观察图象上有没有明确几个点的坐标.对于正比例函数,只要知道一个点的坐标即可;对于一次函数,则需要知道两个点的坐标;最后将各点坐标分别代入y=kx或y=kx+b中,求出其中的k,b,即可确定出其关系式.<2>确定正比例函数、一次函数表达式需要的条件①由于正比例函数y=kx<k≠0>中只有一个未知系数k,故只要一个条件,即一对x,y的值或一个点的坐标,就可以求出k的值,确定正比例函数的表达式.②一次函数y=kx+b<k≠0>有两个未知系数k,b,需要两个独立的关于k,b的条件,求得k,b的值,这两个条件通常是两个点的坐标或两对x,y的值.[例1]如图,直线AB对应的函数表达式是< >.A.y=-错误!x+3 B.y=错误!x+3 C.y=-错误!x+3 D.y=错误!x+3点技巧用待定系数法求直线解析式由图象观察可知该函数为一次函数,故应设成y=kx+b<k≠0>的形式,再将A,B两点坐标代入该关系式,即可求出k,b,从而确定出具体的关系式.2.待定系数法<1>定义:先设出式子中的未知系数,再根据条件求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知数也称为待定系数.<2>用待定系数法求解析式的一般步骤:①根据已知条件写出含有待定系数的解析式;②将x,y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程<组>,得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求函数的解析式.[例2-1] 一次函数图象如图所示,求其解析式.[例2-2] 在直角坐标系中,一次函数y=kx+b的图象经过三点A<2,0>,B<0,2>,C<m,3>,求这个函数的表达式,并求m的值.解:根据题意,得2k+b=0①,b=2, km+b=3②,把b=2代入①,得2k+2=0,即k=-1;把b=2,k=-1代入②,得m=-1.故函数的表达式为y=-x+2.3.一次函数的实际应用<1>通过图象获取信息通过观察一次函数的图象获取有用的信息是我们在日常生活中经常遇到的问题,要掌握这个重点在于对函数图象的观察和分析,观察函数图象时,首先要看横轴、纵轴分别代表的是什么,也就是观察图象反映的是哪两个变量之间的关系.释疑点函数图象中的特殊点观察图象获取信息时,一定要注意图象上的特殊点,这些特殊点对我们解决问题有很大的帮助.<2>一次函数图象的应用一次函数和正比例函数是我们接触到的最简单的函数,它们的图象和性质在现实生活中有着广泛的应用.利用一次函数和正比例函数的图象解决问题是本节的一个重点,这部分内容在中考中占有重要的地位.谈重点函数y=kx+b图象的变化形式在实际问题中,当自变量的取值范围受到一定的限制时,函数y=kx+b<k≠0>的图象就不再是一条直线.要根据实际情况进行分析,其图象可能是射线、线段或折线等等.[例3-1]甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y<m>与挖掘时间x<h>之间的关系如图所示,请根据图象所提供的信息解答下列问题:<1>乙队开挖到30 m时,用了________ h.开挖6 h时甲队比乙队多挖了__________ m.<2>请你求出:①甲队在0≤x≤6的时段内,y与x之间的函数关系式;②乙队在2≤x≤6的时段内,y与x之间的函数关系式.<3>当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?[例3-2] 某单位急需用车,但又不准备买车,他们准备和一个体车主或一国有出租车公司签订月租车合同.设汽车每月行驶x km,应付给个体车主的月费用为y1元,应付给国有出租车公司的月费用是y2元,y1,y2分别与x之间的函数关系图象<两条射线>如图,观察图象回答下列问题:<1>每月行驶的路程在什么范围内时,租国有出租车公司的车合算?<2>每月行驶的路程等于多少时,租两家车的费用相同?<3>如果这个单位估计每月行驶的路程为2 600 km,那么这个单位租哪家车合算?析规律函数图象交点规律两函数图象在同一坐标系中,当取相同的自变量时,下方图象对应的函数的函数值小;交点处的函数值相等.4.一次函数和一元一次方程的关系当一次函数y=kx+b<k≠0>中的函数值为0时,可得0=kx+b即kx+b=0,这在形式上变成了求关于x的一元一次方程,也就是说,当一次函数y=kx+b的函数值为0时,相应的自变量的值即为方程kx+b=0的解;若从图象上来看,则可看做函数y=kx+b的图象与x轴的交点的横坐标,即为方程kx+b=0的解.由此可见,方程与函数是密不可分的.[例4] 某汽车生产厂对其生产的A型汽车进行耗油量实验,实验中汽车视为匀速行驶.已知油箱中的余油量y<L>与行驶时间t<h>的关系如下表,与行驶路程x<km>的关系如下图.请你根据这些信息求A行驶时间t<h>012 3油箱余油量y<L>1008468525一次函数y=kx+b<k≠0>的图象可以看做由直线y=kx平移|b|个单位长度而得到<当b >0时,向上平移;当b<0时,向下平移>.实际上就是指一次函数y=kx+b的图象沿y轴平移时,在b的位置上按照"上加下减"的规律进行.如:一次函数l1:y=错误!x+2的图象可以看做是由正比例函数l:y=错误!x的图象沿y轴向上平移2个单位长度得到的;一次函数l2:y=错误!x-2的图象可以看做是由正比例函数l:y=错误!x的图象沿y轴向下平移2个单位长度得到的.思考:函数图像左右移动解析式如何变化呢?[例5] 如图所示,将直线OA向上平移1个单位长度,得到一个一次函数的图象,那么这个一次函数的解析式是__________.析规律平移中的函数解析式解决平移问题可以对性质进行记忆直接运用,也可以找出平移后借助坐标系运用待定系数法求解.平移前后k的值不变,改变的是b的值.6.函数、方程和不等式的完美结合从"数"的角度看,由于任何一元一次方程都可以转化为ax+b=0<a,b为常数,且a≠0>的形式,所以解一元一次方程可以看做:当一次函数y=ax+b的值为0时,求相应的自变量的值;反之,求自变量x为何值时,一次函数y=ax+b的值为0,只要求出方程ax+b=0的解即可.由于任何一元一次不等式都可以转化为类似ax+b>0或ax+b<0的形式,所以解一元一次不等式可以看做:当一次函数y=ax+b的值大<小>于0时,求自变量相应的取值范围;反之,求一次函数y=ax+b的值何时大<小>于0时,只要求出不等式ax+b>0或ax+b<0的解集即可.从一元一次方程、一元一次不等式与一次函数的关系可以看出,三者最终能用函数观点统一起来,并且达到一种完美的结合,这种结合,又常常在一些考题中得以体现.[例6] 已知一次函数x -2-1012 3y 6420-2-4。
奥数基础 一次函数(含解答)

第一节一次函数内容讲解1.一次函数:形如y=kx+b(k≠0,k,b为常数)的函数.注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y•叫x的正比例函数.2.图象:一次函数的图象是一条直线.(1)两个常用的特殊点:与y轴交于(0,b);与x轴交于(-bk,0);(2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+•3•与直线y=2x-5都与直线y=2x平行.3.性质:(1)图象的位置:(2)增减性:k>0时,y随x增大而增大,k<0时,y随x增大而减小.4.求一次函数解析式的方法求函数解析式的方法主要有三种(1)由已知函数推导或推证.(2)由实际问题列出二元方程,再转化为函数解析式,•此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系.(3)用待定系数法求函数解析式.“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况: ①利用一次函数的定义1x x =⎧⎨≠⎩的指数的系数0 构造方程组;②利用一次函数y=kx+b 中常数项b 恰为函数图象与y 轴交点的纵坐标,即由b•为定点;直线y=kx+b 平行于y=kx ,即由k 为定方向;③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程;④利用题目已知条件直接构造方程.待定系数法的主要步骤,简单地说可划为“设”、“列”、“解”三大步.“设”即设未知系数,“列”即列方程或方程组;“解”即解方程或方程组.例题剖析例1 (2006年“信利杯”全国初中数学竞赛(广西赛区))已知直线L•经过(2,0)和(0,4),把直线L 沿x 轴的反方向向左平移2个单位,得到直线L ′,则直线L ′的解析式为_______.分析:先求出直线解析式y=kx+b ,再抓住平移k 不变,进行求解.解:因为过(2,0)和(0,4)的直线L 解析式是y=-2x+4,设向左平移2•个单位得到的直线L ′解析式是y=-2x+m ,将它与x 轴的交点坐标(0,0)代入得m=0,所以直线L ′的解析式为y=-2x .评注:直线y=kx+b 平移时k 值不变,上下平移时再抓住与y 轴的交点变化,•左右平移时再抓住与x 轴的交点变化就能得解.例2 (2000年全国初中数学竞赛试题)一个一次函数图象与直线y=54x+954平行,•与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有( ).(A )4个 (B )5个 (C )6个 (D )7个分析:根据所求一次函数图象与直线y=54x+954平行且过点(-1,-25),即可确定该函数的解析式,然后采用列举法进行分析.解:设与直线y=54x+954平行的直线的方程为y=54x+k ,又(-1,-25)在直线y=54x+k 上,得k=-954. 因为A 、B 为y=54x-与x 轴、y 轴的交点,所以A (19,0),B (0,-954). 又y=54x-954=54(x-19),0≤x ≤19,x-19必须是4的整数倍,只有当x=3,7,11,15,19时,y 为整数, 因此在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有5个,选B . 评注:所谓横坐标、纵坐标都是整数的点,•即求该函数解析式(二元一次方程)在某范围内的整数解.例3 (2005年富阳市初二数学竞赛)不论k 为何值,解析式(2k-1)x-(k+3)y-•(k-11)=0表示的函数的图象经过一定点,则这个定点是_______.分析:该题是“直线束”问题,可在k•的取值范围内取两个定值两条特殊直线求得交点,再证明其他直线必过此点.解:因为已知函数是一次函数,故k+3≠0,分别令k=1与k=2,得41003590x y x y -+=⎧⎨-+=⎩ 解得23x y =⎧⎨=⎩,即两特殊直线相交于点A (2,3), 而当x=2时,函数式为2(2k-1)-(k+3)y-(k-11)=0.整理得(k+3)y=3(k+3),所以k取不等于-3的任何值时,y=3.当x=2时,必得y=3.不论k为何值该一次函数的图象恒过定点(2,3).评注:利用“不论”性,取k的任意两个特殊值,代入函数关系式,求出x、•y的值,再验证所求得的x、y值适合函数关系式,从而确定函数图象恒过定点,这是解决这类问题常用的方法.此外本题还可利用一次方程ax=b有无数解的条件来解,同学们不妨一试.例4 (2005年富阳市初二数学竞赛)在一次函数y=-x+3的图象上取一点P,•作PA⊥x轴,垂足为A,作PB⊥y轴,垂足为B,且矩形OAPB的面积为94,则这样的点P共有()(A)4个(B)3个(C)2个(D)1个分析:设点P的坐标为(x,-x+3),则矩形OAPB的面积表示为│x│×│-(-x+3)│=│x2-3x│=94,然后分两种情况进行讨论.解:选(B).评注:本题通过数形互动,结合一元二次方程实根个数来确定符合条件的点的个数,这是解决这类问题常用方法.此外,由点的坐标表示距离时,不能忘记加绝对值.例5 (2006年全国初中数学竞赛(浙江赛区)复赛试题)设0<k<1,关于x的一次函数y=kx+1k(1-x),当1≤x≤2时的最大值是()(A)k (B)2k-1k(C)1k(D)k+1k分析:y=(k-1k)x+1k,∵0<k<1,∴k-1k=(1)(1)k kk+-<0,该一次函数的值随x的增大而减小,当1≤x≤2时,最大值为k-1k+1k=k.解:选(A).评注:对于自变量有限范围的一次函数极值问题,应结合一次函数的增减性来确定.例6 (2006年全国初中数学竞赛(浙江赛区)初赛试题)设直线y=kx+k-1•和直线y=(k+1)x+k(k是正整数)与x轴围成的三角形面积为S k,则S1+S2+S3+…+S2006的值是_______.分析:先求出直线y=kx+k-1和直线y=(k+1)x+k的交点,再求出这两条直线与x•轴围成的三角形面积S k的表达式.解:因为方程组1(1)y kx ky k x k=+-⎧⎨=++⎩的解为11.xy=-⎧⎨=-⎩所以这两直线的交点(-1,-1),直线y=kx+k-1和直线y=(k+1)x+k(k是正整数)与x轴的交点分别是(1,0),(1k kk k--+,0),S k=12|-1|×|11k kk k---+|=12|1k-11k+|.所以S1+S2+S3+…S2006=12(1-12+12-13+13-14+…+11111003)(1)20062007220072007-=⨯-=.评注:本题在求解过程中的关键是:将1(1)k k+拆成1k-11k+,这是常用技巧.例7 (1997年江苏省初中数学竞赛试题)有一个附有进、出水管的容器,•每单位时间进、出的水量都是一定的.设从某时该开始5min内只进水不出水,•在随后的15min 内既进水又出水,得到时间x(min)与水量y(L)之间的关系如图.若20min后只放水不进水,则这时(x≥20时)y与x的函数关系是________.分析:据图象可知:开始5min,只进水不出水,共进了20L水,每分钟进水4L.•随后的15min内既进水又出水,实际水量增加了35-20=15L,每分钟水量增加1L,•说明出水管每分钟出水3L.因为水量是固定的,每分钟3L,所以20min后,总水量为35L.解:y=35-3(x-20),即y=-3x+95(20≤x≤953).评注:仔细审题,观察图象,应弄清进水时,每分钟4L;既进又放时,每分钟净增水1L,故每分钟放水为3L,这是解本题的关键.例8 (2006年全国初中数学竞赛(海南赛区))在平面直角坐标系中,已知A(2,•-2),点P是y轴上一点,则使AOP为等腰三角形的点P有()(A)1个(B)2个(C)3个(D)4个分析:分三种情况来讨论,即:如图所示,①以O为顶点的等腰三角形有:△OP1A,△OP2A;②以A为顶点的等腰三角形是△OP3A;③以P为顶点的等腰三角形是△OP4A.因此,•满足条件的点P有4个.解:选(D).评注:分类讨论是重要的数学思想方法,竞赛题中经常出现需要分类的考题,•这类问题的求解,既要有扎实的基础知识,也要有一定的分析问题和综合解决问题的能力,要强化这方面的训练.例9 (2005年宁波市蛟川杯初二数学竞赛)某个游泳池有2个进水口和一个出水口,每个进水口的进水量与时间的关系如图(1)所示,•出水口的出水量与时间的关系如图(2)所示,某天早上5点到10点,该游泳池的蓄水量与时间的关系如图(3)所示.在下面的论断中:①5点到6点,打开进水口,关闭出水口;②6点到8点,同时关闭两个进水口和一个出水口;③8点到9点,关闭两个进水口,打开出水口;④10点到11点,同时打开两个进水口和一个出水口.可能正确的是()(A)①③(B)①④(C)②③(D)②④分析:由图1知每个进水口每小时进水量为1m3,由图2知每个出水口每小时出水量为2m3,根据图3,①5点到6点,打开进水口,关闭出水口,时间1小时2个进水口进水量为2m3,蓄水量应为6m3,而不是5m3,故①错误;②6点到6点,•同时关闭两个进水口和一个出水口,水位没有变化,故②正确;③8点到9点,关闭两个进水口,打开出水口,时间1•小时1个出水口出水量为2m3,蓄水量应为3m3,而不是4m3,故③错误;④10点到11点,同时打开两个进水口和一个出水口,进水量正好等于出水量,水位没有变化,故④正确.解:②④正确,应选(D).评注:本题采用逐项分析法,予以一一排除,•对于多论断判断选择型问题应用此法,常能迎刃而解.例10 (2006年四川省数学竞赛初二初赛试题)平面直角坐标系内有A(2,-1),B (3,3)两点,点P是y轴上一动点,求P到A、B距离之和最小时的坐标.分析:根据几何模型,得出点A关于y轴对称点A′的坐标,再由待定系数法求出直线A′B解析式,就可得解.解:如图,点A关于y轴对称的点为A′(-2,-1),设过A′、B•两点的直线的一次函数为y=kx+b,有1233k bk b-=-+⎧⎨=+⎩解得4535kb⎧=⎪⎪⎨⎪=⎪⎩∴y=45x+35.当x=0时,y=35,即直线A′B与y轴交于点(0,35),•可得所求点P的坐标为(0,35).评注:本题把几何中最短距离问题代数化,解题关键是应用轴对称和一次函数相关知识来求解.此类问题还可改为在x轴上或在坐标轴上求一点P,同学们不妨思考一下.例11 (江苏省第二十届初中数学竞赛试题)某仓储系统有20条输入传送带,•20条输出传送带.某日,控制室的电脑显示,•每条输入传送带每小时进库的货物流量如图(a),每条输出传送带每小时出库的货物流量如图(b),而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图(c),则在0时至2时有多少条输入传送带和输出传送带在工作?在4时至5时有多少条输入传送带和输出传送带在工作?分析:由图(a)知每条输入传送带每小时进库的货物流量是13吨,由图(b)知每条输出传送带每小时出库的货物流量是15吨,再结合图(c)捕捉相关信息进行求解.解:设在0时至2时内有x条输入传送带和y条输出传送带在工作,•则由图(c)得13x-15y=1282=2,解这个不定方程得x=14,y=12;所以在0时至2•时内有14•条输入传送带和12条输出传送带在工作;同理在4时至5时内有6条输入传送带和6•条输出传送带在工作.评注:解决此类问题关键是正确识别图象(折线),从中发现,•挖掘变量与不变量、变量与变量间的联系,进而建立适合题意的不定方程,将问题转化为研究我们所熟悉的不定方程整数解.例12 (2006年全国初中数学竞赛(浙江赛区)初赛试题)做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A,B两种款式的服装合计30件,并且每售出一件A款式和B款式服装,甲店铺获毛利润分别为30元和40元,•乙店铺获毛利润分别为27元和36元.某日王老师进货A款式服装35件,B款式服装25件.•怎样分配给每个店铺各30件服装,使得在保证乙店铺获毛利润不小于950元的前提下,•王老板获取的总毛利润最大?最大的总毛利润是多少?分析:设分配甲店铺A款式服装x件,则可以用x•的代数式表示为总毛利润和乙店铺的毛利润,再结合函数增减性就能求出最大的总毛利润.解:设分配甲店铺A款式服装x件(x取整数,且5≤x≤30),则分配给甲店铺B•款式服装(30-x)件,分配给乙店铺A款式服装(35-x)件,分配给乙店铺B款式服装[25-(30-x)]=(x-5)件,总毛利润y总=30x+40(30-x)+27(35-x)+36(x-5)=-x+1965.•乙店铺的毛利润y乙=27(35-x)+36(x-5)≥950,得x≥2059.对于y总=-x+1965,y总随着x的增大而减小,要使y总最大,x必须取最小值,又x≥2059故取x=21.即分配给甲铺A、B两种款式服装分别为21件和9件,分配给乙店铺A、B•两种款式服装分别为14和16件,此时既保证了乙店铺获毛利润不小于950元,•又保证了在此前提下王老板获取的总毛利润最大,其最大的总毛润为y总=-x+1965=-21+1965=1944(•元).评注:在本例的求解过程中,所建立的是一次函数模型.•因此这里函数何时有最值及最值是多少的问题,完全由自变量的取值范围所确定.一般地根据一次函数的图象可知:对一次函数y=ax+b(a≠0,m≤x≤n),(Ⅰ)若a>0,则当x=m时,•函数有最小值am+b;当x=n时,函数有最大值an+b.(Ⅱ)若a<0,则当x=m时,函数有最大值am+b;当x=•n 时,函数有最小值an+b.例13(2006年全国初中数学竞赛(海南赛区)某房地产开发公司计划建A、B•两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,•且所筹资金全部用于建房,两种户型的建房成本和售价如下表:(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司选用哪种方案建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A•型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?注:利润=售价-成本分析:解题时首先找出两种户型的数量,建立不等式组求解,•再对不同情况进行讨论,通过列举法比较获得哪种方案建房获得利润最大.解:(1)设A种户型的住房建x套,则B种户型的住房建(80-x)套.由题意知2090≤25x+28(80-x)≤2096,48≤x≤50,∵x取非负整数,∴x为48,49,50∴有三种建房方案:A型48套,B型32套;A型49套,B型31套;A型50套,B型30套.(2)该公司建房获得利润W(万元)由题意知W=5x+6(80-x)=480-x.∴当x=48时,W最大=432(万元).即A型住房48套,B型住房32套获得利润最大.(3)由题意知W=(5+a)x+6(80-x)=480+(a-1)x,∴当0<a<1时,x=48,W最大,即A•型住房48套,B型住房32套.当a=1时,a-1=0,三种建房方案获得利润相等.当a>1•时,•x=50,W最大,即A型住房50套,B型住房30套.评注:本题是一道“综合阅读理解题”,既给出文字,又给出表格等,•对考生的阅读理解能力、解释应用能力的要求提高.解答时,要认真阅读文字,观察图象特征,理解表格含义,梳理文字、图象、表格等提供的信息,抽象概括,互相结合,综合考虑,寻求解答.巩固练习一、选择题:1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为()(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()(A)一象限(B)二象限(C)三象限(D)四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是()(A)4 (B)6 (C)8 (D)164.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为()(A)y1>y2(B)y1=y2(C)y1<y2(D)不能确定5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,•则有一组a,b的取值,使得下列4个图中的一个为正确的是()6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过第()象限.(A)一(B)二(C)三(D)四7.一次函数y=kx+2经过点(1,1),那么这个一次函数()(A)y随x的增大而增大(B)y随x的增大而减小(C)图像经过原点(D)图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.要得到y=-32x-4的图像,可把直线y=-32x().(A)向左平移4个单位(B)向右平移4个单位(C)向上平移4个单位(D)向下平移4个单位10.若函数y=(m-5)x+(4m+1)x2(m为常数)中的y与x成正比例,则m的值为()(A)m>-14(B)m>5 (C)m=-14(D)m=511.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是().(A)k<13(B)13<k<1 (C)k>1 (D)k>1或k<1312.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作()(A)4条(B)3条(C)2条(D)1条13.已知abc≠0,而且a b b c c ac a b+++===p,那么直线y=px+p一定通过()(A)第一、二象限(B)第二、三象限(C)第三、四象限(D)第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是()(A)-4<a<0 (B)0<a<2(C)-4<a<2且a≠0 (D)-4<a<215.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()(A)1个(B)2个(C)3个(D)4个16.一次函数y=ax+b(a为整数)的图象过点(98,19),交x轴于(p,0),交y轴于(•0,q),若p为质数,q为正整数,那么满足条件的一次函数的个数为()(A)0 (B)1 (C)2 (D)无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k 的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个18.(2005年全国初中数学联赛初赛试题)在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取()(A)2个(B)4个(C)6个(D)8个19.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,(a<b);乙上山的速度是12a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t(分),离开点A的路程为S(米),•那么下面图象中,大致表示甲、乙二人从点A出发后的时间t(分)与离开点A的路程S(米)•之间的函数关系的是()20.若k、b是一元二次方程x2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b 中,y随x的增大而减小,则一次函数的图像一定经过()(A)第1、2、4象限(B)第1、2、3象限(C)第2、3、4象限(D)第1、3、4象限二、填空题1.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m的取值范围是________.3.某一次函数的图像经过点(-1,2),且函数y的值随x的增大而减小,请你写出一个符合上述条件的函数关系式:_________.4.已知直线y=-2x+m不经过第三象限,则m的取值范围是_________.5.函数y=-3x+2的图像上存在点P,使得P•到x•轴的距离等于3,•则点P•的坐标为__________.6.过点P (8,2)且与直线y=x+1平行的一次函数解析式为_________. 7.y=23x 与y=-2x+3的图像的交点在第_________象限. 8.某公司规定一个退休职工每年可获得一份退休金,•金额与他工作的年数的算术平方根成正比例,如果他多工作a 年,他的退休金比原有的多p 元,如果他多工作b 年(b ≠a ),他的退休金比原来的多q 元,那么他每年的退休金是(以a 、b 、p 、•q•)表示______元.9.若一次函数y=kx+b ,当-3≤x ≤1时,对应的y 值为1≤y ≤9,•则一次函数的解析式为________.10.(湖州市南浔区2005年初三数学竞赛试)设直线kx+(k+1)y-1=0(为正整数)与两坐标所围成的图形的面积为S k (k=1,2,3,……,2008),那么S 1+S 2+…+S 2008=_______. 11.据有关资料统计,两个城市之间每天的电话通话次数T•与这两个城市的人口数m 、n (单位:万人)以及两个城市间的距离d (单位:km )有T=2kmnd的关系(k 为常数).•现测得A 、B 、C 三个城市的人口及它们之间的距离如图所示,且已知A 、B 两个城市间每天的电话通话次数为t ,那么B 、C 两个城市间每天的电话次数为_______次(用t 表示).三、解答题1.已知一次函数y=ax+b 的图象经过点A (2,0)与B (0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y 的值在-4≤y ≤4范围内,求相应的y 的值在什么范围内.2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤4,求y的取值范围.3.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.4.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x (小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)•求小明出发多长时间距家12千米?5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长.7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.在直角坐标系x0y中,一次函数y=23x+2的图象与x轴,y轴,分别交于A、B两点,•点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.9.已知:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.10.已知直线y=43x+4与x轴、y轴的交点分别为A、B.又P、Q两点的坐标分别为P(•0,-1),Q(0,k),其中0<k<4,再以Q点为圆心,PQ长为半径作圆,则当k取何值时,⊙Q•与直线AB相切?11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.12.已知写文章、出版图书所获得稿费的纳税计算方法是f(x)=(800)20%(130%),400(120%)20%(130%),400x xx x--≤⎧⎨-->⎩其中f(x)表示稿费为x元应缴纳的税额.假如张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?13.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.•又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.14.某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:根据上表的表格中的数据,求a、b、c.15.A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D 市18台,E市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E 市的运费为400元和500元.(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值.(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y 表示总运费W(元),并求W的最大值和最小值.答案:1.B 2.B 3.A 4.A5.B 提示:由方程组y bx ay ax b=+⎧⎨=+⎩的解知两直线的交点为(1,a+b),•而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,故图C不对;图D•中交点纵坐标是大于a,小于b的数,不等于a+b,故图D不对;故选B.6.B 提示:∵直线y=kx+b经过一、二、四象限,∴0,kb<⎧⎨>⎩对于直线y=bx+k,∵0,kb<⎧⎨>⎩∴图像不经过第二象限,故应选B.7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2,∵k=-1<0,∴y随x的增大而减小,故B正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C错误.∵k<0,b=•2>0,∴其图像经过第二象限,故D错误.8.C 9.D 提示:根据y=kx+b的图像之间的关系可知,将y=-32x•的图像向下平移4个单位就可得到y=-32x-4的图像.10.C 提示:∵函数y=(m-5)x+(4m+1)x中的y与x成正比例,∴5,50,1410,,4mmm m≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即∴m=-14,故应选C.11.B 12.C 13.B 提示:∵a b b c c ac a b+++===p,∴①若a+b+c≠0,则p=()()()a b b c c aa b c+++++++=2;②若a+b+c=0,则p=a b cc c+-==-1,∴当p=2时,y=px+q 过第一、二、三象限; 当p=-1时,y=px+p 过第二、三、四象限, 综上所述,y=px+p 一定过第二、三象限. 14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p 2+4│q │>0, ||0k b p k b q k b +=-⎫⎪=-⇒⎬⎪≠⎭k ·b<0,一次函数y=kx+b 中,y 随x 的增大而减小000k k b <⎫⇒<⇒⇒⎬>⎭一次函数的图像一定经过一、二、四象限,选A . 二、1.-5≤y ≤19 2.2<m<3 3.如y=-x+1等.4.m ≥0.提示:应将y=-2x+m 的图像的可能情况考虑周全. 5.(13,3)或(53,-3).提示:∵点P 到x 轴的距离等于3,∴点P 的纵坐标为3或-3 当y=3时,x=13;当y=-3时,x=53;∴点P 的坐标为(13,3)或(53,-3).提示:“点P 到x 轴的距离等于3”就是点P 的纵坐标的绝对值为3,故点P 的纵坐标应有两种情况.6.y=x-6.提示:设所求一次函数的解析式为y=kx+b . ∵直线y=kx+b 与y=x+1平行,∴k=1,∴y=x+b .将P (8,2)代入,得2=8+b ,b=-6,∴所求解析式为y=x-6.7.解方程组92,,83323,,4x y x y x y ⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩得 ∴两函数的交点坐标为(98,34),在第一象限.8.222()aq bp bp aq --. 9.y=2x+7或y=-2x+3 10.1004200911.据题意,有t=25080160⨯k ,∴k=325t . 因此,B 、C 两个城市间每天的电话通话次数为T BC =k ×2801003253205642t t⨯=⨯=.三、1.(1)由题意得:20244a b a b b +==-⎧⎧⎨⎨==⎩⎩解得 ∴这个一镒函数的解析式为:y=-2x+4(•函数图象略). (2)∵y=-2x+4,-4≤y ≤4, ∴-4≤-2x+4≤4,∴0≤x ≤4.2.(1)∵z 与x 成正比例,∴设z=kx (k ≠0)为常数, 则y=p+kx .将x=2,y=1;x=3,y=-1分别代入y=p+kx , 得2131k p k p +=⎧⎨+=-⎩解得k=-2,p=5,∴y 与x 之间的函数关系是y=-2x+5;(2)∵1≤x ≤4,把x 1=1,x 2=4分别代入y=-2x+5,得y 1=3,y 2=-3.∴当1≤x ≤4时,-3≤y ≤3.另解:∵1≤x ≤4,∴-8≤-2x ≤-2,-3≤-2x+5≤3,即-3≤y ≤3. 3.(1)设一次函数为y=kx+b ,将表中的数据任取两取, 不防取(37.0,70.0)和(42.0,78.0)代入,得2131k p k p +=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4.∵77≠80.4,∴不配套.4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.(2)设直线CD的解析式为y=k1x+b1,由C(2,15)、D(3,30),代入得:y=15x-15,(2≤x≤3).当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米.(3)设过E、F两点的直线解析式为y=k2x+b2,由E(4,30),F(6,0),代入得y=-15x+90,(4≤x≤6)过A、B两点的直线解析式为y=k3x,∵B(1,15),∴y=15x.(0≤x≤1),•分别令y=12,得x=265(小时),x=45(小时).答:小明出发小时265或45小时距家12千米.5.设正比例函数y=kx,一次函数y=ax+b,∵点B在第三象限,横坐标为-2,设B(-2,y B),其中y B<0,∵S△AOB=6,∴12AO·│y B│=6,∴y B=-2,把点B(-2,-2)代入正比例函数y=kx,•得k=1.把点A(-6,0)、B(-2,-2)代入y=ax+b,得1 062 223a b aa bb⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩解得∴y=x,y=-12x-3即所求.6.延长BC交x轴于D,作DE⊥y轴,BE⊥x轴,交于E.先证△AOC≌△DOC,∴OD=OA=•1,CA=CD,∴= 5.7.当x≥1,y≥1时,y=-x+3;当x≥1,y<1时,y=x-1;。
(完整版)初中数学专题讲义--一次函数

初中数学专题讲义--一次函数一、知识归纳1.变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量2.函数:一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
9、正比例函数及性质一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.(1)解析式:y=kx(k是常数,k≠0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过一、三象限;k<0时,图像经过二、四象限(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(5)倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴10、一次函数及性质一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b 即y=kx,所以说正比例函数是一种特殊的一次函数.(1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(-kb,0) (3)走向:⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限 (4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴. (6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.b>0b<0b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y 随x 的增大而减小11一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移). 12、直线y=k 1x+b 1与y=k 2x+b 2的位置关系 (1)两直线平行:k 1=k 2且b 1 ≠b 2 (2)两直线相交:k 1≠k 2(3)两直线重合:k 1=k 2且b 1=b 213、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式. 14、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值. 15、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a ,b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围. 16、一次函数与二元一次方程组(1)以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=bc x b a +-的图象相同.(2)二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解可以看作是两个一次函数y=1111b cx b a +-和y=2222b cx b a +-的图象交点.函数1、判断下列变化过程存在函数关系的是( D )A.y x ,是变量,x y 2±=B.人的身高与年龄C.三角形的底边长与面积D.速度一定的汽车所行驶的路程与时间2、已知函数12+=x xy ,当a x =时,y = 1,则a 的值为( B ) A.1 B.-1 C.3 D.213、下列各曲线中不能表示y 是x 的函数是( C )。
奥数新讲义-一次函数-试题

一次函数试题一. 填空题:(每题3分,共30分)。
1、P (-3,-4)到x 轴的距离是 ,到y 轴的距离是 ,到原点的距离是 。
关于y 轴对称点的坐标是 。
2. 正比例函数kx y =(k ≠0)过点(-2,3),则正比例函数表达式为________,的增大而随x y 。
3、 直线25+=x y 与x 、y 轴的交点A 、B 的坐标为 ,S △AOB =4、若函数2(5)25y m x m=-+-是正比例函数,则m =______。
5.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过部分按每吨1.8元收费,该市某户居民5月份用水x 吨(x>10),应交水费y 元,则y 关于x 的关系式 _________。
6、如果34x y x +=-在实数范围内有意义,那么x 的取值范围是 。
7、某汽车的油缸能盛油100升,汽车每行驶50千耗油6升,加满油后,油缸中的剩油量y (升)与汽车行驶路程x (千米)之间的函数关系式是 。
8、土地沙漠化是人类的大敌,某地现有绿地8万公顷,由于人们的环保意识不强,植树被遭到严重破坏,经观察土地沙漠化速度为每年0.4万公顷。
写出t 年后该地所剩的绿地S (万公顷)与时间t (年)的关系式9、若直线3+=x y 和直线b x y +-=的交点坐标为(m ,8).则m = ,b = ; 10、我国是一个严重缺水的国家,大家都应倍加珍惜水资源,节约用水。
据测试,拧不紧的水龙头每秒钟滴下2滴水,每滴水约0.05毫升,小明同学洗手时,没有把水龙头拧紧,当小明离开x 小时后,水龙头滴y 毫升的水,试写出y 关于x 的函数关系式 . 二. 选择题(每小题3分,共30分)11、下列各点在函数y=1-2x 的图象上的是:( )。
(A )(2,-1) (B )(0,2) (C )(1,0) (D )(1,-1)12. 一段导线,在0℃时的电阻为2欧,温度每增加1℃,电阻增加0.008欧,那么电阻R 欧表示为温度t ℃的函数关系为(A) R=2992.1+-t (B) R=2008.0+t (C) R=2008.2+t (D) R=22+t 13. 无论m 为何实数,直线m x y 2+=与4+-=x y 的交点不可能在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限14. 已知某函数(12)y m x =+中,函数值y 随自变量x 的增大而减小,那么m 取值范围( )(A )21-≤m (B) 21-≥m (C) 21-<m (D) 21->m15. 若点P(a ,b)的纵坐标变为原来的2倍,然后右移2个单位后,坐标为(1,4),那么点P 原来的坐标是( )A. )2,1(-B. (2,2)C. )4,21( D. )2,21(16、函数56934x y x x -=--+的x 的取值范围是( )。
第四章 一次函数 讲义 2024--2025学年北师大版八年级数学上册

北师大版八年级上册第四单元一次函数讲义知识点清单:知识点一.函数的概念知识点二.函数关系式知识点三.函数自变量的取值范围知识点四.函数的图象知识点五.函数的表示方法知识点六.一次函数的定义知识点七.正比例函数的定义知识点八.一次函数的性质知识点九.一次函数图象与系数的关系知识点十.一次函数图象上点的坐标特征知识点十一.一次函数图象与几何变换知识点十二.待定系数法求一次函数解析式知识点十三.待定系数法求正比例函数解析式知识点十五.根据实际问题列一次函数关系式知识点十四.一次函数与一元一次方程知识点十六.一次函数的应用知识点十七.一次函数综合题知识点一.函数的概念1.下列曲线中表示y是x的函数的是()A .B .C.D.知识点二.函数关系式2.小明一家自驾车到离家500km的某景点旅游,出发前将油箱加满油.下表记录了行驶路程x(km)与油箱余油量y(L)之间的部分数据:行驶路程x(km)050100150200…油箱余油量y(L)4541373329…下列说法不正确的是()A.该车的油箱容量为45LB.该车每行驶100km耗油8LC.油箱余油量y(L)与行驶路程x(km)之间的关系式为y=45﹣8xD.当小明一家到达景点时,油箱中剩余5L油知识点三.函数自变量的取值范围3.在函数y=中,自变量x的取值范围是.4.函数y=中,自变量x的取值范围是.知识点四.函数的图象5.如图是某汽车从A地去B地,再返回A地的过程中汽车离开A地的距离与时间的关系图,下列说法中错误的是()A.A地与B地之间的距离是180千米B.前3小时汽车行驶的速度是40千米/时C.汽车中途共休息了5小时D.汽车返回途中的速度是60千米/时知识点五.函数的表示方法6.某校七年级数学兴趣小组利用同一块长为1米的光滑木板,测量小车从不同高度沿斜放的木板从顶部滑到底部所用的时间,支撑物的高度h(cm)与小车下滑时间t(s)之间的关系如下表所示:支撑物高度h(cm)10203040506070小车下滑时间t(s) 4.23 3.00 2.45 2.13 1.89 1.71 1.59根据表格所提供的信息,下列说法中错误的是()A.支撑物的高度为40cm,小车下滑的时间为2.13sB.支撑物的高度h越大,小车下滑时间t越小C.若小车下滑的时间为2s,则支撑物的高度在40cm至50cm之间D.若支撑物的高度每增加10cm,则对应的小车下滑的时间每次至少减少0.5s知识点六.一次函数的定义7.函数①y =5x ;②y =2x ﹣1;③;④;⑤y =x 2﹣2x +1,是一次函数的有()A .1个B .2个C .3个D .4个8.已知y =3x m ﹣1+5是y 关于x 的一次函数,则m 的值为.知识点七.正比例函数的定义9.若函数y =﹣7x +m ﹣2是正比例函数,则m 的值为()A .0B .1C .﹣2D .210.若y 关于x 的函数y =﹣7x +2+m 是正比例函数,则m =.知识点八.一次函数的性质11.若直线y =kx +b 经过第一、二、四象限,则函数y =bx ﹣k 的大致图象是()A .B .C .D .12.若点A (x 1,﹣1),B (x 2,﹣2),C (x 3,3)在一次函数y =﹣2x +m (m 是常数)的图象上,则x 1,x 2,x 3的大小关系是()A .x 1>x 2>x 3B .x 2>x 1>x 3C .x 1>x 3>x 2D .x 3>x 2>x 113.已知函数y =(2m +1)x +m ﹣3(1)若函数图象经过原点,求m 的值;(2)若函数的图象平行直线y =3x ﹣3,求m 的值;(3)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.14.(1)如图所示,∠AOB =α,∠AOB 内有一点P ,在∠AOB 的两边上有两个动点Q 、R (均不同于点O ),现在把△PQR 周长最小时∠QPR 的度数记为β,则α与β应该满足关系是.(2)设一次函数y =mx ﹣3m +4(m ≠0)对于任意两个m 的值m 1、m 2分别对应两个一次函数y 1、y 2,若m 1m 2<0,当x =a 时,取相应y 1、y 2中的较小值P ,则P 的最大值是.知识点九.一次函数图象与系数的关系15.已知一次函数y=(a﹣2)x+1,y随着自变量x的增大而增大,则a的取值范围为.知识点十.一次函数图象上点的坐标特征16.一次函数y=mx+m2(m≠0)的图象过点(0,4),且y随x的增大而增大,则m的值为()A.﹣2B.﹣2或2C.1D.217.关于x的一次函数y=﹣4x+8的图象,下列说法不正确的是()A.直线不经过第三象限B.直线经过点(1,4)C.直线与x轴交于点(2,0)D.y随x的增大而增大18.直线y=﹣x+4与x轴、y轴分别交于点A、B,M是y轴上一点,若将△ABM沿AM折叠,点B恰好落在x轴上,则点M的坐标为.19.如图,直线y=﹣2x+2与x轴交于点A,与y轴交于点B.(1)求点A,B的坐标.=2S△AOB,求点C的坐标.(2)若点C在x轴上,且S△ABC20.如图,在平面直角坐标系中,点P的坐标为(3,2),若直线y=﹣2x﹣4与x轴、y轴分别交于A、B 两点,连接PA、PB.(1)求点A、点B的坐标;(2)求△PAB的面积.21.如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.22.如图,在平面直角坐标系中,点C(﹣3,0),直线y=﹣分别交x轴、y轴于点A、B.(1)求点A、B的坐标;(2)若点P从点C出发,以每秒1个单位的速度沿射线CB运动,连接AP.设△ABP的面积为S,点P的运动时间为t秒,求S与t的函数关系式,并写出自变量t的取值范围.知识点十一.一次函数图象与几何变换23.将直线y=2x+1向右平移2个单位后所得图象对应的函数表达式为()A.y=2x+5B.y=2x+3C.y=2x﹣2D.y=2x﹣324.将一次函数y=﹣2x的图象沿y轴向下平移4个单位长度后,所得图象的函数表达式为()A.y=﹣2(x﹣4)B.y=﹣2x+4C.y=﹣2(x+4)D.y=﹣2x﹣425.在平面直角坐标系中,若将一次函数y=﹣2x+6的图象向下平移n(n>0)个单位长度后恰好经过点(﹣1,﹣2),则n的值为.26.如图,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1平移到直线l2,直线l2与x轴交于点C,点A与点C,点B与点D分别是平移前后的对应点,若线段AB在平移过程中扫过的图形面积为20,求点D的坐标.知识点十二.待定系数法求一次函数解析式27.已知一次函数y=kx+b(k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则一次函数的解析式为()A.y=x+2B.y=﹣x+2C.y=x+2或y=﹣x+2D.y=﹣x+2或y=x﹣228.如图,若点P(﹣2,4)关于y轴的对称点在一次函数y=x+b的图象上,则b的值()A.﹣2B.2C.﹣6D.629.已知某直线经过点A(0,2),且与两坐标轴围成的三角形面积为2.则该直线的一次函数表达式是.30.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y 轴于点D.(1)求一次函数的解析式;(2)求点C和点D的坐标;(3)求△AOB的面积.31.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;=2,求点C的坐标.(2)若直线AB上的点C在第一象限,且S△BOC知识点十三.待定系数法求正比例函数解析式32.正比例函数y=kx经过点(1,3),则k=.33.已知y与x成正比例,且当x=3时,y=4.(1)求y与x之间的函数解析式;(2)当x=﹣1时,求y的值.知识点十四.一次函数与一元一次方程34.如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x的方程kx+b=4的解是()A.x=1B.x=2C.x=3D.x=435.一次函数y=kx+b的图象与x轴交于点A(﹣3,0),则关于x的方程﹣kx+b=0的解为()A.x=3B.x=﹣3C.x=0D.x=236.已知直线y=﹣3x与y=kx+2相交于点P(m,3),则关于x的方程kx+2=﹣3x的解是()A.x=﹣1B.x=1C.x=2D.x=337.如图一次函数y=kx+2的图象分别交y轴,x轴于点A、B,则方程kx+2=0的解为()A.x=0B.x=2C.D.38.如图是一次函数y=ax+b的图象,则关于x的方程ax+b=1的解为()A.0B.2C.4D.639.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,关于x的方程x+5=ax+b的解是.知识点十五.根据实际问题列一次函数关系式40.已知等腰三角形的周长是20cm,底边长y(cm)是腰长x(cm)的函数关系式为,自变量x的取值范围是.知识点十六.一次函数的应用41.甲、乙两船沿直线航道AC匀速航行.甲船从起点A出发,同时乙船从航道AC中途的点B出发,向终点C航行.设t小时后甲、乙两船与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图.下列说法:①乙船的速度是40千米/时;②甲船航行1小时到达B处;③甲、乙两船航行0.6小时相遇;④甲、乙两船的距离不小于10千米的时间段是0≤t≤2.5.其中正确的说法的是()A.①②B.①②③C.①②④D.①②③④42.声音在空气中传播的速度(简称声速)v(m/s)与空气温度t(℃)满足一次函数的关系(如表格所示),则下列说法错误的是()A.温度越高,声速越快B.当空气温度为20℃时,声速为342m/sC.声速v(m/s)与温度t(℃)之间的函数关系式为D.当空气温度为40℃时,声速为350m/s43.甲、乙两个草莓采摘园为吸引顾客,在草莓售价相同的条件下,分别推出下列优惠方案:进入甲园,顾客需购买门票,采摘的草莓按六折优惠;进入乙园,顾客免门票,采摘草莓超过一定数量后,超过的部分打折销售,活动期间,某顾客的草莓采摘量为x千克,若在甲园采摘需总费用y1元,在乙园采摘需总费用y2元.y1、y2与x之间的函数图象如图所示,则下列说法中错误的是()A.乙园草莓优惠前的销售价格是30元/千克B.甲园的门票费用是60元C.乙园超过5千克后,超过部分的价格按五折优惠D.顾客用280元在甲园采摘草莓比到乙园采摘草莓更多44.某中学开展春季越野赛,小明、小颖两名同学同时从起点出发,他们所跑的路程y(千米)与时间x(分)之间的关系如图所示,小刚由图示得出下列信息:①在比赛中小明的速度始终比小颖快,所以小明先到达终点;②比赛开始20分钟时,小明和小颖第一次相遇;③越野赛全程为6千米;④小明最后冲刺速度为0.3千米/分钟.在小刚得出的信息中正确的有(填序号即可).45.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系,根据图象可知,下列结论:①两车出发后4小时相遇;②动车的速度是普通列车速度的2倍;③两车相遇后,普通列车还需行驶6小时到达目的地;④C点的坐标是(5,1000),其中正确的有.(填所有正确结论的序号)46.某工厂的销售部门提供两种薪酬计算方式:薪酬方式一:底薪+提成,其中底薪为3000元,每销售一件商品另外获得15元的提成;薪酬方式二:无底薪,每销售一件商品获得30元的提成.设销售人员一个月的销售量为x (件),方式一的销售人员的月收入为y 1(元),方式二的销售人员的月收入为y 2(元).(1)请分别写出y 1、y 2与x 之间的函数表达式;(2)哪种薪酬计算方式更适合销售人员?47.甲、乙两家体育用品商店出售相同的乒乓球和乒乓球拍,乒乓球每盒定价20元,乒乓球拍每副定价100元.现两家商店都搞促销活动,甲店每买一副球拍赠两盒乒乓球,乙店按八折优惠.某俱乐部需购球拍4副,乒乓球x (x ≥10)盒.(1)若在甲店购买付款y 甲(元),在乙店购买付款y 乙(元),分别写出:y 甲,y 乙与x 的函数关系式.(2)若该俱乐部需要购买乒乓球30盒,在哪家商店购买合算?48.科学调查结果显示:当中学生电子产品日平均使用时间小于30分钟时,近视率较低.使用时长从30分钟到1小时的过程中,近视率会急剧上升,研究发现近视率y 是日平均使用时长x (分钟)的一次函数,当日平均使用时长为30分钟时,近视率为10%,当日平均使用时间为60分钟时,近视率为70%.(1)求y 与x 之间的函数表达式;(2)当日平均使用时间为40分钟时,近视率是多少?49.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA 表示货车离甲地的距离y (千米)与时间x (小时)之间的函数关系;折线BCD 表示轿车离甲地的距离y (千米)与时间x (时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,求货车与甲地的距离;(2)求线段CD 对应的函数表达式;(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.知识点十七.一次函数综合题50.如图,直线l1:y=2x+6与过点B(3,0)的直线l2交于点C(﹣1,m),且直线l1与x轴交于点A,与y轴交于点D.(1)求直线l2的解析式;(2)若点M是直线l2上的点,且在y轴左侧,过点M作MN⊥直线x=1于点N,点Q在直线x=1上,要使△MNQ≌△AOD,求所有满足条件的点Q的坐标.51.【阅读理解】已知M,N为平面内不重合的两点.给出以下定义:将M绕N顺时针旋转α(0°<α<360°)的过程记作变换(N,α).例如:在平面直角坐标系xOy中,已知点M(1,0),N(2,0),则M经过变换(N,90°)后所得的点B的坐标为(2,1).【迁移应用】如图,在平面直角坐标系xOy中,直线y=2x+b分别与x轴,y轴交于点A(﹣1,0),B,设A经过变换(B,180°)后得到C.(1)求点C的坐标;(2)过C作CD⊥x轴于D,点E是线段CD上一动点,设E经过变换(B,90°)后得到点F,连接BE,BF.ⅰ)若△ABF的面积为3,求点F的坐标;ⅱ)设点M是y轴上一动点,当以A,B,F,M(四点为顶点的四边形为平行四边形时,求点M的坐标.52.如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).(1)求直线AB的解析式和点B的坐标;(2)求△ABP的面积(用含n的代数式表示);=2时,以PB为边在第一象限作等腰直角三角形BPC,求点C的坐标.(3)当S△ABP53.如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x 轴以及y=x+1的图象分别交于点C,D,且点D的坐标为(1,n).(1)则k=,b=,n=;(2)求四边形AOCD的面积;(3)在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形,请求出点P的坐标.54.如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.55.如图1,已知函数y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为,求点M的坐标;②连接BM,如图2,若∠BMP=∠BAC,求点P的坐标.56.(1)认识模型:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)应用模型:①已知直线y=﹣2x+4与y轴交于A点,与x轴交于B点,将线段AB绕点B顺时针旋转90度,得到线段CB,求点C的坐标;②如图3,矩形ABCO,O为坐标原点,B的坐标为(5,4),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x﹣3上的一点,点Q是平面内任意一点.若四边形ADPQ 是正方形,请直接写出所有符合条件的点D的坐标.57.如图,直线l1:y=﹣x+3与x轴相交于点A,直线l2:y=kx+b经过点(3,﹣1),与x轴交于点B(6,0),与y轴交于点C,与直线l1相交于点D.(1)求直线l2的函数关系式;(2)点P是l2上的一点,若△ABP的面积等于△ABD的面积的2倍,求点P的坐标;(3)设点Q的坐标为(m,3),是否存在m的值使得QA+QB最小?若存在,请求出点Q的坐标;若不存在,请说明理由.58.如图,直线y=﹣x+3与x轴、y轴分别交于点A、B,点P在x轴上运动,连接PB,将△OBP沿直线BP折叠,点O的对应点记为O′.(1)若点O′恰好落在直线AB上,求OP的长.(2)若Q是直线AB上的一个动点,当△AOQ的面积为10时,求Q的坐标.(3)在x轴上是否存在点C,使得△ABC为等腰三角形?若存在,直接写出点C的坐标,若不存在,说明理由.(4)若C是y=﹣x+3上的动点,当△ABC是以BC为底的等腰三角形,求出点C的坐标.59.问题提出(1)如图1,在等腰直角△ABC中,∠BAC=90°,AB=AC,P为高AE上的动点,过点P作PH⊥AC于H,则的值为;问题探究(2)如图2,在平面直角坐标系中,直线y=﹣x+2与x轴、y轴分别交于点A、B.若点P是直线AB上一个动点,过点P作PH⊥OB于H,求OP+PH的最小值.问题解决(3)如图3,在平面直角坐标系中,长方形OABC的OA边在x轴上,OC在y轴上,且B(6,8).点D在OA边上,且OD=2,点E在AB边上,将△ADE沿DE翻折,使得点A恰好落在OC边上的点A′处,那么在折痕DE上是否存在点P使得EP+A′P最小,若存在,请求最小值,若不存在,请说明理由.60.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求出点A、点B的坐标;(2)求△COB的面积;(3)在y轴右侧有一动直线平行于y轴,分别于l1、l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出满足条件的点Q的坐标;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一讲 一次函数4
关于一次函数的解析式 例1. 已知函数23
(2)(3)m y m x
m +=---是一次函数,则此函数的解析式为____________;
例2. 已知一次函数(0)y kx b k =+≠的图像经过A(1,2)、B (-1,-4)两点,求这个一次函数的解析
式;
例3. 直线l 与直线21y x =+的交点的横坐标是2,与直线2y x =-+的交点的纵坐标为1,求直线l 对应
的函数解析式;
例4. 正比例函数11y k x =与一次函数22y k x b =+的图像如下图,它们的交点P 的坐标是(4,3)点Q 在y
轴的负半轴上且OQ =OP ,求这两个函数的解析式;
例5. 试确定k 的范围,使一次函数(3)(2)y k x k =-+-的图像
○
1和方程24x y -=表示的直线平行;
○
2y 随x 的增大而减小; ○
3通过第1、2、3象限
.
关于一次函数的图像 例6. 已知一次函数y mx n =+,且m<0,mn>0,则其图像大致是直线( ) A . a B. b
C . c
D. d
例7. (99年全国竞赛)设b>a ,将一次函数y bx a =+与y ax b =+的图像画在平面直角坐标系内,则有
一组a,b 的取值,使得下列四个图中的一个为正确的是( )
A .
B .
C .
D .
奥数教程,初三年级P52,例2;或初中数学竞赛同步辅导,初三P99,例2
例8. (14届江苏省初中数学竞赛)已知一次函数,0y kx b kb =+<,则这样的一次函数的图像必经过的公
共象限有_____个,即第_______象限.
例9. (98年全国竞赛)已知0abc ≠,且
a b b c c a
p c a b
+++===,那么直线y =px+p 一定通过( ) A .第一、二象限 B .第二、三象限
C .第三、四象限
D .第一、四象限 初中数学竞赛同步辅导,初三P99,例1
例10. 如果一条直线l 经过不同的三点A (a,b ),B(b,a),C(a-b,b-a),那么直线l 经过( ) A .第二、四象限 B .第一、二、三象限 C .第二、三、四象限 D .第一、三、四象限 奥数教程,初三年级P51,例1
一次函数图像的特殊点以及面积问题
例11. (15届江苏省数学竞赛)函数32y x =--的图像如图所示,则点A 和B 的坐标分别是
A_______,B_______;
例12. (2000年全国初中数学联赛)在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线
1
3
y x b =
+恰好将矩形OABC 分成面积相等的两部分,那么b =________;
例13. (2001年河北省竞赛)设直线(1)2nx n y ++=
(n 为自然数)与两坐标轴围成的三角形面积
为n S (n=1,2,3…,2000),则122000...S S S +++的值为多少?
例14. (2001全国初中数学竞赛天津赛区初赛)如图,直线3
13
y x =
-
+与x 轴、y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角△ABC,且∠BAC =90°.如果在第二象限内有一点P 1(,)2
a ,且△ABP 的面积与Rt △ABC 的面积相等,求a 的值.
例15. (北京市西城区2006年抽样测试八年级(上)数学试卷)在直角坐标系中,有两个点
)3,6(-A ,)5,2(-B
.
(1)在y 轴上找一个点C ,在x 轴上找一个点D ,画出四边形ABCD ,使其周长最短(保留作图痕迹); (2)在(1)的情况下,求出D C ,两点的坐标. 解答:(1)D C ,两点应落在过点)5,2(),3,6(B A '--'的直线上,如图所示.
(2)过点)5,2(),3,6(B A '--'的直线的解析式为3+=x y ,故C 点坐标为(0,3),D 点坐标为(-3,0) 例16. (怀柔区八年级下学期期末质量检测数学试卷)已知一次函数(3)2y m x =-+的函数值 随着x 的增大而减小,且一次函数(23)3y m x =+-的函数值随着x 的增大而增大,则同 时满足上述条件的m 的取值范围是( )
A. 13
m <- B. 3m > C. 3
32
m -<< D . 3m <-
解答:C
例17. (北京市西城区2006年抽样测试八年级(上)数学试卷)如图,边长为2的正方形ABCD 中,顶
点A 的坐标是(0,2),一次函数t x y +=的图像l 随t 的不同取值变化时,位于l 的右下方由l 和正方形的边围成的图形面积(阴影部分)为S . (1) 当t 取何值时,3=S ;
(2) 在l 移动过程中,写出S 与t 的函数关系式(其中40<<t ).
解答:⎪⎪⎩
⎪⎪⎨⎧<≤--<<=)42(,)4(214)20(,2
122
t t t t S
当24-=t 时,3=S .
例18. (北京市中考模拟题)根据下列条件,求一次函数的解析式. (1)一次函数的图像经过点A (2,0),B (0,2);
(2)一次函数y=kx+b 的图像平行于直线y=2x ,且与y 轴交于点(0,-3); (3)直线y=kx+b 经过点(
25,0)且与坐标轴围成的直角三角形的面积为4
25
. 解答:(1)设一次函数的解析式为)0(≠+=k b kx y 则
⎩⎨⎧==+.2,02b b k 解得⎩
⎨
⎧=-=.2,
1b k 所以一次函数解析式为.2+-=x y
(2)因为一次函数b kx y +=图像平行于直线x y 2=,所以2=k .
(3)由题意,得02
5
=+b k 故k b 2
5-
=. x b kx y 与+=轴交点坐标(,2
5
0),与y 轴交点坐标(0,b ).
所以4
25
2521=⨯⨯=b S
故.2,5 =±=k b
例19. (北京市竞赛题)以A (0,2),B (2,0)O (0,0)为顶点的三角形被直线)
0(:≠-=a a ax y L 分成两部分,设靠近原点O 一侧那部分的面积为S ,写出用a 表示的S 的函数式. 解答:设直线AB 的方程为b kx y +=.因为它过A (0,2)及B (2,0),所以
1,2-==k b
)20(2≤≤+-=∴x x y .
下面分两种情况进行论讨:
(1)直线L 与线段OA 相交于E 点,在方程O OE a y x a ax y >=-==-=得令中,0,,所以
2
21a OE OC S -=⨯=
02,20<≤-≤<a OE 所以 ,即
)02(2
<≤--=a a
S
(2)直线L 与线段AB 相交于D 点,则
⎩⎨
⎧+-=-=.2,x y a ax y 解之,得⎪⎪⎩
⎪⎪⎨⎧+=++=.1,12a a y a
a x D ∴点的坐标为(
a
a
a a +++1,
12). BDC OAB S S S ∆∆-=
=.)
1(23411212a a a a ++=+⨯⨯-
由于D 在AB 上,所以它的横纵坐标要适合;
⎪⎪⎩
⎪⎪⎨
⎧≤+<<++≤2102120a a a
a 解①、②得a<-2或a>0.所以
)02()
1(234>-<++=
a
a a a
S 或.
综合(1)、(2),可知:
⎪⎪⎩
⎪⎪⎨⎧>-<++<≤-
-=)02()1(234)02(2a a a a a a
S 或
一、 练习题
1.(2000年全国初中数学竞赛)一个一次函数的图像与直线595
4
4
y x =
+平行,与x 轴,y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A ,B ),横、纵坐标均为整数的点有( )
A .4个
B .5个
C .6个
D .7个 答案:B
2.(1999年湖北省黄冈市初中数学竞赛)如图,直线210y x =-+与x 轴,y 轴分别交于A 、B 两点,把⊿AOB 沿AB 翻折,点O 落在C 处,则点C 的坐标是________;
答案
3.(2001年TI 杯)在直角坐标系xOy 中,x 轴上的动点M(x, 0)到定点P(5, 5)、Q(2, 1)的距离分别为MP 和MQ ,当MP +MQ 取最小值时,点M 的横坐标x =________;
4.(第12届江苏数学竞赛)求证:不论k 为何值,一次函数(21)(3)(11)0k x k y k --+--=的图像恒过一定点;
5.(2000年湖北省初中数学竞赛选拔题)设直线(1)1kx k y ++=(k 为自然数)与两坐标轴所围成的图形的面积为k S (k=1,2,3…,2000),则122000...S S S +++等于多少?
①
②
6.(1994年天津中招)直线(1)3y m x =+-与(23)5y m x =-+及y 轴围成的三角形面积为16,求m 的值
.
7.已知直线111y k x b =+过点(-1, -4)、(2, 2),直线222y k x b =+过点(8,9),且在y 轴上的截距为3.
(1)求两直线交点的坐标;
(2)当21y y ≥时,求x 的范围
.。