2019-2020学年度北师大二附中新高一入学分班考试数学试题-含详细解析
2019-2020学年度北师大二附中新初一入学分班考试数学试题-真题-含详细解析

2019-2020学年度北师大二附中新初一入学分班考试数学试题-真题一、选择题(本大题共11小题,共44分)1.甲、乙两人连续5次射击成绩如图所示,下列说法中正确的是()A. 甲的成绩更稳定B. 乙的成绩更稳定C. 甲、乙的成绩一样稳定D. 无法判断谁的成绩更稳定2.小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x杯饮料,y份沙拉,则他们点了几份A餐?()A. 10−xB. 10−yC. 10−x+yD. 10−x−y3.下表为小洁打算在某电信公司购买一支MAT手机与搭配一个号码的两种方案.此公司每个月收取通话费与月租费的方式如下:若通话费超过月租费,只收通话费;若通话费不超过月租费,只收月租费.若小洁每个月的通话费均为x元,x为400到600之间的整数,则在不考虑其他费用并使用两年的情况下,x至少为多少才会使得选择乙方案的总花费比甲方案便宜?()甲方案乙方案号码的月租费(元)400600MAT手机价格(元)1500013000注意事项:以上方案两年内不可变更月租费A. 500B. 516C. 517D. 6004.甲、乙两人匀速在400米环形跑道上跑步,同时同地出发,如果相向而行,每隔1分钟相遇一次;如果同向而行,每隔5分钟相遇一次,已知甲比乙的速度快.则下列选项中正确的是()A. 甲每分钟跑160米,乙每分钟跑240米B. 甲每分钟跑240米,乙每分钟跑160米C. 甲每分钟跑180米,乙每分钟跑220米D. 甲每分钟跑220米,乙每分钟跑180米5.如图是某校参加兴趣小组的学生人数分布的扇形统计图,则参加人数最少的兴趣小组是()A. 棋类B. 书画C. 球类D. 演艺6.某旅行团到森林游乐区参观,如表为两种参观方式与所需的缆车费用.已知旅行团的每个人皆从这两种方式中选择一种,且去程有15人搭乘缆车,回程有10人搭乘缆车.若他们缆车费用的总花费为4100元,则此旅行团共有多少人?()参观方式缆车费用去程及回程均搭乘缆车300元单程搭乘缆车,单程步行200元A. 16B. 19C. 22D. 257.桌面上有甲、乙、丙三个杯子,三杯内原本均装有一些水.先将甲杯的水全部倒入丙杯,此时丙杯的水量为原本甲杯内水量的2倍多40毫升;再将乙杯的水全部倒入丙杯,此时丙杯的水量为原本乙杯内水量的3倍少180毫升.若过程中水没有溢出,则原本甲、乙两杯内的水量相差多少毫升?()A. 80B. 110C. 140D. 2208.阿慧在店内购买两种蛋糕当伴手礼,如图为蛋糕的价目表.已知阿慧购买10盒蛋糕,花费的金额不超过2500元.若他将蛋糕分给75位同事,每人至少能拿到一个蛋糕,则阿慧花多少元购买蛋糕?()A. 2150B. 2250C. 2300D. 24509.某场音乐会贩卖的座位分成一楼与二楼两个区域.若一楼售出与未售出的座位数比为4:3,二楼售出与未售出的座位数比为3:2,且此场音乐会一、二楼未售出的座位数相等,则此场音乐会售出与未售出的座位数比为何?()A. 2:1B. 7:5C. 17:12D. 24:1710.如图(一),OP为一条拉直的细线,A、B两点在OP上,且OA:AP=1:3,OB:BP=3:5.若先固定B点,将OB折向BP,使得OB重迭在BP上,如图(二),再从图(二)的A点及与A点重迭处一起剪开,使得细线分成三段,则此三段细线由小到大的长度比为()A. 1:1:1B. 1:1:2C. 1:2:2D. 1:2:511.小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数.小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加7.若小昱在某页写的数为101,则阿帆在该页写的数为何?()A. 350B. 351C. 356D. 358二、填空题(本大题共7小题,共23.0分)12.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但倍,购进数量比第一次少了30支.则该商店第这次每支的进价是第一次进价的54一次购进的铅笔,每支的进价是________元.13.下列图形是用围棋子按一定规律摆放的,根据摆放规律,第20个图中围棋子的个数是______.14.某中学规定学生体育成绩满分为100分,按课外活动成绩、期中成绩、期末成绩2:3:5的比,计算学期成绩.小明同学本学期三项成绩依次为90分、90分、80分,则小明同学本学期的体育成绩是______分.15.“元旦”期间,某商店单价为130元的书包按八折出售可获利30%,则该书包的进价是______元.16.如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是______.17.《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为___.18.如图,下列各图中的三个数之间具有相同规律.依此规律用含m,n的代数式表示y,则y=______.三、解答题(本大题共6小题,共39.0分)19.某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x千克,付款金额为y元.某农户一次购买玉米种子30千克,需付款多少元?20.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.21.学校在“我和我的祖国”快闪拍摄活动中,为学生化妆.其中5名男生和3名女生共需化妆费190元;3名男生的化妆费用与2名女生的化妆费用相同.(1)求每位男生和女生的化妆费分别为多少元;(2)如果学校提供的化妆总费用为2000元,根据活动需要至少应有42名女生化妆,那么男生最多有多少人化妆.22.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮的传播就会有144台电脑被感染,请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?23.我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.24.甲袋中装有4个相同的小球,分别标有3,4,5,6;乙袋中装有3个相同的小球,分别标有7,8,9.芳芳和明明用摸球记数的方法在如图所示的正六边形ABCDEF的边上做游戏,游戏规则为:游戏者从口袋中随机摸出一个小球,小球上的数字是几,就从顶点A按顺时针方向连续跳动几个边长,跳回起点者获胜;芳芳只从甲袋中摸出一个小球,明明先后从甲、乙口袋中各摸出一个小球.如:先后摸出标有4和7的小球,就先从点A按顺时针连跳4个边长,跳到点E,再从点E顺时针连跳7个边长,跳到点F.分别求出芳芳、明明跳回起点A的概率,并指出游戏规则是否公平.答案和解析1.【答案】B【解析】解:由折线图可知,乙与其平均值的离散程度较小,所以稳定性更好.故选:B.根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.本题考查了方差的意义:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.本题也可以分别计算出甲、乙的方差再判断.2.【答案】D【解析】解:x杯饮料则在B餐中点了x份意大利面,y份沙拉则在C餐中点了y份意大利面,∴点A餐为10−x−y;故选:D.根据点的饮料和沙拉能确定点了x+y份意大利面,根据题意可得点A餐10−x−y;本题考查列代数式;能够根据题意,以意大利面为依据,准确列出代数式是解题的关键.3.【答案】C【解析】解:∵x为400到600之间的整数,∴若小洁选择甲方案,需以通话费计算,若小洁选择乙方案,需以月租费计算,甲方案使用两年总花费=24x+15000;乙方案使用两年总花费=24×600+13000= 27400.由已知得:24x+15000>27400,,即x至少为517.解得:x>51623故选C.由x的取值范围,结合题意找出甲、乙两种方案下两年的总花费各是多少,再由乙方案比甲方案便宜得出关于x的一元一次不等式,解不等式即可得出结论.本题考查了一元一次不等式的应用以及一次函数的应用,解题的关键是结合题意找出关于x的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出不等式(方程或方程组)是关键.4.【答案】B【解析】【分析】本题考查了由二元一次方程组的应用知识,是个行程问题,一次相遇,一次追及,根据路程可列方程组求解.设甲每分钟跑x 米,乙每分钟跑y 米,根据相向而行第一次相遇时两人的总路程为400米,同向行走第一次相遇甲比乙多走400米,可得出方程组.【解答】解:设甲每分钟跑x 米,乙每分钟跑y 米,由题意,得:{x +y =4005x −5y =400, 解得{x =240y =160故选B .5.【答案】A【解析】解:因为“书画”人数所占百分比为1−(30%+35%+17%)=18%, 所以参加人数最少的兴趣小组是棋类,故选:A .根据扇形统计图中扇形的面积越大,参加的人数越多,可得答案.本题考查了扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.6.【答案】A【解析】解:设此旅行团有x 人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有y 人,根据题意得,{200x +300y =4100(15−y)+(10−y)=x, 解得,{x =7y =9, 则总人数为7+9=16(人)故选:A .设此旅行团有x 人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有y 人,根据题意列出二元一次方程,求出其解.本题是二元一次方程组的应用,主要考查了列二元一次方程组解应用题,关键是读懂题意,找出等量关系,列出方程组.7.【答案】B【解析】解:设甲杯中原有水a 毫升,乙杯中原有水b 毫升,丙杯中原有水c 毫升,{a +c −40=2a ①a +b +c +180=3b ②②−①,得b −a =110,故选B .根据题意可以分别设出甲、乙、丙三个杯子内原有水的体积,然后根据题意可以列出方程组,然后作差即可得到原本甲、乙两杯内的水量相差多少毫升,本题得以解决. 本题考查三元一次方程组的应用,解题的关键是明确题目中的等量关系,列出相应的方程组,巧妙变形,得到所求问题的答案. 8.【答案】D【解析】解:设阿慧购买x 盒桂圆蛋糕,则购买(10−x)盒金爽蛋糕,依题意有 {350x +200(10−x)≤250012x +6(10−x)≥75, 解得212≤x ≤313,∵x 是整数,∴x =3,350×3+200×(10−3)=1050+1400=2450(元).答:阿慧花2450元购买蛋糕.故选:D .可设阿慧购买x 盒桂圆蛋糕,则购买(10−x)盒金爽蛋糕,根据不等关系:①购买10盒蛋糕,花费的金额不超过2500元;②蛋糕的个数大于等于75个,列出不等式组求解即可.本题考查一元一次不等式组的应用,解答此类问题的关键是明确题意,列出相应的一元一次不等式组,注意要与实际相联系.9.【答案】C【解析】解:设一楼座位总数为7x,则一楼售出座位4x个,未售出座位3x个,二楼座位总数为5y,则二楼售出座位3y个,未售出座位2y个,根据题意,知:3x=2y,即y=32x,则4x+3y3x+2y =4x+3×32x3x+2×32x=172x6x=1712,故选:C.设一楼座位总数为7x,二楼座位总数为5y,分别表示出一、二楼售出、未售出的座位数,由一、二楼未售出的座位数相等得到y关于x的表达式,再列式表示此场音乐会售出与未售出的座位数比,将y代入化简即可得.本题主要考查方程思想及分式的运算,根据一、二楼未售出的座位数相等得到关于y 关于x的表达式是解题的关键.10.【答案】B【解析】解:设OP的长度为8a,∵OA:AP=1:3,OB:BP=3:5,∴OA=2a,AP=6a,AB=a,OB=3a,BP=5a,又∵先固定B点,将OB折向BP,使得OB重迭在BP上,如图(二),再从图(二)的A 点及与A点重迭处一起剪开,使得细线分成三段,∴这三段从小到大的长度分别是:2a、2a、4a,∴此三段细线由小到大的长度比为:2a:2a:4a=1:1:2,故选:B.根据题意可以设出线段OP的长度,从而根据比值可以得到图(一)中各线段的长,根据题意可以求出折叠后,再剪开各线段的长度,从而可以求得三段细线由小到大的长度比,本题得以解决.本题考查比较线段的长短,解题的关键是理解题意,求出各线段的长度.11.【答案】B【解析】解:小昱所写的数为1,3,5,7,…,101,…;阿帆所写的数为1,8,15,22,…,设小昱所写的第n个数为101,根据题意得:101=1+(n −1)×2,整理得:2(n −1)=100,即n −1=50,解得:n =51,则阿帆所写的第51个数为1+(51−1)×7=1+50×7=1+350=351. 故选:B .根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n 个数为101,根据规律确定出n 的值,即可确定出阿帆在该页写的数.此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.12.【答案】4【解析】【分析】本题考查了分式方程的应用有关知识,设该商店第一次购进铅笔的单价为x 元/支,则第二次购进铅笔的单价为54x 元/支,根据单价=总价÷数量结合第二次购进数量比第一次少了30支,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设该商店第一次购进铅笔的单价为x 元/支,则第二次购进铅笔的单价为54x 元/支,根据题意得:600x −60054x =30,解得:x =4,经检验,x =4是原方程的解,且符合题意.答:该商店第一次购进铅笔的单价为4元/支.故答案为4.13.【答案】420【解析】解:∵图1中棋子的数量2=1×2,图2中棋子的数量6=2×3,图3中棋子的数量12=3×4,……∴第20个图中围棋子的个数是20×21=420,故答案为:420.根据已知图形得出图n中围棋子数量为n(n+1),据此可得.本题主要考查图形的变化规律,解题的关键是根据题意得出图n中围棋子数量为n(n+ 1).14.【答案】85【解析】解:90×22+3+5+90×32+3+5+80×52+3+5=85(分),故答案为:85.根据加权平均数的计算方法进行计算即可.本题考查加权平均数的意义和计算方法,理解加权平均数的意义,掌握加权平均数的计算方法是正确解答的前提.15.【答案】80【解析】解:设该书包的进价为x元,根据题意得:130×80%−x=30%x,整理得:1.3x=104,解得:x=80,则该书包的进价是80元.故答案为:80.设该书包的进价为x元,根据售价×80%−进价=进价×利润率列出方程,求出方程的解即可得到结果.此题考查了一元一次方程的应用,弄清题中的等量关系是解本题的关键.16.【答案】556个【解析】解:因为前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,所以前区最后一排座位数为:20+2(8−1)=34,所以前区座位数为:(20+34)×8÷2=216,以为前区最后一排与后区各排的座位数相同,后区一共有10排,所以后区的座位数为:10×34=340,所以该礼堂的座位总数是216+340=556个.故答案为:556个.根据题意可得前区最后一排座位数为:20+2(8−1)=34,所以前区座位数为:(20+34)×8÷2=216,后区的座位数为:10×34=340,进而可得该礼堂的座位总数.本题考查了规律型:数字的变化类,解决本题的关键是根据数字的变化性质规律.17.【答案】6【解析】解:设阅读过《西游记》的人数是a,阅读过《水浒传》的人数是b(a,b均为整数),依题意,得:{a>bb>4 a<8,∵a,b均为整数∴4<b<7,∴b最大可以取6.故答案为:6.设阅读过《西游记》的人数是a,阅读过《水浒传》的人数是b(a,b均为整数),根据给定的三个条件,即可得出关于a,b的二元一次不等式组,结合a,b均为整数即可得出b的取值范围,再取其中最大的整数值即可得出结论.本题考查二元一次不等式组的应用,根据各数量之间的关系,正确列出二元一次不等式组是解题的关键.18.【答案】m(n+2)【解析】解:∵1×(2+2)=4,3×(4+2)=18,5×(6+2)=40,…,∴y=m(n+2),故答案为m(n+2).根据数的特点,上边的数与比左边的数大2的数的积正好等于右边的数,然后写出M 与m、n的关系即可本题是对数字变化规律的考查,观察出上边的数与比左边的数大2的数的积正好等于右边的数是解题的关键.19.【答案】解:(1)根据题意,得①当0≤x≤5时,y=20x;②当x >5,y =20×0.8(x −5)+20×5=16x +20;(2)把x =30代入y =16x +20,∴y =16×30+20=500;∴一次购买玉米种子30千克,需付款500元;【解析】(1)根据题意,得①当0≤x ≤5时,y =20x ;②当x >5,y =20×0.8(x −5)+20×5=16x +20;(2)把x =30代入y =16x +20,即可求解;本题考查一次函数的应用;能够根据题意准确列出关系式,利用代入法求函数值是解题的关键.20.【答案】解:设乙每小时做x 个零件,甲每小时做(x +6)个零件,根据题意得:90x+6=60x , 解得:x =12,经检验,x =12是原方程的解,且符合题意,∴x +6=18.答:乙每小时做12个零件.【解析】设乙每小时做x 个零件,甲每小时做(x +6)个零件,根据时间=总工作量÷工作效率,即可得出关于x 的分式方程,解之并检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 21.【答案】解:(1)设每位男生的化妆费是x 元,每位女生的化妆费是y 元,依题意得:{5x +3y =1903x =2y. 解得:{x =20y =30. 答:每位男生的化妆费是20元,每位女生的化妆费是30元;(2)设男生有a 人化妆,依题意得:2000−20a 30≥42.解得a ≤37.即a 的最大值是37.答:男生最多有37人化妆.【解析】(1)设每位男生的化妆费是x 元,每位女生的化妆费是y 元.关键描述语:5名男生和3名女生共需化妆费190元;3名男生的化妆费用与2名女生的化妆费用相同.(2)设男生有a 人化妆,根据女生人数=2000−男生化妆费用3≥42列出不等式并解答. 考查了一元一次不等式的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.22.【答案】解:设每轮感染中平均一台电脑会感染x 台电脑,根据题意得:1+x +(1+x)x =144,整理,得:x 2+2x −143=0,解得:x 1=11,x 2=−13(不合题意,舍去).答:每轮感染中平均一台电脑会感染11台电脑.【解析】设每轮感染中平均一台电脑会感染x 台电脑,根据经过两轮的传播共有144台电脑被感染,即可得出关于x 的一元二次方程,解之取其正值即可得出结论. 本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.【答案】解:(1)设每头牛值x 两银子,每只羊值y 两银子,根据题意得:{5x +2y =192x +5y =16, 解得:{x =3y =2. 答:每头牛值3两银子,每只羊值2两银子.(2)设购买a 头牛,b 只羊,依题意有3a +2b =19,b =19−3a 2,∵a ,b 都是正整数,∴①购买1头牛,8只羊;②购买3头牛,5只羊;③购买5头牛,2只羊.【解析】(1)设每头牛值x 两银子,每只羊值y 两银子,根据“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.(2)可设购买a头牛,b只羊,根据用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),列出方程,再根据整数的性质即可求解.本题考查了二元一次方程(组)的应用,找准等量关系,正确列出二元一次方程(组)是解题的关键.24.【答案】解:芳芳:画树状图可得:有4种等可能的结果,其中1种能跳回起点A,;故芳芳跳回起点A的概率为14明明:画树状图可得:有12种等可能的结果,其中3种能跳回起点A,;故明明跳回起点A的概率为14∴芳芳、明明跳回起点A的概率相等,故游戏规则公平.【解析】运用树状图法,分别求得芳芳、明明跳回起点A的概率,进而得出游戏规则是否公平.本题主要考查了游戏的公平性,判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.。
2019-2020学年北京师大附中高一(上)第一次月考数学试卷及答案

2019-2020学年北京师大附中高一(上)第一次月考数学试卷一、选择题共8小题,每小题4分,共32分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.(4分)设集合A={0,1,2,3},集合B={2,3,4},则A∩B=()A.{2,3}B.{0,1}C.{0,1,4}D.{0,1,2,3,4} 2.(4分)命题“∃x0∈R,x02+x0+1<0”的否定为()A.不存在x0∈R,B.∃x0∈R,C.∀x∈R,x2+x+1<0D.∀x∈R,x2+x+1≥03.(4分)设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC ⊥BD”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(4分)对于任意实数a,b,c,d以下四个命题中,其中正确的有()①ac2>bc2,则a>b,②若a>b,c>d,则a+c>b+d;③若a>b,c>d,则ac>bd;④若a>b,则.A.4个B.3个C.2个D.1个5.(4分)已知正数x,y满足xy=16,则x+y()A.有最大值4B.有最小值4C.有最大值8D.有最小值8 6.(4分)如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪S C.(M∩P)∩∁I S D.(M∩P)∪∁I S 7.(4分)已知集合A={a﹣2,a2+4a,10},若﹣3∈A,则实数a的值为()A.﹣1B.﹣3C.﹣3或﹣1D.无解8.(4分)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙二、填空题共8小题,每小题4分,共32分9.(4分)不等式组的解集为.10.(4分)若集合A={x||x﹣1|<1},B={x|x2﹣x=0},则A∪B=.11.(4分)关于x的不等式ax2+bx+2>0的解集是{x|﹣1<x<2},则a+b=.12.(4分)已知x>1,当x=时,则有最小值为.13.(4分)若不等式ax2+ax﹣1>0的解集为∅,则实数a的取值范围是.14.(4分)已知集合A={x|<0},若1∉A,则实数a的取值范围为.15.(4分)已知集合A={x|x<a},B={x|x2﹣5x+4≥0},若P:“x∈A”是Q:“x∈B”的充分不必要条件,则实数a的取值范围为.16.(4分)设a+b=2019,b>0,则当a=时,+取得最小值.三、解答题共4小题,共36分。
2019-2020学年度北师大实验中学新高一入学分班考试数学试题-含详细解析

6.
A. 乙盒中黑球不多于丙盒中黑球
B. 乙盒中红球与丙盒中黑球一样多
C. 乙盒中红球不多于丙盒中红球
D. 乙盒中黑球与丙盒中红球一样多
某学校运动会的立定跳远和 30 秒跳绳两个单项比赛分成预赛和决赛两个阶段,表中为 10 名学生的预赛成
绩,其中有三个数据模糊.
学生序号
1
2
“割圆术”相似,数学家阿尔⋅卡西的方法是:当正整数 n 充分大时,计算单位圆的内接正 6n 边形的周长和外切
正 6n 边形(各边均与圆相切的正 6n 边形)的周长,将它们的算术平均数作为2的近似值.按照阿尔⋅卡西的方
法,的近似值的表达式是(
A. 3(sin
C. 3(sin
3.
30°
60°
19.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:
()男学生人数多于女学生人数;
()女学生人数多于教师人数;
()教师人数的两倍多于男学生人数.
①若教师人数为 4,则女学生人数的最大值为______.
②该小组人数的最小值为______.
第 5 页,共 23 页
20.某网店统计了连续三天售出商品的种类情况:第一天售出 19 种商品,第二天售出 13 种商品,第三天售出 18 种
A. 中位数
B. 平均数
C. 方差
D. 极差
11. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有 2 位优秀,2 位良好,我
现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,
根据以上信息,则(
)
A. 乙可以知道两人的成绩
高一新生分班考试数学试卷含答案

CB高一新生分班考试数学试卷(含答案)(满分150分,考试时间120分钟)一、选择题(每题5分,共40分) 1.化简=-2aa ( )A .aB .a -C .aD .2a2.分式1||22---x x x 的值为0,则x 的值为 ( )A .21或-B .2C .1-D .2-3.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点。
若EF =2,BC =5,CD =3, 则tan C 等于 ( )A .43 B .35 C .34 D .45 4.如图,P A 、PB 是⊙O 切线,A 、B 为切点,AC 是直径,∠P = 40°,则∠BAC =( )A .040 B .080 C .020 D .0105.在两个袋内,分别装着写有1、2、3、4四个数字的4张卡片,今从每个袋中各任取一张卡片,则所取两卡片上数字之积为偶数的概率是 ( )A .21 B .165 C .167 D .436.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( ) A . 6B.4C .5D . 37.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动B CD CB A 路线是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是 ( )8.若直角坐标系内两点P 、Q 满足条件①P 、Q 都在函数y 的图象上②P 、Q 关于原点对称,则称点对(P ,Q )是函数y 的一个“友好点对”(点对(P ,Q )与(Q ,P )看作同一个“友好点对”)。
已知函数⎪⎩⎪⎨⎧>≤++=02101422x xx x x y ,,,则函数y 的“友好点对”有( )个A .0 B.1 C. 2 D.3注意:请将选择题的答案填入表格中。
北京师范大学第二附属中学2019-2020学年高一上学期期中考试数学试题含解析

(2)命题 错误,
因为 , 是正实数,所以 显然不成立,故命题 错误.
【点睛】本题考查判断命题的真假、利用基本不等式证明不等式,还考查了转化的数学思想,是中档题.
17.函数 是定义在 上的奇函数,当 时, .
(1)计算 , ;
(2)当 时,求 的解析式.
【答案】(1) ;(2) ;(3)
【解析】
【分析】
(1)根据题意,设出 的解析式,根据题中条件,求得对应的参数,得到结果;
(2)利用一元二次方程根的分布,列出对应的不等式,求得结果;
(3)根据题中所给的条件,列出对应的不等式,求得结果.
【详解】(1)由已知可设 ,
因为 ,所以 ,
因为 ,即 的解集为 ,
【详解】(1)根据题意,f(x)= 是定义在R上的奇函数,且f(1)=1,
则f(-1)=-f(1)=-1,
则有 ,解可得a=5,b=0;经检验,满足题意
(2)由(1)的结论,f(x)= ,
设 <x1<x2,
f(x1)-f(x2)= - = ,
又由 <x1<x2,则(1-4x1x2)<0,(x1-x2)<0,
【答案】 ,
【解析】
【分析】
本题先假设 成立,再求出 ,最后令值即可.
【详解】解:-假设 成立,则 ,
当 时, ,此时 、 是不相等的正数,
故命题为真命题的一组 , 的值为: ,
故答案为: ,
【点睛】本题考查利用命题的真假求参数值,答案不唯一,是开放性试题.
13.若关于 的不等式 在 上有解,则 的取值范围是_________
【答案】{x|x<-2或x>2}
【解析】
北京市师范大学附中2019_2020学年高一数学上学期期中试题(含解析)

北京师范大学附属实验中学2019-2020学年高一上学期期中考试数学试题一、选择题(本大题共8小题) 1.若集合A={}0,1,2,4,B={}1,2,3,则A B =( )A. {}0,1,2,3,4B. {}0,4C. {}1,2D. {}3【答案】C 【解析】 【详解】因为{}1,2AB =,所以选C.考点:本小题主要考查集合的基本运算,属容易题,熟练集合的基础知识是解答好集合题目的关键.2.已知ln 2a =,ln3b =,那么3log 2用含a ,b 的代数式表示为( ). A. -a b B.abC. abD. +a b【答案】B 【解析】由换底公式可得:32log 23ln aln b==. 故选B.3.下列函数中,既是偶函数又在区间(0,)+∞上单调递增的是 ( ) A. ()ln ||f x x = B. ()2-=xf x C. 3()f x x = D. 2()f x x =-【答案】A 【解析】对于A,()()ln f x x f x -==,() ln f x x =是偶函数,且在区间()0,+∞上单调递增,符合题意;对于B, 对于()2xf x -=既不是奇函数,又不是偶函数,不合题意;对于C,()3f x x =是奇函数,不合题意;对于D,()2 f x x =-在区间()0,+∞上单调递减,不合题意,只有()ln f x x =合题意,故选A.4.设函数()1,0,x QD x x Q∈⎧=⎨∉⎩,则(f f ⎡⎤⎣⎦的值为( ).A. 0B. 1C. 1-D. 不存在【答案】B 【解析】 【分析】推导出f ()=0,从而(f f ⎡⎤⎣⎦=f (0),由此能求出结果.【详解】∵函数()1,0,x QD x x Q ∈⎧=⎨∉⎩,∴f ()=0,∴(f f ⎡⎤⎣⎦=f (0)=1.故选:B .【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题. 5.已知5log 2a =,0.5log 0.2b =,0.20.5c =,则,,a b c 的大小关系为( ) A. a c b << B. a b c << C. b c a << D. c a b <<【答案】A 【解析】 【分析】利用10,,12等中间值区分各个数值的大小。
北京师范大学第二附属中学2019-2020学年高一年级上学期期中数学

北京师大二附中2019-2020学年高一年级期中数学一、选择题(本大题共8个小题,每小题5分,共40分)1.已知集合{1,2,4},{2,4,5}A B ==,则A B ⋃=()A.{1,2,5}B.{2,4}C.{2,4,5}D.{1,2,4,5}2.函数()13f x x =-的定义域是() A.[)2,+∞ B.()3,+∞ C.[)()2,33,⋃+∞ D.()()2,33,⋃+∞3.下列函数中是偶函数的是()A.()40y x x =<B.1y x =+C.221y x =+ D.31y x =- 4.若12,x x 是方程22630x x -+=的两个根,则1211x x +的值为() A.2 B.-2 C.12 D.925.设命题2:,2n p n N n ∃∈>,则p ⌝为()A.2,2n n N n ∀∈>B.2,2n n N n ∃∈≤C.2,2n n N n ∀∈≤D.2,2n n N n ∃∈=6.下列四个条件中,使a b >成立的充分不必要的条件是()A.1a b >+B.1a b >-C.22a b >D.33a b >7.已知4枝郁金香和5枝丁香的价格之和小于22元,而6枝郁金香和3枝丁香的价格之和大于24元。
设1枝郁金香的价格为A 元,1枝丁香的价格为B 元,则A,B 的大小关系为()A.A B >B.A B =C.A B <D.不确定8.对于非空数集M ,定义()f M 表示该集合中所有元素的和。
给定集合{2,3,4,5}S =,定义集合(){,}T f A A S A =⊆≠∅,则集合T 的元素的个数为()A.11B.12C.13D.14二、填空题(本大题共6个小题,每小题5分,共30分)9.“12x <<”是“2x <”的条件。
(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)10.若()0,1x ∈,则()1x x -的最大值为11.不等式220x x -++<的解集是12.能够说明“存在不相等的正数,a b ,使得a b ab +=”是真命题的一组,a b 的值为13.若关于x 的不等式13x x m -+-<在[]0,4x ∈上有解,则m 的取值范围是14.设函数()f x 的定义域()1,1-,且满足:①()()0,1,0f x x >∈-;②()()(),,1,11x y f x f y f x y xy ⎛⎫++=∈- ⎪+⎝⎭,则有以下命题: (1)()f x 是奇函数(2)()f x 是偶函数(3)()f x 是减函数(4)存在M R ∈,使得对于任意()1,1x ∈-,都有()f x M ≤以上正确命题的序号是三、解答题(本大题共6个小题,共60分)15.设,{1},{05}U R A x x B x x ==≥=<<,求()A U C B ⋃和()B U AC ⋂ 16.判断以下两个命题是否正确,并加以解释(1)命题:p 若,a b是正实数,则211a b ≤+(2)命题:q 若,a b是正实数,则2a b +>17.已知函数()f x 是定义在R 上的奇函数,且当0x >时,()21f x x x =-+ (1)计算()()0,1f f -;(2)当0x <时,求()f x 的解析式18.函数()241ax b f x x +=+是定义在R 上的奇函数,且()11f = (1)求,a b 的值(2)判断()f x 在1,2⎛⎫+∞⎪⎝⎭的单调性,并利用单调性的定义证明19.已知函数()y f x =为二次函数,()04f =,且关于x 的不等式()20f x -<的解集为{12}x x <<(1)求函数()f x 的解析式(2)若关于x 的方程()0f x m -=有一实根大于1,一实根小于1,求实数m 的取值范围(3)已知()1g x x =+,若存在x 使()y f x =的图象在()y g x =图象的上方,求满足条件的实数x 的取值范围20.已知函数()()2210g x ax ax b a =-++>在区间[]2,4上的最大值为9,最小值为1,记()()f xg x = (1)求实数,a b 的值(2)定义在[],p q 上的函数()x ϕ,()*011,,,,,,,2i i n p x x x x x q n N n -=<<<<<<=∈≥,对于任意大于等于2的自然数n ,11......n x x -都将区间[],p q 任意划分成n 个小区间,如果存在一个常数0M >,使得和式()()11ni i i x x M ϕϕ-=-≤∑恒成立,则称函数()x ϕ为在[],p q 上的有界变差函数。
2019--2020学年度第二学期高一年级开学考试数学试卷

绝密★本科目考试启用前2019--2020学年度第二学期高一年级开学考试首都师范大学附属中学开学考试考试时间2020年2月18日数学(北京海淀卷)(考试时间:120分钟试卷满分:150分)考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、单项选择题:共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)设集合{}0M =,{}1,0,1N =-,那么下列结论正确的是(A )M=∅(B )MN ∈(C )M N Ü(D )N MÜ(2)下列函数为偶函数的是(A )y x=(B )ln y x=(C )xy e =(D )3y x =(3)已知函数sin y x =在区间M 上单调递增,那么区间M 可以是(A )(0,2)π(B )(0,)π(C )(0,)23π(D )(0,)2π(4)命题”,2x A x B ∀∈∈”的否定为(A ),2x A x B ∃∈∉(B ),2x A x B ∃∉∈(C ),2x A x B ∀∈∉(D ),2x A x B∀∉∈(5)若ab >,则下列不等式一定成立的是(A )22a b>(B )22a b>(C )1122a b>(D )11a b<(6)下列各式正确的是(A )sinsin 55π6π<(B )6cos3cos π<⎪⎭⎫⎝⎛π-(C )tan(tan()55π2π-<-(D )72cos 72sinπ<π(7)“a ,b 为正实数”是“a b +>(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(A )(B )(C )(D )二、多项选择题:本大题共2小题,每小题5分,共10分。
在每小题给出的四个选项中,有多项符合题目要求。
全部选对的得5分,选对但不全的得2分,有选错的得0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年度北师大二附中新高一入学分班考试数学试题一、选择题(本大题共12小题,共60分)1.已知我市某居民小区户主人数和户主对户型结构的满意率分别如图1和图2所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取30%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为()A. 240,18B. 200,20C. 240,20D. 200,182.如图,半径为1的圆M与直线l相切于点A,圆M沿着直线l滚动.当圆M滚动到圆M′时,圆M′与直线l相切于点B,点A运动到点A′,线段AB的长度为3π2,则点M′到直线BA′的距离为()A. 1B. √32C. √22D. 123.众所周知的“太极图”,其形状如对称的阴阳两鱼互抱在一起,因而也被称为“阴阳鱼太极图”,如图所示,放在平面直角坐标系中的“太极图”,整个图形是一个圆形,其中黑色阴影区域在y轴右侧部分的为一个半圆,给出以下命题:①在太极图中随机取一点,此点取自黑色阴影部分的概率是12②当a=−43时,直线y=a(x−2)与黑色阴影部分有公共点③当a∈[0,1]时,直线y=a(x−2)与黑色阴影部分有两个公共点其中所有正确结论的序号是()A. ①B. ②C. ③D. ①②4.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.学生序号12345678910立定跳远(单位:米) 1.96 1.92 1.82 1.80 1.78 1.76 1.74 1.72 1.68 1.6030秒跳绳(单位:次)63a7560637270a−1b65在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则()A. 2号学生进入30秒跳绳决赛B. 5号学生进入30秒跳绳决赛C. 8号学生进入30秒跳绳决赛D. 9号学生进入30秒跳绳决赛5.在2018年3月5日召开的第十三届全国人民代表大会第一次会议上,李克强总理代表国务院向大会报告政府工作,报告中指出:十八大以来的五年,是我国发展进程中极不平凡的五年.五年来,国内生产总值从54万亿元增加到82.7万亿元,年均增长7.1%,占世界经济比重从11.4%提高到15%左右,对世界经济增长贡献率超过30%,经济实力跃上新台阶,居民消费价格年均上涨1.9%,保持较低水平.2018年2月国家统计局发布了《2017年国民经济和社会发展统计公报》,其中“2017年居民消费价格月度涨跌幅度”的折线图如图:说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2017年12月与2016年12月相比较;同比增长率=(本期数一同期数)÷同期数×100%.环比是指本期统计数据与上期统计数据相比较,例如2017年12月与2017年11月相比较;环比增长率=(本期数一上期数)÷上期数×100%.根据上述信息,下列结论中错误的是()A. 从2017年每月的环比增长率看,2017年每月居民消费价格逐月比较有涨有跌B. 从2017年每月的环比增长率看,2017年每月居民消费价格逐月比较1月涨幅最大C. 从2017年每月的同比增长率看,2017年每月居民消费价格与2016年同期比较有涨有跌D. 从2017年每月的同比增长率看,2017年每月居民消费价格与2016年同期比较1月涨幅最大6.为了促进经济结构不断优化,2015年中央财经领导小组强调“着力加强供给侧结构性改革”.2017年国家统计局对外发布报告“前三季度全国工业产能利用率达到五年来最高水平”,报告中指出“在供给侧结构性改革持续作用下,今年以来去产能成效愈加凸显,供求关系稳步改善”.如图为国家统计局发布的2015年以来我国季度工业产能利用率的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,;例如2016年第二季度与2015年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2015年第二季度与2015年第一季度相比较.根据上述信息,下列结论中错误的是()A. 2016年第三季度和第四季度环比都有提高B. 2017年第一季度和第二季度环比都有提高C. 2016年第三季度和第四季度同比都有提高D. 2017年第一季度和第二季度同比都有提高7.“远望嵬嵬塔七层,红光点点倍加增,共灯三百八十一,请问尖头几碗灯?”源自明代数学家吴敬所著的《九章詳註比纇算法大全》,通过计算得到的答案是()A. 2B. 3C. 4D. 58.2012年我国环境保护部批准《环境空气质量指数(AQI)技术规定(试行)》为国家环境保护标准,其中“空气质量指数(Air Quality Index,简称AQI)”是定量描述空气质量状况的无量纲指数,其类别如表所示:根据北京市2014年和2015年的AQI数据,得到如图:根据上述信息,从统计学角度分析,下列结论中不正确的是()A. 2014年有9个月的AQI类别属于“轻度污染”B. 2015年12月份AQI类别为“优”的天数一定为0C. 2014年上半年AQI数据标准差大于2015年上半年AQI数据标准差D. 每年的第二、第三季度空气质量较好9.某射击俱乐部四名运动员甲、乙、丙、丁在选拔赛中所得的平均环数x及其方差s2如表所示,若从中选送一人参加决赛,则最佳人选是()甲乙丙丁x9.19.39.39.2s2 5.7 6.2 5.7 6.4A. 甲B. 乙C. 丙D. 丁10.如图是王珊早晨离开家边走边背诵英语过程中离家距离y与行走时间x之间函数关系的图象.若用黑点表示王珊家的位置,则王珊步行走的路线可能是()A. B. C. D.11.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为().A. 甲、乙、丙B. 乙、甲、丙C. 丙、乙、甲D. 甲、丙、乙12.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A. 3699块B. 3474块C. 3402块D. 3339块二、填空题(本大题共6小题,共30分)13.设x∈R,使不等式3x2+x−2<0成立的x的取值范围为______.14.已知有四个数1,2,a,b,这四个数的中位数是3,平均数是4,则ab=.15.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周盒体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+11+11+⋯中“…”即代表无限次重复,但原式却是个定值,它可以通过方程1+1x =x,求得x=1+√52,类似上述过程,则√3+√3+√3+√……______.16.甲、乙、丙、丁四人参加冬季滑雪比赛,其中有两人最终获奖.在比赛结果揭晓之前,四人的猜测如下表,其中“√”表示猜测某人获奖,“×”表示猜测某人未获奖,而“〇”则表示对某人是否获奖未发表意见.已知四个人中有且只有两个人的猜测是完全正确定的,那么两名获奖者是______,_____.甲获奖乙获奖丙获奖丁获奖甲的猜测√××√乙的猜测×〇〇√丙的猜测×√×√丁的猜测〇〇√×17.如图,在等边三角形ABC中,AB=6.动点P从点A出发,沿着此三角形三边逆时针运动回到A点,记P运动的路程为x,点P到此三角形中心O距离的平方为f(x),给出下列三个结论:①函数f(x)的最大值为12;②函数f(x)的图象的对称轴方程为x=9;③关于x的方程f(x)=kx+3最多有5个实数根.其中,所有正确结论的序号是______.18. 某部影片的盈利额(即影片的票房收入与固定成本之差)记为y ,观影人数记为x ,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y 与x 的函数图象.给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本; ②图(2)对应的方案是:保持票价不变,并降低成本; ③图(3)对应的方案是:提高票价,并保持成本不变; ④图(3)对应的方案是:提高票价,并降低成本. 其中,正确的说法是______.(填写所有正确说法的编号)三、解答题(共2题,每题10分,共20分) 19. 设x ∈R ,解不等式2|x +1|+|x|<4.20. 已知a ∈R ,函数f(x)={x 2+2x +a −2,x ≤0−x 2+2x −2a,x >0.若对任意x ∈[−3,+∞),f(x)≤|x|恒成立,求a 的取值范围.答案和解析1.【答案】A【解析】解:样本容量n=(250+150+400)×30%=240,抽取的户主对四居室满意的人数为:150×30%×40%=18.故选:A.利用扇形统计图和分层抽样的性质能求出样本容量;由扇形统计图、分层抽样和条形统计图能求出抽取的户主对四居室满意的人数.本题考查样本容量和抽取的户主对四居室满意的人数的求法,考查扇形统计图、分层抽样和条形统计图等基础知识,考查运算求解能力,是基础题.2.【答案】C【解析】解:根据条件可知圆周长=2π,因为BA=32π=34×2π,故可得A’位置如图:∠A′M′B=90°,则△A′M′B是等腰直角三角形,则M′到A′M的距离d=√22r=√22,故选:C.根据条件可得圆旋转了34个圆,作图可得到△A′M′B是等腰直角三角形,进而可求得M′到A′M的距离.本题考查点到直线的距离,考查圆旋转的长度求法,数中档题.3.【答案】D【解析】解:由对称性可知,在太极图中随机取一点,此点取自黑色阴影部分的概率是12,故①正确;当a=−43时,直线y=a(x−2)化为y=−43(x−2),即4x+3y−8=0.此时点(0,1)到直线4x+3y−8=0的距离d=|3−8|5=1,直线y=a(x−2)与黑色阴影部分有公共点,故②正确;当a=0时,直线y=a(x−2)为y=0,与黑色阴影部分有无数公共点,故③错误.∴所有正确结论的序号是①②.故选:D.由几何概型概率的求法判断①;利用直线与圆的位置关系判断②;举例说明③错误.本题考查命题的真假判断与应用,考查几何概型概率的求法,训练了直线与圆位置关系的应用,是中档题.4.【答案】B【解析】【分析】根据题意这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,逐一分析选项中的命题,利用排除法即可得出正确的结论.本题考查了推理与证明的应用问题,正确利用已知条件得到合理的结论,是解题的关键.【解答】解:这10名学生中,进入立定跳远决赛的有8人,取前8名的成绩,是编号为1,2,3,4,5,6,7,8的学生进入立定跳远决赛;又同时进入立定跳远决赛和30秒跳绳决赛的有6人,所以当a≤59时,1,3,4,5,6,7号同学进入30秒跳绳决赛,由此排除掉A、C;9号同学没有进入跳远决赛,故一定不能进入30秒跳绳决赛,排除D.故选B.5.【答案】C【解析】【分析】本题考查命题真假的判断,考查折线图等基础知识,考查运算求解能力、数据处理能力,考查函数与方程思想,是基础题.根据已知中的图表,结合;同比增长率和环比增长率的定义,逐一分析给定四个命题的真假,可得答案.【解答】解:由折线图知:从2017年每月的环比增长率看,2017年每月居民消费价格逐月比较有涨有跌,故A正确;在B中,从2017年每月的环比增长率看,2017年每月居民消费价格逐月比较1月涨幅最大,故B正确;在C中,从2017年每月的同比增长率看,2017年每月居民消费价格与2016年同期比较有涨无跌,只是涨幅不同,故C错误;在D中,从2017年每月的同比增长率看,2017年每月居民消费价格与2016年同期比较1月涨幅最大,故D正确.故选:C.6.【答案】C【解析】解:由折线图知:在A中,2016年第三季度和第四季度环比都有提高,故A正确;在B中,2017年第一季度和第二季度环比都有提高,故B正确;在C中,2016年第三季度和第四季度同比都下降,故C错误;在D中,2017年第一季度和第二季度同比都有提高,故D正确.故选:C.2016年第三季度和第四季度同比都下降.本题考查命题真假的判断,考查折线图等基础知识,考查运算求解能力、数据处理能力,考查函数与方程思想,是基础题.7.【答案】B【解析】解:由题意设尖头a盏灯,根据题意由上往下数第n层有2n−1a盏灯,所以一共有(1+2+4+8+16+32+64)a=381盏灯,解得a=3.故选:B.设尖头a盏灯,根据题意由上往下数第n层有2n−1a盏灯,由此利用等比数列性质能求出结果.本题考查等比数列在生产生活中的实际运用,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.8.【答案】B【解析】解:由图可得A,D正确,2014年上半年AQI数据波动比2015年上半年AQI数据波动小,故C正确,2015年12月份AQI类别为“优”的天数不一定为0,故B错误,故选:B.根据统计图和统计的概念即可判断本题考查了折线统计图,属基础题9.【答案】C【解析】解:∵射击俱乐部四名运动员甲、乙、丙、丁在选拔赛中所得的平均环数乙和丙成绩最好,平均环数的方差s2中甲和丙最小,∴四人丙的成绩最好且最稳定,∴最佳人选是丙.故选:C.平均成绩高且稳定的是最佳人选,方差越小成绩越稳定,平均数越大,直线越好,由此能求出结果.本题考查平均数和方差的应用,是基础题,解题时要理解方差的含义.10.【答案】D【解析】解:由于一段时间离家的距离保持不变,家是一个点,所以在那段时间内行走的路线就可能是在以家为圆心,那段距离为半径的一段弧上.故选:D.由图形可知,王珊的行走是:开始一段时间离家越来越远,然后有一段时间离家的距离不变,然后离家越来越近,进而对选择项进行判断,可得结论本题主要考查了识别图象的及利用图象解决实际问题的能力,考查学生分析解决问题的能力.11.【答案】A【解析】【分析】本题主要考查合情推理,属于基础题.因为只有一个人预测正确,所以本题关键是要找到互相关联的两个预测入手就可找出矛盾,从而得出正确结果.【解答】解:由题意,可把三人的预测简写如下:甲:甲>乙.乙:丙>乙且丙>甲.丙:丙>乙.∵只有一个人预测正确,∴分析三人的预测:如果乙预测正确,则丙预测正确,不符合题意;如果丙预测正确,假设甲、乙预测不正确,则有丙>乙,乙>甲,∵乙预测不正确,而丙>乙正确,∴只有丙>甲不正确,∴甲>丙,这与丙>乙,乙>甲矛盾.不符合题意;∴只有甲预测正确,乙、丙预测不正确,则有甲>乙,乙>丙.故选A.12.【答案】C【解析】【分析】本题考查等差数列前n项和的性质,属于中档题.由S n,S2n−S n,S3n−S2n成等差数列,可得每一层的环数,通过等差数列前n项和公式可求得三层扇形石板的总数.【解答】解:设每一层有n环,由题可知从内到外每环之间构成等差数列,公差d=9,a1=9,由等差数列性质知S n,S2n−S n,S3n−S2n成等差数列,且(S3n−S2n)−(S2n−S n)=n2d,则9n2=729,得n=9,×9=3402块.则三层共有扇形面石板为S3n=S27=27a1+27×262故选C.)13.【答案】(−1,23【解析】【分析】本题考查了不等式的解法与应用问题,是基础题.解一元二次不等式即可.【解答】解:3x2+x−2<0,)<0,故(x+1)(x−23由一元二次不等式的解法“小于取中间,大于取两边”,,可得:−1<x<23}.即{x|−1<x<23).故答案为(−1,23,2]14.【答案】[18【解析】【分析】根据分段函数的表达式,结合不等式恒成立分别进行求解即可.本题主要考查不等式恒成立问题,利用分段函数的不等式分别进行转化求解即可.注意数形结合.【解答】解:当x≤0时,函数f(x)=x2+2x+a−2的对称轴为x=−1,抛物线开口向上,要使x≤0时,对任意x∈[−3,+∞),f(x)≤|x|恒成立,则只需要f(−3)≤|−3|=3,即9−6+a −2≤3,得a ≤2,当x >0时,要使f(x)≤|x|恒成立,即f(x)=−x 2+2x −2a ,在射线y =x 的下方或在y =x 上, 由−x 2+2x −2a ≤x ,即(x −12)2+2a −14≥0,得min =2a −14≥0,得a ≥18综上18≤a ≤2,故答案为:[18,2]. 15.【答案】36【解析】【分析】本题考查样本的数字特征,中位数,平均数,属于基础题.分别由题意结合中位数,平均数计算方法得a +b =13,2+a 2=3,解得a ,b ,再算出答案即可.【解答】解:因为四个数的平均数为4,所以a +b =4×4−1−2=13,因为中位数是3,所以2+a 2=3,解得a =4,代入上式得b =13−4=9,所以ab =36,故答案为:36.16.【答案】1+√132【解析】解:设x =√3+√3+√3+√……由题意可得:x =√3+x ,即x 2−x −3=0,(x >0)解得:x =1+√132,故答案为:1+√132.由阅读能力及类比能力结合解方程x 2−x −3=0,(x >0)解得:x =1+√132,即可得解.本题考查了阅读能力及类比能力,属中档题. 17.【答案】乙 丁【解析】解:假设甲的猜测正确,那么甲丁获奖,乙丙不获奖,则乙丙丁的猜想就是错误,与四个人中有且只有两个人的猜测是完全正确矛盾,故甲的猜测不完全正确;假设丙的猜测正确,那么乙丁获奖,甲丙不获奖,则乙的猜想就是正确,丁的猜想不完全正确,符合题意,故答案为:乙,丁根据题意可得,分别假设甲的猜测正确,丙的猜测正确,即可求出答案.本题考查合情推理的运用,此类题目常用的手段是假设法,抓住题干中的条件进行推理,推理所得的结果如果不互相矛盾,则假设成立,反之,不成立.18.【答案】①②【解析】解:由题可得函数f(x)={3+(x −3)2,0≤x <63+(x −9)2,6≤x <123+(x −15)2,12≤x ≤18,作出图象如图:则当点P 与△ABC 顶点重合时,即x =0,6,12,18时,f(x)取得最大值12,故①正确;又f(x)=f(18−x),所以函数f(x)的对称轴为x =9,故②正确;由图象可得,函数f(x)图象与y =kx +3的交点个数最多为6个,故方程最多有6个实根,故③错误. 故答案为:①②.写出函数解析式并作出图象,数形结合进行逐一分析.本题考查命题的真假性判断,涉及函数的应用、图象与性质,数形结合思想,逻辑推理能力,属于难题.19.【答案】②③【解析】解:由图可知,点A 纵坐标的相反数表示的是成本,直线的斜率表示的是票价,故图(2)降低了成本,但票价保持不变,即②对;图(3)成本保持不变,但提高了票价,即③对; 故选:②③.理解图象表示的实际意义,进而得解.本题考查读图识图能力,考查分析能力,属于基础题.20.【答案】解:2|x +1|+|x|={3x +2,x >0x +2,−1≤x ≤0−3x −2,x <−1.∵2|x +1|+|x|<4,∴{3x +2<4x >0或{x +2<4−1≤x ≤0或{−3x −2<4x <−1, ∴0<x <23或−1<x <0或−2<x <−1,∴−2<x <23,∴不等式的解集为{x|−2<x <23}.【解析】先将2|x +1|+|x|写为分段函数的形式,然后根据2|x +1|+|x|<4,利用零点分段法解不等式即可.本题考查了绝对值不等式的解法,考查了分类讨论思想,属基础题.。