福建省福州市长乐高级中学等比数列基础练习题百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等比数列选择题
1.明代数学家程大位编著的《算法统宗》是中国数学史上的一座丰碑.其中有一段著述“远望巍巍塔七层,红光点点倍加增,共灯三百八十一”.注:“倍加增”意为“从塔顶到塔底,相比于上一层,每一层灯的盏数成倍增加”,则该塔正中间一层的灯的盏数为( )
A .3
B .12
C .24
D .48
2.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=
( ) A .4
B .5
C .8
D .15
3.已知{}n a 是正项等比数列且1a ,312a ,22a 成等差数列,则91078
a a a a +=+( ) A 21 B 21
C .322-
D .322+4.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( )
A .-3+(n +1)×2n
B .3+(n +1)×2n
C .1+(n +1)×2n
D .1+(n -1)×2n
5.设n S 为等比数列{}n a 的前n 项和,若11
0,,22
n n a a S >=<,则等比数列{}n a 的公比的取值范围是( ) A .30,4
⎛⎤ ⎥⎝
⎦
B .20,3
⎛⎤ ⎥⎝
⎦
C .30,4⎛⎫ ⎪⎝⎭
D .20,3⎛⎫ ⎪⎝⎭
6.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-
B .3-
C .3
D .8
7.记等比数列{}n a 的前n 项和为n S ,已知5=10S ,1050S =,则15=S ( ) A .180
B .160
C .210
D .250
8.各项为正数的等比数列{}n a ,478a a ⋅=,则2122210log log log a a a +++=( )
A .15
B .10
C .5
D .3
9.在等比数列{}n a 中,24a =,532a =,则4a =( ) A .8
B .8-
C .16
D .16-
10.一个蜂巢有1只蜜蜂,第一天,它飞出去找回了5个伙伴;第二天,6只蜜蜂飞出去,各自找回了5个伙伴……如果这个找伙伴的过程继续下去,第六天所有的蜜蜂都归巢后,蜂巢中一共有( )只蜜蜂. A .55989
B .46656
C .216
D .36
11.已知等比数列{}n a 中,11a =,132185k a a a ++++=,24242k a a a +++=,
则k =( ) A .2
B .3
C .4
D .5
12.等比数列{}n a 的前n 项和为n S ,416a =-,314S a =+,则公比q 为( ) A .2-
B .2-或1
C .1
D .2
13.已知等比数列{}n a 中,n S 是其前n 项和,且5312a a a +=,则4
2
S S =( ) A .76
B .32
C .
2132
D .
14
14.公差不为0的等差数列{}n a 中,2
3711220a a a -+=,数列{}n b 是等比数列,且
77b a =,则68b b =( )
A .2
B .4
C .8
D .16
15.正项等比数列{}n a 满足2
2
37610216a a a a a ++=,则28a a +=( ) A .1 B .2 C .4 D .8
16.已知数列{}n a 为等比数列,12a =,且53a a =,则10a 的值为( ) A .1或1-
B .1
C .2或2-
D .2
17.已知等比数列{}n a 的通项公式为2*
3()n n a n N +=∈,则该数列的公比是( )
A .
19
B .9
C .
13
D .3
18.已知等比数列{}n a 的n 项和2n n S a =-,则22
212n a a a ++
+=( )
A .()2
21n -
B .
()1213
n
- C .41n -
D .
()1413
n
- 19.在等比数列{}n a 中,12345634159,88
a a a a a a a a +++++=
=-,则123456
111111
a a a a a a +++++=( ) A .
35
B .
35
C .
53
D .53
-
20.已知公比大于1的等比数列{}n a 满足2420a a +=,38a =.则数列()
{}
1
11n n n a a -+-的
前n 项的和为( )
A .()23
82133n n +--
B .()23
182155n n +---
C .()2382133
n n ++-
D .()23182155
n n +-+-
二、多选题21.题目文件丢失!
22.一个弹性小球从100m 高处自由落下,每次着地后又跳回原来高度的
2
3
再落下.设它第n 次着地时,经过的总路程记为n S ,则当2n ≥时,下面说法正确的是( ) A .500n S < B .500n S ≤
C .n S 的最小值为
700
3
D .n S 的最大值为400
23.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )
A .数列{}n a 为等比数列
B .数列{}n S n +为等比数列
C .数列{}n a 中10511a =
D .数列{}2n S 的前n 项和为
2224n n n +---
24.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2
{}n a 是等比数列 B .若4123,27,a a ==则89a =± C .若123,a a a <<则数列{}n a 是递增数列 D .若数列{}n a 的前n 和13,n n S r -=+则r =-1
25.已知等比数列{}n a 的公比0q <,等差数列{}n b 的首项10b >,若99a b >,且
1010a b >,则下列结论一定正确的是( )
A .9100a a <
B .910a a >
C .100b >
D .910b b >
26.设{}n a 是各项均为正数的数列,以n a ,1n a +为直角边长的直角三角形面积记为
n S ()n *∈N ,则{}n S 为等比数列的充分条件是( )
A .{}n a 是等比数列
B .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅或 2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅是等比数列
C .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅和 2a ,4a ,⋅⋅⋅,2n a ,⋅⋅⋅均是等比数列
D .1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅和 2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅均是等比数列,且公比相同 27.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ⎧⎫
⎨
⎬⎩⎭
的前n 项
和,则下列结论中正确的是( ) A .()21121n n
S n a -=-⋅ B .212
n n S S =
C .2311222
n n n S S ≥
-+ D .212
n n S S ≥+
28.已知数列{a n },{b n }均为递增数列,{a n }的前n 项和为S n ,{b n }的前n 项和为T n .且满足a n +a n +1=2n ,b n •b n +1=2n (n ∈N *),则下列说法正确的有( ) A .0<a 1<1
B .1<b
1C .S 2n <T 2n
D .S 2n ≥T 2n
29.数列{}n a 为等比数列( ). A .{}1n n a a ++为等比数列 B .{}1n n a a +为等比数列 C .{
}
22
1n n a a ++为等比数列
D .{}n S 不为等比数列(n S 为数列{}n a 的前n 项)
30.已知正项等比数列{}n a 满足12a =,4232a a a =+,若设其公比为q ,前n 项和为
n S ,则( )
A .2q
B .2n
n a = C .102047S = D .12n n n a a a +++<
31.在公比q 为整数的等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若 1418a a +=, 2312a a +=,则下列说法正确的是( )
A .2q
B .数列{}2n S +是等比数列
C .8
510S =
D .数列{}lg n a 是公差为2的等差数列
32.已知数列{}n a 的前n 项和为S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫
⎨⎬⋅⎩⎭
的前
n 项和为n T ,*n ∈N ,则下列选项正确的为( )
A .数列{}1n a +是等差数列
B .数列{}1n a +是等比数列
C .数列{}n a 的通项公式为21n
n a =-
D .1n T <
33.已知数列{a n }为等差数列,首项为1,公差为2,数列{b n }为等比数列,首项为1,公比为2,设n n b c a =,T n 为数列{c n }的前n 项和,则当T n <2019时,n 的取值可以是下面选项中的( ) A .8
B .9
C .10
D .11
34.关于等差数列和等比数列,下列四个选项中不正确的有( )
A .若数列{}n a 的前n 项和2(n S an bn c a =++,b ,c 为常数)则数列{}n a 为等差数列
B .若数列{}n a 的前n 项和1
22n n S +=-,则数列{}n a 为等差数列
C .数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等差数列
D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等比数列;
35.对于数列{}n a ,若存在数列{}n b 满足1
n n n
b a a =-
(*n ∈N ),则称数列{}n b 是{}n a 的“倒差数列”,下列关于“倒差数列”描述正确的是( ) A .若数列{}n a 是单增数列,但其“倒差数列”不一定是单增数列;
B .若31n a n =-,则其“倒差数列”有最大值;
C .若31n a n =-,则其“倒差数列”有最小值;
D .若112n
n a ⎛⎫=-- ⎪⎝⎭,则其“倒差数列”有最大值.
【参考答案】***试卷处理标记,请不要删除
一、等比数列选择题 1.C 【分析】
题意说明从塔顶到塔底,每层的灯盏数构成公比为2的等比数列,设塔顶灯盏数为1a ,由系数前n 项和公式求得1a ,再由通项公式计算出中间项. 【详解】
根据题意,可知从塔顶到塔底,每层的灯盏数构成公比为2的等比数列,设塔顶灯盏数为
1a ,则有()717
1238112
a S ⋅-=
=-,解得13a =,中间层灯盏数3
4124a a q ==,
故选:C. 2.C 【分析】
由等比中项,根据a 3a 11=4a 7求得a 7,进而求得b 7,再利用等差中项求解. 【详解】 ∵a 3a 11=4a 7, ∴2
7a =4a 7, ∵a 7≠0, ∴a 7=4, ∴b 7=4,
∴b 5+b 9=2b 7=8. 故选:C 3.D 【分析】 根据1a ,
312a ,22a 成等差数列可得3121
222
a a a ⨯=+,转化为关于1a 和q 的方程,求出q 的值,将
910
78
a a a a ++化简即可求解.
【详解】
因为{}n a 是正项等比数列且1a ,31
2
a ,22a 成等差数列, 所以
3121
222
a a a ⨯=+,即21112a q a a q =+,所以2210q q --=,
解得:1q =+
1q =
(
22
2
2910787878
13a a a q a q q a a a a ++====+++,
故选:D 4.D 【分析】
利用已知条件列出方程组求解即可得1,a q ,求出数列{a n }的通项公式,再利用错位相减法求和即可. 【详解】
设等比数列{a n }的公比为q ,易知q ≠1,
所以由题设得()
()
3
136
1617
11631a q S q a q S q ⎧-⎪==-⎪
⎨-⎪
=
=⎪-⎩
, 两式相除得1+q 3=9,解得q =2, 进而可得a 1=1, 所以a n =a 1q n -1=2n -1, 所以na n =n ×2n -1.
设数列{na n }的前n 项和为T n , 则T n =1×20+2×21+3×22+…+n ×2n -1, 2T n =1×21+2×22+3×23+…+n ×2n ,
两式作差得-T n =1+2+22
+…+2n -1
-n ×2n
=
1212
n
---n ×2n =-1+(1-n )×2n , 故T n =1+(n -1)×2n .
【点睛】
本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 5.A 【分析】
设等比数列{}n a 的公比为q ,依题意可得1q ≠.即可得到不等式1
102n q -⨯>,
1
(1)
221n q q
-<-,即可求出参数q 的取值范围;
【详解】
解:设等比数列{}n a 的公比为q ,依题意可得1q ≠.
11
0,2
n a a >=
,2n S <, ∴1
102n q -⨯>,1
(1)221n q q
-<-, 10q ∴>>. 144q ∴-,解得3
4
q
. 综上可得:{}n a 的公比的取值范围是:30,4
⎛⎤ ⎥⎝
⎦
.
故选:A . 【点睛】
等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程. 6.A 【分析】
根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】
设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2
326a a a =,
即2
(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)
661(2)2422
S a d ⨯-⨯-=+=⨯+⨯-=-. 故选:A 7.C 【分析】
首先根据题意得到5S ,105S S -,1510S S -构成等比数列,再利用等比中项的性质即可得
【详解】
因为{}n a 为等比数列,所以5S ,105S S -,1510S S -构成等比数列. 所以()()2
155010=1050S --,解得15210S =. 故选:C 8.A 【分析】
根据等比数列的性质,由对数的运算,即可得出结果. 【详解】 因为478a a ⋅=, 则()()5
2212221021210110log log log log ...log a a a a a a a a ⋅⋅⋅=+
⋅++=
()2475log 15a a =⋅=.
故选:A. 9.C 【分析】
根据条件计算出等比数列的公比,再根据等比数列通项公式的变形求解出4a 的值. 【详解】
因为254,32a a ==,所以3
5
2
8a q a =
=,所以2q ,
所以2
424416a a q ==⨯=,
故选:C. 10.B 【分析】
第n 天蜂巢中的蜜蜂数量为n a ,则数列{}n a 成等比数列.根据等比数列的通项公式,可以算出第6天所有的蜜蜂都归巢后的蜜蜂数量. 【详解】
设第n 天蜂巢中的蜜蜂数量为n a ,根据题意得 数列{}n a 成等比数列,它的首项为6,公比6q = 所以{}n a 的通项公式:1
66
6n n n a -=⨯=
到第6天,所有的蜜蜂都归巢后, 蜂巢中一共有66646656a =只蜜蜂. 故选:B . 11.B 【分析】
本题首先可设公比为q ,然后根据132185k a a a +++
+=得出()2284k q a a ++=,再
然后根据24242k a a a +++=求出2q
,最后根据等比数列前n 项和公式即可得出结
果. 【详解】
设等比数列{}n a 的公比为q , 则132112285k k a a a a a a q q +++++++==,
即()2285184k q a a +
+=-=,
因为24242k a a a +++=,所以2q
,
则()21123
221112854212712
k k k a a a a a ++⨯-+++++=+==
-,
即211282k +=,解得3k =, 故选:B. 【点睛】
关键点点睛:本题考查根据等比数列前n 项和求参数,能否根据等比数列项与项之间的关系求出公比是解决本题的关键,考查计算能力,是中档题. 12.A 【分析】
由416a =-,314S a =+列出关于首项与公比的方程组,进而可得答案. 【详解】 因为314S a =+, 所以234+=a a ,
所以()2
13
1416
a q q a q ⎧+=⎪⎨=-⎪⎩, 解得2q =-, 故选:A . 13.B 【分析】
由5312a a a +=,解得q ,然后由414242212(1)
111(1)11a q S q q q a q S q
q
---===+---求解. 【详解】
在等比数列{}n a 中,5312a a a +=, 所以421112a q a q a +=,即42210q q +-=, 解得2
12
q =
所以4142
42212(1)1311(1)12
1a q S q q q a q S q q
---===+=---, 故选:B 【点睛】
本题主要考查等比数列通项公式和前n 项和公式的基本运算,属于基础题, 14.D 【分析】
根据等差数列的性质得到774a b ==,数列{}n b 是等比数列,故2
687b b b ==16.
【详解】
等差数列{}n a 中,31172a a a +=,故原式等价于2
7a -740a =解得70a =或74,a =
各项不为0的等差数列{}n a ,故得到774a b ==,
数列{}n b 是等比数列,故2
687b b b ==16.
故选:D. 15.C 【分析】
利用等比数列的性质运算求解即可. 【详解】
根据题意,等比数列{}n a 满足2
2
37610216a a a a a ++=, 则有22
2
288216a a a a ++=,即()2
2816a a +=, 又由数列{}n a 为正项等比数列,故284a a +=. 故选:C . 16.C 【分析】
根据等比数列的通项公式,由题中条件,求出公比,进而可得出结果. 【详解】
设等比数列{}n a 的公比为q ,
因为12a =,且53a a =,所以2
1q =,解得1q =±, 所以9
1012a a q ==±.
故选:C. 17.D 【分析】
利用等比数列的通项公式求出1a 和2a ,利用2
1
a a 求出公比即可
【详解】
设公比为q ,等比数列{}n a 的通项公式为2*
3()n n a n N +=∈,
则31327a ==,4
2381a ==,2
1
3a q a ∴
==, 故选:D 18.D 【分析】
由n a 与n S 的关系可求得12n n a ,进而可判断出数列{}
2
n a 也为等比数列,确定该数列的
首项和公比,利用等比数列的求和公式可求得所化简所求代数式.
【详解】
已知等比数列{}n a 的n 项和2n n S a =-. 当1n =时,112a S a ==-;
当2n ≥时,(
)(
)1
1122
2n
n n n n n a S S a a ---=-=---=.
由于数列{}n a 为等比数列,则12a a =-满足12n n
a ,所以,022a -=,解得1a =,
()1
2
n n a n N -*
∴=∈,则()
2
21
124n n n
a --==,21
21444
n n n n a a +-∴==,且211a =,
所以,数列{}
2n a 为等比数列,且首项为1,公比为4, 因此,2221
2
1441
143
n n n
a a a --+++==
-. 故选:D. 【点睛】
方法点睛:求数列通项公式常用的七种方法:
(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或1
1n n a a q -=进行
求解;
(2)前n 项和法:根据11,1
,2n n
n S n a S S n -=⎧=⎨
-≥⎩进行求解;
(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;
(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第1n -项的差是个有规律的数列,就可以利用这种方法; (5)累乘法:当数列{}n a 中有()1
n
n a f n a -=,即第n 项与第1n -项的商是个有规律的数列,就可以利用这种方法;
(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且
1k ≠,0k ≠).
一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1
b
m k =
-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩
⎭是以k 的等比数列,可求出n a ;
②取倒数法:这种方法适用于()1
12,n n n ka a n n N ma p
*--=
≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b
-=+的式子;
⑦1n
n n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式
的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可. 19.D 【分析】
利用等比数列下标和相等的性质有162534a a a a a a ==,而目标式可化为
162534
162534
a a a a a a a a a a a a +++++结合已知条件即可求值. 【详解】
162534123456162534
111111a a a a a a a a a a a a a a a a a a ++++++++=++, ∵等比数列{}n a 中349
8
a a =-,而162534a a a a a a ==, ∴123456111111a a a a a a +
++++=12345685()93
a a a a a a -+++++=-, 故选:D 20.D 【分析】
根据条件列出方程组可求出等比数列的公比和首项,即可得到数列的通项公式,代入
()
1
11n n n a a -+-可知数列为等比数列,求和即可.
【详解】
因为公比大于1的等比数列{}n a 满足2420a a +=,38a =,
所以31121
208a q a q a q ⎧+=⎨=⎩,
解得2q
,12a =,
所以1222n n
n a -=⨯=,
()
()
()
111
1
1
1222111n n n n n n n n a a ++-+--+=⋅⋅-=∴--,
()
{
}
1
11n n n a a -+∴-是以8为首项,4-为公比的等比数列,
()
23
3
5
7
9
21
11
8[1(4)]8222222
(1)1(4)155
n n n n n n S -++---∴=-+--+
+⋅==+---, 故选:D 【点睛】
关键点点睛:求出等比数列的通项公式后,代入新数列,可得数列的通项公式,由通项公式可知数列为等比数列,根据等比数列的求和公式计算即可.
二、多选题 21.无
22.AC 【分析】
由运动轨迹分析列出总路程n S 关于n 的表达式,再由表达式分析数值特征即可 【详解】
由题可知,第一次着地时,1
100S =;第二次着地时,221002003
S =+⨯;
第三次着地时,2
32210020020033S ⎛⎫
=+⨯+⨯ ⎪⎝⎭;……
第n 次着地后,2
1
222100200200200333n n S -⎛⎫
⎛⎫
=+⨯+⨯+
+⨯ ⎪ ⎪
⎝⎭
⎝⎭
则2
1
1222210020010040013333n n n S --⎛⎫⎛⎫
⎛⎫⎛⎫
⎛⎫=++++=+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
⎝⎭⎝
⎭⎝⎭
,显然500n S <,又n S 是关于n 的增函数,2n ≥,故当2n =时,n S 的最小值为400700
10033
+=; 综上所述,AC 正确 故选:AC 23.BCD 【分析】 由已知可得
11222n n n n S n S n
S n S n
++++==++,结合等比数列的定义可判断B ;可得
2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公
式,可判断C ;
由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D . 【详解】
因为121n n S S n +=+-,所以
11222n n n n S n S n
S n S n
++++==++.
又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;
所以2n n S n +=,则2n
n S n =-.
当2n ≥时,1121n n n n a S S --=-=-,但11
121a -≠-,故A 错误;
由当2n ≥时,1
2
1n n a -=-可得91021511a =-=,故C 正确;
因为1
222n n S n +=-,所以2
3
1
1222...2221222 (2)
2n n S S S n ++++=-⨯+-⨯++-
()()()231
22
412122 (2)
212 (22412)
2n n n n n n n n n ++--⎡⎤=+++-+++=
-+=---⎢⎥-⎣
⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:BCD . 【点睛】
关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由
121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到
11222n n n n S n S n
S n S n
++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,
考查了推理运算能力,属于中档题, 24.AC 【分析】
根据等比数列定义判断A;根据等比数列通项公式判断B,C;根据等比数列求和公式求项判断D. 【详解】
设等比数列{}n a 公比为,(0)q q ≠
则2221
12(
)n n n n
a a q a a ++==,即数列2{}n a 是等比数列;即A 正确; 因为等比数列{}n a 中4812,,a a a 同号,而40,a > 所以80a >,即B 错误;
若123,a a a <<则12
11101a a a q a q q >⎧<<∴⎨>⎩或1001a q <⎧⎨<<⎩
,即数列{}n a 是递增数列,C 正确;
若数列{}n a 的前n 和13,n n S r -=+则111221313231,2,6a S r r a S S a S S -==+=+=-==-= 所以32211
323(1),3
a a q r r a a =
==∴=+=-,即D 错误 故选:AC 【点睛】
等比数列的判定方法
(1)定义法:若1
(n n
a q q a +=为非零常数),则{}n a 是等比数列; (2)等比中项法:在数列{}n a 中,0n a ≠且2
12n n a a a a ++=,则数列{}n a 是等比数列;
(3)通项公式法:若数列通项公式可写成(,n
n a cq c q =均是不为0的常数),则{}n a 是等比
数列;
(4)前n 项和公式法:若数列{}n a 的前n 项和(0,1,n
n S kq k q q k =-≠≠为非零常数),则
{}n a 是等比数列.
25.AD 【分析】
根据等差、等比数列的性质依次判断选项即可. 【详解】
对选项A ,因为0q <,所以2
9109990a a a a q a q =⋅=<,故A 正确;
对选项B ,因为9100a a <,所以91000a a >⎧⎨<⎩或9100
a a <⎧⎨>⎩,即910a a >或910a a <,故B 错误;
对选项C ,D ,因为910,a a 异号,99a b >,且1010a b >,所以910,b b 中至少有一个负数, 又因为10b >,所以0d <,910b b >,故C 错误,D 正确. 故选:AD 【点睛】
本题主要考查等差、等比数列的综合应用,考查学生分析问题的能力,属于中档题. 26.AD 【分析】
根据{}n S 为等比数列等价于2
n n
a a +为常数,从而可得正确的选项. 【详解】
{}n S 为等比数列等价于
1n n S S +为常数,也就是等价于12
+1n n n n a a a a ++即2n n
a a +为常数.
对于A ,因为{}n a 是等比数列,故
22
n n
a q a +=(q 为{}n a 的公比)为常数,故A 满足; 对于B ,取21221,2n
n n a n a -=-=,此时满足2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅是等比数列,
1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅不是等比数列,
21
21
n n a a +-不是常数,故B 错. 对于C ,取2123,2n n
n n a a -==,此时满足2a ,4a ,⋅⋅⋅ ,2n a ,⋅⋅⋅是等比数列,
1a ,3a ,⋅⋅⋅ ,21n a -,⋅⋅⋅是等比数列,21213n n a a +-=,2222n n
a
a +=,两者不相等,故C 错. 对于D ,根据条件可得2
n n
a a +为常数.
故选:AD. 【点睛】
本题考查等比数列的判断,此类问题应根据定义来处理,本题属于基础题.
【分析】
根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:
22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.
【详解】
因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, 所以1223+++=+n n a a n , 两式相减得:22n n a a +-=,
所以奇数项为1,3,5,7,….的等差数列; 偶数项为2,4,6,8,10,….的等差数列; 所以数列{} n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()13
22122
⨯-⋅=,故错误; B. 令1n =时, 213122
S =+=,而 111
22S =,故错误;
C. 当1n =时, 213122
S =+
=,而 3113
2222-+=,成立,当2n ≥时,
211111...23521n n S S n =++++--,因为221n n >-,所以
11212n n >-,所以111111311...1 (352148222)
n n n ++++>++++=--,故正确; D. 因为21111...1232n n S S n n n n
-=+++++++,令()1111
...1232f n n n n n
=+++++++,因为
()11111
1()021*******f n f n n n n n n +-=+-=->+++++,所以()f n 得到递增,
所以()()1
12
f n f ≥=,故正确;
故选:CD 【点睛】
本题主要考查等差数列的定义,等比数列的前n 项和公式以及数列的单调性和放缩法的应用,还考查了转化求解问题的能力,属于较难题. 28.ABC 【分析】
利用代入法求出前几项的关系即可判断出a 1,b 1的取值范围,分组法求出其前2n 项和的表达式,分析,即可得解.
∵数列{a n }为递增数列;∴a 1<a 2<a 3; ∵a n +a n +1=2n ,
∴1223
24a a a a +=⎧⎨+=⎩;
∴12123
212244a a a a a a a +⎧⎨+=-⎩>>
∴0<a 1<1;故A 正确.
∴S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n ﹣1+a 2n )=2+6+10+…+2(2n ﹣1)=2n 2; ∵数列{b n }为递增数列; ∴b 1<b 2<b 3; ∵b n •b n +1=2n
∴122324b b b b =⎧⎨=⎩;
∴2132
b b b b ⎧⎨⎩>>;
∴1<b
1B 正确. ∵T 2n =b 1+b 2+…+b 2n
=(b 1+b 3+b 5+…+b 2n ﹣1)+(b 2+b 4+…+b 2n )
(
)()()()
12
1
2
12122
12
2
n
n
n
b b b b ⋅--=
+=+-
))
2121n n ≥-=-;
∴对于任意的n ∈N*,S 2n <T 2n ;故C 正确,D 错误. 故选:ABC 【点睛】
本题考查了分组法求前n 项和及性质探究,考查了学生综合分析,转化划归,数学运算的能力,属于较难题. 29.BCD 【分析】
举反例,反证,或按照等比数列的定义逐项判断即可. 【详解】
解:设{}n a 的公比为q ,
A. 设()1n
n a =-,则10n n a a ++=,显然{}1n n a a ++不是等比数列.
B.
221
1
n n n n a a q a a +++=,所以{}1n n a a +为等比数列.
C. ()()
242222212222
11n n n n n n a q q a a q a a a q +++++==++,所以{}
221n n a a ++为等比数列. D. 当1q =时,n S np =,{}n S 显然不是等比数列; 当1q ≠时,若{}n S 为等比数列,则()2
2
2
112n n n S S n S -+=≥,
即()
(
)()2
11
111
111111n n n a q a q a q q q q
-+⎛⎫⎛⎫⎛⎫---
⎪
⎪⎪= ⎪ ⎪⎪---⎝
⎭⎝
⎭⎝
⎭
,所以1q =,与1q ≠矛盾,
综上,{}n S 不是等比数列. 故选:BCD. 【点睛】
考查等比数列的辨析,基础题. 30.ABD 【分析】
由条件可得3
2
242q q q =+,解出q ,然后依次计算验证每个选项即可.
【详解】
由题意3
2
242q q q =+,得2
20q q --=,解得2q
(负值舍去),选项A 正确;
1222n n n a -=⨯=,选项B 正确;
()12212221
n n n S +⨯-=
=--,所以102046S =,选项C 错误;
13n n n a a a ++=,而243n n n a a a +=>,选项D 正确.
故选:ABD 【点睛】
本题考查等比数列的有关计算,考查的是学生对基础知识的掌握情况,属于基础题. 31.ABC 【分析】
由1418a a +=,23
12a a +=,31118a a q +=,21112a q a q +=,公比q 为整数,解得
1a ,q ,可得n a ,n S ,进而判断出结论.
【详解】
∵1418a a +=,23
12a a +=且公比q 为整数,
∴31118a a q +=,2
1112a q a q +=,
∴12a =,2q
或1
2
q =
(舍去)故A 正确, ()12122212
n n n S +-=
=--,∴8510S =,故C 正确;
∴1
22n n S ++=,故数列{}2n S +是等比数列,故B 正确;
而lg lg 2lg 2n
n a n ==,故数列{}lg n a 是公差为lg 2的等差数列,故D 错误.
故选:ABC . 【点睛】
本题主要考查了等比数列的通项公式和前n 项和公式以及综合运用,属于中档题. 32.BCD 【分析】
由数列的递推式可得1121n n n n a S S a ++=-=+,两边加1后,运用等比数列的定义和通项公
式可得n a ,1112211
(21)(21)2121n n n n n n n n a a +++==-----,由数列的裂项相消求和可得n T . 【详解】
解:由121n n n S S a +=++即为1121n n n n a S S a ++=-=+,
可化为112(1)n n a a ++=+,由111S a ==,可得数列{1}n a +是首项为2,公比为2的等比数列,
则12n
n a +=,即21n n a =-,
又1112211
(21)(21)2121n n n n n n n n a a +++==-----,可得22311
111111
111212*********
n n n n T ++=-
+-+⋯+-=-<------, 故A 错误,B ,C ,D 正确. 故选:BCD . 【点睛】
本题考查数列的递推式和等比数列的定义、通项公式,以及数列的裂项相消法求和,考查化简运算能力和推理能力,属于中档题. 33.AB 【分析】
由已知分别写出等差数列与等比数列的通项公式,求得数列{c n }的通项公式,利用数列的分组求和法可得数列{c n }的前n 项和T n ,验证得答案. 【详解】
由题意,a n =1+2(n ﹣1)=2n ﹣1,1
2
n n b -=,
n n b c a ==2•2n ﹣1﹣1=2n ﹣1,则数列{c n }为递增数列,
其前n 项和T n =(21﹣1)+(22﹣1)+(23﹣1)+…+(2n ﹣1) =(21+22+…+2n )﹣n (
)21212
n n -=
-=-2
n +1
﹣2﹣n .
当n =9时,T n =1013<2019; 当n =10时,T n =2036>2019. ∴n 的取值可以是8,9.
故选:AB 【点睛】
本题考查了分组求和,考查了等差等比数列的通项公式、求和公式,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 34.ABD 【分析】
根据题意,结合等差、等比数列的性质依次分析选项,综合即可得的答案. 【详解】
根据题意,依次分析选项:
对于A ,若数列{}n a 的前n 项和2
n S an bn c =++,
若0c =,由等差数列的性质可得数列{}n a 为等差数列, 若0c ≠,则数列{}n a 从第二项起为等差数列,故A 不正确;
对于B ,若数列{}n a 的前n 项和1
22n n S +=-,
可得1422a =-=,2218224a S S =-=--=,33216268a S S =-=--=, 则1a ,2a ,3a 成等比数列,则数列{}n a 不为等差数列,故B 不正确;
对于C ,数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯,即为
12n a a a ++⋯+,12n n a a ++⋯+,213n n a a ++⋯+,⋯,
即为2
2322n n n n n n n S S S S S S S n d --=---=为常数,仍为等差数列,
故C 正确;
对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,
比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故
D 不正确. 故选:ABD . 【点睛】
本题考查等差、等比数列性质的综合应用,考查逻辑思维能力和运算能力,属于常考题. 35.ACD 【分析】
根据新定义进行判断. 【详解】
A .若数列{}n a 是单增数列,则11111
111()(1)n n n n n n n n n n b b a a a a a a a a ------=--+=-+, 虽然有1n n a a ->,但当1
1
10n n a a -+<时,1n n b a -<,因此{}n b 不一定是单增数列,A 正确;
B .31n a n =-,则13131n b n n =--
-,易知{}n b 是递增数列,无最大值,B 错; C .31n a n =-,则13131
n b n n =--
-,易知{}n b 是递增数列,有最小值,最小值为1b ,C 正确; D .若112n n a ⎛⎫=-- ⎪⎝⎭,则111()121()2
n n n b =-----, 首先函数1y x x
=-在(0,)+∞上是增函数, 当n 为偶数时,1
1()(0,1)2n n a =-∈,∴10n n n
b a a =-<, 当n 为奇数时,11()2
n n a =+1>,显然n a 是递减的,因此1n n n b a a =-也是递减的, 即135b b b >>>
,∴{}n b 的奇数项中有最大值为13250236b =-=>, ∴156
b =是数列{}(*)n b n N ∈中的最大值.D 正确. 故选:ACD .
【点睛】
本题考查数列新定义,解题关键正确理解新定义,把问题转化为利用数列的单调性求最值.。