2015高中数学必修4第三章经典习题含答案
高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案

tan 60∘ − tan 15∘ 1 + tan 60∘ ⋅ tan 15∘ = tan(60∘ − 15∘ ) = tan 45∘ = 1.
(2)根据tan α + tan β = tan(α + β)(1 − tan α tan β) ,则有 原式 = tan 120 ∘ (1 − tan 55∘ tan 65∘ ) − √3 tan 55∘ tan 65∘
π ),向左平移 m 个单位后,得到的函数为 3 π π π y = 2 sin (x + + m),若所得到的图像关于 y 轴对称,则 + m = + kπ, k ∈ Z ,所以 3 3 2 π π m = + kπ ,k ∈ Z.取 k = 0 时,m = . 6 6
高考不提分,赔付1万元,关注快乐学了解详情。
和差角公式 辅助角公式
三、知识讲解
1.和差角公式 描述: 两角差的余弦公式 对于任意角α,β 有cos(α − β) = cos α cos β + sin α sin β,称为差角的余弦公式,简记C(α−β) . 两角和的余弦公式 对于任意角α,β 有cos(α + β) = cos α cos β − sin α sin β,称为和角的余弦公式,简记C(α+β) . 两角和的正弦公式 对于任意角α,β 有sin(α + β) = sin α cos β + cos α sin β,称为和角的正弦公式,简记S (α+β) . 两角差的正弦公式 对于任意角α,β 有sin(α − β) = sin α cos β − cos α sin β,称为差角的正弦公式,简记S (α−β) . 两角和的正切公式 对于任意角α,β 有tan(α + β) = 两角差的正切公式 对于任意角α,β 有tan(α − β) =
高中数学(人教A版)必修4第3章 三角恒等变换 测试题(含详解)

第三章测试(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin105°cos105°的值为( ) A.14 B .-14C.34D .-34解析 原式=12sin210°=-12sin30°=-14.答案 B2.若sin2α=14,π4<α<π2,则cos α-sin α的值是( )A.32B .-32C.34D .-34解析 (cos α-sin α)2=1-sin2α=1-14=34.又π4<α<π2, ∴cos α<sin α,cos α-sin α=-34=-32. 答案 B3.sin15°sin30°sin75°的值等于( ) A.14 B.34 C.18D.38解析 sin15°sin30°sin75° =sin15°cos15°sin30° =12sin30°sin30°=12×12×12=18. 答案 C4.在△ABC 中,∠A =15°,则 3sin A -cos(B +C )的值为( ) A. 2 B.22C.32D. 2解析 在△ABC 中,∠A +∠B +∠C =π, 3sin A -cos(B +C ) =3sin A +cos A =2(32sin A +12cos A ) =2cos(60°-A )=2cos45°= 2. 答案 A5.已知tan θ=13,则cos 2θ+12sin2θ等于( )A .-65B .-45C.45D.65解析 原式=cos 2θ+sin θcos θcos 2θ+sin 2θ=1+tan θ1+tan 2θ=65.答案 D6.在△ABC 中,已知sin A cos A =sin B cos B ,则△ABC 是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰三角形或直角三角形解析 ∵sin2A =sin2B ,∴∠A =∠B ,或∠A +∠B =π2.答案 D 7.设a =22(sin17°+cos17°),b =2cos 213°-1,c =32,则( ) A .c <a <b B .b <c <a C .a <b <c D .b <a <c 解析 a =22sin17°+22cos17°=cos(45°-17°)=cos28°,b =2cos 213°-1=cos26°,c =32=cos30°, ∵y =cos x 在(0,90°)内是减函数, ∴cos26°>cos28°>cos30°,即b >a >c . 答案 A8.三角形ABC 中,若∠C >90°,则tan A ·tan B 与1的大小关系为( ) A .tan A ·tan B >1 B. tan A ·tan B <1 C .tan A ·tan B =1D .不能确定解析 在三角形ABC 中,∵∠C >90°,∴∠A ,∠B 分别都为锐角. 则有tan A >0,tan B >0,tan C <0. 又∵∠C =π-(∠A +∠B ),∴tan C =-tan(A +B )=-tan A +tan B1-tan A ·tan B <0,易知1-tan A ·tan B >0, 即tan A ·tan B <1. 答案 B9.函数f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x -π4是( ) A .周期为π的奇函数 B .周期为π的偶函数 C .周期为2π的奇函数 D .周期为2π的偶函数解析 f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x -π4 =cos 2⎝⎛⎭⎫π4-x -sin 2⎝⎛⎭⎫x -π4 =cos 2⎝⎛⎭⎫x -π4-sin 2⎝⎛⎭⎫x -π4 =cos ⎝⎛⎭⎫2x -π2 =sin2x . 答案 A10.y =cos x (cos x +sin x )的值域是( ) A .[-2,2] B.⎣⎢⎡⎦⎥⎤1+22,2C.⎣⎢⎡⎦⎥⎤1-22,1+22D.⎣⎡⎦⎤-12,32 解析 y =cos 2x +cos x sin x =1+cos2x 2+12sin2x=12+22⎝⎛⎭⎫22sin2x +22cos2x =12+22sin(2x +π4).∵x ∈R , ∴当sin ⎝⎛⎭⎫2x +π4=1时,y 有最大值1+22; 当sin ⎝⎛⎭⎫2x +π4=-1时,y 有最小值1-22. ∴值域为⎣⎢⎡⎦⎥⎤1-22,1+22.答案 C11.已知θ为第二象限角,sin(π-θ)=2425,则cos θ2的值为( )A.335 B.45 C .±35D .±45解析 由sin(π-θ)=2425,得sin θ=2425.∵θ为第二象限的角,∴cos θ=-725.∴cos θ2=±1+cos θ2=± 1-7252=±35. 答案 C12.若α,β为锐角,cos(α+β)=1213,cos(2α+β)=35,则cos α的值为( )A.5665 B.1665C.5665或1665D .以上都不对解析 ∵0<α+β<π,cos(α+β)=1213>0,∴0<α+β<π2,sin(α+β)=513.∵0<2α+β<π,cos(2α+β)=35>0,∴0<2α+β<π2,sin(2α+β)=45.∴cos α=cos [(2α+β)-(α+β)]=cos(2α+β)cos(α+β)+sin(2α+β)sin(α+β) =35×1213+45×513=5665. 答案 A二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上) 13.若1+tan α1-tan α=2012,则1cos2α+tan2α=______.解析1cos2α+tan2α=1+sin2αcos2α=sin 2α+cos 2α+2sin αcos αcos 2α-sin 2α=tan 2α+1+2tan α1-tan 2α=(tan α+1)21-tan 2α=1+tan α1-tan α=2012.答案 201214.已知cos2α=13,则sin 4α+cos 4α=________.解 ∵cos2α=13,∴sin 22α=89.∴sin 4α+cos 4α=(sin 2α+cos 2α)2-2sin 2αcos 2α =1-12sin 22α=1-12×89=59.答案 5915.sin (α+30°)+cos (α+60°)2cos α=________.解析 ∵sin(α+30°)+cos(α+60°)=sin αcos30°+cos αsin30°+cos αcos60°-sin αsin60°=cos α,∴原式=cos α2cos α=12.答案 1216.关于函数f (x )=cos(2x -π3)+cos(2x +π6),则下列命题:①y =f (x )的最大值为2; ②y =f (x )最小正周期是π;③y =f (x )在区间⎣⎡⎦⎤π24,13π24上是减函数;④将函数y =2cos2x 的图像向右平移π24个单位后,将与已知函数的图像重合.其中正确命题的序号是________. 解析 f (x )=cos ⎝⎛⎭⎫2x -π3+cos ⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3+sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3-sin ⎝⎛⎭⎫2x -π3 =2·⎣⎡⎦⎤22cos ⎝⎛⎭⎫2x -π3-22sin ⎝⎛⎭⎫2x -π3 =2cos ⎝⎛⎭⎫2x -π3+π4 =2cos ⎝⎛⎭⎫2x -π12, ∴y =f (x )的最大值为2,最小正周期为π,故①,②正确.又当x ∈⎣⎡⎦⎤π24,13π24时,2x -π12∈[0,π],∴y =f (x )在⎣⎡⎦⎤π24,13π24上是减函数,故③正确. 由④得y =2cos2⎝⎛⎭⎫x -π24=2cos ⎝⎛⎭⎫2x -π12,故④正确. 答案 ①②③④三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知向量m =⎝⎛⎭⎫cos α-23,-1,n =(sin x,1),m 与n 为共线向量,且α∈⎣⎡⎦⎤-π2,0.(1)求sin α+cos α的值; (2)求sin2αsin α-cos α的值.解 (1)∵m 与n 为共线向量, ∴⎝⎛⎭⎫cos α-23×1-(-1)×sin α=0, 即sin α+cos α=23. (2)∵1+sin2α=(sin α+cos α)2=29,∴sin2α=-79.∴(sin α-cos α)2=1-sin2α=169. 又∵α∈⎣⎡⎦⎤-π2,0,∴sin α-cos α<0. ∴sin α-cos α=-43.∴sin2αsin α-cos α=712. 18.(12分)求证:2-2sin ⎝⎛⎭⎫α+3π4cos ⎝⎛⎭⎫α+π4cos 4α-sin 4α=1+tan α1-tan α. 证明 左边=2-2sin ⎝⎛⎭⎫α+π4+π2cos ⎝⎛⎭⎫α+π4(cos 2α+sin 2α)(cos 2α-sin 2α) =2-2cos 2⎝⎛⎭⎫α+π4cos 2α-sin 2α =1-cos ⎝⎛⎭⎫2α+π2cos 2α-sin 2α=1+sin2αcos 2α-sin 2α=(sin α+cos α)2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α. ∴原等式成立.19.(12分)已知函数f (x )=2cos2x +sin 2x -4cos x . (1)求f ⎝⎛⎭⎫π3的值;(2)求f (x )的最大值和最小值. 解 (1)f ⎝⎛⎭⎫π3=2cos 2π3+sin 2π3-4cos π3 =2×⎝⎛⎭⎫-12+⎝⎛⎭⎫322-4×12 =-1+34-2=-94.(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1=3⎝⎛⎭⎫cos x -232-73, ∵x ∈R ,cos x ∈[-1,1],∴当cos x =-1时,f (x )有最大值6; 当cos x =23时,f (x )有最小值-73.20.(12分)已知cos ⎝⎛⎭⎫x -π4=210,x ∈⎝⎛⎭⎫π2,3π4. (1)求sin x 的值; (2)求sin ⎝⎛⎭⎫2x +π3的值. 解 (1)解法1:∵x ∈⎝⎛⎭⎫π2,3π4, ∴x -π4∈⎝⎛⎭⎫π4,π2, 于是sin ⎝⎛⎭⎫x -π4= 1-cos 2⎝⎛⎭⎫x -π4=7210.sin x =sin ⎣⎡⎦⎤⎝⎛⎭⎫x -π4+π4=sin ⎝⎛⎭⎫x -π4cos π4+cos ⎝⎛⎭⎫x -π4sin π4 =7210×22+210×22=45. 解法2:由题设得22cos x +22sin x =210, 即cos x +sin x =15.又sin 2x +cos 2x =1, 从而25sin 2x -5sin x -12=0, 解得sin x =45,或sin x =-35,因为x ∈⎝⎛⎭⎫π2,3π4,所以sin x =45. (2)∵x ∈⎝⎛⎭⎫π2,3π4,故 cos x =-1-sin 2x =-1-⎝⎛⎭⎫452=-35. sin2x =2sin x cos x =-2425.cos2x =2cos 2x -1=-725.∴sin ⎝⎛⎭⎫2x +π3 =sin2x cos π3+cos2x sin π3=-24+7350.21.(12分)已知函数 f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值. 解 (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1 =4cos x ⎝⎛⎭⎫32sin x +12cos x -1=3sin2x +2cos 2x -1=3sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π6所以f (x )的最小正周期为π.(2)-π6≤x ≤π4,所以-π6≤2x +π6≤2π3,当2x +π6=π2时,即x =π6,f (x )取得最大值2;当2x +π6=-π6时,即x =-π6,f (x )取得最小值-1.22.(12分)已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.解 (1)∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+sin ⎝⎛⎭⎫x -3π4+π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45.两式相加,得2cos βcos α=0, ∵0<α<β≤π2,∴β=π2.∴[f (β)]2-2=4sin 2π4-2=0.。
高中数学必修4第3章课后习题解答

新课程标准数学必修4第三章课后习题解答(第1页共12页)新课程标准数学必修4第三章课后习题解答第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式练习(P127)1、cos()coscossinsin0cos 1sin sin222.cos(2)cos2cos sin2sin 1cos0sincos .2、解:由3cos ,(,)52,得2234sin1cos1()55;所以23242cos()coscos sinsin()444252510.3、解:由15sin17,是第二象限角,得22158cos1sin1()1717;所以811538153cos()cos cossin sin33317217234.4、解:由23sin ,(,)32,得2225cos1sin1()33;又由33cos,(,2)42,得2237sin1cos 1()44.所以35723527cos()cos cos sin sin ()()()434312.练习(P131)1、(1)624;(2)624;(3)624;(4)23.2、解:由3cos,(,)52,得2234sin1cos1()55;所以4133433sin()sin coscos sin()333525210.3、解:由12sin13,是第三象限角,得22125cos1sin1()1313;所以351125312cos()coscos sinsin ()()66621321326.4、解:tantan314tan()241311tantan4.5、(1)1;(2)12;(3)1;(4)32;新课程标准数学必修4第三章课后习题解答(第2页共12页)(5)原式=1(cos34cos26sin34sin 26)cos(3426)cos602;(6)原式=sin 20cos70cos20sin 70(sin 20cos70cos20sin 70)sin 901.6、(1)原式=cos cos sinsin cos()333x xx ;(2)原式=312(sin cos )2(sin coscos sin)2sin()22666x x x x x ;(3)原式=222(sin cos )2(sin cos cos sin )2sin()22444x x x x x;(4)原式=1322(cos sin )22(coscos sinsin )22cos()22333x x x x x .7、解:由已知得3sin()cos cos()sin5,即3sin[()]5,3sin()5所以3sin 5.又是第三象限角,于是2234cos1sin 1()55.因此555324272sin()sincoscos sin()()()()444525210.练习(P135)1、解:因为812,所以382又由4cos85,得243sin 1()855,3sin 385tan 484cos 85所以3424sinsin(2)2sin cos2()()488855252222437coscos(2)cossin()()488855252232tan23162484tantan(2)3482771tan1()842、解:由3sin()5,得3sin5,所以222316cos1sin1()525所以2221637cos2cos sin()255253、解:由sin 2sin且sin 0可得1cos2,又由(,)2,得2213sin 1cos1()22,所以sin 3tan (2)3cos2.新课程标准数学必修4第三章课后习题解答(第3页共12页)4、解:由1tan23,得22tan 11tan3.所以2tan6tan 10,所以tan 3105、(1)11sin15cos15sin 3024;(2)222cossincos 8842;(3)原式=212tan22.511tan4521tan 22.522;(4)原式=2cos452.习题3.1A 组(P137)1、(1)333cos()cos cos sin sin 0cos (1)sin sin 222;(2)333sin()sincoscossin1cos 0sincos222;(3)cos()cos cos sin sin 1cos 0sin cos ;(4)sin()sin coscos sin0cos(1)sinsin .2、解:由3cos,05,得2234sin1cos1()55,所以4331433cos()cos cossin sin666525210.3、解:由2sin,(,)32,得2225cos 1sin1()33,又由33cos ,(,)42,得2237sin1cos 1()44,所以53273527cos()cos cos sin sin ()()343412.4、解:由1cos7,是锐角,得22143sin1cos1()77因为,是锐角,所以(0,),又因为11cos()14,所以221153sin()1cos ()1()1414所以coscos[()]cos()cos sin()sin11153431()14714725、解:由60150,得9030180又由3sin(30)5,得2234cos(30)1sin (30)1()55所以coscos[(30)30]cos(30)cos30sin(30)sin 30新课程标准数学必修4第三章课后习题解答(第4页共12页)43314335252106、(1)624;(2)264;(3)23.7、解:由2sin ,(,)32,得2225cos 1sin1()33.又由3cos 4,是第三象限角,得2237sin1cos 1()44.所以cos()cos cos sin sin 5327()()3434352712sin()sin cos cos sin 2357()()()3434635128、解:∵53sin ,cos 135AB且,A B 为ABC 的内角∴0,02AB,124cos ,sin 135AB当12cos 13A时,sin()sin cos cos sin A B A B A B5312433()013513565A B ,不合题意,舍去∴124cos ,sin 135A B∴cos cos()(cos cos sin sin )CA B A B A B 1235416()135135659、解:由3sin,(,)52,得2234cos 1sin1()55.∴sin 353tan()cos544.∴31tan tan 242tan()311tantan111()42.新课程标准数学必修4第三章课后习题解答(第5页共12页)31tan tan 42tan()2311tantan1()42.10、解:∵tan ,tan是22370xx 的两个实数根.∴3tantan2,7tantan2.∴3tantan 12tan()71tantan31()2.11、解:∵tan()3,tan()5∴tan()tan()tan 2tan[()()]1tan()tan()3541357tan()tan()tan2tan[()()]1tan()tan()351135812、解:∵::2:3:6BD DC AD∴11tan,tan32BD DC ADAD ∴tantan tan tan()1tan tan BAC1132111132又∵0180BAC ,∴45BAC 13、(1)65sin()6x;(2)3sin()3x ;(3)2sin()26x ;(4)27sin()212x ;(5)22;(6)12;(7)sin();(8)cos();(9)3;(10)tan().14、解:由sin0.8,(0,)2,得22cos 1sin10.80.6∴sin 22sin cos 20.80.60.962222cos2cossin0.60.80.2815、解:由3cos,1802703,得2236sin1cos 1()33∴6322sin 22sin cos 2()()3332222361cos2cossin()()333sin 222tan2(3)22cos2316、解:设5sin sin 13BC,且090B,所以12cos 13B.βαDACB(第12题)新课程标准数学必修4第三章课后习题解答(第6页共12页)∴512120sin sin(1802)sin 22sin cos 21313169A B B B B2222125119cos cos(1802)cos2(cos sin )(()())1313169A B BB B sin 120169120tan ()cos 169119119A AA17、解:22122tan33tan 211tan41()3,13tan tan274tan(2)1131tan tan 2174.18、解:1cos()cos sin()sin 31cos[()]3,即1cos 3又3(,2)2,所以22122sin1cos 1()33∴22142sin 22sin cos 2()33922221227cos2cossin()()339∴72422728cos(2)cos2cossin2sin()44492921819、(1)1sin 2;(2)cos2;(3)1sin 44x ;(4)tan2.习题3.1B 组(P138)1、略.2、解:∵tan ,tan A B 是x 的方程2(1)10xp x ,即210x px p 的两个实根∴tan tan A B p ,tan tan 1A B p ∴tan tan[()]tan()CAB A B tan tan 11tan tan 1(1)ABp A Bp 由于0C ,所以34C.3、反应一般的规律的等式是(表述形式不唯一)223sincos (30)sin cos(30)4(证明略)本题是开放型问题,反映一般规律的等式的表述形式还可以是:223sin (30)cossin(30)cos 4223sin (15)cos (15)sin(15)cos(15)4223sincossin cos4,其中30,等等思考过程要求从角,三角函数种类,式子结构形式三个方面寻找共同特点,从而作出归纳.对认识三角函数式特点有帮助,证明过程也会促进推理能力、运算能力的提高.4、因为12PAPP ,则2222(cos()1)sin ()(cos cos )(sin sin )新课程标准数学必修4第三章课后习题解答(第7页共12页)即22cos()22cos cos 2sin sin所以cos()cos cossin sin3.2简单的三角恒等变换练习(P142)1、略.2、略.3、略.4、(1)1sin 42y x .最小正周期为2,递增区间为[,],8282k k kZ ,最大值为12;(2)cos 2y x.最小正周期为2,递增区间为[2,22],k k k Z ,最大值为3;(3)2sin(4)3yx.最小正周期为2,递增区间为5[,],242242kk kZ ,最大值为 2.习题3.2A 组(P143)1、(1)略;(2)提示:左式通分后分子分母同乘以2;(3)略;(4)提示:用22sincos代替1,用2sin cos 代替sin 2;(5)略;(6)提示:用22cos 代替1cos2;(7)提示:用22sin 代替1cos2,用22cos 代替1cos2;(8)略.2、由已知可有1sincoscos sin2……①,1sin coscos sin3……②(1)②×3-①×2可得sin cos 5cos sin(2)把(1)所得的两边同除以cos cos 得tan 5tan注意:这里cos cos0隐含与①、②之中3、由已知可解得1tan2.于是2212()2tan 42tan211tan31()21tantan1142tan()1431tantan1()142∴tan24tan()44、由已知可解得sinx ,cos y,于是2222sincos 1xy.5、()2sin(4)3f x x,最小正周期是2,递减区间为7[,],242242k k kZ .习题3.2B 组(P143)1、略.2、由于762790,所以sin 76sin(9014)cos14m新课程标准数学必修4第三章课后习题解答(第8页共12页)即22cos 71m ,得1cos72m 3、设存在锐角,使223,所以23,tan()32,又tantan 232,又因为tantan2tan()21tan tan2,所以tantan tan()(1tantan )33222由此可解得tan 1,4,所以6.经检验6,4是符合题意的两锐角.4、线段AB 的中点M 的坐标为11((cos cos ),(sinsin ))22.过M 作1MM 垂直于x 轴,交x 轴于1M ,111()()22MOM .在Rt OMA 中,coscos22OMOA .在1Rt OM M 中,11cos cos cos 22OM OM MOM ,11sin sincos22M MOM MOM .于是有1(cos cos )cos cos 222,1(sin sin )sin cos2225、当2x时,22()sin cos 1f ;当4x时,4422222()sin cos(sincos )2sincosf 211sin 22,此时有1()12f ≤≤;当6x 时,662232222()sincos(sincos)3sincos(sincos)f 231sin 24,此时有1()14f ≤≤;由此猜想,当2,x k k N 时,11()12k f ≤≤6、(1)345(sin cos )5sin()55yxx x,其中34cos,sin55所以,y 的最大值为5,最小值为﹣5;(第4题)新课程标准数学必修4第三章课后习题解答(第9页共12页)(2)22sin()yab x,其中2222cos,sina b abab所以,y 的最大值为22ab ,最小值为22ab ;第三章复习参考题A 组(P146)1、1665.提示:()2、5665.提示:5sin()sin[()]sin[()()]443、1.4、(1)提示:把公式tantantan()1tan tan变形;(2)3;(3)2;(4)3.提示:利用(1)的恒等式.5、(1)原式=cos103sin104sin(3010)4sin10cos10sin 20;(2)原式=sin10sin103cos10sin 40(3)sin 40cos10cos10=2sin 40cos40sin801cos10cos10;(3)原式=3sin 203sin 20cos20tan70cos10(1)tan70cos10cos20cos20=sin 702sin10sin 20cos101cos70cos20cos70;(4)原式=3sin10cos103sin10sin50(1)sin 50cos10cos102cos50sin100sin501cos10cos106、(1)95;(2)2425;(3)223.提示:4422222sincos(sincos)2sincos;(4)1725.7、由已知可求得2cos cos 5,1sin sin5,于是sin sin 1tan tancos cos2.8、(1)左边=222cos 214cos232(cos 22cos 21)22242(cos21)2(2cos )8cos=右边(2)左边=2222sincos2sincos (sincos )2cos 2sin cos 2cos (cos sin )新课程标准数学必修4第三章课后习题解答(第10页共12页)(第12(2)题)sincos 11tan2cos 22=右边(3)左边=sin(2)2cos()sin sin[()]2cos()sinsin2cos (cos sin )sin()coscos()sinsinsinsin=右边(4)左边=222234cos 22cos 212(cos 22cos 21)34cos 22cos 212(cos 22cos 21)A A A A A A A A 2224222(1cos2)(2sin )tan (1cos2)(2cos )A A A A A =右边9、(1)1sin 21cos2sin 2cos222sin(2)24y x xx x x递减区间为5[,],88k k kZ (2)最大值为22,最小值为22.10、2222()(cos sin )(cos sin )2sin cos cos2sin 22cos(2)4f x x x x x x xx x x(1)最小正周期是;(2)由[0,]2x 得52[,]444x,所以当24x ,即38x时,()f x 的最小值为2.()f x 取最小值时x 的集合为3{}8.11、2()2sin 2sin cos 1cos2sin 22sin(2)14f x xx xx xx(1)最小正周期是,最大值为21;(2)()f x 在[,]22上的图象如右图:12、()3sin cos 2sin()6f x xxa xa .(1)由21a 得1a ;(2)2{22,}3x k x k kZ ≤≤.13、如图,设ABD ,则CAE ,2sin h AB,1cos h AC所以1212sin 2ABCh h S AB AC,(0)2当22,即4时,ABCS的最小值为12h h .第三章复习参考题B 组(P147)h 1h 2l 2l 1BDE AC(第13题)新课程标准数学必修4第三章课后习题解答(第11页共12页)1、解法一:由221sin cos 5sincos1,及0≤≤,可解得4sin5,13cos sin 55,所以24sin 225,7cos225,312sin(2)sin 2cos cos2sin 44450.解法二:由1sincos5得21(sincos )25,24sin 225,所以249cos 2625.又由1sin cos5,得2sin()410.因为[0,],所以3[,]444.而当[,0]44时,sin()04≤;当3[,]444时,22sin()4210≥.所以(0,)44,即(,)42所以2(,)2,7cos225.312sin(2)4502、把1coscos 2两边分别平方得221coscos 2cos cos 4把1sinsin3两边分别平方得221sin sin2sin sin9把所得两式相加,得1322(cos cos sin sin )36,即1322cos()36,所以59cos()723、由43sin()sin 35可得3343sincos225,4sin()65.又02,所以366,于是3cos()65.所以334cos cos[()]66104、22sin 22sin 2sin cos 2sin 2sin cos (cos sin )sin 1tan cos sin 1cos xxx x xx x xx x xx xx 1tan sin2sin2tan()1tan 4x xx x x由177124x得5234x,又3cos()45x ,所以4sin()45x ,4tan()43x新课程标准数学必修4第三章课后习题解答(第12页共12页)所以2cos cos[()]cos()cossin()sin44444410xx x x ,72sin 10x,7sin 22sin cos 25xx x所以2sin 22sin 281tan 75xx x,5、把已知代入222sin cos(sincos )2sin cos1,得22(2sin )2sin1.变形得2(1cos2)(1cos2)1,2cos 2cos2,224cos 24cos 2本题从对比已知条件和所证等式开始,可发现应消去已知条件中含的三角函数.考虑sin cos ,sin cos 这两者又有什么关系?及得上解法.5、6两题上述解法称为消去法6、()3sin 21cos22sin(2)16f x x x m xm .由[0,]2x 得72[,]666x,于是有216m .解得3m.()2sin(2)4()6f x xxR 的最小值为242,此时x 的取值集合由322()62x k kZ ,求得为2()3xk kZ 7、设APx ,AQy ,BCP ,DCQ ,则tan 1x ,tan1y于是2()tan()()x y xy xy又APQ 的周长为2,即222x yxy,变形可得2()2xy x y 于是2()tan()1()[2()2]x y xy x y .又02,所以4,()24PCQ.8、(1)由221sin cos 5sincos 1,可得225sin5sin 120解得4sin 5或3sin 5(由(0,),舍去)所以13cossin 55,于是4tan 3(2)根据所给条件,可求得仅由sin ,cos ,tan 表示的三角函数式的值,例如,sin()3,cos22,sincos 2tan,sincos 3sin2cos,等等.。
高中数学必修四第三章三角恒等变换

必修四 第三章:三角恒等变换【知识点梳理】:考点一:两角和、差的正、余弦、正切公式两角差的余弦:cos()cos cos sin sin αβαβαβ-=+ 两角和的余弦:()cos cos cos sin sin αβαβαβ+=- 两角和的正弦:()sin αβ+sin cos cos sin αβαβ=+ 两角差的正弦:()sin sin cos cos sin αβαβαβ-=- 两角和的正切:()tan tan tan 1tan tan αβαβαβ++=-两角差的正切:()tan tan tan 1tan tan αβαβαβ--=+注意:对于正切,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈.【典型例题讲解】:例题1.已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.例题2.利用和、差角余弦公式求cos 75、cos15的值。
例题3.已知()sin αβ+=32,)sin(βα-=51,求βαtan tan 的值。
例题4.cos13计算sin43cos 43-sin13的值等于( )A .12B .33C .22D .32例题5.已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值.例题6.已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____例题7.如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角,αβ,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 225(1) 求tan()αβ+的值; (2) 求2αβ+的值。
例题8.设ABC ∆中,tan A tan B Atan B +=,sin Acos A =,则此三角形是____三角形【巩固练习】练习1. 求值(1)sin 72cos 42cos72sin 42-; (2)cos 20cos70sin 20sin 70-;练习2.0sin 45cos15cos 225sin15⋅+⋅的值为(A ) -2 1(B ) -2 1(C )2 (D )2练习3.若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A.3-B.13-C.3D.13练习4. 已知α,β为锐角,1tan 7α=,sin 10β=,求2αβ+.考点二:二倍角公式及其推论:在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式222,,S C T ααα:()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=;()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-;22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-;22222cos2cos sin cos (1cos )2cos 1αααααα=-=--=-.()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+==--.注意:2,22k k ππαπαπ≠+≠+ ()k z ∈二倍角公式不仅限于2α是α的二倍的形式,其它如4α是2α的二倍,24αα是的二倍,332αα是的二倍等等,要熟悉这多种形 式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公式的关键.二倍角公式的推论升幂公式:21cos 22cos αα+=, 21cos 22sin αα-=降幂公式:ααα2sin 21cos sin =; 22cos 1sin 2αα-=; 22cos 1cos 2αα+=.【典型例题讲解】例题l. ) A .2sin15cos15 B .22cos 15sin 15- C .22sin 151-D .22sin 15cos 15+例题2..已知1sin cos 5θθ+=,且432πθπ≤≤,则cos 2θ的值是 .例题3.化简0000cos10cos 20cos30cos 40••• 例题4.23sin 702cos 10-=-( )A .12B .2C .2D例题5.已知02x π<<,化简:2lg(cos tan 12sin ))]lg(1sin 2)24x x x x x π⋅+-+--+.例题6.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 。
高中数学必修4第三章经典习题含答案

第三章经典习题150两部分。
满分本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题) 分钟。
分。
考试时间120)分第Ⅰ卷(选择题共60分,在每本大题共一、选择题(12个小题,每小题5分,共60)小题给出的四个选项中只有一个是符合题目要求的ππ22)cos的值为(sin1.-121211 B.A.-2233D.C.-22C[答案]πππ322. )=-cos[解析]原式=-(cos=--sin212126) 的最小正周期是()(x=sin2x-cos2x2.函数fπB.π 3 A. 2 4π.DC.2πB[答案]2ππ=,故T=π. )xsin2(解析[]fx)=x-cos2x=2sin(2-243π1) cos((0,θ=θ∈,π),则+(=2θ)cos.3已知23724 B.-A.-99742 C. D.99.C[答案]3π24221. 2sinθcosθ=2=××sin2[解析]cos(+2θ)=θ=93234) tan(α-β)等于(,则4.若tanα=3,tanβ=31B.-3 .-A31D.C.3 3D[答案]4-3βαtantan-31. [解析]tan(α-β)===43βtanαtan1+×13+322) ·cos15°的值是(5.coscos75°+cos75°15°+65 A. B.2423 D C. 1.+32A[答案]5122. =+=cos15°原式=sin15°+cos15°+sin15°1sin30°][解析4222) 的最小值是cossiny6.=cosx-x+2sinxx( A.2 B 2 .-2 .C2 .-DB]答案[π2. [解析=-,∴)+2sin(2=sin2+cos2y]=xxxy max4) (=)α2-βtan(,则3=)α-βtan(,2=αtan若.7.1 B.-A.-1 515 D. C. 77D答案][23--α?-tanαtan?β==-α]=α)=tan[(β-α)2[解析] tan(β-61-?βα?tan+α1+tan1.7→) PQ|的最大值是()α),Q(cosβ,sinβ,则|.8已知点P(cosα,sinB.2 2 A.2D.C.4 2B答案][→→=|,则|PQ)cos析[解]PQ=(cosβ-α,sinβ-sinα→22的最大值为|PQ=|故,?β-α?2cos-2sinαcos?β-cos??+sinβ-α?2.xxcos2+sin2)(=函数9.y的最小正周期为xsin2cos2x-Bπ.2πA.ππ C. D. 42C]答案[x1tan2+ππ.+,∴tan(2==]解析[yx)T=24xtan2-1.12)(f(x)是)=sinx-(x∈R),则10.若函数f(x2π的奇函数A.最小正周期为 2 的奇函数.最小正周期为πB 的偶函数.最小正周期为2πC 的偶函数.最小正周期为πDD答案][11122的周期x)(cos2x,∴=-(1-2sinfx)=-[解析]f(x)=sin -x222 π的偶函数.为π) sin2x的一个单调递增区间是(.y =sin(2x-)-113πππ7π] ,.-,] [B.A[123612π5π135D .[π,π] ,].[C612123B答案[]πππ=-xsincos-cos2x-sin2=sin(2]解析y=x-)-sin2xsin2x[ 333ππππ)y)sin(2x+,其增区间是函数=sin(2x+=-xcos(sin2x+cos2sin)33337ππππ3πkπ+≤2π的减区间,即2k+≤x+2kπ,∴k+≤+k≤π,当x12221237ππ∈x[],.=0时,1212αtan112)α,=βα已知12.sin(+)sin(-(log,=β)则(等于)5β2tan3 3 .B 2 .A.5D..C4C [答案]11得β)=-+β)[解析]由=,sin(αsin(α3251??=cosβ=sinααsinαcosβ+cossinβ??122??,,∴11??=cosααsinαcosβ-cossinβ=sinβ??123αtan ,=∴5βtanαtan224.=)∴log(=5log55βtan)90分第Ⅱ卷(非选择题共分,把正确分,共20本大题共4个小题,每小题5二、填空题()答案填在题中横线上________. )=)(1+tan28°13.(1+tan17°2][答案+tan(17°·tan28°,又+tan17°+tan28°+tan17°[解析]原式=1tan28°tan17°+-+tan28°=1,28°)==tan45°=1∴tan17°tan28°tan17°·1-2.tan28°,代入原式可得结果为tan17°·π4??+α,则=)全国高考江苏卷设α为锐角,若cos14.(2012·??65??π??+α2sin______.的值为??12??217 ][答案50.ππ2πππ4????+αα+=<,∵cos,∴sin=[解析]∵α为锐角,∴<α+????665636????3 ;5πππ24??????+αα++2α=2sin∴sin,cos=??????66325??????πππ722=+sin)(cos(α+)=α+)α-cos(225636πππππππ????????+2α-2α-2α+2α+==∴sinsincossin=sincos-????????34331244????????172.50144α=+cos________. αsinαcos2=,则15.已知35[答案] 912222α=αα-1=2sin=2cos1-,由cos2得cosα=[解析]cos2α331112222α=α+cosα=1得sinα=)或据(sin得=sin,代入计算可得.333π1316.设向量a=(,sinθ),b=(cosθ,),其中θ∈(0,),若a223∥b,则θ=________.π[答案]41∥b,则sinθcosθ=,即2sinθcosθ][解析若a=1,∴sin2θ=1,2ππ又θ∈(0,),∴θ=.42解答应写出文字说明,分,70共个小题,6本大题共(解答题三、.)证明过程或演算步骤33,求π<π<已知cosα-sinαα=2,且17.(本题满分10分)252α2sinα+sin2 的值.αtan1-1823,所以=cosαsinαα=,所以1-2sin][解析因为cosα-2557.=cosα2sinα253π24 α,=-=-1+2sinα又α∈(π,),故sincosα+cosα5222αα?cosα2sinα+2sinαcossin2α+2sin?==所以α-sin1-tanαcosα274?×?-?sinαα?cosα+2sinαcos52528.=-=7523αsincosα-5ππ18.(本题满分12分)设x∈[0,],求函数y=cos(2x-)+2sin(x33π-)的最值.6ππ[解析]y=cos(2x-)+2sin(x-) 63ππ=cos2(x -)+2sin(x-)66πππ1322+]-. =-2[sin(x-))2sin()1=-2sin(x-+x-26662ππππ∵x∈[0,],∴x-∈[-,.]6663.π11 ],-)∈[-,∴sin(x26213.=-y∴=,y minmax22222α1,求证:cos2θ+θ=2tansinα+tan)12分已知19.(本题满分0.=222θsinθθ-tan1cos-222αα==α=sinsinθ+sin++cos2[证明]222θsinθ+θtan1cos+222αααtan2tan---sin2222αsin=-=α=ααsinsin+sin++2222αααsin+α+1tan++12tan1cos20.α=sin+x33xx,-=(cos),已知向量本题满分(12分)a=(cossin,b20.222x.R,其中3-1)x∈,)sin c=( 2 值的集合;时,求x⊥当(1)ab ||(2)求a-c的最大值.xx3x3xx则0sin-cos,=·⊥由[解析](1)ab得ab0即cossin=,cos22222πππkπk x值的集合是x{|.Zk,+x=∈},∴Zk(+x0=,得=∈)4422xx33222 3)++(sin1)-=|-(2)|ac(cos22x3x3x33x221-=cos+2sin+sin3++23cos2222πxx3x332的最大值为5=+3cos2-2sin+5=|c--4sin(a|,则)3222.3.c|的最大值为9.∴|a-π22+sinx=cos(2x+)21.设函数f(x)42 的最小正周期;(x)(Ⅰ)求函数fππ??,0时,∈且当xg(x),∈R,有g(x+)=)(Ⅱ设函数g(x)对任意x??22??1 上的解析式。
必修4数学教材习题答案

必修4数学教材习题答案必修4数学教材习题答案数学是一门重要的学科,它不仅对我们的日常生活有着深远的影响,也是其他学科的基础。
在学习数学的过程中,教材中的习题是非常重要的一部分。
通过解答习题,我们可以巩固知识,培养逻辑思维能力。
然而,对于一些复杂的习题,我们可能会遇到困难,无法找到正确的答案。
在这篇文章中,我将为大家提供必修4数学教材习题的答案,希望能够帮助大家更好地学习数学。
第一章函数与导数1. 已知函数f(x) = 2x^2 - 3x + 1,求f(2)的值。
答案:将x替换为2,得到f(2) = 2(2)^2 - 3(2) + 1 = 9。
2. 已知函数f(x) = x^3 - 2x^2 + x + 3,求f'(x)的表达式。
答案:对f(x)进行求导,得到f'(x) = 3x^2 - 4x + 1。
第二章二次函数与一元二次方程1. 解方程2x^2 + 5x - 3 = 0。
答案:可以使用因式分解或者求根公式来解这个方程。
通过求根公式可以得到x = -3/2或x = 1/2。
2. 已知函数f(x) = ax^2 + bx + c,其中a > 0,求当x = 2时,f(x)的最小值。
答案:使用求导的方法,对f(x)进行求导,令导数等于0,解得x = -b/2a。
将x = 2代入得到f(2)的最小值。
第三章概率统计1. 有一袋中装有红球3个,绿球4个,蓝球5个,从中任取3个球,求至少有两个球颜色相同的概率。
答案:可以使用排列组合的方法来求解。
总共有12个球,从中取3个,共有C(12, 3)种取法。
至少有两个球颜色相同,可以分为两种情况:一种是三个球颜色相同,共有C(3, 1) * C(4, 3)种取法;另一种是两个球颜色相同,另一个球颜色不同,共有C(3, 2) * C(4, 2) * C(5, 1)种取法。
将两种情况的取法数相加,再除以总的取法数,即可得到概率。
2. 有一批产品,其中10%有瑕疵。
必修4参考答案数学

必修4参考答案数学必修4参考答案数学数学是一门抽象而又实用的学科,它在我们的日常生活中起着重要的作用。
而必修4是高中数学课程中的一门重要课程,它涵盖了许多基础的数学知识和技巧。
下面将为大家提供一些必修4的参考答案,希望对大家的学习有所帮助。
第一章:集合与函数1. 集合的概念与表示方法- 集合是由一些确定的对象所组成的整体。
- 用大写字母表示集合,用小写字母表示集合中的元素。
- 集合可以通过列举法、描述法和图形法表示。
2. 集合的运算- 并集:将两个或多个集合中的所有元素放在一起,形成一个新的集合。
- 交集:两个或多个集合中共有的元素构成的集合。
- 差集:从一个集合中减去另一个集合中的元素所得到的集合。
- 补集:对于给定的全集,除去一个集合中的元素所得到的集合。
3. 函数的概念与表示方法- 函数是一种特殊的关系,它将一个集合的每个元素都对应到另一个集合中的唯一元素。
- 函数可以用映射图、映射表和函数式表示。
第二章:三角函数1. 弧度制与角度制的转换- 弧度制:弧长等于半径的角度制。
- 角度制:以度为单位来度量角的大小。
2. 三角函数的定义与性质- 正弦函数:在直角三角形中,对于一个锐角,其对边与斜边的比值。
- 余弦函数:在直角三角形中,对于一个锐角,其邻边与斜边的比值。
- 正切函数:在直角三角形中,对于一个锐角,其对边与邻边的比值。
3. 三角函数的图像与性质- 正弦函数的图像是一个周期性的波形,其最大值为1,最小值为-1。
- 余弦函数的图像也是一个周期性的波形,其最大值为1,最小值为-1。
- 正切函数的图像是一个周期性的波形,其在某些点上无定义。
第三章:解析几何1. 平面坐标系与直线方程- 平面直角坐标系:由两条相互垂直的直线所确定的坐标系。
- 直线的方程:直线可以用一般式、点斜式和两点式表示。
2. 圆的方程与性质- 圆的方程:圆可以用标准方程和一般方程表示。
- 圆的性质:圆的半径、直径、弦、弧等都有一些特殊的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章经典习题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.sin 2π12-cos 2π12的值为( )A .-12 B.12 C .-32 D.32[答案] C[解析] 原式=-(cos 2π12-sin 2π12)=-cos π6=-32.2.函数f (x )=sin2x -cos2x 的最小正周期是( ) A.π23 B .π C .2π D .4π[答案] B[解析] f (x )=sin2x -cos2x =2sin(2x -π4),故T =2π2=π. 3.已知cos θ=13,θ∈(0,π),则cos(3π2+2θ)=( ) A .-429 B .-79 C.429D.79[答案] C[解析] cos(3π2+2θ)=sin2θ=2sin θcos θ=2×223×13=429. 4.若tan α=3,tan β=43,则tan(α-β)等于( ) A .-3 B .-13 C .3 D.13[答案] D[解析] tan(α-β)=tan α-tan β1+tan αtan β=3-431+3×43=13. 5.cos 275°+cos 215°+cos75°·cos15°的值是( ) A.54 B.62 C.32 D .1+23[答案] A[解析] 原式=sin 215°+cos 215°+sin15°cos15°=1+12sin30°=54.6.y =cos 2x -sin 2x +2sin x cos x 的最小值是( ) A. 2 B .- 2 C .2 D .-2[答案] B[解析] y =cos2x +sin2x =2sin(2x +π4),∴y max =- 2. 7.若tan α=2,tan(β-α)=3,则tan(β-2α)=( )A .-1B .-15 C.57 D.17[答案] D[解析] tan(β-2α)=tan[(β-α)-α]=tan (β-α)-tan α1+tan (β-α)tan α=3-21+6=17.8.已知点P (cos α,sin α),Q (cos β,sin β),则|PQ →|的最大值是( ) A. 2 B .2 C .4 D.22[答案] B[解析] PQ →=(cos β-cos α,sin β-sin α),则|PQ →|=(cos β-cos α)2+(sin β-sin α)2=2-2cos (α-β),故|PQ →|的最大值为2.9.函数y =cos2x +sin2xcos2x -sin2x 的最小正周期为( )A .2πB .π C.π2 D.π4[答案] C[解析] y =1+tan2x 1-tan2x=tan(2x +π4),∴T =π2.10.若函数f (x )=sin 2x -12(x ∈R ),则f (x )是( )A .最小正周期为π2的奇函数 B .最小正周期为π的奇函数 C .最小正周期为2π的偶函数 D .最小正周期为π的偶函数 [答案] D[解析] f (x )=sin 2x -12=-12(1-2sin 2x )=-12cos2x ,∴f (x )的周期为π的偶函数.11.y =sin(2x -π3)-sin2x 的一个单调递增区间是( ) A .[-π6,π3] B .[π12,712π] C .[512π,1312π] D .[π3,5π6][答案] B[解析] y =sin(2x -π3)-sin2x =sin2x cos π3-cos2x sin π3-sin2x =-(sin2x cos π3+cos2x sin π3)=-sin(2x +π3),其增区间是函数y =sin(2x +π3)的减区间,即2k π+π2≤2x +π3≤2k π+3π2,∴k π+π12≤x ≤k π+7π12,当k =0时,x ∈[π12,7π12].12.已知sin(α+β)=12,sin(α-β)=13,则log 5(tan αtan β)2等于( )A .2B .3C .4D .5[答案] C [解析]由sin(α+β)=12,sin(α-β)=13得⎩⎪⎨⎪⎧sin αcos β+cos αsin β=12sin αcos β-cos αsin β=13,∴⎩⎪⎨⎪⎧sin αcos β=512cos αsin β=112,∴tan αtan β=5, ∴log 5(tan αtan β)2=log552=4.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.(1+tan17°)(1+tan28°)=________. [答案] 2[解析] 原式=1+tan17°+tan28°+tan17°·tan28°,又tan(17°+28°)=tan17°+tan28°1-tan17°·tan28°=tan45°=1,∴tan17°+tan28°=1-tan17°·tan28°,代入原式可得结果为2.14.(2012·全国高考江苏卷)设α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π12的值为______. [答案]17250[解析] ∵α为锐角,∴π6<α+π6<2π3,∵cos ⎝ ⎛⎭⎪⎫α+π6=45,∴sin ⎝ ⎛⎭⎪⎫α+π6=35;∴sin ⎝ ⎛⎭⎪⎫2α+π3=2sin ⎝ ⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6=2425,cos(2α+π3)=cos(α+π6)2-sin 2(α+π6)=725∴sin ⎝ ⎛⎭⎪⎫2α+π12=sin ⎝ ⎛⎭⎪⎫2α+π3-π4=sin ⎝ ⎛⎭⎪⎫2α-π3cos π4-cos ⎝ ⎛⎭⎪⎫2α+π3sin π4=17250.15.已知cos2α=13,则sin 4α+cos 4α=________. [答案] 59[解析] cos2α=2cos 2α-1=13得cos 2α=23,由cos2α=1-2sin 2α=13得sin 2α=13(或据sin 2α+cos 2α=1得sin 2α=13),代入计算可得.16.设向量a =(32,sin θ),b =(cos θ,13),其中θ∈(0,π2),若a∥b ,则θ=________.[答案] π4[解析] 若a ∥b ,则sin θcos θ=12,即2sin θcos θ=1,∴sin2θ=1,又θ∈(0,π2),∴θ=π4.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)已知cos α-sin α=352,且π<α<32π,求sin2α+2sin 2α1-tan α的值.[解析] 因为cos α-sin α=325,所以1-2sin αcos α=1825,所以2sin αcos α=725.又α∈(π,3π2),故sin α+cos α=-1+2sin αcos α=-425, 所以sin2α+2sin 2α1-tan α=(2sin αcos α+2sin 2α)cos αcos α-sin α=2sin αcos α(cos α+sin α)cos α-sin α=725×(-425)325=-2875.18.(本题满分12分)设x ∈[0,π3],求函数y =cos(2x -π3)+2sin(x -π6)的最值.[解析] y =cos(2x -π3)+2sin(x -π6) =cos2(x -π6)+2sin(x -π6)=1-2sin 2(x -π6)+2sin(x -π6)=-2[sin(x -π6)-12]2+32. ∵x ∈[0,π3],∴x -π6∈[-π6,π6].∴sin(x -π6)∈[-12,12], ∴y max =32,y min =-12.19.(本题满分12分)已知tan 2θ=2tan 2α+1,求证:cos2θ+sin 2α=0.[证明] cos2θ+sin 2α=cos 2θ-sin 2θcos 2θ+sin 2θ+sin 2α=1-tan 2θ1+tan 2θ+sin 2α=-2tan 2α1+2tan 2α+1+sin 2α=-tan 2α1+tan 2α+sin 2α=-sin 2αcos 2α+sin 2α+sin 2α=-sin 2α+sin 2α=0.20.(本题满分12分)已知向量a =(cos 3x 2,sin 3x 2),b =(cos x2,-sin x2),c =(3-1),其中x ∈R .(1)当a ⊥b 时,求x 值的集合; (2)求|a -c |的最大值.[解析] (1)由a ⊥b 得a ·b =0,即cos 3x 2cos x 2-sin 3x 2sin x2=0,则cos2x =0,得x =k π2+π4(k ∈Z ),∴x 值的集合是{x |x =k π2+π4,k ∈Z }.(2)|a -c |2=(cos 3x 2-3)2+(sin 3x 2+1)2=cos 23x 2-23cos 3x 2+3+sin 23x 2+2sin 3x 2+1=5+2sin 3x 2-23cos 3x 2=5+4sin(3x 2-π3),则|a -c |2的最大值为9.∴|a -c |的最大值为3.21.设函数f (x )=22cos(2x +π4)+sin 2x (Ⅰ)求函数f (x )的最小正周期;(Ⅱ)设函数g (x )对任意x ∈R ,有g (x +π2)=g (x ),且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,g (x )=12-f (x );求函数g (x )在[-π,0]上的解析式。
[解析] f (x )=22cos(2x +π4)+sin 2x =12cos2x -12sin2x +12(1-cos2x )=12-12sin2x(Ⅰ)函数f (x )的最小正周期T =2π2=π (Ⅱ)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,g (x )=12-f (x )=12sin2x 当x ∈⎣⎢⎡⎦⎥⎤-π2,0,(x +π2)∈⎣⎢⎡⎦⎥⎤0,π2g (x )=g (x +π2)=12sin2(x +π2)=-12sin2x当x ∈⎣⎢⎡⎭⎪⎫-π,-π2时,(x +π)∈⎝ ⎛⎭⎪⎫0,π2 g (x )=g (x +π)=12sin2(x +π)=12sin2x得:函数g (x )在[-π,0]上的解析式为g (x )=⎩⎪⎨⎪⎧-12sin2x (-π2≤x ≤0)12sin2x (-π≤x <π2)22.(本题满分12分)已知函数f (x )=(1-tan x )·[1+2sin(2x +π4)],求:(1)函数f (x )的定义域和值域; (2)写出函数f (x )的单调递增区间.[解析] f (x )=(1-sin x cos x )(1+2sin2x cos π4+2cos2x sin π4)=(1-sin x cos x )(2sin x cos x +2cos 2x )=2(cos x -sin x )(cos x +sin x )=2(cos 2x -sin 2x )=2cos2x .(1)函数f (x )的定义域{x |x ≠k π+π2,k ∈Z }. ∵2x ≠2k π+π,k ∈Z ,∴2cos2x ≠-2. ∴函数的值域为(-2,2](2)令2k π-π<2x ≤2k π(k ∈Z )得k π-π2<x ≤k π(k ∈Z ). ∴函数f (x )的单调递增区间是(k π-π2,k π](k ∈Z ).。