2019-2020年高二开学考试数学试题含答案

合集下载

高二上学期开学考试数学试题解析版

高二上学期开学考试数学试题解析版

Sn
和 Tn
,n
1 Sn
6n
18Tn .若
an bn
Z
,则 n
的取值集合为(

A. {1, 2,3}
B. {1, 2,3, 4}
C. {1, 2,3,5}
D. {1, 2,3, 6}
【答案】D
【解析】 【分析】
首先根据 n 1 Sn
6n
18Tn
即可得出
Sn Tn
,再根据前 n 项的公式计算出 bn an
22
3x 3 , 2
因为 E 为线段 AC 上一动点,设 E x,
3x
3 2

1 2
x
0


EB
1 2
x,
3x
3 2

ED
(
x,
3x
3), 2
所以
EB
ED
1 2
x
x2
3x2
3x
3 4
4x2
5 2
x
3 4
4
x
5 16
2
23 64

因为
1 2
x
0
,所以
y
4
x
5 16
2
23 64
4
4
x2 y2 0 ,∴ x2 y2 8 ,
6 人教版高中数学试题
人教版高中数学试题
∴ x2 y2 [4,8] .
故选 A.
【点睛】本题考查基本不等式求最值问题,解题关键是掌握基本不等式的变形应用: ab (a b)2 . 4
7.已知 a、b、c 为 ABC 的三个内角 A、B、C 的对边, c 2b , ABC 的面积为 2,则 a 的最小值为( ).

学2019-2020学年高二数学下学期开学测试试题文(含解析)

学2019-2020学年高二数学下学期开学测试试题文(含解析)

学2019-2020学年高二数学下学期开学测试试题文(含解析)试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷一、选择题(共60分,每小题5分)1. 下列复数中,是实数的是()A. 1+iB. i2C. -iD. mi【答案】B【解析】【分析】本题先判断1+i是虚数;是实数;是纯虚数;当时,是实数,当时,是纯虚数,再给出答案.【详解】解:1+i是虚数,不是实数;是实数;是纯虚数;当时,是实数,当时,是纯虚数.故选:B.【点睛】本题考查复数分类,是基础题2. 已知,,,,,…,则( )A. 28B. 76C. 123D. 199【答案】C【解析】由题意可得,,,,则,,,,,故选C.3. 若复数z满足其中i为虚数单位,则z=A. 1+2iB. 12iC.D.【答案】B【解析】试题分析:设,则,故,则,选B.【考点】注意共轭复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.4. 下列表述正确的是()①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A. ①②③B. ②③④C. ①③⑤D. ②④⑤;【答案】C【解析】【分析】利用归纳推理就是从个别性知识推出一般性结论的推理,从而可对①②进行判断;由类比推理是由特殊到特殊的推理,从而可对④⑤进行判断;对于③直接据演绎推理即得.【详解】所谓归纳推理,就是从个别性知识推出一般性结论的推理.故①对②错;又所谓演绎推理是由一般到特殊的推理.故③对;类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理.故④错⑤对.故选C.【点睛】本题主要考查推理的含义与作用.所谓归纳推理,就是从个别性知识推出一般性结论的推理.演绎推理可以从一般到特殊;类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理.5. 秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为A. 35B. 20C. 18D. 9【答案】C【解析】试题分析:模拟算法:开始:输入成立;,成立;,成立;,不成立,输出.故选C.考点:1.数学文化;2.程序框图.6. 用反证法证明命题“若,则且”时的假设为()A. 且B. 或C. 时,时D. 以上都不对【答案】B【解析】【分析】先判断命题的结论,再写出它的反面,最后给出答案.【详解】解:命题结论为“且”,它的反面为:或,用反证法证明命题“若,则且”时的假设为或.故选:B.【点睛】本题考查反证法的假设,是基础题7. 如果数列的前项和为,则这个数列的通项公式是()A. B. C. D.【答案】B【解析】【分析】根据,当时,,再结合时,,可知是以为首项,为公比的等比数列,从而求出数列的通项公式.【详解】由,当时,,所以,当时,,此时,所以,数列是以为首项,为公比的等比数列,即.故选:B.【点睛】本题考查了利用递推公式求数列的通项公式,考查了计算能力,属于基础题.8. 四个小动物换座位,开始是鼠、猴、兔、猫分别坐1、2、3、4号位上(如图),第一次前后排动物互换座位,第二次左右列动物互换座位,…这样交替进行下去,那么第202次互换座位后,小兔坐在第()号座位上A. 1B. 2C. 3D. 4【答案】B【解析】试题分析:观察不难发现,经过四次变换后又回到原位,用202除以4,根据余数的情况解答即可.解:由图可知,经过四次交换后,每个小动物又回到了原来的位置,故此变换的规律是周期为4,∵202÷4=50…2,∴第202次互换座位后,与第2次的座位相同,小兔的座位号为2.故选B点评:本题是对图形变化规律的考查,仔细观察图形,得到经过四次变换后又回到原位是解题的关键.9. 命题“有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误原因是()A. 使用了归纳推理B. 使用了类比推理C. 使用了“三段论”,但大前提错误D. 使用了“三段论”,但小前提错误【答案】C【解析】【分析】有理数包含有限小数,无限不循环小数,以及整数,故有些有理数是无限循环小数,这个说法是错误的,即大前提是错误的.【详解】解:大前提是特指命题,而小前提是全称命题有理数包含有限小数,无限循环小数,以及整数,大前提是错误的,得到的结论是错误的,在以上三段论推理中,大前提错误故选:.【点睛】本题考查演绎推理的基本方法,解题的关键是理解演绎推理的三段论原理,在大前提和小前提中,若有一个说法是错误的,则得到的结论就是错误的.10. 下面四个推理不是合情推理的是()A. 由圆的性质类比推出球的有关性质B. 由三角形的内角和是,凸四边形的内角和是,凸五边形的内角和是,归纳出凸n边形的内角和是C. 某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分D. 由直角三角形、等腰三角形、等边三角形内角和是,归纳出所有三角形的内角和是【答案】C【解析】【分析】根据合情推理包括类比推理与归纳推理,合情推理的结论不一定正确,对选项中的命题进行分析、判断即可得出结论.【详解】解:对于A,由圆的性质类比出球的有关性质,是类比推理,属于合情推理;对于B,由三角形内角和是,四边形内角和是,五边形内角和是,得出凸边形内角和是,是归纳推理,为合情推理;对于C,某次考试张军成绩是100分,由此推出全班同学成绩都是100分,是由特殊到特殊的推理过程,故C不是合情推理;对于D,由直角三角形、等腰三角形、等边三角形内角和是,推出所有三角形的内角和都是,是归纳推理,属于合情推理;故选:.【点睛】本题考查了合情推理与演绎推理的应用问题,合情推理是由特殊到一般或特殊到特殊的推理,演绎推理是由一般到特殊的推理;从推理的结论来看,合情推理的结论不一定正确有待证明;演绎推理得到的结论一定正确;在解决问题的过程中,合情推理有助于探索解决问题的思路、发现结论,演绎推理用于证明结论的正确性11. 命题“对于任意角θ,”的证明:“”,其过程应用了A. 分析法B. 综合法C. 综合法、分析法综合使用D. 间接证法【答案】B【解析】【分析】由题意,由已知条件入手利用同角三角函数的基本关系式,属于综合法,即可得到结论.【详解】由题意,由已知条件入手利用同角三角函数的基本关系式,即可证得等式,应用的是综合法证明方法.故选B.【点睛】本题主要考查了综合法的证明过程,其中解中正确理解综合法证明的基本过程,合理进行判断是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.12. 若复数(1–i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是A. (–∞,1)B. (–∞,–1)C. (1,+∞)D. (–1,+∞)【答案】B【解析】试题分析:设,因为复数对应的点在第二象限,所以,解得:,故选B.【考点】复数的运算【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.复数z=a+bi复平面内的点Z(a,b)(a,b∈R).复数z=a+bi(a,b∈R)平面向量.第Ⅱ卷二、填空题(共20分,每小题5分)13. 曲线在点(1,2)处的切线方程为______________.【答案】【解析】设,则,所以,所以曲线在点处的切线方程为,即.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设是曲线上的一点,则以为切点的切线方程是.若曲线在点处的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为.14. 蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图. 其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以表示第幅图的蜂巢总数.则=___;=_______.【答案】37,f(n)=3n2-3n+1【解析】解:(1)由于f(2)-f(1)=7-1=6,f(3)-f(2)=19-7=2×6,f(4)-f(3)=37-19=3×6,所以f(4)=37f(5)-f(4)=61-37=4×6,因此,当n≥2时,有f(n)-f(n-1)=6(n-1),所以f(n)=[f(n)-f(n-1)]+[f(n-1)-f(n-2)]+…+[f(2)-f(1)]+f(1)=6[(n-1)+(n-2)+…+2+1]+1=3n2-3n+1 15. 三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为___________.【答案】三角形的三个内角的角平分线交于一点,且这个点是三角形的内切圆的圆心.【解析】【分析】本题运用类比推理直接得到答案即可.【详解】根据类比推理,可以直接推出原来三角形的性质为:三角形的三个内角的角平分线交于一点,且这个点是三角形的内切圆的圆心.故答案为:三角形的三个内角的角平分线交于一点,且这个点是三角形的内切圆的圆心.【点睛】本题考查类比推理,基础题.16. 已知两个正数,满足,则使不等式恒成立的实数的范围是______.【答案】【解析】【分析】根据题意,将代入进行整体代换和合理拆项得,再利用基本不等式求出它的最小值,最后根据不等式恒成立求出的取值范围.【详解】解:由题意知,两个正数,满足,则,则,当时取等号,∴的最小值是,∵不等式恒成立,∴.故答案为:.【点睛】本题考查了利用基本不等式求最值和解决恒成立问题,首先利用条件进行整体代换和合理拆项,再根据基本不等式求最值,考查化简运算能力.三、解答题(共70分,17题10分,18-22题各12分)17. 计算:(1);(2).【答案】(1);(2)【解析】【分析】直接利用复数的乘除运算法则以及复数单位的幂运算化简求解即可.【详解】解:(1)(2)【点睛】本题考查复数的基本运算,考查计算能力,属于基础题.18. 已知数列中,.(1)求;(2)归纳猜想通项公式.【答案】(1);(2);【解析】【分析】(1)由分别代入递推关系,即可得答案;(2)根据前几项的特点,分母为,即可得答案;【详解】(1)当时,,当时,,当时,;(2)根据数列前几项的特点可得:;【点睛】本题考查根据数列的递推关系求数列的项、不完全归纳法求数列的通项公式,考查运算求解能力,属于基础题. 19. 己知函数,求:(1)函数的图象在点处的切线方程;(2)的单调递减区间.【答案】(1);(2),.【解析】【分析】(1)利用导数的几何意义可求得切线斜率,进而得到切线方程;(2)根据导函数的正负即可确定所求的单调区间.【详解】(1)由题意得:,,又,在处的切线方程为,即.(2)由(1)知:,当时,;当时,;的单调递减区间为,.【点睛】本题考查利用导数的几何意义求解在某一点处的切线方程、利用导数求解函数的单调区间的问题,属于导数部分知识的基础应用.20. 已知,求证:至少有一个不大于.【答案】见解析【解析】【分析】至少有一个不大于可反设都大于,运用均值不等式及同向不等式相加的性质即可推出矛盾.【详解】假设因为矛盾,所以假设不成立所以至少有一个不大于.21. 如图,在直三棱柱中,已知,设的中点为,.求证:(1)平面(指出所有大前提、小前提、结论);(2)(用分析法证明).【答案】(1)证明过程见详解;(2)证明过程见详解【解析】【分析】(1)先证明点是的中点,再证明,最后证明平面即可;(2)先分析到要证明:,只需证:(显然成立),,,再分别用分析法证明、即可得证.【详解】(1)证明:平面四边形的对角线相互平分,……大前提四边形是平行四边形,……小前提所以点是的中点,……结论三角形的中位线平行与底边,……大前提在中,点是的中点,点是的中点,是三角形的一条中位线,……小前提所以,……结论平面外一条直线与平面内的一条直线平行,则这条直线与此平面平行,……大前提,平面,平面,……小前提平面,……结论(2)要证明:,只需证:平面只需证:(显然成立),,;要证明:,只需证:四边形是正方形,只需证:(已知显然成立),(直三棱柱中显然成立)所以;要证明:,只需证:平面只需证:(显然成立),(已知),(直三棱柱中显然成立)所以;所以(显然成立),(已证),(已证),所以【点睛】本题考查利用三段论证明线面平行、利用分析法证明线线垂直,是中档题.22. 选修4-5不等式选讲设均为正数,且,证明:(Ⅰ)若,则;(Ⅱ)是的充要条件.【答案】(Ⅰ)详见解析;(Ⅱ)详见解析.【解析】(Ⅰ)因为,,由题设,,得.因此.(Ⅱ)(ⅰ)若,则.即.因为,所以,由(Ⅰ)得.(ⅱ)若,则,即.因为,所以,于是.因此,综上,是的充要条件.考点:推理证明.学2019-2020学年高二数学下学期开学测试试题文(含解析)试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷一、选择题(共60分,每小题5分)1. 下列复数中,是实数的是()A. 1+iB. i2C. -iD. mi【答案】B【解析】【分析】本题先判断1+i是虚数;是实数;是纯虚数;当时,是实数,当时,是纯虚数,再给出答案.【详解】解:1+i是虚数,不是实数;是实数;是纯虚数;当时,是实数,当时,是纯虚数.故选:B.【点睛】本题考查复数分类,是基础题2. 已知,,,,,…,则 ( )A. 28B. 76C. 123D. 199【答案】C【解析】由题意可得,,,,则,,,,,故选C.3. 若复数z满足其中i为虚数单位,则z=A. 1+2iB. 12iC.D.【答案】B【解析】试题分析:设,则,故,则,选B.【考点】注意共轭复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.4. 下列表述正确的是()①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A. ①②③B. ②③④C. ①③⑤D. ②④⑤;【答案】C【解析】【分析】利用归纳推理就是从个别性知识推出一般性结论的推理,从而可对①②进行判断;由类比推理是由特殊到特殊的推理,从而可对④⑤进行判断;对于③直接据演绎推理即得.【详解】所谓归纳推理,就是从个别性知识推出一般性结论的推理.故①对②错;又所谓演绎推理是由一般到特殊的推理.故③对;类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理.故④错⑤对.故选C.【点睛】本题主要考查推理的含义与作用.所谓归纳推理,就是从个别性知识推出一般性结论的推理.演绎推理可以从一般到特殊;类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理.5. 秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为A. 35B. 20C. 18D. 9【答案】C【解析】试题分析:模拟算法:开始:输入成立;,成立;,成立;,不成立,输出.故选C.考点:1.数学文化;2.程序框图.6. 用反证法证明命题“若,则且”时的假设为()A. 且B. 或C. 时,时D. 以上都不对【答案】B【解析】【分析】先判断命题的结论,再写出它的反面,最后给出答案.【详解】解:命题结论为“且”,它的反面为:或,用反证法证明命题“若,则且”时的假设为或.故选:B.【点睛】本题考查反证法的假设,是基础题7. 如果数列的前项和为,则这个数列的通项公式是()A. B. C. D.【答案】B【解析】【分析】根据,当时,,再结合时,,可知是以为首项,为公比的等比数列,从而求出数列的通项公式.【详解】由,当时,,所以,当时,,此时,所以,数列是以为首项,为公比的等比数列,即.故选:B.【点睛】本题考查了利用递推公式求数列的通项公式,考查了计算能力,属于基础题.8. 四个小动物换座位,开始是鼠、猴、兔、猫分别坐1、2、3、4号位上(如图),第一次前后排动物互换座位,第二次左右列动物互换座位,…这样交替进行下去,那么第202次互换座位后,小兔坐在第()号座位上A. 1B. 2C. 3D. 4【答案】B【解析】试题分析:观察不难发现,经过四次变换后又回到原位,用202除以4,根据余数的情况解答即可.解:由图可知,经过四次交换后,每个小动物又回到了原来的位置,故此变换的规律是周期为4,∵202÷4=50…2,∴第202次互换座位后,与第2次的座位相同,小兔的座位号为2.故选B点评:本题是对图形变化规律的考查,仔细观察图形,得到经过四次变换后又回到原位是解题的关键.9. 命题“有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误原因是()A. 使用了归纳推理B. 使用了类比推理C. 使用了“三段论”,但大前提错误D. 使用了“三段论”,但小前提错误【答案】C【解析】【分析】有理数包含有限小数,无限不循环小数,以及整数,故有些有理数是无限循环小数,这个说法是错误的,即大前提是错误的.【详解】解:大前提是特指命题,而小前提是全称命题有理数包含有限小数,无限循环小数,以及整数,大前提是错误的,得到的结论是错误的,在以上三段论推理中,大前提错误故选:.【点睛】本题考查演绎推理的基本方法,解题的关键是理解演绎推理的三段论原理,在大前提和小前提中,若有一个说法是错误的,则得到的结论就是错误的.10. 下面四个推理不是合情推理的是()A. 由圆的性质类比推出球的有关性质B. 由三角形的内角和是,凸四边形的内角和是,凸五边形的内角和是,归纳出凸n边形的内角和是C. 某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分D. 由直角三角形、等腰三角形、等边三角形内角和是,归纳出所有三角形的内角和是【答案】C【解析】【分析】根据合情推理包括类比推理与归纳推理,合情推理的结论不一定正确,对选项中的命题进行分析、判断即可得出结论.【详解】解:对于A,由圆的性质类比出球的有关性质,是类比推理,属于合情推理;对于B,由三角形内角和是,四边形内角和是,五边形内角和是,得出凸边形内角和是,是归纳推理,为合情推理;对于C,某次考试张军成绩是100分,由此推出全班同学成绩都是100分,是由特殊到特殊的推理过程,故C不是合情推理;对于D,由直角三角形、等腰三角形、等边三角形内角和是,推出所有三角形的内角和都是,是归纳推理,属于合情推理;故选:.【点睛】本题考查了合情推理与演绎推理的应用问题,合情推理是由特殊到一般或特殊到特殊的推理,演绎推理是由一般到特殊的推理;从推理的结论来看,合情推理的结论不一定正确有待证明;演绎推理得到的结论一定正确;在解决问题的过程中,合情推理有助于探索解决问题的思路、发现结论,演绎推理用于证明结论的正确性11. 命题“对于任意角θ,”的证明:“”,其过程应用了A. 分析法B. 综合法C. 综合法、分析法综合使用D. 间接证法【答案】B【解析】【分析】由题意,由已知条件入手利用同角三角函数的基本关系式,属于综合法,即可得到结论.【详解】由题意,由已知条件入手利用同角三角函数的基本关系式,即可证得等式,应用的是综合法证明方法.故选B.【点睛】本题主要考查了综合法的证明过程,其中解中正确理解综合法证明的基本过程,合理进行判断是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.12. 若复数(1–i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是A. (–∞,1)B. (–∞,–1)C. (1,+∞)D. (–1,+∞)【答案】B【解析】试题分析:设,因为复数对应的点在第二象限,所以,解得:,故选B.【考点】复数的运算【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.复数z=a+bi 复平面内的点Z(a,b)(a,b∈R).复数z=a+bi(a,b∈R)平面向量.第Ⅱ卷二、填空题(共20分,每小题5分)13. 曲线在点(1,2)处的切线方程为______________.【答案】【解析】设,则,所以,所以曲线在点处的切线方程为,即.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设是曲线上的一点,则以为切点的切线方程是.若曲线在点处的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为.14. 蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图. 其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以表示第幅图的蜂巢总数.则=___;=_______.【答案】37,f(n)=3n2-3n+1【解析】解:(1)由于f(2)-f(1)=7-1=6,f(3)-f(2)=19-7=2×6,f(4)-f(3)=37-19=3×6,所以f(4)=37f(5)-f(4)=61-37=4×6,因此,当n≥2时,有f(n)-f(n-1)=6(n-1),所以f(n)=[f(n)-f(n-1)]+[f(n-1)-f(n-2)]+…+[f(2)-f(1)]+f(1)=6[(n-1)+(n-2)+…+2+1]+1=3n2-3n+115. 三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为___________.【答案】三角形的三个内角的角平分线交于一点,且这个点是三角形的内切圆的圆心.【解析】【分析】本题运用类比推理直接得到答案即可.【详解】根据类比推理,可以直接推出原来三角形的性质为:三角形的三个内角的角平分线交于一点,且这个点是三角形的内切圆的圆心.故答案为:三角形的三个内角的角平分线交于一点,且这个点是三角形的内切圆的圆心.【点睛】本题考查类比推理,基础题.16. 已知两个正数,满足,则使不等式恒成立的实数的范围是______.【答案】【解析】【分析】根据题意,将代入进行整体代换和合理拆项得,再利用基本不等式求出它的最小值,最后根据不等式恒成立求出的取值范围.【详解】解:由题意知,两个正数,满足,则,则,当时取等号,∴的最小值是,∵不等式恒成立,∴.故答案为:.【点睛】本题考查了利用基本不等式求最值和解决恒成立问题,首先利用条件进行整体代换和合理拆项,再根据基本不等式求最值,考查化简运算能力.三、解答题(共70分,17题10分,18-22题各12分)17. 计算:(1);(2).【答案】(1);(2)【解析】【分析】直接利用复数的乘除运算法则以及复数单位的幂运算化简求解即可.【详解】解:(1)(2)【点睛】本题考查复数的基本运算,考查计算能力,属于基础题.18. 已知数列中,.(1)求;(2)归纳猜想通项公式.【答案】(1);(2);【解析】【分析】(1)由分别代入递推关系,即可得答案;(2)根据前几项的特点,分母为,即可得答案;【详解】(1)当时,,当时,,当时,;(2)根据数列前几项的特点可得:;【点睛】本题考查根据数列的递推关系求数列的项、不完全归纳法求数列的通项公式,考查运算求解能力,属于基础题.19. 己知函数,求:(1)函数的图象在点处的切线方程;(2)的单调递减区间.【答案】(1);(2),.【解析】【分析】(1)利用导数的几何意义可求得切线斜率,进而得到切线方程;(2)根据导函数的正负即可确定所求的单调区间.【详解】(1)由题意得:,,又,在处的切线方程为,即.(2)由(1)知:,当时,;当时,;的单调递减区间为,.【点睛】本题考查利用导数的几何意义求解在某一点处的切线方程、利用导数求解函数的单调区间的问题,属于导数部分知识的基础应用.20. 已知,求证:至少有一个不大于.【答案】见解析【解析】【分析】至少有一个不大于可反设都大于,运用均值不等式及同向不等式相加的性质即可推出矛盾.【详解】假设。

校2019-2020学年高二数学下学期开学考试试题理(含解析)

校2019-2020学年高二数学下学期开学考试试题理(含解析)

校2019-2020学年高二数学下学期开学考试试题理(含解析)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填涂在答题卡上)1.若复数z=为纯虚数,则实数的值为()A. =2B. =C. = 或=2D. =2且3【答案】A【解析】【分析】由复数为纯虚数,得到,即可求解.【详解】由题意,复数为纯虚数,所以,解得,即实数的值为2,故选A.【点睛】本题主要考查了复数分类及其应用,其中解答中熟记复数的概念和复数的分类是解答的关键,着重考查了推理与运算能力,属于基础题.2.设,其中是实数,则等于()A. 1B.C. D. 2【答案】B【解析】【分析】根据复数相等,可求得的值.根据复数模的求法即可得解.【详解】由已知得,根据两复数相等的条件可得,所以.故选:B.【点睛】本题考查了复数相等的应用,复数模的求法,属于基础题.3.已知在复平面内对应的点在第四象限,则实数m的取值范围是A. B. C. D.【答案】A【解析】试题分析:要使复数对应的点在第四象限,应满足,解得,故选A.【考点】复数几何意义【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.复数z=a+bi复平面内的点Z(a,b)(a,b∈R).复数z=a+bi(a,b∈R)平面向量.4.函数在点处的切线方程为()A. B.C. D.【答案】B【解析】【分析】首先求出函数在点处的导数,也就是切线的斜率,再利用点斜式求出切线方程..【详解】∵,∴切线斜率,又∵,∴切点为,∴切线方程为,即.故选B.【点睛】本题考查导数的几何意义,属于基础题.5.若函数满足,,则的值为()A. 1B. 2C. 0D.【答案】C【解析】【分析】求出即可【详解】因为所以令时有解得:故选:C【点睛】本题考查的是导数的运算,较简单.6.若函数y=f(x)的导函数y=f′(x)的图象如图所示,则y =f(x)的图象可能()A. B.C. D.【答案】C【解析】分析】根据导数与函数单调性的关系,判断函数的单调性即可.【详解】由当时,函数单调递减,当时,函数单调递增,则由导函数的图象可知:先单调递减,再单调递增,然后单调递减,排除,且两个拐点(即函数的极值点)在x轴上的右侧,排除B.故选:.【点睛】本题主要考查的是导数与函数的单调性,熟练掌握函数的导数与函数单调性的关系是解题的关键,是基础题.7.函数在点处的切线斜率为,则的最小值是()A. 10B. 9C. 8D.【答案】B【解析】对函数求导可得,根据导数的几何意义,,即==()·)=+5≥2+5=4+5=9,当且仅当即时,取等号.所以的最小值是9.故选B.点睛:本题主要考查导数的几何意义,求分式的最值结合了重要不等式,“1”的巧用,注意取等条件8.函数,则()A. 为函数的极大值点B. 为函数的极小值点C. 为函数的极大值点D. 为函数的极小值点【答案】A【解析】,故当时函数单调递增,当时,函数单调递减,故为函数的极大值点.9.设是直线l的方向向量,是平面的法向量,则直线l与平面()A. 垂直B. 平行或在平面内C. 平行D. 平面内【答案】B【解析】【分析】计算出,即可判断得解.【详解】..或.故选:B.【点睛】本题主要考查利用向量判断直线和平面位置关系,意在考查学生对这些知识的理解掌握水平,属于基础题. 10.若,,,且,,共面,则()A. 1B. -1C. 1或2D.【答案】A【解析】【分析】向量,,共面,存在实数使得,坐标代入即可得出。

百校联盟2019-2020学年高二下学期开学测试数学试题含解析

百校联盟2019-2020学年高二下学期开学测试数学试题含解析
(2)已知三角形的面积时,可利用余弦定理得到三角形其中一条边与另外两边之和的等量关系.
19.如图,直四棱柱 , ,底面 是边长为4的菱形,且 , 为 中点.
(1)求证: 平面 ;
(2)求二面角 的余弦值.
【答案】(1)详见解析;(2) .
【解析】
【分析】
(1)由已知可得 , ,由线面垂直 判定定理可得 平面 ;
(2)利用余弦定理和面积公式求解出 的最小值,再将周长用含 的式子表示,即可求解出周长的最小值,注意取等号条件的说明。
【详解】(1) ,且 ,

,
,且 ,
,

(2)由 ,得 .
又 ,
,(当且仅当 时取等号),



周长的最小值为 。
【点睛】本题考查三角恒等变换与解三角形的综合,难度一般。
(1)解三角形过程中要注意对隐含条件 的使用;
故选:
【点睛】本题考查古典概型的概率计算问题,属于基础题。
8。正四面体的外接球与内切球的表面积比为( )
A. B。 C. D。 不确定
【答案】A
【解析】
【分析】
利用正四面体中心 即为外接球和内切球的球心,且 为高的四等分点,设正四面体的棱长为 ,可得两个球半径,进而得面积比.
【详解】
解:如图,
正四面体 的中心 即为外接球与内切球的球心,
【答案】(1)详见解析;(2) 。
【解析】
【分析】
(1)利用定义法证明函数的单调性,按照:设元、作差、变形、判定符号、下结论的步骤完成即可;
(2)由已知可得 ,令 ,由(1)知 ,则 ,在 上恒成立,再对对称轴分类讨论即可得解;
【详解】解:(1)任取 , ,且设 .

2019~2020学年度高二年级第一学期数学开学测试(附答案解析)

2019~2020学年度高二年级第一学期数学开学测试(附答案解析)

2019~2020学年度高二年级第一学期开学测试数学试卷考试范围:必修二必修五难度区间:A(难度大)考试时间:120分钟分值:150分注意:本试卷包含Ⅰ、Ⅱ两卷。

第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。

第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。

答案写在试卷上均无效,不予记分。

第I卷(选择题共50分)一、选择题(本大题共10小题,共50.0分)1.在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=120°,AP=,,M是线段BC上一动点,线段PM长度最小值为,则三棱锥P-ABC的外接球的表面积是()A. B. C. D.2.正方体ABCD-A1B1C1D1的棱上到异面直线AB,CC1的距离相等的点的个数为()A. 2B. 3C. 4D. 53.若直线x+(1+m)y-2=0与直线mx+2y+4=0平行,则m的值是()A. 1B.C. 1或D.4.函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…,x n,使得=…=,则n的取值范围是()A.B. 3,C. 4,D.5.已知平面上点,其中,当,变化时,则满足条件的点P在平面上所组成图形的面积是A. B. C. D.6.已知数列中,.若对于任意的,不等式恒成立,则实数的取值范围为()A. B.C. D.7.在锐角三角形ABC中,已知,则的取值范围为A. B. C. D.8.在锐角三角形ABC中,cos(A+)=-,AB=7,AC=2,则=()A. B. 40 C. D. 349.已知三棱锥A—BCD的所有顶点都在球O的球面上,AD⊥平面ABC,∠BAC=90°,AD=2,若球O的表面积为29π,则三棱锥A—BCD的侧面积的最大值为( )A. B. C. D.10.如图,正方体ABCD-A′B′C′D′中,M为BC边的中点,点P在底面A′B′C′D′和侧面CDD′C′上运动并且使∠MAC′=∠PAC′,那么点P的轨迹是()A. 两段圆弧B. 两段椭圆弧C. 两段双曲线弧D. 两段抛物线弧第II卷(非选择题共60分)二、填空题(本大题共4小题,共20.0分)11.已知在体积为4π的圆柱中,AB,CD分别是上、下底面直径,且AB⊥CD,则三棱锥A-BCD的体积为______.12.底面边长为2m,高为1m的正三棱锥的全面积为______ m2.13.在锐角△ABC中,角A,B,C的对边分别为a,b,c ,已知=,b=4a,a+c=5,则△ABC的面积为______.14.已知数列{a n}中,a1=1,a n-a n-1=n(n≥2,n N),设b n=+++…+,若对任意的正整数n,当m[1,2]时,不等式m2-mt+>b n恒成立,则实数t的取值范围是______.三、解答题(本大题共8小题,共80.0分)15.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B;(2)若a+c=6,△ABC的面积为2,求b.16.已知函数f(x)=|x-|+|x+|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b M时,|a+b|<|1+ab|.17.已知数列的前n项和为,且.Ⅰ求数列的通项公式;Ⅱ若,设数列的前n项和为,证明.18.如图,在边长为2的正方形ABCD中,点E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于P.(Ⅰ)求证:平面PBD⊥平面BFDE;(Ⅱ)求四棱锥P-BFDE的体积.19.已知圆M的方程为,直线l的方程为,点P在直线l上,过点P作圆M的切线PA,PB,切点为A,B.(1)若,试求点P的坐标;(2)求证:经过A,P,M三点的圆必过定点,并求出所有定点的坐标.20.如图,在四棱锥P-ABCD中,底面ABCD是边长为 3 的菱形,∠ABC=60°,PA⊥平面ABCD,PA=3,F是棱PA上的一个动点,E为PD的中点.(Ⅰ)若AF=1,求证:CE∥平面BDF;(Ⅱ)若AF=2,求平面BDF与平面PCD所成的锐二面角的余弦值.21.已知圆C:,直线l:,.求证:对,直线l与圆C总有两个不同的交点A、B;求弦AB的中点M的轨迹方程,并说明其轨迹是什么曲线;是否存在实数m,使得圆C上有四点到直线l的距离为?若存在,求出m的范围;若不存在,说明理由.22.如图,在平面直角坐标系中,已知圆:,圆:.(1)若过点的直线被圆截得的弦长为,求直线的方程;(2)设动圆同时平分圆的周长、圆的周长.①证明:动圆圆心C在一条定直线上运动;②动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.答案和解析1.【答案】C【解析】【分析】本题考查的知识要点:三棱锥的外接球的球心的确定及球的表面积公式的应用.首先确定三角形ABC为等腰三角形,进一步确定球的球心,再求出球的半径,最后确定球的表面积.【解答】解:如图所示:三棱锥P-ABC中,PA⊥平面ABC,AP=,M是线段BC上一动点,线段PM长度最小值为,则当AM⊥BC时,线段PM达到最小值,由于PA⊥平面ABC,AM平面ABC,所以PA AM所以在中,PA2+AM2=PM2,解得AM=1,因为PA⊥平面ABC,BM平面ABC,则由,,平面PAM,故有BM平面PAM,AM平面PAM,BM,所以在中,BM==,则tan∠BAM==,则∠BAM=60°,由于∠BAC=120°,所以∠MAC=∠BAC-∠BAM=60°则△ABC为等腰三角形.所以BC=2,在△ABC中,设外接圆的直径为2r=,则r=2,设球心距离平面ABC的的高度为h,则,解得,所以外接球的半径R═,则S=,故选:C.2.【答案】C【解析】解:如图:正方体ABCD-A1B1C1D1,E、F分别是BC和A1D1的中点,连接AF和FC1,根据正方体的性质知,BB1⊥AB,C1C⊥B1C1,故B1到异面直线AB,CC1的距离相等,同理可得,D到异面直线AB,CC1的距离相等,又有AB⊥BC,C1C⊥BC,故E到异面直线AB,CC1的距离相等,F为A1D1的中点,易计算FA=FC1,故F到异面直线AB,CC1的距离相等,共有4个点.故选C.画出正方体,结合正方体中线面、线线垂直,先找定点、再找棱的中点,找出符合条件的所有的点.本题考查了正方体体的结构特征,考查了线面、线线垂直定理的应用,利用异面直线之间距离的定义进行判断,考查了观察能力和空间想象能力.3.【答案】A【解析】【分析】本题主要考查两直线的位置关系,由两直线平行的充要条件,列出方程求解即可.【解答】解:直线x+(1+m)y-2=0和直线mx+2y+4=0平行,可得,得:m=1.故选A.4.【答案】B【解析】解:令y=f(x),y=kx,作直线y=kx,可以得出2,3,4个交点,故k=(x>0)可分别有2,3,4个解.故n的取值范围为2,3,4.故选:B.由表示(x,f(x))点与原点连线的斜率,结合函数y=f(x)的图象,数形结合分析可得答案.本题考查的知识点是斜率公式,正确理解表示(x,f(x))点与原点连线的斜率是解答的关键.5.【答案】C【解析】解:由题意可得,点;而且圆心(x0,y0)在以原点为圆心,以2为半径的圆上.满足条件的点P在平面内所组成的图形的面积是以6为半径的圆的面积减去以2为半径的圆的面积,即36π-4π=32π,故选:C.先根据圆的标准方程求出圆心和半径,然后研究圆心的轨迹,根据点P在平面内所组成的图形是一个环面进行求解即可.本题主要考查了圆的参数方程,题目比较新颖,正确理解题意是解题的关键,属于中档题.6.【答案】C【解析】【分析】本题主要考查数列的求和、一元二次不等式,根据题中等式变形得,构造,从而解出本题.【解答】根据题意,,所以,所以,所以,因为对于任意的,,不等式恒成立,所以在时恒成立,即在时恒成立,设,,则,即,解得或,即实数的取值范围为.故选C.7.【答案】A【解析】【分析】本题考查了锐角三角形内角和定理及其性质、余弦函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.在锐角三角形ABC中,A>B>C,A+B+C=π,可得,于是>,即可得出.【解答】解:∵在锐角三角形ABC中,A>B>C,A+B+C=π,∴,∴,又∵,∴,∴.故选A.8.【答案】A【解析】【分析】本题考查了平面向量数量积的性质及其运算,属中档题.由cos(A+)=解得cosA=,再由余弦定理得BC=,cosB=,再根据向量数量积可得结果.【解答】解:由cos(A+)=-得:cosAcos -sinAsin =-,得cosA=sinA-,两边平方得:cos2A=sin2A-sinA+,整理得sin2A-sinA+-=0,解得sinA=或sinA=-(舍去),又A为锐角,∴cosA=,∴BC2=AB2+AC2-2AB•AC•cosA=72+(2)2-2××=43,∴BC=,∴cosB===,∴•=AB•BC•cos(π-B)=7××(-)=-40.故选A.9.【答案】A【解析】【分析】本题考查三棱锥的内接球的问题,找到球心所在是解题的关键.【解答】解析:因为球O的表面积为29π,所以球的半径为,设AB=a,AC=b,则底面直角三角形ABC的斜边为其外接圆的半径为因为AD⊥平面ABC,所以外接球的半径为=,则,由题意可知,所求三棱锥的侧面积为,运用基本不等式,,当且仅当时,等号成立,即侧面积的最大值为.故选A.10.【答案】C【解析】【分析】本题考查正圆锥曲线被与中心轴成θ的平面所截曲线的轨迹,考查分析运算能力,属于难题.以A点为坐标原点建立空间直角坐标系,可求得A,C′,M等点的坐标,从而可求得cos∠MAC′,设设AC′与底面A′B′C′D′所成的角为θ,继而可求得cosθ,比较θ与∠MAC′的大小,利用正圆锥曲线被与中心轴成θ的平面所截曲线,即可得到答案.【解答】解:P点的轨迹实际是一个正圆锥面和两个平面的交线;这个正圆锥面的中心轴即为AC′,顶点为A,顶角的一半即为∠MAC′;以A点为坐标原点建立空间直角坐标系,则A(0,0,1),C′(1,1,0),M (,1,1),∴=(1,1,-1),=(,1,0),∵cos∠MAC′====,设AC′与底面A′B′C′D′所成的角为θ,则cosθ====>,∴θ<∠MAC′,∴该正圆锥面和底面A′B′C′D′的交线是双曲线弧;同理可知,P点在平面CDD′C′的交线是双曲线弧,故选C.11.【答案】【解析】解:取AB的中点O,连接OC,OD,则AD=BD,∴OD⊥AB,又AB⊥CD,CD∩OD=D,∴AB⊥平面OCD,设圆柱的底面半径为R,高为h,则V圆柱=πR2h=4π,即R2h=4,∴三棱锥A-BCD的体积为V A-OCD+V B-OCD=S△OCD•AB===.故答案为:.将三棱锥分解成两个小棱锥计算.本题考查了圆柱、圆锥的体积计算,属于中档题.12.【答案】【解析】解:如图所示,正三棱锥S-ABC,O为顶点S在底面BCD内的射影,则O为正△ABC的垂心,过C作CH⊥AB于H,连接SH.则SO⊥HC,且,在Rt△SHO 中,.于是,,.所以.故答案为由已知中正三棱锥的底面边长为2m,高为1m,我们易出求棱锥的侧高,进而求出棱侧面积和底面面积即可求出棱锥的全面积.本题主要考查基本运算,应强调考生回归课本、注重运算、留心单位、认真审题.13.【答案】【解析】【分析】本题主要考查了正弦定理,同角三角函数基本关系式,余弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.由已知及正弦定理可求= ,又b = 4a,可求sinC,利用同角三角函数基本关系式可求cosC,利用余弦定理解得a,b,c的值,进而利用三角形面积公式即可计算得解.【解答】解:由正弦定理及= ,得= ,又b=4a,∴sinC= ,∵△ABC为锐角三角形,∴cosC= ,∴cosC= == =,解得a = 1,b = 4 ,c = 4,∴S△ABC=absinC == .故答案为.14.【答案】(-∞,1)【解析】【分析】本题考查数列的通项及前n项和,涉及利用导数研究函数的单调性,考查运算求解能力,注意解题方法的积累,属于难题.通过并项相加可知当n≥2时a n-a1=n+(n-1)+…+3+2,进而可得数列{a n}的通项公式a n =n(n+1),裂项、并项相加可知b n=2(-)==,通过求导可知f(x)=2x+(x≥1)是增函数,进而问题转化为m2-mt+>(b n)max,由恒成立思想,即可得结论.【解答】解:∵a1=1,a n-a n-1=n(n≥2,n N),当n≥2时,a n-a n-1=n,a n-1-a n-2=n-1,…,a2-a1=2,并项相加,得:a n-a1=n+(n-1)+…+3+2,∴a n=1+2+3+…+n=n(n+1),又∵当n=1时,a1=×1×(1+1)=1也满足上式,∴数列{a n}的通项公式为a n =n(n+1),∴b n =+++…+=++…+=2(-+-+…+-)=2(-)==,令f(x)=2x+(x≥1),设x1>x2>1,则f(x1)-f(x2)=,,f(x1)-f(x2)>0∴f(x)在x[1,+∞)上是增函数,故当x=1时,f(x)min=f(1)=3,即当n=1时,(b n)max =,对任意的正整数n,当m[1,2]时,不等式m2-mt+>b n恒成立,则须使m2-mt+>(b n)max=,即m2-mt>0对∀m[1,2]恒成立,即t<m的最小值,可得得t<1,∴实数t的取值范围为(-∞,1),故答案为:(-∞,1).15.【答案】解:(1)sin(A+C)=8sin2,∴sin B=4(1-cos B),∵sin2B+cos2B=1,∴16(1-cos B)2+cos2B=1,∴16(1-cos B)2+cos2B-1=0,∴16(cos B-1)2+(cos B-1)(cos B+1)=0,∴(17cos B-15)(cos B-1)=0,∴cos B=;(2)由(1)可知sin B=,∵S△ABC=ac•sin B=2,∴ac=,∴b2=a2+c2-2ac cos B=a2+c2-2××=a2+c2-15=(a+c)2-2ac-15=36-17-15=4,∴b=2.【解析】(1)利用三角形的内角和定理可知A+C=π-B,再利用诱导公式化简sin (A+C),利用降幂公式化简8sin 2,结合sin2B+cos2B=1,求出cosB,(2)由(1)可知sinB=,利用勾面积公式求出ac,再利用余弦定理即可求出b.本题考查了三角形的内角和定理,三角形的面积公式,二倍角公式和同角的三角函数的关系,属于中档题.16.【答案】解:(I)当x<时,不等式f(x)<2可化为:-x-x-<2,解得:x>-1,∴-1<x<,当≤x≤时,不等式f(x)<2可化为:-x+x+=1<2,此时不等式恒成立,∴≤x≤,当x>时,不等式f(x)<2可化为:-+x+x+<2,解得:x<1,∴<x<1,综上可得:M=(-1,1);证明:(Ⅱ)当a,b M时,(a2-1)(b2-1)>0,即a2b2+1>a2+b2,即a2b2+1+2ab>a2+b2+2ab,即(ab+1)2>(a+b)2,即|a+b|<|1+ab|.【解析】本题考查的知识点是绝对值不等式的解法,不等式的证明,是中档题.(I)分当x <时,当≤x≤时,当x >时三种情况,分别求解不等式,综合可得答案;(Ⅱ)当a,b M时,(a2-1)(b2-1)>0,即a2b2+1>a2+b2,配方后,可证得结论.本题考查的知识点是绝对值不等式的解法,不等式的证明,难度困难.17.【答案】解:(1)当时,,得,当时,,得,∴数列是公比为3的等比数列,∴ .(2)由(1)得:,又①∴②两式相减得:,故,∴.【解析】本题考査了等比数列的通项公式与求和公式、“错位相减法”、数列的递推关系,考查了推理能力与计算能力,属于中档题.(1)利用时,即可得出.(2)利用“错位相减法”、等比数列的求和公式即可得出.18.【答案】(Ⅰ)证明:连接EF交BD于O,连接OP.在正方形ABCD中,点E是AB中点,点F是BC中点,∴BE=BF,DE=DF,∴△DEB≌△DFB,∴在等腰△DEF中,O是EF的中点,且EF⊥OD,因此在等腰△PEF中,EF⊥OP,从而EF⊥平面OPD,又EF⊂平面BFDE,∴平面BFDE⊥平面OPD,即平面PBD⊥平面BFDE;(Ⅱ)解:由(Ⅰ)的证明可知平面POD⊥平面DEF,可得,,,PD=2,由于,∴∠OPD=90°,作PH⊥OD于H,则PH⊥平面DEF,在Rt△POD中,由OD•PH=OP•PD,得.又四边形BFDE的面积,∴四棱锥P-BFDE的体积.【解析】(Ⅰ)连接EF交BD于O,连接OP,在正方形ABCD中,点E是AB中点,点F是BC中点,可得EF⊥OP,又EF⊂平面BFDE,即可证得平面PBD⊥平面BFDE;(Ⅱ)由(Ⅰ)的证明可知平面POD⊥平面DEF,进一步得到∠OPD=90°,作PH⊥OD于H,则PH⊥平面DEF,求出PH的值,则答案可求.本题主要考查空间面面垂直的判定与性质、空间面面夹角的计算等基础知识,考查空间想象能力、推理论证能力、运算求解能力,是中档题.19.【答案】解:(1)根据题意,点P在直线上,设P(3m,m),连接MP,因为圆M的方程为,∴圆心M(0,2),半径r=1,∵过点P作圆M的切线PA,PB,切点为A,B,则有⊥,⊥,且,易得≌,又,即,则,即有,解得或,即P点的坐标为或,(2)根据题意,PA是圆M的切线,则⊥,则过点A,P,M三点的圆以MP为直径的圆,设P点坐标为(3m,m),M(0,2),则以MP为直径的圆为,变形得,即,则有,解得或,则当和时,恒成立,则经过A,P,M三点的圆必过定点,且定点坐标为和.【解析】本题主要考查了直线和圆的方程的综合应用以及圆锥曲线中的定点问题,考查学生的运算求解能力和逻辑思维能力,难度较大. (1)根据题意,设P 点坐标,利用全等关系解得,即可解出m 的值,即P 点的坐标. (2)根据题意可得,根据斜率可得,解出n 的之即可解出面积最小值.(3)根据题意,PA 是圆M 的切线,则,可得以MP 为直径的圆为,即可解得经过A,P,M 三点的圆必过定点,且定点坐标为和.20.【答案】(Ⅰ)证明:如图所示,取PF 中点G ,连接EG ,CG .连接AC 交BD 于O ,连接FO . 由题可得F 为AG 中点,O 为AC 中点,∴FO ∥GC ; 又G 为PF 中点,E 为PD 中点,∴GE ∥FD .又GE ∩GC =G ,GE 、GC ⊂面GEC ,FO ∩FD =F ,FO ,FD ⊂面FOD . ∴面GEC ∥面FOD . ∵CE ⊂面GEC ,∴CE ∥面BDF ;(Ⅱ)解:∵底面ABCD 是边长为 3 的菱形,∴AC ⊥BD ,设交点为O ,以O 为坐标原点建立如图所示空间直角坐标系, 则B (0,- ,0),D (0,,0),P (- ,0,3),C ( ,0,0),F ( ,0,2).则 , , ,,, ,,, ,,, . 设平面BDF 的一个法向量为 , , ,则,取z =3,得 , , . 设平面PCD 的一个法向量为 , , ,则,取y = ,得 , , . ∴cos < , >==. ∴平面 BDF 与平面 PCD 所成的锐二面角的余弦值为.【解析】(Ⅰ)取PF 中点G ,连接EG ,CG .连接AC 交BD 于O ,连接FO .由三角形中位线定理可得FO ∥GC ,GE ∥FD .然后利用平面与平面平行的判定得到面GEC ∥面FOD ,进一步得到CE ∥面BDF ;(Ⅱ)由底面ABCD 是边长为 3 的菱形,可得AC ⊥BD ,设交点为O ,以O为坐标原点建立如图所示空间直角坐标系,求出所用点的坐标,再求出平面 BDF 与平面 PCD的一个法向量,由两法向量所成角的余弦值求得平面 BDF 与平面 PCD所成的锐二面角的余弦值.本题考查直线与平面平行的判定,考查利用空间向量求二面角的平面角,是中档题.21.【答案】(1)证明:圆C:(x+2)2+y2=5的圆心为C(-2,0),半径为,所以圆心C到直线l:mx-y+1+2m=0的距离<.所以直线l与圆C相交,即直线l与圆C总有两个不同的交点;(2)解:设中点为M(x,y),因为直线l:mx-y+1+2m=0恒过定点N(-2,1),则,又所以,所以M的轨迹方程是,它是一个以,为圆心,以为半径的圆.(3)解:假设存在直线l,使得圆上有四点到直线l的距离为,由于圆心C(-2,0),半径为,则圆心C(-2,0)到直线l的距离为,由于圆心C(-2,0) ,半径为,则圆心C(-2,0)到直线l的距离为<化简得m2>4,解得m>2或m<-2.【解析】本题考查点到直线的距离公式,直线的一般式方程,轨迹方程,直线和圆的方程的应用,考查转化思想,考查分析问题解决问题的能力,计算能力,是中档题.(1)圆心C到直线l:mx-y+1+2m=0的距离,可得:对m R,直线l与圆C总有两个不同的交点A、B;(2)设中点为M(x,y),利用k AB•k MC=-1,即可求弦AB的中点M的轨迹方程,并说明其轨迹是什么曲线;(3)利用圆心C(-2,0)到直线l的距离为,求出m的范围.22.【答案】(1)解:设直线l的方程为y=k(x+1),即kx-y+k=0.因为直线l被圆C2截得的弦长为,而圆C2的半径为1,所以圆心C2(3,4)到直线l:kx-y+k=0的距离为+,化简,得12k2-25k+12=0,解得或.所以直线l的方程为4x-3y+4=0或3x-4y+3=0;②写出动圆的方程即可求解.(2)①证明:设圆心C(x,y),由题意,得|CC1|=|CC2|,即+++.化简得x+y-3=0,即动圆圆心C在定直线x+y-3=0上运动;②解:圆C过定点,设C(m,3-m),则动圆C的半径为++++.于是动圆C的方程为(x-m)2+(y-3+m)2=1+(m+1)2+(3-m)2,整理,得x2+y2-6y-2-2m(x-y+1)=0.由得或,所以动圆C经过定点,其坐标为,.【解析】本题考查直线与圆及圆与圆的位置关系,同时考查动点轨迹的探求.(1)利用圆的弦长计算方法即可求解;(2)①由已知有|CC1|=|CC2|,从而求出动圆圆心的轨迹即可求解;。

2019-2020年高二上学期开学考试数学(文)试题 含答案

2019-2020年高二上学期开学考试数学(文)试题 含答案

2019-2020年高二上学期开学考试数学(文)试题 含答案一.选择题(共12小题,每题5分)1.下列命题正确的是( )A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .三角形的两条边平行于一个平面,则第三边也平行于这个平面D .若两个平面都垂直于第三个平面,则这两个平面平行 2.已知为非零实数,且,则下列命题成立的是( ) A . B . C . D . 3.在中,则等于( )A .60°B .45°C .120°D .150° 4.设公比为的等比数列的前项和.若23,234422+=+=a S a S ,则q =( )A .B .C .D . 5.在中,若,则是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形 6.若等差数列满足,,则当数列的前项和最大时, ( ) A . B .C .D .7.一个几何体的三视图如图所示,则该几何体的体积是 A .6 B .8 C .10 D .128. 已知点到直线的距离相等,则实数的值等于( ) A . B . C .或 D. 或9. 已知点,直线过点,且与线段相交,则直线的斜率的取值范围是 ( ) A . B . C . D .10. 已知等差数列的前项和为,且满足,则数列的公差是( ) A. 12 B .1 C .2 D .311. 已知一个正四面体纸盒的棱长为,若在该正四面体纸盒内放一个正方体,使正方体可以在纸盒内任意转动,则正方体棱长的最大值为 ( ) A . B . C . D .12.数列满足⎪⎪⎩⎪⎪⎨⎧<≤-<≤)121(,12)210(,2n n n n a a a a ,若,则( )A .B .C .D .二.填空题(共4小题,每题5分)13. 已知正数满足,则的最小值为__________.14. 已知实数满足2102101x y x y x y -+≥⎧⎪--≤⎨⎪+≤⎩,则的最大值为__________15.已知A (3,1)、B (-1,2),若∠ACB 的平分线在y =x +1上, 则AC 所在直线方程是____________16.如图,等腰梯形中,121====BC DC AD AB ,现将三角形沿向上折起,满足平面平面,则三棱锥的外接球的表面积为三.解答题(写出必要的文字说明)17.(本小题满分10分)已知中,角A ,B ,C ,所对的边分别是,且; (1)求 (2)若,求面积的最大值。

2019-2020年高二上学期开学考试数学(理)试题 含解析

2019-2020年高二上学期开学考试数学(理)试题 含解析

2019-2020年高二上学期开学考试数学(理)试题 含解析数 学(理科)第I 卷 选择题一. 选择题1.已知集合{}{}4|0log 1,|2A x x B x x AB =<<=≤=,则A.()01,B.(]02, C .()1,2 D .(]12, 2.若△ABC 的三个内角A 、B 、C 成等差数列,则cos()A C +=A 、12B、2C 、12-D、2-3.四张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数学之和为偶数的概率是 A.12 B.13 C.23 D .344. 在ABC ∆中,若2=a,b =030A =, 则B 等于A. ︒30B. ︒30或︒150C. ︒60D. ︒60 或 ︒1205.阅读程序框图,运行相应程序,则输出i 的值为 A.3 B.4 C.5 D.6(第5题) (第7题)6.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log log a a a +++=A.10B. 12C.8D.32log 5+7.如图所示,网格纸上小正方形的边长为1,图形为某空间几何体的三视图, 则该几何体的体积为A.8B.6C. 4D.28.等差数列}{n a 中,39a a =公差0d <,那么使}{n a 的前n 项和n S 最大的n 值为 A .5 B .6 C .5 或6 D .6或79.过点()3,1作圆()2211x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为A. 2x +y -3=0B. 2x -y -3=0C. 4x -y -3=0D. 4x +y -3=010.设等差数列{}n a 的公差不等于0,且其前n 项和为n S .若81126a a =+且346,,a a a 成等比数列,则8S = A 、40B 、54C 、80D 、9611.已知圆的方程为22680x y x y +--=,设该圆过点()3,5的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为A 、B 、C 、D 、12.已知非零向量,a b ,满足||1b =,且b 与b a -的夹角为30°,则||a 的取值范围是 A.10,2⎛⎫ ⎪⎝⎭ B .1,12⎡⎫⎪⎢⎣⎭ C.[)1,+∞ D.1,2⎡⎫+∞⎪⎢⎣⎭第II 卷 非选择题二.填空题13.已知向量(2,3)=a ,(2,1)=-b ,则a 在b 方向上的投影等于 .14.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2,sin B +cos B =2,则角A 的大小为__ ______.15.曲线1y =与直线()24y k x =-+有两个不同交点,则实数k 的取值范围是 .16.设()f x 是定义在R 上的奇函数,且当0x ≥时,2()f x x =,若对任意的[]2x t t ∈+,,不等式()2()f x t f x +≥恒成立,则实数t 的取值范围是______________.三.解答题17.已知公差0d >的等差数列}{n a 中,101=a ,且3215,22,a a a +成等比数列.()1;n d a 求公差及通项 ()1223111112....40n n n n S S a a a a a a +=+++<设,求证:18.在ABC ∆中,内角,,A B C 的对边分别为,,a b c 且.a c >已知2BA BC =,1cos 3B =, 3.b =求:(1) a 和c 的值; (2) ()cos B C -的值.19.为了解某社区居民的家庭年收入与年支出的关系,相关部门随机调查了该社区5户家庭,得到如下统计数据表:该社区一户年收入为15万元的家庭年支出为多少?()2若从这5个家庭中随机抽选2个家庭进行访谈,求抽到家庭的年收入恰好一个不超过10万元,另一个超过11万元的概率.20.如图所示,在平面四边形ABCD中,AD=1,CD=2,AC=7.(1)求cos∠CAD的值;(2)若cos∠BAD=-714,sin∠CBA=216,求BC的长.EHDCBAP()()()21.260,1//;221--.P ABCD ABCD PA ABCD ABC E BC H PD EH PAD EH PAD EH PAB A PB C -⊥∠=如图,已知四棱锥中,底面是棱长为的菱形,平面,是中点,若为上的动点,与平面当与平面平面在的条件下,求二面角的余弦值22.设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (){}1n a 求数列的通项公式;(){}{}122nn n n n n n b a a b a b n T --=设数列满足求数列的前项和;()22130nnn na a a a λλλλ-++≤是否存在实数,使得不等式恒成立,若存在,求出的取值范围;若不存在,请说明理由.试题解析部分1.【知识点】集合的运算 【试题解析】所以故答案为:D【答案】D2.【知识点】等差数列【试题解析】、、成等差数列,则所以所以故答案为:C【答案】C3.【知识点】古典概型【试题解析】从1,2,3,4这4张卡片中随机抽取2张的事件有:12,13,14,23,24,34共6个,其中数学之和为偶数的事件有:13,24两个,所以故答案为:B【答案】B4.【知识点】正弦定理【试题解析】因为即所以又B>A,所以=或。

安徽省合肥市2019-2020学年高二第二学期开学考试数学试卷 含答案

安徽省合肥市2019-2020学年高二第二学期开学考试数学试卷 含答案

(1)求 FMN 的面积;
(2)过
F
的直线交抛物线 C

A,
B
两点,设
AF
=
FB

D(−
3 2
, 0)
,当
[1 2
,3] 时,
求 DA DB 的取值范围.
安徽省合肥市 2019-2020 学年高二第二学期开学考
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
9.下列命题是真命题的是( )
A.“若 a b ,则 a2 b2 ”的逆命题 B.“若 = ,则 sin = sin ”的否定
C. “若 a, b 都是偶数,则 a + b 是偶数”的否命题
D. “若函数 f (x), g(x) 都是 R 上的奇函数,则 f (x) + g(x) 是 R 上的奇函数”的逆否命题
2
(1)证明:直线 CE ∥平面 PAB ; (2) 若 PCD 的面积为 15 ,求四棱锥 P − ABCD 的体积VP−ABCD .22. (本小题满分 12
分)已知抛物线 C : y2 = 6x ,直线 l : 2x + 2 3y − 3 = 0 与 x 轴交于点 F ,与抛物线 C 的 准线交于点 M ,过点 M 作 x 轴的平行线交抛物线 C 于点 N .
7.已知圆 C1 : x2 + y2 + 2x + 3y +1 = 0 ,圆 C2 : x2 + y2 + 4x − 3y − 36 = 0 ,则圆 C1 和圆 C2
的位置关系为( )
A.相切
B.内含
C.外离
D.相交
8.“ m = − 1 ”是“直线 (m2 −1)x − y +1 = 0 与直线 2x + (m −1) y −1 = 0互相垂直”的( ) 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省海头高级中学2014-2015学年度第一学期开学考试
高二数学试题
一.填空题:本大题共14小题,每小题5分,共70分.
1.△ABC 中,45B =,60C =,1c =,则b 等于 .
2.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C = .
3.在ABC ∆中,=⋅===AC BA BC AC AB 则,10,2,3 .
4. 已知锐角ABC ∆的面积为3,4,33==CA BC ,则角=C .
5.)2cos()2sin(21++-ππ等于 .
6.已知1cos()33πα+=-,则sin()6
πα-的值为 . 7.一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60,行驶2小时后,船到达C 处,看到这个灯塔在北偏东15,这时船与灯塔的距离为_________km .
8.在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,若2,2==
b a ,2cos sin =+B B ,则角=A .
9.在ABC ∆中,角C B A ,,所对的边分别为c b a ,,.若B b A a sin cos =,则=+B A A 2cos cos sin .
10.在ABC ∆中,c
b c A 22sin 2
-=(c b a ,,为相应角的对边),则ABC ∆形状为 . 11.已知ABC ∆的外接圆半径为R ,060=C ,则R b a +的取值范围为 . 12. 在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,若045,2==B b ,且此三角形只有一个解,则实数a 的取值范围是 .
13. △ABC 中,角A,B,C 的对边分别为a,b,c , 12cos sin sin sin sin =++B C B B A .C=23π,则a b
= . 14. 在ABC ∆中,
1,2==AC BC ,以AB 为边作等腰直角三角形ABD (B 为直角顶点,D C ,两点在直线AB 的两侧)。

当C ∠变化时,线段CD 长的最大值为 .
二.解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤. 15(1)计算tan 20tan 403tan 20tan 40++的值 (2)化简tan 70cos10(3tan 201)-
16.设锐角三角形ABC 的内角C B A ,,的对边分别为c b a ,,,A b a sin 2=
⑴求角B 的大小
⑵若5,33==c a ,求b
17. 已知A 、B 、C 为ABC ∆的三个内角,他们的对边分别为a 、b 、c ,且
21
sin sin cos cos =-C B C B 。

(1)求A;
(2)若,4,32=+=c b a 求bc 的值,并求ABC ∆的面积。

18. 在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,设向量)sin ,(sin ,),(A B n b a m ==,)2,2(--=a b P ⑴若n m //,求证:ABC ∆为等腰三角形 ⑵若p m ⊥,边长2=c ,角3π=
C , 求ABC ∆的面积
19.如图,有一段河流,河的一侧是以O 为圆心,半径为米的扇形区域OCD ,河的另一侧是一段笔直的河岸l ,岸边有一烟囱AB (不计B 离河岸的距离),且OB 的连线恰好与河岸l 垂直,设OB 与圆弧CD 的交点为E .经测量,扇形区域和河岸处于同一水平面,在点C ,点O 和点E 处测得烟囱AB 的仰角分别为45︒,30︒和60︒.
(1)求烟囱AB 的高度; (2)如果要在CE 间修一条直路,求CE 的长.
20.已知ABC ∆中,,,A B C 的对边分别为,,a b c 且2
AB AB AC BA BC CA CB =⋅+⋅+⋅.
(1)判断△ABC 的形状,并求sin sin A B +的取值范围;
(2)如图,三角形,,A B C 的顶点A,C 分别在12,l l 上运动,AC 2,BC 1==,若直线1l ⊥直线2l ,且相交于点O ,求,O B 间距离的取值范围.
l
O B A
C
l 1
l 2
2019-2020年高二开学考试数学试题含答案
答案
1. 3
2.
23
π 3. 23- 4.
5. sin2-cos2
6.
7. 9.
10. 11. (]
32,3 12. 35
13.
14.3
15. (1
2)—1
16.
17. 【答案】(1)23A π=
;(2
)1422S =⨯⨯=【解析】
试题分析:(1)1cos cos sin sin cos()2
B C B C B C -=+= 3B C π
∴+=
()23
A B C ππ∴=-+=
(2)由余弦定理可得:2212b c bc ++=
224,216b c b c bc +=∴++=
4bc ∴=
由1sin 2
S bc A =得142S =⨯=19. 【答案】(1)15米 (2)10米.
【解析】
试题分析:(1)设AB 的高度为h ,根据OB BE OE -=,利用直角三角形建立等量关系:
=,解得15h =.(2)利用余弦定理建立等量关系:
222222
cos 22OC OB BC OC OE CE COB OC OB OC OE +-+-∠==⋅⋅,从而可得10.CE =
试题解析:(1)设AB 的高度为h ,
在△CAB 中,因为45ACB ∠=︒,所以CB h =, 1分
在△OAB 中,因为30AOB ∠=︒,60AEB ∠=︒, 2分
所以OB ,
EB =, 4分
=15h =. 6分
答:烟囱的高度为15米. 7分
(2)在△OBC 中,222
cos 2OC OB BC COB OC OB +-∠=⋅
5
6==, 10分
所以在△OCE 中,2222cos CE OC OE OC OE COE =+-⋅∠
53003006001006=+-⨯=. 13分
答:CE 的长为10米. 14分
考点:解三角形,余弦定理
20. 【答案】(1)ABC ∆为直角三角形,sin sin A B +2∈;(2)||[1,1OB ∈. 【解析】
试题分析:(1)法一,根据数量积的运算法则及平面向量的线性运算化简2AB AB AC BA BC CA CB =⋅+⋅+⋅得到0CA CB ⋅=,从而可确定CA CB ⊥,ABC ∆为直角三角形;
法二:用数量积的定义,将数量积的问题转化为三角形的边角关系,进而由余弦定理化简得到222c a b =+,从而可确定C 为直角,ABC ∆为直角三角形;(2)先引入,[0,]2
ACO πθθ∠=∈,并设(,)B x y ,根据三角函数的定义得到
2cos sin ,cos x y θθθ=+=,进而得到222||)34
OB x y πθ=+=++,利用三角函数的图像与性质即可得到2||OB 的取值范围,从而可确定,O B 两点间的距离的取值范围. 试题解析:(1)法一:因为2AB AB AC BA BC CA CB =⋅+⋅+⋅
所以2()AB AB AC BC CA CB =⋅-+⋅即22
AB AB CA CB =+⋅
所以0CA CB ⋅=,所以CA CB ⊥
所以ABC ∆是以C 为直角的直角三角形
法二:因为2AB AB AC BA BC CA CB =⋅+⋅+⋅ 2cos cos cos c c b A c a B b a C =⋅+⋅+⋅
222222222
2
222c b a c a b a b c c c b c a b a cb ca ab +-+-+-=⋅+⋅+⋅ 222c a b =+
所以ABC ∆是以C 为直角的直角三角形
sin sin A B +=sin cos )4
A A A π=+=+ (0,)2A π∈ 3(,)444
A πππ∴+∈
sin()42
A π+∈即sin sin A
B +∈ (2)不仿设,[0,]2ACO π
θθ∠=∈,(,)B x y
cos cos(90)2cos sin ,sin(90)cos x AC BC y BC θθθθθθ=+︒-=+=︒-=
所以222||)34OB x y πθ=+=++[1,3∈+
所以||[1,1OB ∈.
考点:1.平面向量的数量积;2.余弦定理;3.三角函数的应用。

相关文档
最新文档