中国传统文化中的数学算法习题
05数学文化——算法-2021年高中数学传统文化与人文价值素材

05数学文化——算法(12题)1、更相减损术1.如图程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b,i的值分别为6,8,0,则输出a和i的值分别为()A.0,3 B.0,4 C.2,3 D.2,4【考点】程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b,i的值,即可得到结论.【解析】:模拟执行程序框图,可得:a=6,b=8,i=0,i=1,不满足a>b,不满足a=b,b=8﹣6=2,i=2满足a>b,a=6﹣2=4,i=3满足a>b,a=4﹣2=2,i=4不满足a>b,满足a=b,输出a的值为2,i的值为4.故选:D.【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.2.如图,该程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输出的a=3,则输入的a,b分别可能为()A.15、18 B.14、18 C.13、18 D.12、18【考点】程序框图.【分析】由程序框图的输出功能,结合选项中的数据,即可得出输入前a,b的值.【解析】:根据题意,执行程序后输出的a=3,则执行该程序框图前,输人a、b的最大公约数是3,分析选项中的四组数,满足条件的是选项A.故选:A.【点评】本题考查了算法和程序框图的应用问题,也考查了我国古代数学史的应用问题,是基础题.3.如图程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b,i的值分别为12,16,0,则输出a和i的值分别为()A.4,3 B.4,4 C.4,5 D.3,4【考点】程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b,i的值,即可得到结论.【解析】:模拟执行程序框图,可得:a=12,b=16,i=0,i=1,不满足a>b,不满足a=b,b=16﹣12=4,i=2满足a>b,a=12﹣4=8,i=3 满足a>b,a=8﹣4=4,i=4不满足a>b,满足a=b,输出a的值为4,i的值为4.故选:B.【点评】本题主要考查了算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.4.如程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为12,15,则输出的a=()A.0 B.2 C.3 D.14【考点】程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解析】:由a=12,b=15,a<b,则b变为15﹣12=3,由a>b,则a变为12﹣3=9,由a>b,则a变为9﹣3=6,由a>b,则a变为6﹣3=3,由a=b=3,则输出的a=3.故选:C.【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.2、辗转相除法5.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与古老的算法﹣﹣“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a=6102,b=2016时,输出的a=()A.6 B.9 C.12 D.18【考点】程序框图.【分析】模拟程序框图的运行过程,该程序执行的是欧几里得辗转相除法,求出运算结果即可.【解析】:模拟程序框图的运行过程,如下;a=6102,b=2016,执行循环体,r=54,a=2016,b=54,不满足退出循环的条件,执行循环体,r=18,a=54,b=18,不满足退出循环的条件,执行循环体,r=0,a=18,b=0,满足退出循环的条件r=0,退出循环,输出a的值为18.故选:D.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的答案,是基础题.6.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为6,4,则输出a的值为()A.0 B.2 C.4 D.6【考点】程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解析】:由a=6,b=4,a>b,则a变为6﹣4=2,由a<b,则b变为4﹣2=2,由a=b=2,则输出的a=2.故选:B.【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.7.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的某一种算法.执行该程序框图,输入分别为98,63,则输出的结果是()A.14 B.18 C.9 D.7【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量m的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解析】:模拟执行程序,可得:m=98,n=63,第一次执行循环体,r=35,m=63,n=35,不满足退出循环的条件;第二次执行循环体,r=28,m=35,n=28,不满足退出循环的条件;第二次执行循环体,r=7,m=28,n=7,不满足退出循环的条件;第二次执行循环体,r=0,m=7,n=0,满足退出循环的条件;故输出的m值为7.故选:D.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.8.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与古老的算法﹣﹣“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a=6102,b=2016时,输出的a=18.【考点】程序框图.【分析】模拟程序框图的运行过程,该程序执行的是欧几里得辗转相除法,求出运算结果即可.【解析】:模拟程序框图的运行过程,如下;a=6102,b=2016,执行循环体,r=54,a=2016,b=54,不满足退出循环的条件,执行循环体,r=18,a=54,b=18,不满足退出循环的条件,执行循环体,r=0,a=18,b=0,满足退出循环的条件r=0,退出循环,输出a的值为18.故答案为:18.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的答案,是基础题.3、中国剩余定理9.中国剩余定理,此定理源于我国古代数学名著《孙子算经》,其中记载了这样一个“物不知数”的问题:“今有物不知数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”这个问题的意思是:有一个正整数,除以3余2,除以5余3,除以7余2,求符合条件的正整数.此问题及其解题原理在世界上颇负盛名,中外数学家们称之为“孙子定理”、“中国剩余定理”或“大衍求一术”等.对以上“物不知数”的问题,求得满足条件的最小正整数为23,而满足条件的所有正整数可用代数式表示为105k+23(k为非负整数).【考点】带余除法.【分析】根据“三三数之剩二,五五数之剩三,七七数之剩二”找到三个数:第一个数能同时被3和5整除;第二个数能同时被3和7整除;第三个数能同时被5和7整除,将这三个数分别乘以被7、5、3除的余数再相加即可求出答案.【解析】:我们首先需要先求出三个数:第一个数能同时被3和5整除,但除以7余1,即15;第二个数能同时被3和7整除,但除以5余1,即21;第三个数能同时被5和7整除,但除以3余1,即70;然后将这三个数分别乘以被7、5、3除的余数再相加,即:15×2+21×3+70×2=233.最后,再减去3、5、7最小公倍数的若干倍,即:233﹣105×2=23.故答案为:23,105k+23.【点评】本题考查的是带余数的除法,根据题意下求出15、21、70这三个数是解答此题的关键.4、割圆术10.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:3≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.48【考点】程序框图.【分析】列出循环过程中S与n的数值,满足判断框的条件即可结束循环.【解析】:模拟执行程序,可得:n=6,S=3sin60°=332,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:B.【点评】本题考查循环框图的应用,考查了计算能力,注意判断框的条件的应用,属于基础题.5、其它算法11.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n=()A.4 B.5 C.2 D.3【考点】设计程序框图解决实际问题.【分析】模拟执行程序,依次写出每次循环得到的a,A,S的值,当S=1358时,满足条件S≥10,退出循环,输出n的值为4,从而得解.【解析】:模拟执行程序,可得a=1,A=1,S=0,n=1 S=2不满足条件S≥10,执行循环体,n=2,a=12,A=2,S=92不满足条件S≥10,执行循环体,n=3,a=14,A=4,S=354不满足条件S≥10,执行循环体,n=4,a=18,A=8,S=1358满足条件S≥10,退出循环,输出n的值为4.故选:A.【点评】本题主要考查了循环结构的程序框图的应用,模拟执行程序正确写出每次循环得到的a,A,S的值是解题的关键,属于基础题.12.将“杨辉三角”中的数从左到右、从上到下排成一数列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…,如图所示程序框图用来输出此数列的前若干项并求其和,若输入m=4则相应最后的输出S的值是15.【考点】循环结构.【分析】根据所给条件,按照流程图的流程进行逐一判定,看其是否满足判断框的条件,从而选择下一处理框,依次执行可得到所求.C=1,S=1+1=2;【解析】:i=1,m=4,满足条件i<m,j=0,满足条件j≤i,则a=01C=1,S=2+1=3;j=1,满足条件j≤i,则a=11C=1,S=3+1=4;j=2,不满足条件j≤i,则i=2,j=0,满足条件j≤i,则a=02C=2,S=4+2=6;j=1,满足条件j≤i,则a=12C=1,S=6+1=7;j=2,满足条件j≤i,则a=22C=1,S=7+1=8;j=3,不满足条件j≤i,则i=3,j=0,满足条件j≤i,则a=03C=3,S=8+3=11;j=1,满足条件j≤i,则a=13C=3,S=11+3=14;j=2,满足条件j≤i,则a=23C=1,S=14+1=15;j=3,满足条件j≤i,则a=33j=4,不满足条件j≤i,则i=4,不满足条件i<m,输出S=15;故答案为:15【点评】本题主要考查了循环结构,是一个嵌套式循环,解题的关键是逐一分析判断框的条件,同时考查了组合数公式,属于中档题.。
人教B数学必修三课时分层作业8 中国古代数学中的算法案例 含解析

课时分层作业(八)中国古代数学中的算法案例(建议用时:60分钟)[合格基础练]一、选择题1.225与135的最大公约数是()A.5B.9C.15D.45D[∵(225,135)→(90,135)→(90,45)→(45,45).故选D.]2.用圆内接正多边形逼近圆,因而得到的圆周率总是________π的实际值()A.大于等于B.小于等于C.等于D.小于D[由割圆术可知:圆内接正多边形无论是否逼近圆,其边长之和总小于圆周长,所以得到的圆周率也小于π.]3.用秦九韶算法计算f(x)=6x5-4x4+x3-2x2-9x,需要加法(或减法)与乘法运算的次数分别为()A.5,4 B.5,5 C.4,4 D.4,5D[n次多项式需进行n次乘法;若各项均不为零,则需进行n次加法,缺一项就减少一次加法运算.f(x)中无常数项,故加法次数要减少一次,为5-1=4.故选D.]4.用秦九韶算法求多项式f(x)=7x6+6x5+3x2+2当x=4时的值时,先算的是()A.4×4=16 B.7×4=28C.4×4×4=64 D.7×4+6=34D[把多项式改写为f(x)=(((((7x+6)x+0)x+0)x+3)x+0)x+2,故最先计算的应为7×4+6=34.]5.已知f(x)=x5+2x3+3x2+x+1,应用秦九韶算法计算x=3时的值时,v3的值为()A.27 B.11 C.109 D.36D[将函数式化成如下形式,f(x)=((((x+0)x+2)x+3)x+1)x+1,由内向外依次计算:v0=1,v1=1×3+0=3,v2=3×3+2=11,v3=11×3+3=36,v4=36×3+1=109,v5=109×3+1=328.]二、填空题6.用更相减损之术求36和134的最大公约数,第一步应为________.36与134分别除以2,得到18与67[第一步为36与134分别除以2,得到18与67.]7.用秦九韶算法求多项式f(x)=7x5+5x4+10x3+10x2+5x+1当x=-2时值的算法:①第一步,x=-2.第二步,f(x)=7x5+5x4+10x3+10x2+5x+1.第三步,输出f(x).②第一步,x=-2.第二步,f(x)=((((7x+5)x+10)x+10)x+5)x+1.第三步,输出f(x).③需要计算5次乘法,5次加法.④需要计算9次乘法,5次加法.以上说法中正确的是________(填序号).②③ [①是直接求解,并不是秦九韶算法,故①错.对于一元最高次数是n 的多项式,应用秦九韶算法需要运算n 次乘法和n 次加法,故③正确.]8.用秦九韶算法求多项式f (x )=1+5x +10x 2+10x 3+5x 4+x 5在x =-2的值时,v 3的值为________.2 [f (x )=1+5x +10x 2+10x 3+5x 4+x 5=⎝⎛⎭⎫()((x +5)x +10)x +10x +5x +1,∴在x =-2时,v 1=-2+5=3,v 2=-2×3+10=4,v 3=4×(-2)+10=2.]三、解答题9.用秦九韶算法求多项式f (x )=x 6+2x 5+3x 4+4x 3+5x 2+6x 当x =2时的值.[解] f (x )=x 6+2x 5+3x 4+4x 3+5x 2+6x=(((((x +2)x +3)x +4)x +5)x +6)x ,所以有v 0=1;v 1=1×2+2=4;v 2=4×2+3=11;v 3=11×2+4=26;v 4=26×2+5=57;v 5=57×2+6=120;v 6=120×2=240.故当x =2时,多项式f (x )=x 6+2x 5+3x 4+4x 3+5x 2+6x 的值为240.10.求三个数168,54,264的最大公约数.[解]∵(168,54)→(114,54)→(60,54)→(6,54)→(6,48)→(6,42)→(6,36)→(6,30)→(6,24)→(6, 18)→(6,12) →(6,6),∴168和54的最大公约数为6.∵(54,264)→(210,54)→(156,54)→(102,54)→(48,54)→(48,6)→(42,6)→…→(6,6),∴54和264的最大公约数为6.故168,54,264的最大公约数为6.[等级过关练]1.下列哪组的最大公约数与1 855,1 120的最大公约数不同()A.1 120,735 B.385,350C.385,735 D.1 855,325D[∵(1 855,1 120)→(735,1 120)→(735,385)→(350,385)→(350,35)→(315,35)→…→(35,35),∴1 855与1 120的最大公约数是35,由以上计算过程可知选D.]2.用秦九韶算法计算多项式f(x)=x6-12x5+60x4-160x3+240x2-192x+64,当x=2时的值为()A.-10B.40C.0D.32C[将f(x)改写为f(x)=(((((x-12)x+60)x-160)x+240)x-192)x+64.由内向外依次计算一次多项式当x=2时的值:v0=1,v1=1×2-12=-10,v2=-10×2+60=40,v3=40×2-160=-80,v 4=-80×2+240=80,v 5=80×2-192=-32,v 6=-32×2+64=0,∴f (2)=0,即x =2时,原多项式的值为0.]3用秦九韶算法求多项式f (x )=1+2x +x 2-3x 3+2x 4,当x =-1时的值时,v 2的结果是________.6 [此题的n =4,a 4=2,a 3=-3,a 2=1,a 1=2,a 0=1,由秦九韶算法的递推关系式⎩⎪⎨⎪⎧v 0=a n ,v k =v k -1x +a n -k(k =1,2,…,n ), 得v 1=v 0x +a 3=2×(-1)-3=-5,v 2=v 1x +a 2=-5×(-1)+1=6.]4.阅读程序框图,利用秦九韶算法计算多项式f (x )=a n x n +a n -1x n -1+…+a 1x +a 0,当x =x 0时,框图中A 处应填入________.a n -k [f (x )=a n x n +a n -1x n -1+…+a 1x +a 0,先用秦九韶算法改为一次多项式. f (x )=(…((a n x +a n -1)x +a n -2)x +…+a 1)x +a 0.f 1=a n ;k =1,f 2=f 1x 0+a n -1;k =2,f 3=f 2x 0+a n -2;…;归纳得第k 次f k +1=f k x 0+a n -k .故A 处应填a n -k .]5.有甲、乙、丙三种溶液分别重147 g,343 g,133 g ,现要将它们分别全部装入小瓶中,每个小瓶装入液体的质量相同,每瓶最多装多少克溶液?[解]每个小瓶装的溶液的质量应是三种溶液质量的最大公约数,先求147和343的最大公约数.343-147=196,196-147=49,147-49=98,98-49=49.所以147和343的最大公约数为49.同理可求得49与133的最大公约数为7.所以每瓶最多装7克.。
古代算术考试题及答案大全

古代算术考试题及答案大全一、选择题1. 以下哪个选项是古代算术中常用的运算符号?A. ⊕B. ×C. ÷D. √答案:B2. 古代算术中,"算盘"是用来进行哪种类型的运算?A. 加法B. 减法C. 乘法D. 除法答案:ABCD3. 在古代算术中,"勾股定理"是由哪位数学家提出的?A. 欧几里得B. 毕达哥拉斯C. 阿基米德D. 牛顿答案:B二、填空题1. 古代算术中,"________"是用来表示未知数的。
答案:未知数2. 古代算术的"九章算术"中,"________"是专门讨论比例问题的一章。
答案:方田3. 古代算术中,"________"是指将一个数分成若干份,每份相等的运算。
答案:平均分配三、简答题1. 简述古代算术中“盈不足术”的原理及其应用。
答案:盈不足术是古代算术中解决分配问题的一种方法,其原理是通过比较实际分配结果与预期分配结果的差异,来调整分配比例,直至满足分配条件。
2. 描述古代算术中“开方术”的计算过程。
答案:开方术是古代算术中用来求解平方根的运算方法。
首先确定被开方数的范围,然后通过试商法逐步逼近平方根的值,直至达到所需的精度。
四、计算题1. 计算下列古代算术问题:一个长方形的长是宽的两倍,面积是48平方尺,求长和宽各是多少。
答案:设宽为x尺,则长为2x尺。
根据面积公式,x * 2x = 48,解得x = 4尺,所以长为8尺,宽为4尺。
2. 一个古代算术问题中,有100个铜钱,平均分配给10个人,每人分得多少铜钱?答案:100 / 10 = 10,每人分得10个铜钱。
五、论述题1. 论述古代算术在农业、建筑和商业中的应用及其重要性。
答案:古代算术在农业中用于计算土地面积和产量分配;在建筑中用于测量和设计建筑结构;在商业中用于交易和财务管理。
中国古代算术经典名题

中国古代算术经典名题(100分)欢迎参加本次测试1、单选题:今有善行者行一百步,不善行者行六十步。
今不善行者先行一百步,善行者追之。
问几何步及之?【单选题】A.A:一百八十步B.B:两百步C.C:两百五十步D.D:两百八十步正确答案: C2、单选题:今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐。
问:水深,葭长各几何?【单选题】A.A:水深:八尺,葭长九尺B.B:水深:十二尺,葭长十三尺C.C:水深:十六尺,葭长十八尺D.D:水深:廿四尺,葭长廿五尺正确答案: C3、单选题:有井不知深,先将绳三折入井,绳长四尺,后将绳四折入井,绳长一尺。
问:井深和绳长各几何?【单选题】A.A:井深八尺,绳长为三十二尺B.B:井深八尺,绳长为三十六尺C.C:井深九尺,绳长为三十二尺D.D:井深九尺,绳长为三十六尺正确答案: B4、单选题:今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺。
问积几何?【单选题】A.A:六十四尺B.B:八十一尺C.C:八十四尺D.D:九十尺正确答案: C5、单选题:今有竹高一丈,末折抵地,去本四尺,问折者高几何?【单选题】A.A:三尺二寸B.B:三尺五寸C.C:四尺D.D:四尺二寸正确答案: D6、单选题:波平如镜一湖面,三尺高处出红莲。
亭亭多姿湖中立,突逢狂风吹一边。
离开原地六尺远,花贴湖面像睡莲,求湖水在此深若干尺?【单选题】A.A:三尺五寸B.B:四尺C.C:四尺五寸D.D:五尺五寸正确答案: C7、单选题:今有客马日行三百里。
客去忘持衣,日已三分之一,主人乃觉。
持衣追及与之而还,至家视日四分之三。
问主人马不休,日行几何?【单选题】A.A:七百八十里B.B:八百里C.C:八百一十里D.D:八百四十里正确答案: A8、单选题:今有竿不知其长,量得影长一丈五尺,立一标竿,长一尺五寸,影长五寸。
问竿长几何?【单选题】A.A:30尺B.B:32尺C.C:40尺D.D:45尺正确答案: D9、单选题:李白街上走,提壶去买酒。
数学中的中国传统文化问题大全

数学中的中国传统文化一、算法问题1.用更相减损术求294和84的最大公约数时,需要做减法的次数为()A.2 B.3C.4 D.5答案 C解析(84,294)→(84,210)→(84,126)→(84,42)→(42,42),一共做了4次减法.2.如图所示的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a为()A.4 B.2C.0 D.14答案 B解析由题意输出的a是18,14的最大公约数2,故选B.3.用辗转相除法求459和357的最大公约数,需要做除法的次数是()A.1 B.2C.3 D.4答案 C解析∵459÷357=1…102,357÷102=3…51,102÷51=2,∴459和357的最大公约数是51,需要做除法的次数是3.4.秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法,对于求一个n次多项式函数f n(x)=a n x n+a n-1x n-1+…+a1x+a0的具体函数值,运用常规方法计算出结果最多需要n次加法和n(n+1)2次乘法,而运用秦九韶算法由内而外逐层计算一次多项式的值的算法至多需要n次加法和n次乘法.对于计算机来说,做一次乘法运算所用的时间比做一次加法运算要长得多,所以此算法极大地缩短了CPU运算时间,因此即使在今天该算法仍具有重要意义.运用秦九韶算法计算f(x)=0.5x6+4x5-x4+3x3-5x当x=3时的值时,最先计算的是()A.-5×3=-15B.0.5×3+4=5.5C.3×33-5×3=66D.0.5×36+4×35=1 336.6答案 B解析f(x)=0.5x6+4x5-x4+3x3-5x=(((((0.5x+4)x-1)x+3)x+0)x-5)x,然后由内向外计算,最先计算的是0.5×3+4=5.5.5.若用秦九韶算法求多项式f(x)=4x5-x2+2当x=3时的值,则需要做乘法运算和加减法运算的次数分别为()A.4,2 B.5,3C.5,2 D.6,2答案 C解析∵f(x)=((((4x)x)x-1)x)x+2,∴乘法要运算5次,加减法要运算2次.6.已知函数f(x)=6x6+5,当x=x0时,用秦九韶算法求f(x0)的值,需要进行乘方、乘法、加法的次数分别为()A.21,6,2 B.7,1,2C.0,1,2 D.0,6,1答案 D解析∵f(x)=6x6+5,多项式的最高次项的次数是6,∴要进行乘法运算的次数是6.要进行加法运算的次数是1,运算过程中不需要乘方运算.7.中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的a依次为2,2,5,x,n均为2,则输出的s等于()A.7 B.12C.17 D.34答案 C解析第一次运算,a=2,s=2,n=2,k=1,不满足k>n;第二次运算,a=2,s=2×2+2=6,k=2,不满足k>n;第三次运算,a=5,s=6×2+5=17,k=3,满足k>n,输出s=17,故选C.8.用秦九韶算法求多项式f(x)=x3-3x2+2x-11的值时,应把f(x)变形为()A.x3-(3x+2)x-11 B.(x-3)x2+(2x-11)C.(x-1)(x-2)x-11 D.((x-3)x+2)x-11答案 D解析f(x)=x3-3x2+2x-11=((x-3)x+2)x-119.用秦九韶算法求函数f(x)=3x5-2x4+2x3-4x2-7当x=2的值时,v3的结果是()A.4 B.10C.16 D.33答案 C解析函数f(x)=3x5-2x4+2x3-4x2-7=((((3x-2)x+2)x-4)x)x-7,当x=2时,v0=3,v1=3×2-2=4,v2=4×2+2=10,v3=10×2-4=16.10.用秦九韶算法求多项式f(x)=x6-5x5+6x4+x2+0.3x+2的值,当x=-2时,v1的值为()A.1 B.7C.-7 D.-5答案 C解析∵f(x)=x6-5x5+6x4+x2+0.3x+2=(((((x-5)x+6)x+0)x+1)x+0.3)x+2,∴v0=a6=1, v1=v0x+a5=1×(-2)-5=-7.11.利用秦九韶算法求多项式f(x)=-6x4+5x3+2x+6的值,当x=3时,v3的值为() A.-486 B.-351C.-115 D.-339答案 C解析f(x)=-6x4+5x3+2x+6=(((-6x+5)x+0)x+2)x+6,∴v0=a4=-6,v1=v0x+a3=-6×3+5=-13,v2=v1x+a2=-13×3+0=-39,v3=v2x+a1=-39×3+2=-115.12.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为4,3,则输出v的值为()A.20 B.61C.183 D.548答案 C解析由程序框图知,初始值:n=4,x=3,v=1,i=3,第一次循环:v=6,i=2;第二次循环:v=20,i=1;第三次循环:v=61,i=0;第四次循环:v=183,i=1.结束循环,输出当前v的值183.13.原始社会时期,人们通过在绳子上打结来计算数量,即“结绳计数”,当时有位父亲,为了准确记录孩子的成长天数,在粗细不同的绳子上打结,由细到粗,满七进一,那么孩子已经出生多少天?()A .1 326B .510C .429D .336答案 B解析 由题意满七进一,可得该图示为七进制数,化为十进制数为1×73+3×72+2×7+6=510.14.用秦九韶算法计算多项式f (x )=5x 5+4x 4+3x 3+2x 2+x +1,乘法运算次数为____________.加法运算次数为________.答案 5 5解析 ∵f (x )=((((5x +4)x +3)x +2)x +1)x +1,∴乘法要运算5次,加法要运算5次15.若f (x )=x 4+3x 3+x +1,用秦九韶算法计算f (π)时,需要乘法m 次,加法n 次,则m +n =________.答案 6解析 f (x )=x 4+3x 3+x +1=(((x +3)x )x +1)x +1,用秦九韶算法计算f (π)时,乘法运算与加法运算的次数和等于6.16.我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和d c (a ,b ,c ,d ∈N *),则b +d a +c是x 的更为精确的不足近似值或过剩近似值.我们知道π=3.141 59…,若令3110<π<4915,则第一次用“调日法”后得165是π的更为精确的过剩近似值,即3110<π<165,若每次都取最简分数,那么第四次用“调日法”后可得π的近似分数为________.答案 22717.我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在 222…中“…”即代表无限次重复,但原式却是个定值x .这可以通过方程2+x =x 确定x =2,则1+11+11+…=________. 答案 1+52解析 由题意,可令1+11+11+…=x ,即1+1x =x ,即x 2-x -1=0,解得x =1+52(x =1-52舍),故1+11+11+…=1+52. 18.用辗转相除法求840与1 764的最大公约数.答案 1 764=840×2+84,840=84×10+0,∴840与1 764的最大公约数是84.19.用更相减损术求440 与556的最大公约数.答案 556-440=116,440-116=324,324-116=208,208-116=92,116-92=24,92-24=68,68-24=44,44-24=20,24-20=4,20-4=16,16-4=12,12-4=8,8-4=4,∴440与556的最大公约数4.20.用秦九韶算法求多项式f (x )=7x 7+6x 6+5x 5+4x 4+3x 3+2x 2+x 当x =3时的值.答案 f (x )=((((((7x +6)x +5)x +4)x +3)x +2)x +1)xv 0=7,v 1=7×3+6=27,v 2=27×3+5=86,v 3=86×3+4=262,v 4=262×3+3=789,v 5=789×3+2=2 369,v 6=2 369×3+1=7 108,v7=7 108×3+0=21 324,∴f(3)=21 324,即当x=3时,函数值是21 324.21.(1)用辗转相除法求840与1 785的最大公约数;(2)用秦九韶算法计算函数f(x)=2x4+3x3+5x-4在x=2时的函数值.答案(1)1 785=840×2+105,840=105×8+0,∴840与1 785的最大公约数是105.(2)秦九韶算法如下:f(x)=2x4+3x3+5x-4=x(2x3+3x2+5)-4=x[x(2x2+3x)+5]-4=x{x[x(2x +3)]+5}-4,故当x=2时,f(x)=2×{2×[2×(2×2+3)]+5}-4=62.22.(1)用辗转相除法求779与247的最大公约数;(2)利用秦九韶算法求多项式f(x)=2x5+4x4-2x3+8x2+7x+4当x=3时的值.答案(1)779=247×3+38,247=38×6+19,38=19×2.故779与247的最大公约数是19;(2)把多项式改成如下形式:f(x)=2x5+4x4-2x3+8x2+7x+4=((((2x+4)x-2)x+8)x+7)x+4.按照从内到外的顺序,依次计算一次多项式当x=3时的值:v0=2,v1=v0x+4=2×3+4=10,v2=v1x-2=10×3-2=28,v3=v2x+8=28×3+8=92,v4=v3x+7=92×3+7=283,v5=v4x+4=283×3+4=853.所以当x=3时,多项式f(x)的值是853.23.(1)用辗转相除法求228与1 995的最大公约数;(2)用秦九韶算法求多项式f(x)=3x5+2x3-8x+5在x=2时的值.答案(1)1 995=228×8+171,228=171×1+57,171=57×3,因此57是1 995与228的最大公约数.(2)f(x)=3x5+2x3-8x+5=((((3x+0)x+2)x+0)x-8)x+5当x=2时,v0=3,v1=3×2=6,v2=6×2+2=14,v3=14×2=28,v4=28×2-8=48,v5=48×2+5=101,所以当x=2时,多项式的值是101.24.(1)用“更相减损术”求72和168的最大公约数;(2)用“辗转相除法”求98和280的最大公约数.答案(1)∵168-72=96,96-72=24,72-24=48,48-24=24,故72和168的最大公约数是24.(2)∵280=2×98+84,98=1×84+14,84=6×14,故98和280的最大公约数是14.25.用秦九韶算法求函数f(x)=x5+x3+x2+x+1当x=3时的函数值.答案f(x)=x5+x3+x2+x+1=((((x+0)x+1)x+1)x+1)x+1,当x=3时,v0=1,v1=v0×3+0=3;v2=v1×3+1=10;v3=v2×3+1=31;v4=v3×3+1=94;v5=v4×3+1=283,即x=3时的函数值为283.二、数列问题1.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.54钱 B.43钱C.32钱 D.53钱答案 B解析依题意设甲、乙、丙、丁、戊所得钱分别为a-2d,a-d,a,a+d,a+2d,则由题意可知,a-2d+a-d=a+a+d+a+2d,即a=-6d,又a-2d+a-d+a+a+d+a+2d=5a=5,∴a=1,则a-2d=a-2×(-a6)=43a=43.2.南北朝时期的数学古籍《张邱建算经》有如下一道题:“今有十等人,每等一人,宫赐金以等次差(即等差)降之,上三人,得金四斤,持出;下四人后入得三斤,持出;中间三人未到者,亦依等次更给.问:每等人比下等人多得几斤?”()A.439 B.778C.776 D.581答案 B解析设第十等人得金a1斤,第九等人得金a2斤,以此类推,第一等人得金a10斤,则数列{a n}构成等差数列,设公差为d,则每一等人比下一等人多得d斤金,由题意得⎩⎨⎧ a 1+a 2+a 3+a 4=3a 8+a 9+a 10=4,即⎩⎨⎧4a 1+6d =3,3a 1+24d =4,解得d =778,∴每一等人比下一等人多得778斤金. 3.《张丘建算经》是公元5世纪中国古代内容丰富的数学著作,书中卷上第二十三问:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈.问日益几何?”其意思为“有个女子织布,每天比前一天多织相同量的布,第一天织五尺,一个月(按30天计)共织390尺.问:每天多织多少布?”已知1匹=4丈,1丈=10尺,估算出每天多织的布约有( ) A .0.55尺 B .0.53尺 C .0.52尺 D .0.5尺答案 A解析 设每天多织d 尺,由题意a 1=5,{a n }是等差数列,公差为d , ∴S 30=30×5+30×292d =390, 解得d ≈0.55.4.《张丘建算经》有这样一个问题:今有女子善织,日增等尺,七日织二十一尺,第二日,第五日,第八日所织之和为十五尺,问第九日所织尺数为( ) A .7 B .9 C .11 D .13答案 D解析 设第一天织a 1尺,从第二天起每天比第一天多织d 尺, 由已知得⎩⎪⎨⎪⎧7a 1+7×62d =21,a 1+d +a 1+4d +a 1+7d =15,解得a 1=-3,d =2,∴第九日所织尺数为a 9=a 1+8d =-3+8×2=13.5.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?” 意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据已知条件,可求得该女子第3天所织布的尺数为( ) A.23 B.815 C.2031D.35答案 C解析 由题意可得:每天织布的量组成了等比数列{a n },S 5=5,公比q =2 ,a 1(1-25)1-2=5,计算可得a 1=531,所以a 3=531×22=2031. 6.在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( ) A .33% B .49% C .62% D .88%答案 B解析 由题意可得:每日的织布量形成等差数列{a n }, 且a 1=5,a 30=1,设公差为d ,则1=5+29d ,解得d =-429. ∴S 10=5×10+10×92×(-429)=1 27029. S 30=30×(5+1)2=90. ∴该女子到第10日时,大约已经完成三十日织布总量的1 27029×190≈0.49=49%. 7.《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今三十织迄,问织几何.”其意思为:有个女子不善于织布,每天比前一天少织同样多的布,第一天织五尺,最后一天织一尺,三十天织完,问三十天共织布( ) A .30尺 B .90尺 C .150尺 D .180尺答案 B解析 由题意可得,每日的织布量形成等差数列{a n }, 且a 1=5,a 30=1, 所以S 30=30×(5+1)2=90. 8.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( ) A .9日 B .8日 C .16日 D .12日答案 A解析 由题意知,良马每日行的距离成等差数列, 记为{a n },其中a 1=103,d =13; 驽马每日行的距离成等差数列, 记为{b n },其中b 1=97,d =-0.5;设第m 天相逢,则a 1+a 2+…+a m +b 1+b 2+…+b m =103m +m (m -1)×132+97m +m (m -1)×(-0.5)2=2×1 125,解得m =9(负值舍去).9.《九章算术》是我国古代第一部数学专著,全书收集了246个问题及其解法,其中一个问题为“现有一根九节的竹子,自上而下各节的容积成等差数列,上面四节容积之和为3升,下面三节的容积之和为4升,求中间两节的容积各为多少?”该问题中第2节,第3节,第8节竹子的容积之和为( ) A.176升 B.72升 C.11366升 D.10933升 答案 A解析 自上而下依次设各节容积为a 1,a 2,…a 9,由题意得⎩⎨⎧ a 1+a 2+a 3+a 4=3a 7+a 8+a 9=4,即⎩⎨⎧2(a 2+a 3)=33a 8=4,得⎩⎨⎧a 2+a 3=32,a 8=43,所以a 2+a 3+a 8=32+43=176(升).10.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( ) A .24里 B .48里 C .96里 D .192里答案 C解析由题意可知此人每天走的步数构成以12为公比的等比数列,由题意和等比数列的求和公式可得a1[1-(12)6]1-12=378,解得a1=192,∴第二天此人走了192×12=96里.11.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为()A.24里B.12里C.6里D.3里答案 C解析记每天走的路程里数为{a n},可知{a n}是公比q=12的等比数列,由S6=378,得S6=a1(1-126)1-12=378,解得a1=192,∴a6=192×125=6.12.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,一头粗,一头细,在粗的一段截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为()A.6斤B.9斤C.10斤D.12斤答案 B解析此问题构成一个等差数列{a n},设首项为2,则a5=4,∴中间3尺的重量为3a3=a1+a52×3=2+42×3=9(斤),故选B.13.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为()A.6斤B.9斤C.9.5斤D.12 斤答案 A解析依题意,金箠由粗到细各尺构成一个等差数列,设首项a1=4,则a5=2,由等差数列性质得a2+a4=a1+a5=6,所以第二尺与第四尺的重量之和为6斤.14.《算法通宗》是我国古代内容丰富的数学名书,书中有如下问题:“远望巍巍塔七层,红灯向下倍加增,共灯三百八十一,请问塔顶几盏灯?”其意思为“一座塔共七层,从塔顶至塔底,每层灯的数目都是上一层的2倍,已知这座塔共有381盏灯,请问塔顶有几盏灯?”() A.3 B.4C.5 D.6答案 A解析由题意设塔顶有a盏灯,由题意由上往下数第n层就有2n-1·a盏灯,∴共有(1+2+4+8+16+32+64)a=381盏灯,即1×(1-27)1-2a=381.解得a=3.15.我国古代数典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”上述问题中,两鼠在第几天相逢.()A.3 B.4C.5 D.6答案 B解析由题意可知,大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列,前n天打洞之和为1-2n1-2=2n-1,同理,小老鼠前n天打洞之和为1-(12)n1-12=2-12n-1,∴2n-1+2-12n-1=10,解得n∈(3,4),取n=4.即两鼠在第4天相逢.16.如图是谢宾斯基(Sierpinsiki)三角形,在所给的四个三角形图案中,着色的小三角形个数构成数列{a n }的前4项,则{a n }的通项公式可以是( )A .a n =3n -1B .a n =2n -1C .a n =3nD .a n =2n -1答案 A解析 着色的小三角形个数构成数列{a n }的前4项,分别为a 1=1,a 2=3,a 3=3×3=32,a 4=32×3,因此{a n }的通项公式可以是a n =3n -1.17.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列.上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升. 答案6766解析 设该数列{a n }的首项为a 1,公差为d ,依题意⎩⎨⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即⎩⎨⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎨⎧a 1+7d =43,d =766,则a 5=a 1+4d =a 1+7d -3d =43-2166=6766.18.华罗庚数学小组的同学们在图书馆发现一块古代楔形文字泥板的图片,同学们猜测它是一种乘法表的记录,请你根据这个猜测,判定表示________?(如图) 答案395解析图片中记录的是自然数乘以9的运算结果,左列是被乘数,右列是该数乘以9的积数,经过分析可知:其中▽代表1,⊲代表10,代表60.所以表示60×6+10×3+5×1=395.19.在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图A 所示的三角形,解释二项和的乘方规律.在欧洲直到1623年以后,法国数学家布莱士·帕斯卡的著作(1655年)介绍了这个三角形.近年来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”(Chinese triangle),如图A.17世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”如图B.在杨辉三角中相邻两行满足关系式:C r n +C r +1n =C r +1n +1,其中n 是行数,r ∈N .请类比上式,在莱布尼茨三角形中相邻两行满足的关系式是________.1 1 12 1 13 3 1 14 6 4 1 15 10 10 5 1…C 0n C 1n … C r n … C n-1n C nn图A12 12 13 16 13 14 112 112 14 15 120 130 120 15 16 130 160 160 130 16 1C 1n +1C 0n 1C 1n +1C 1n…1C 1n +1C r n…1C 1n +1C n -1n 1C 1n +1C n n图B答案1C 1n +1C r n =1C 1n +2C r n +1+1C 1n +2C r +1n +1 解析 类比观察得,莱布尼茨三角形的每一行都能提出倍数1C 1n +1,而相邻两项之和是上一行的两者相拱之数,所以类比式子C r n +C r +1n =C r +1n +1,有1C 1n +1C r n =1C 1n +2C r n +1+1C 1n +2C r +1n +1. 20.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面用点或用小石子表示数.他们研究过如图所示的三角形数,将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n }.可以推测:(1)b 2 012是数列{a n }中的第________项; (2)b 2k -1=________.(用k 表示) 答案 (1)5 030 (2)5k (5k -1)2解析 由题意可得a n =1+2+3+…+n =n (n +1)2,n ∈N *,故b 1=a 4,b 2=a 5,b 3=a 9,b 4=a 10,b 5=a 14,b 6=a 15, 由上述规律可知:b 2k =a 5k =5k (5k +1)2(k ∈N *),b 2k -1=a 5k -1=(5k -1)(5k -1+1)2=5k (5k -1)2,故b 2 012=b 2×1 006=a 5×1 006=a 5 030, 即b 2 012是数列{a n }中的第5 030项.21.请认真阅读下列材料:“杨辉三角”(1261年)是中国古代重要的数学成就,它比西方的“帕斯卡三角”(1653年)早了300多年(如图1).在“杨辉三角”的基础上德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为1,分母为正整数的分数),称为莱布尼兹三角形(如图2)11 112 1133 11464 11510105 1……图1111 21 21 316131 4112112141 512013012015……图2请回答下列问题:(1)记S n为图1中第n行各个数字之和,求S4,S7,并归纳出S n;(2)根据图2前5行的规律依次写出第6行的数.答案(1)S4=8=23;S7=64=26;Sn=2n-1.(2)图中每个数字都是其两脚的数字和,故第6行为1613016016013016.三、空间几何体1.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是()寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)A.1 B.2 C.3 D.4答案 C解析如图,由题意可知,天池盆上底面半径为14寸,下底面半径为6寸,高为18寸.∵积水深9寸,∴水面半径为12(14+6)=10寸,则盆中水的体积为13π×9(62+102+6×10)=588π(立方寸).∴平地降雨量等于588ππ×142=3(寸).故选C.2.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一.”就是说:圆堡瑽(圆柱体)的体积为:V=112×(底面的圆周长的平方×高).则由此可推得圆周率π的取值为(注:1丈=10尺)()A.3 B.3.14C.3.2 D.3.3答案 A解析由题意,圆柱体底面的圆周长48尺,高11尺,∵圆堡瑽(圆柱体)的体积V=112×(底面的圆周长的平方×高),∴V =112×(482×11)=2 112, 设底面圆的半径为R ,∴⎩⎨⎧2πR =48,πR 2×11=2 112,∴π=3.3.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺313寸,容纳米2000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底圆周长约为( ) A .1丈3尺 B .5丈4尺 C .9丈2尺 D .48丈6尺答案 B解析 设圆柱形谷仓底面半径为r 尺, 由题意得,谷仓高h =403尺. 于是谷仓的体积V =πr 2·h ≈2 000×1.62, 解得r ≈9.∴圆柱底圆周长约为2πr ≈54尺=5丈4尺.4.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( ) A.227B.258C.15750D.355113答案 B解析 由题意知275L 2h ≈13πr 2h ⇒275L 2≈13πr 2,而L =2πr ,代入得π≈258.5.在《九章算术》中,将有三条棱互相平行且有一个面为梯形的五面体称之为羡除,现有一个羡除如图所示,面ABCD 、面ABFE 、面CDEF 均为等腰梯形,AB ∥CD ∥EF ,AB =6,CD =8,EF =10,EF 到面ABCD 的距离为3,CD 与AB 间的距离为10,则这个羡除的体积是( )A.110 B.116C.118 D.120答案 D解析过A作AP⊥CD,AM⊥EF,过B作BQ⊥CD,BN⊥EF,垂足分别为P,M,Q,N,将一侧的几何体放到另一侧,组成一个直三棱柱,底面积为12×10×3=15.棱柱的高为8,∴V=15×8=120.故选D.6.刘徽在他的《九章算术注》中提出一个独特的方法来计算球体的体积:他不直接给出球体的体积,而是先计算另一个叫“牟合方盖”的立体的体积.刘徽通过计算,“牟合方盖”的体积与球的体积之比应为4π.后人导出了“牟合方盖”的18体积计算公式,即18V牟=r3-V方盖差,r为球的半径,也即正方形的棱长均为2r,从而计算出V球=43πr3.记所有棱长都为r的正四棱锥的体积为V正,棱长为2r的正方形的方盖差为V方盖差,则V方盖差V正等于()A.12 B.22C. 2D. 3 答案 C解析由题意,V方盖差=r3-18V牟=r3-18×4π×43×π×r3=13r3,所有棱长都为r的正四棱锥的体积为V正=13×r×r×r2-(22r)2=26r3,∴V方盖差V正=13r326r3= 2.7.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图所示,图中四边形是为体现其直观性所作的辅助线,当其正视图与侧视图完全相同时,它的正视图和俯视图分别可能是()A.a,b B.a,cC.c,b D.b,d答案 A解析由直观图可知,其正视图与侧视图完全相同,则其只能是圆,这时其俯视图就是正方形加对角线(实线).故选A.8.刘徽在他的《九章算术注》中提出一个独特的方法来计算球体的体积:他不直接给出球体的体积,而是先计算另一个叫“牟合方盖”的立体的体积.刘徽通过计算,“牟合方盖”的体积与球的体积之比应为4∶π,即V牟:V球=4∶π.也导出了“牟合方盖”的18体积计算公式,即18V牟=r3-V方盖差,从而计算出V球=43πr3.记所有棱长都为r的正四棱锥的体积为V正,则()A.V方盖差>V正B.V方盖差=V正C.V方盖差<V正D.以上三种情况都有可能答案 A解析由题意,V方盖差=r3-18V牟=r3-18×4π×43πr3=13r3,所有棱长都为r的正四棱锥的体积为V正=13×r×r×r2-(22r)2=26r3,∴V方盖差>V正.9.我国古代数学名著《数学九章》中有云:“今有木长二丈四尺,围之五尺.葛生其下,缠木两周,上与木齐,问葛长几何?”其意思为“圆木长2丈4尺,圆周为5尺,葛藤从圆木的底部开始向上生长,绕圆木两周,刚好顶部与圆木平齐,问葛藤最少长多少尺(注:1丈等于10尺)()A.29尺B.24尺C.26尺D.30尺答案 C解析由题意,圆柱的侧面展开图是矩形,一条直角边(即木棍的高)长24尺,另一条直角边长5×2=10(尺),因此葛藤长242+102=26(尺).10.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为9尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有()A.14斛B.28斛C.36斛D.66斛答案 B解析设圆锥的底面半径为r,则π2r=9,解得r=18π,故米堆的体积为14×13×π×(18π)2×5≈45,∵1斛米的体积约为1.62立方,∴堆放的米有45÷1.62≈28斛.11.《九章算术》是我国古代著名数学经典.其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦AB=1尺,弓形高CD=1寸,估算该木材镶嵌在墙中的体积约为()(注:1丈=10尺=100寸,π≈3.14,sin 22.5°≈5 13)A.600立方寸B.610立方寸C.620立方寸D.633立方寸答案 D解析如图,AB=10(寸),则AD=5(寸),CD=1(寸),设圆O的半径为x(寸),则OD=(x-1)(寸),在Rt△ADO中,由勾股定理可得52+(x-1)2=x2,解得x=13(寸).∴sin∠AOD=ADAO=513,即∠AOD≈22.5°,则∠AOB=45°.则弓形¼ACB的面积S=12×π4×132-12×10×12≈6.33(平方寸).则该木材镶嵌在墙中的体积约为V=6.33×100=633(立方寸).故选D.12.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经90°榫卯起来,如图,若正四棱柱体的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为________.(容器壁的厚度忽略不计)答案41π解析由题意,该球形容器的半径的最小值为1236+4+1=412,∴该球形容器的表面积的最小值为4π·414=41π.13.沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8 cm,细沙全部在上部时,其高度为圆锥高度的23(细管长度忽略不计).(1)如果该沙漏每秒钟漏下0.02 cm 3的沙,则该沙漏的一个沙时为多少秒(精确到1秒)?(2)细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度(精确到0.1cm).答案 (1)开始时,沙漏上部分圆锥中的细沙的高为 H =23×8=163,底面半径为r =23×4=83,V =13πr 2H =13π×(83)2×163=39.71,V ÷0.02=1 986(秒).所以沙全部漏入下部约需1 986秒.(2)细沙漏入下部后,圆锥形沙堆的底面半径为4, 设高为H ′,V =13π×42×H ′=1 02481π,H ′=6427≈2.4. 锥形沙堆的高度约为2.4 cm.14.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P -ABCD 中,侧棱PD ⊥底面ABCD ,且PD =CD ,过棱PC 的中点E ,作EF ⊥PB 交PB 于点F ,连接DE ,DF ,BD ,BE .(1)证明:PB ⊥平面DEF .试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由.(2)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC的值.答案 (1)证明 如图,以D 为原点,射线DA ,DC ,DP 分别为x ,y ,z 轴的正半轴,建立空间直角坐标系,如图所示.。
古人运算练习题

古人运算练习题古人亦善于数算,他们通过一系列的运算练习来提高他们的计算能力和思维敏捷性。
下面,我们来看一些古人常见的运算练习题,这些题目不仅考验了古人的数学能力,同时也反映了他们对逻辑思维的高度发展。
一、加法运算1.请计算下面两个数的和:4268 + 5783 = ?2.若甲数加壹数等于贰数,而甲数减贰数等于伍六贰叁,求甲、壹、贰的值。
3.从1到100,先将100依次写出,再将99加到前面的数后写出,然后将98加到前面的数后写出,以此类推,持续下去,直到加到1。
请问最后得到的这个数是多少?二、减法运算1.甲数减去壹数等于贰数,而甲数加贰数等于伍六贰叁,求甲、壹、贰的值。
2.ABCDE-EDCBA=10000,请问ABCDE的值是多少?三、乘法运算1.计算下面两个数的乘积:328 × 94 = ?2.甲数乘以贰叁等于壹贰三肆,求甲的值。
3.请计算下面三个数的乘积,并将结果倒过来写出来:1 × 23 × 456 = ?四、除法运算1.求解下面两个数的除法运算:798 ÷ 6 = ?2.请计算下面两个数的商和余数,并以“商余数”的形式呈现:647 ÷14 = ?五、混合运算1.计算下面表达式的值:(87 × 521) - (163 ÷ 7) + 289 = ?2.甲数加壹数等于贰数,甲数减壹数等于贰六。
请问甲、壹、贰的值分别是多少?3.小明想要将他的零花钱平均分成12份,可是他不知道每份要多少钱。
如果他有148元,求解每份应该给多少钱。
以上是一些古人常见的运算练习题,在这些题目中我们可以看到古人数学思维的独特之处。
虽然和现代数学相比可能略显简单,但这些运算题依然要求运算者具备良好的逻辑思维和数学计算能力。
通过练习这些题目,古人在数学方面能够不断提高自己的技能,并将其运用到实际生活中。
当然,这些运算练习不仅应该局限于古代,现代人也可以借鉴古人的方法来提升自己的运算能力。
【步步高】高中数学 1.3中国古代数学中的算法案例基础过关训练 新人教B必修3

§1.3 中国古代数学中的算法案例一、基础过关1.自然数8 251和6 105的最大公约数为 ( )A .37B .23C .47D .1112.五次多项式f (x )=4x 5+3x 4+2x 3-x 2-x -12,用秦九韶算法求f (-2)等于 ( )A .-1972 B.1972 C.1832 D .-18323.下列哪组的最大公约数与 1 855,1 120的最大公约数不同( )A .1 120,735B .385,350C .385,735D .1 855,3254.用更相减损之术求294和84的最大公约数时,需做减法的次数是 ( )A .2B .3C .4D .55.用更相减损之术求36和134的最大公约数,第一步应为______________.6.我国古代数学发展一直处于世界领先水平,特别是割圆术、更相减损之术、秦九韶算法等,其功能与欧几里得算法相同的是______________.7.求210与98的最大公约数.8.用秦九韶算法计算多项式f (x )=x 6-12x 5+60x 4-160x 3+240x 2-192x +64当x =2时的值.二、能力提升9.用秦九韶算法计算多项式f(x)=6x6+5x5+4x4+3x3+2x2+x+7在x=0.4时的值时,需做加法和乘法的次数的和为 ( ) A.10 B.9C.12 D.810.已知f(x)=x5+2x3+3x2+x+1,应用秦九韶算法计算x=3时的值时,v3的值为( ) A.27 B.11C.109 D.3611.用秦九韶算法求多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4的值时,v4的值为________.12.求三个数168,54,264的最大公约数.三、探究与拓展13.用秦九韶算法求f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8中x=5时f(x)的值.§1.3中国古代数学中的算法案例1.A 2.A 3.D 4.C5.134-36=986.更相减损之术7.解∵(210,98)→(112,98)→(14,98)→(84,14)→(70,14)→(56,14)→(42,14)→(28,14)→(14,14),∴210与98的最大公约数为14.8.解将f(x)改写为f(x)=(((((x-12)x+60)x-160)x+240)x-192)x+64.由内向外依次计算一次多项式当x=2时的值v0=1,v1=1×2-12=-10,v2=-10×2+60=40,v3=40×2-160=-80,v4=-80×2+240=80,v5=80×2-192=-32,v6=-32×2+64=0.∴f(2)=0,即x=2时,原多项式的值为0.9.C [∵f(x)=(((((6x+5)x+4)x+3)x+2)x+1)x+7,∴加法6次,乘法6次,∴6+6=12(次),故选C.]10.D [将函数式化成如下形式,f(x)=((((x+0)x+2)x+3)x+1)x+1.由内向外依次计算:v0=1,v1=1×3+0=3,v2=3×3+2=11,v3=11×3+3=36,v4=36×3+1=109,v5=109×3+1=328.]11.220解析v4=(((a6x+a5)x+a4)x+a3)x+a2,把a6=3,a5=5,a4=6,a3=79,a2=-8,x =-4代入可得v4=220.12.解∵(168,54)→(114,54)→(60,54)→(6,54)→(6,48)→(6,42)→(6,36)→(6,30)→(6,24)→( 6,18)→(6,12)→(6,6),∴168和54的最大公约数为6.∵(54,264)→(210,54)→(156,54)→(102,54)→(54,48)→(48,6)→(42,6)→…→(6,6),∴54和264的最大公约数为6.故168,54,264的最大公约数为6.13.解根据秦九韶算法,把多项式改写成如下形式:f(x)=((((5x+2)x+3.5)x+(-2.6))x+1.7)x-0.8,按从内向外的顺序依次计算一次多项式x=5时的值.v0=5,v1=5×5+2=27,v2=27×5+3.5=138.5,v3=138.5×5-2.6=689.9,v4=689.9×5+1.7=3 451.2,v5=3 451.2×5-0.8=17 255.2. 所以当x=5时,f(x)的值为17 255.2.。
1.3中国古代数学中的算法案例

2.更相减损术: 我国早期也有解决求最大公约数问题的算
法,就是更相减损术。 更相减损术求最大公约数的步骤如下:
可半者半之,不可半者,副置分母·子之数, 以少减多,更相减损,求其等也,以等数约之。
(2)夹页内容:P91~94 (3)夹页测试卷:第一章 算法初步
做所有的选择和填空题
【预习作业】: 必修3----P54~61
2015.10.30
辗转相除法与更相减损术
〖创设情景,揭示课题〗
[问题1]:在小学,我们已经学过求最大公约数 的知识,你能求出18与30的最大公约数吗?
2 18 30
先用两个数公有的质因数
3 9 15
连续去除,一直除到所得
35 ∴18和30的最大公约
数是2×3=6.
的商是互质数为止,然后 把所有的除数连乘起来.
3721=3×103+7×102+2×101+1×100. 想一想二进制数1011(2)可以类似的写成什 么形式? 1011(2)=1×23+0×22+1×21+1×20.
同理: 3421(5)=3×53+4×52+2×51+1×50.
C7A16(16)=12×164+7×163+10×162
+1×161+6×160.
是
Hale Waihona Puke 程序INPUT a0,a1,a2,a3,a4,a5
INPUT x0 n=1 v=a5 WHILE n<=5 v=vx0+a5-n n=n+1 WEND PRINT v END