物理(1)
大学物理(1)总复习

k a b k(k 1,2,3,...;k只能取整数) a
计算缺级的基本公式。
[B ]
16
补:若用衍射光栅准确测定一单色可见光的波长,在下列各种 光栅常数的光栅中选用哪一种最好?
(A) 5.0×10-1 mm. (B) 1.0×10-1 mm.
(C) 1.0×10-2 mm. (D) 1.0×10-3 mm.
(A) 1.5J (C) 4.5J
(B) 3J (D) -1.5J
F
d
r
1m(v 2
2 2
v12 ),
v
v
2 x
v
2 y
vx
dx dt
5,v y
dy dt
t,
v12
29,v
2 2
41
[B ]
4
4、对质点组有以下几种说法:
(1)质点组总动量的改变与内力无关。
(2)质点组总动能的改变与内力无关。
(3)质点组机械能的改变与保守内力无关。
v 0, t 3
[B ]
r xi yj
v
d
r
d
x
i
d
y
j
dt dt dt
v
v
2 x
v
2 y
d
x
2
d
y
2
dt dt
2
2. 质量为2kg的质点,受力F = t i(SI)的作用,t =0 时刻该质点以v =6i m·s-1的速度通过坐标原点,则该 质点任意时刻的位置矢量为
25
20.一绝热容器被隔板分成两半,一半是真空,另一半是理想 气体。若把隔板抽出,气体将进行自由膨胀,达到平衡后
(A)温度不变,熵增加. (B)温度升高,熵增加. (C)温度降低,熵增加. (D)温度不变,熵不变.
大学物理(一)题库1(黄时中)

⼤学物理(⼀)题库1(黄时中)⼤学物理(1)期末复习题库第⼀篇⼒学⼀、判断题1. 平均速度和瞬时速度通常都是相等的。
()2. 若⼒⽮量F 沿任何闭合路径的积分0=??Ll d F ,则该⼒为保守⼒() 3. 任意刚体的形状、⼤⼩和质量确定,则该刚体的转动惯量⼤⼩确定。
()4. 在狭义相对论时空观下,⼀个惯性系中同时(异地)发⽣的两件事,在另⼀个与它相对运动的惯性系中则⼀定不同时发⽣。
()5. 物体做曲线运动时,速度⽅向⼀定在运动轨道的切线⽅向,法向分速度恒为零,因此其法向加速度也⼀定为零。
()6. 在太阳系中,⾏星相对于太阳的的⾓动量不守恒。
()7. 因为 r r ?=?,所以速率等于速度的⼤⼩。
()8. 物体的运动⽅向与合外⼒⽅向不⼀定相同。
()。
9. 若系统外⼒所作的功0≠ext W ,只要0int,=+non ext W W ,则系统机械能保持不变。
()10. 在⾼速飞⾏的光⼦⽕箭中的观测者观测到地球上的钟变慢了,则地球上的观测者可认为光⼦⽕箭中的钟变快了。
()11. 假设光⼦在某惯性系中的速度为c ,那么存在这样的⼀个惯性系,光⼦在这个惯性系中的速度不等于c 。
()。
12. ⼀物体可以具有恒定的速率但仍有变化的速度()13. 物体运动的⽅向⼀定与它所受的合外⼒⽅向相同()14. 物体运动的速率不变,所受合外⼒⼀定为零()15. 相对论的运动时钟变慢和长度收缩效应是⼀种普遍的时空属性,与过程的具体性质⽆关()16. 质点作圆周运动的加速度不⼀定指向圆⼼。
()17. 有⼀竖直悬挂的均匀直棒,可绕位于悬挂点并垂直于棒的⼀端的⽔平轴⽆摩擦转动,原静⽌在平衡位置。
当⼀质量为m 的⼩球⽔平飞来,并与棒的下端垂直地相撞,则在⽔平⽅向上该系统的动量守恒。
()18. ⼀物体可具有机械能⽽⽆动量,但不可能具有动量⽽⽆机械能。
()19. 内⼒不改变质点系的总动量,它也不改变质点的总动能。
()20. 在某个惯性系中同时发⽣在相同地点的两个事件,对于相对该系有相对运动的其它惯性系⼀定是不同时的。
大学物理(一)试题

一、填空题(每空2分,共20分)1. 一质点沿半径为R =0.1m 的圆周运动,其运动方程为θ=2+4t 3,则t =2s 时切向加速度a τ= .2. 均匀柔软链条,质量为m ,长为l ,一部分(l -a )放在桌面上,一部分(长为a )从桌面边缘下垂,链条与桌面间的摩擦系数为μ,则下垂长度为 时,链条才可能下滑;当链条以此下垂长度从静止开始下滑,在链条末端离开桌面时,它的速率为 .3. 质量为m 的质点在流体中作直线运动,受到与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为v 0,则t 时刻的速度为v = .4. 一匀质转台质量为M ,半径为R ,可绕竖直的中心轴转动,初角速度为ω0,一人立在台中心,质量为m .若他以恒定的速度u 相对转台沿半径方向走向边缘,如下图所示,则人到达转台边缘时转台的角速度为 .第4题图 第5题图5. 如上图所示,磁感应强度为B 的均匀磁场中,长为L 的载流直导线通有电流I ,电流方向与B 的夹角为θ.则L 所受的安培力大小为 .6. 静电场的环路定理为 .7. 如下图所示,长度为L 的铜棒在磁感应强度为B 的均匀磁场中,以角速度ω绕O 轴沿逆时针方向转动.则棒中感应电动势的大小为 ;方向为 .第7题图 第8题图 8. 在圆柱形的均匀磁场中,若∂B ∂t>0,柱内直导线ab 的长度为L ,与圆心垂直距离为h ,如上图所示,则此直导线ab 上的感应电动势大小为 .二、单项选择题(每小题3分,共15分)9. 某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30°方向吹来,试问人感到风从哪个方向吹来? ( )(A )北偏东30° ; (B ) 南偏东30°;(C ) 北偏西30° ; (D ) 西偏南30°.10. 质量为m 的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用,比例系数为k ,k 为正值常量.该下落物体的收尾速度(即最后物体作匀速运动时的速度)将是 ( )(A )k mg; (B )k g2;(C )gk ; (D )gk .11. 关于刚体对轴的转动惯量,下列说法中正确的是()(A)只取决于刚体的质量,与质量的空间分布和轴的位置无关;(B)取决于刚体的质量和质量的空间分布,与轴的位置无关;(C)取决于刚体的质量、质量的空间分布和轴的位置;(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关.12.半径为R的无限长均匀带电圆柱体的静电场中各点的电场强度的大小E与距轴线的距离r的关系曲线为()13. 根据电磁场满足的麦克斯韦方程组:()(A)电场产生磁场,磁场产生电场;(B)变化的电场产生电场但不产生磁场;(C)有电场时磁场为零,有磁场时电场为零;(D)变化的电场产生磁场,变化的磁场产生电场.三、判断题(每小题1分,共10分)14.一个质点的运动方程为x=t3-3t2-9t+5 (m)则质点作变加速直线运动. ()15. 动量守恒定律在高速、微观领域中不成立. ()16. 一个质点的运动轨道为一抛物线x2=4y,作用在质点上的力为F=2y i+4j(N),则质点从x1=-2m处运动到x2=3m处力F所做的功为10.8(J)()17. 创造力强的国家或个人是可以创造能量的. ()18. 一转轮以角速度ω0转动,由于轴承的摩擦力的作用,第1秒末的角速度为0.8ω.若摩擦力矩与角速度成正比,求第2秒末的角速度为0.6ω. ()19. 电场线总是指向电势降低的方向. ()20. ∮S B·d S=0称为磁场中的高斯定理. ()21. 感应电流的效果,总是要反抗引起感应电流的原因. ()22. 电动势是描述电路中静电力做功的物理量. ()23. 静电场,有源无旋;稳恒磁场,有旋无源. ()四、简答题(每小题5分,共15分)24. 力的定义是什么?按性质可以分成哪4类?.25. 一个静止的点电荷能在它的周围空间任一点激起电场;一个线电流元是否也能够在它的周围空间任一点激起磁场?26. 试举出法拉第总结出的5种可以产生感应电流的情况.五、计算题(每小题10分,共40分)27.质点沿直线运动,速度v=t3+3t2+2 (m·s-1),如果当t=2 s时,x=4 m,求:t=3 s时质点的位置、速度和加速度.28.如下图所示丁字形物体由两根相互垂直且均匀的细杆构成,OA=OB=OC=l,OC杆的质量与AB杆的质量均为m,可绕通过O点的垂直于物体所在平面的水平轴无摩擦地转动.开始时用手托住C使丁字形物体静止(OC杆水平),释放后求:(1)释放瞬间丁字形物体的角加速度;(2)转过90°时的角加速度、角动量、转动动能.r r r第28题图 第29题图29. 如上图所示,圆柱半径为R ,电流I 均匀流过导体横截面,求空间磁场大小的分布.30. 求均匀带电球体的空间电场大小的分布,已知球体半径为R ,电荷体密度为 .。
物理选修一知识点归纳

物理选修一知识点归纳1.力学:- 牛顿定律:牛顿第一定律(惯性定律)、牛顿第二定律(力的最简化模型F=ma)、牛顿第三定律(作用反作用定律)。
-力的合成与分解:力的合成和分解的原理和应用。
-平衡条件:物体处于静止或匀速直线运动的平衡条件。
-力矩与力偶:力矩的定义、力矩大小与方向的关系,力偶的概念及其效果。
-简谐振动:简谐振动的定义、简谐振动的描述、简谐运动的特点与简谐运动的动能和势能等。
2.热学:-热学基本定律:热平衡状态、热力学第一定律(能量守恒定律)和热力学第二定律(热传递方向性)。
- 理想气体定律:理想气体状态方程(Boyle-Mariotte定律、Charles定律和Gay-Lussac定律)、理想气体等温过程、等容过程和等压过程的特点。
-热机和热效率:热机的工作过程和热效率的定义与计算。
-热传导:热传导的基本定律、热导率与热阻的关系、导热的影响因素。
3.电磁学:-电场和静电场:电场的定义、电场强度和电势差的计算、电场线和电场的叠加原理。
-电容器:电容器的基本概念、电容器的电容与电容率的关系、电容器的串并联等。
-电流和电路:电流的定义、欧姆定律、电阻的概念和相关计算、电路的串并联规律、基本电路元件(电池、电阻器和导线等)。
-磁场和静磁场:磁场的定义、磁感应强度和磁场强度的计算、电流所产生的磁场与静磁场的叠加原理。
-麦克斯韦方程组:麦克斯韦方程组的基本内容、电磁波的传播特性。
4.光学:-光的本质和传播特性:光的波粒二象性、光的直线传播和光的反射与折射等。
-凸透镜和凹透镜:凸透镜和凹透镜的特点和主要参数(焦距、放大率等)、透镜成像的规律和公式。
-光的干涉和衍射:双缝干涉、杨氏实验、菲涅尔衍射和惠更斯原理。
-光的偏振:光的偏振状态、偏振镜的原理和偏振光的解析等。
以上就是物理选修一的主要知识点的归纳总结。
这些知识点涵盖了力学、热学、电磁学和光学等方面的内容,对于理解和应用物理学原理和解决相关问题都非常重要。
物理答案(1)

5.10 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1L r Q εE -=(2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21Lr r Q εE +=若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '= 整个带电体在点P 的电场强度⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=LE i E d (2) 若点P 在棒的垂直平分线上,如图(A)所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==Ly E αE j j E d sin d 证 (1) 延长线上一点P 的电场强度⎰'=L r πεq E 202d ,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 2⎰'=利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2203/22222041π2d π41L r r εQ r x L xrQ εE L/-L/+=+=⎰当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度r ελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(B)].这说明只要满足r 2/L 2<<1,带电长直细棒可视为无限长带电直线.5 -11 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第5 -3 节的例1 可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度. 解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθR δS δq d sin π2d d 2⋅==,在点O 激发的电场强度为 ()i E 3/2220d π41d r x qx ε+=由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθR πδR θR πεr x q x πεE d cos sin 2 d sin 2cos 41d 41d 02303/2220=⋅=+= 积分得 02/004d cos sin 2εδθθθεδE π⎰==5 -18 设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为()()R r ρkr ρ>=≤≤= 0R r 0k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析 通常有两种处理方法:(1) 利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有2S π4d r E ⋅=⋅⎰S E 根据高斯定理⎰⎰=⋅V ρεd 1d 0S E ,可解得电场强度的分布. (2) 利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为r r ρq ''⋅=d π4d 2,每个带电球壳在壳内激发的电场0d =E ,而在球壳外激发的电场 r r εq e E 20π4d d = 由电场叠加可解得带电球体内外的电场分布()()()()R r r r R r>=≤≤=⎰⎰ d R r 0 d 00E E E E解1 因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理⎰⎰=⋅V ρεd 1d 0S E 得球体内(0≤r ≤R ) ()400202πd π41π4r εk r r kr εr r E r ==⎰ ()r εkr r e E 024= 球体外(r >R)()400202πd π41π4r εk r r kr εr r E R ==⎰ ()r εkR r e E 024= 解2 将带电球分割成球壳,球壳带电r r r k V ρq '''==d π4d d 2由上述分析,球体内(0≤r ≤R )()r r rεkr r r r r k εr e e E 0222004d π4π41=''⋅'=⎰ 球体外(r >R )()r r Rr εkR r r r πr k πεr e e E 20222004d 441=''⋅'=⎰5 -22 一个内外半径分别为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而24d r πE ⋅=⎰S E .在确定高斯面内的电荷∑q 后,利用高斯定理∑⎰=0/d εq S E 即可求出电场强度的分布.解 取半径为r 的同心球面为高斯面,由上述分析∑=⋅02/π4εq r Er <R 1 ,该高斯面内无电荷,0=∑q ,故01=ER 1 <r <R 2 ,高斯面内电荷()31323131R R R r Q q --=∑ 故 ()()23132031312π4r R R εR r Q E --= R 2 <r <R 3 ,高斯面内电荷为Q 1 ,故2013π4rεQ E = r >R 3 ,高斯面内电荷为Q 1 +Q 2 ,故20214π4r εQ Q E += 电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B)所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3 的带电球面两侧,电场强度的跃变量230234π4ΔεσR εQ E E E ==-= 这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -24 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=E 在带电面附近,电场强度大小不连续,电场强度有一跃变R 1 <r <R 2 ,L λq =∑rελE 02π2= r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,电场强度有一跃变00π2π2ΔεσrL εL λr ελE === 5 -29 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a)放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布.解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布, ()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a εσa x2 00i E 电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x<<--=⋅=⎰ d 00l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 00a -a x l E l E ()a x a εσV >-=⋅+⋅=⎰⎰ d d 00a-a x l E l E 5 -30 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?分析 通常可采用两种方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.(2) 利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQ V 0π4= 在球面内电场强度为零,电势处处相等,等于球面的电势RεQ V 0π4= 其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布()()()22021321201211 π4 π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1 时,有20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r +=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞l E l E l E 当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r +=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞l E l E当r ≥R 2 时,有rεQ Q V r 02133π4d +=⋅=⎰∞l E (2) 两个球面间的电势差⎪⎪⎭⎫ ⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V += 若该点位于两个球面之间,即R 1 ≤r ≤R 2 ,则202012π4π4R εQ r εQ V += 若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+= (2) 两个球面间的电势差()2011012112π4π42R εQ R εQ V V U R r -=-==6 -8 一导体球半径为R 1 ,外罩一半径为R 2 的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0 .求此系统的电势和电场的分布.分析 若200π4R εQ V =,内球电势等于外球壳的电势,则外球壳内必定为等势体,电场强度处处为零,内球不带电. 若200π4R εQ V ≠,内球电势不等于外球壳电势,则外球壳内电场强度不为零,内球带电.一般情况下,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示.依照电荷的这一分布,利用高斯定理可求得电场分布.并由⎰∞⋅=p p V l E d 或电势叠加求出电势的分布.最后将电场强度和电势用已知量V 0、Q 、R 1、R 2表示.解 根据静电平衡时电荷的分布,可知电场分布呈球对称.取同心球面为高斯面,由高斯定理()()∑⎰⋅=⋅=⋅02/π4d εq r E r r E S E ,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为r <R 1时, ()01=r ER 1<r <R 2 时,()202π4r εq r E = r >R 2 时, ()202π4r εq Q r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布.r <R 1时,20103211π4π4d d d d 2211R εQ R εq V R R R R r r +=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞l E l E l E l E R 1<r <R 2 时,200322π4π4d d d 22R εQ r εq V R R r r +=⋅+⋅=⋅=⎰⎰⎰∞∞l E l E l E r >R 2 时,rεQ q V r 03π4d +=⋅=⎰∞l E 3 也可以从球面电势的叠加求电势的分布.在导体球内(r <R 1)20101π4π4R εQ R εq V += 在导体球和球壳之间(R 1<r <R 2 )2002π4π4R εQ r εq V += 在球壳外(r >R 2)rεQ q V 03π4+= 由题意102001π4π4R εQ R εq V V +== 得102001π4π4R εQ R εq V V +== 代入电场、电势的分布得r <R 1时,01=E ;01V V =R 1<r <R 2 时,22012012π4rR εQ R r V R E -=;r R εQ R r r V R V 201012π4)(--= r >R 2 时,220122013π4)(r R εQ R R r V R E --=;rR εQ R R r V R V 2012013π4)(--=8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以tI d d 的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律tΦξd d -=来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=S ΦS B d 来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B 1 与B 2 之和).为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即()B B x =,故取一个平行于长直导线的宽为dx 、长为d 的面元dS ,如图中阴影部分所示,则x d S d d =,所以,总磁通量可通过线积分求得(若取面元y x S d d d =,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tl ME M d d -=求解. 解1 穿过面元dS 的磁通量为 ()x d xI μx d d x I μΦd π2d π2d d d d 0021-+=⋅+⋅=⋅=S B S B S B 因此穿过线圈的磁通量为 ()43ln π2d π2d π2d 02020Id μx x Id μx d x Id μΦΦd d d d =-+==⎰⎰⎰ 再由法拉第电磁感应定律,有 tI d μt ΦE d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为43ln π20dI μΦ=线圈与两长直导线间的互感为 43ln π20d μI ΦM ==当电流以tl d d 变化时,线圈中的互感电动势为tI d μt I M E d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 试想:如线圈又以速率v 沿水平向右运动,如何用法拉第电磁感应定律求图示位置的电动势呢?此时线圈中既有动生电动势,又有感生电动势.设时刻t ,线圈左端距右侧直导线的距离为ξ,则穿过回路的磁通量()ξf ΦS,1d =⋅=⎰S B ,它表现为变量I 和ξ的二元函数,将Φ代入tΦE d d -= 即可求解,求解时应按复合函数求导,注意,其中v =t ξd d ,再令ξ=d 即可求得图示位置处回路中的总电动势.最终结果为两项,其中一项为动生电动势,另一项为感生电动势.8 -10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?分析 本题及后面几题中的电动势均为动生电动势,除仍可由t ΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰lE v 求解. 在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线OP 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-=由于静止的 形导轨上的电动势为零,则E =-2RvB .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0 又因 E =E OP +E PO即 E OP =-E PO =2RvB由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.8 -12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.分析 如前所述,本题既可以用法拉第电磁感应定律tΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰l E v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E vl αB lo d cos 90sin ⎰=v ()()l θB θωlo d 90cos sin ⎰-=l ()⎰==L θL B ωl l θB ω022sin 21d sin 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E tΦE ++==-=0d d 显然,E QO =0,所以 ()221PQ B ωE E E QO PQ OP ==-= 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.后者是垂直切割的情况.8 -13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40A .求杆中的感应电动势,杆的哪一端电势较高?分析 本题可用两种方法求解.(1) 用公式()l B d ⋅⨯=⎰l E v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xI μB π20=.(2) 用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的形导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=S ΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势. 解1 根据分析,杆中的感应电动势为 ()V 1084.311ln 2πd 2πd d 50m 1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰v v v I μx x μxl E AB AB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高.解2 设顺时针方向为回路ABCD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xI μΦd 2πd d 0=⋅=S B 穿过回路的磁通量为 11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===S Iy μx y x I μΦΦ 回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iy μt y x I μt ΦE 由于静止的形导轨上电动势为零,所以V 1084.35-⨯-==E E AB式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.8 -14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.分析 本题亦可用两种方法求解.其中应注意下列两点:1.当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgef gh ef E E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.2.用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =t ξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgef l B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μv v ()1202πl d I I μ+=1vI 由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为()()ξl ξξx Il μdx ξx Il μΦl 120020ln π2π21++=+=⎰相应电动势为 ()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为()1120π2l d d l l I μE +=v 由E >0 可知,线框中电动势方向为顺时针方向.8 -19 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式I ΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式t I E L L d /d =计算L .式中E L 和tI d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20= 由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为12200ln π2d π2d 21R R hI N μx h x NI μN N ψS R R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL = 8 -20 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果.解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为I L N μnl μB 111==,I LN μnl μB 222== 通过N 匝回路的磁链为 221121S NB S NB ΨΨΨ+=+=则自感2211221S μS μlN I ψL L L +==+= 8 -23 如图所示,一面积为4.0 cm 2共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A ·s-1 时,线圈A 中感应电动势的大小和方向.分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则21212I ΦM M == . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度RI μN B B200=穿过小线圈A 的磁链近似为 A BA A A A S RI μN N S B N ψ200== 则两线圈的互感为 H 1028.6260-⨯===R S μN N I ψM A B A A (2)V 1014.3d d 4-⨯=-=tI M E A 互感电动势的方向和线圈B 中的电流方向相同.8 -24 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少?解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁感强度近似为()2/322202d R IR μB +=穿过线圈C 的磁通为()22/32220π2r d R IR μBS ψC +==则两线圈的互感为()2/3222202πd R R r μI ψM +== 若线圈C 的匝数为N 匝,则互感为上述值的N 倍.8 -27 一无限长直导线,截面各处的电流密度相等,总电流为I .试证:单位长度导线内所贮藏的磁能为π16/20I μ.分析 本题中电流激发的磁场不但存在于导体内当r <R 时,201π2R Ir μB =,而且存在于导体外当r >R 时,r I μB π202=.由于本题仅要求单位长度导体内所储存的磁能,故用公式V w W V m m d ⎰=计算为宜,因本题中B 呈柱对称性,取单位长度,半径为r ,厚为dr 的薄柱壳(壳层内m w 处处相同)为体元dV ,则该体元内储存的能量r r R Ir μμW m d π2π221d 2200⎥⎥⎦⎤⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=,积分即可求得磁能.证 根据以上分析单位长度导线内贮存的磁能为π16d π2π8d 20024220I μr r r R I μW W Rm m =⎥⎦⎤⎢⎣⎡==⎰⎰上述结果仅为单位长度载流导线内所具有的磁场能量,它是总磁场能量的一部分,总能量还应包括导线外磁场所储存的磁能.。
大学物理 第一章(1)

a
v2 R
n0
dv dt
t0
R―曲率半径
思考 求抛体运动过程中的曲率半径?
如B 点 at 0 , an g ,v B v 0cosθ
RB
v2
B an
(v 0cosθ)2
g
y v
B
思考
· a4 v
· a1
a·2
O
a3
O
x C
上图中分别是什么情形? a4情形是否存在?
(2)物体各点运动情况相同
本课程力学部分,除刚体外,一般都可视为质点.
2 位置矢量(position vector of a particle)
表征某时刻质点位置的矢量, 简称位矢或矢径
r xi yj zk
r 位矢 的大小:
y
r r x2 y2 z2 r 位矢 的方向余弦:
a
ddtv
20
2
sin2ti
16
2
t 1s
cos 2tj
dt
t 1s
16 2 j (m / s2 )
x 5 sin2t
x2 y2
{
y 4 cos 2t
52 42 1
解题思路:
位移(求矢量差)
1 运动方程 轨道 方程(消去t)
:
an
v2 R
n0
(改变速度方向)
切向加速度(tangential acceleration)
:at
dv dt t0
v
aτ
(改变速度大小)
v2 dv a R n0 dt t0
《大学物理1》内容提要(PDF)

1.参考系:描述物体运动时用作参考的其它物体和一套同步的钟.2.位矢和位移一运动的描述➢运动方程kt z j t y i t x t r r)()()()(++==➢位移)()(t r t t r r−∆+=∆注意: 一般rr ∆≠∆ 3.速度和速率tsd d =v k t z j dt y i t x t rd d d d d d d ++==v ➢速度➢速率(速度合成)第一章质点运动学3.加速度任意曲线运动都可以视为沿x ,y ,z 轴的三个各自独立的直线运动的叠加(矢量加法).——运动的独立性原理或运动叠加原理.kj i t r t a z y x tv t v t v v d d d d d d d d d d 22++===二. 匀加速运动=a常矢量初始条件:or v ,0ta +=0v v 2021ta t r++=0v r➢匀加速直线运动at+=0v v 2021att x ++=0v x ax22=−20v v ➢抛体运动0=x a ga y −=θcos 0x v v =gty −=θsin 0vv t⋅=θcos 0v x 221sin gtt −⋅=θ0vy 三. 圆周运动➢角速度Rt v ==d d θω➢角加速度td d ωβ=➢速度tt t d d e r e e ts ω===v vnn t t e a e a a +=➢圆周运动加速度22nt a a a +=切向加速度22t d d d d ts r t a ===αv 法向加速度rr a 22n v v ===ωω(指向圆心)(沿切线方向)➢力学的相对性原理:动力学定律在一切惯性系中都具有相同的数学形式.四. 相对运动➢伽利略速度变换u+='v v第二章牛顿定律一牛顿运动定律第一定律:惯性和力的概念,惯性系的定义.第二定律:tp F d d =vm p =当时,写作c <<v a m F=第三定律2112F F−=力的叠加原理+++=321F F F F 二国际单位制力学基本单位m 、kg 、s量纲:表示导出量是如何由基本量组成的关系式.t mma F xx x d d v ==tmma F yy y d d v ===直角坐标表达形式自然坐标表达形式d d t t F ma mt ==vn n F ma mρ==2v牛顿第二定律的数学表达式am t p F ==d d 一般的表达形式nn t t y x e F e F j F i F F +=+=(1)万有引力r221e r m m G F−=重力gm P =三几种常见的力(3)摩擦力滑动摩擦力静摩擦力Nf F F μ=N0f0m 0f F F F μ=≤(2)弹性力:弹簧弹力(张力、正压力和支持力)kxF−=四应用牛顿定律解题的基本思路1)确定研究对象,几个物体连在一起需作隔离体,把内力视为外力;2)受力分析:画受力图;3)建立坐标系,列方程求解;(用分量式)4)先用文字符号求解,后代入数据计算结果.第三章动量守恒定律和能量守恒定律一动量、冲量、动量定理vm p =——机械运动的量度质点的动量力的冲量——力对时间的累计⎰=21d t tt F I1221d v v m m t F t t −=⎰质点的动量定理:质点所受合外力的冲量等于质点在此时间内动量的增量。
大学物理(1)期末答疑1

R
6.以一定初速度 vr 斜向上抛出一个物体,如果忽略空
气阻力,当该物体的速度与水平面的夹角为 时,它
的切向加速度的大小为aτ=
小为an=
.
, 法向加速度的大
a g sin an g cos
a
an
g
运动守恒量和守恒定律 一、选择题:
1、两个质量相等的小球A和B由一轻弹簧相连接,再用 一细绳悬挂于天花板上,处于静止状态,如图所示。在 绳子被剪断的瞬间,A球和B球的加速度分别为:[ ]
4、花样滑冰运动员绕过自身的竖直转轴运动,开始
时两臂伸开转动惯量为 I 0 ,角速度为0 。然后她将
两臂收回使转动惯量减少为I0 3,这时她的角速度变 为[ ]
(A) 0 3 (B) 0 3 (C) 3 0 (D) 30
角动量守恒:
I 00
I0 3
答:C
5、一根质量为 m 、长度为L的匀质细直棒,平放在水
A.I A IB
B.I A IB
C. I A I B
D.不能确定哪个大
I 1 mR2 2
mR2d I 1 m m
2 d
答:B
3、刚体角动量守恒的充分而必要的条件是[ ] (A)刚体不受外力矩的作用。 (B)刚体所受的合外力和合外力矩均为零。 (C) 刚体所受合外力矩为零。 (D)刚体的转动惯量和角速度均保持不变。 答:C
(D) (3)是正确的 答案:D
10.某人骑自行车以速率v 向正西方行驶,遇到由北向
南刮的风(设风速大小也为v ),则骑车人感觉风是来
自于[ ]
y
y
(A)东北方向 (B)东南方向
(C)西北方向 (D)西南方向。