两圆相交公共弦 常用辅助线作法
圆中常见辅助线的添加口诀及技巧

圆中常见辅助线的添加口诀及技巧半径弦长弦心距,勾股定理做道具。
切线应用及证明,切点圆心半径连。
遇到直径想直角,一般特殊来转化。
弦弧中点圆心连,垂径定理记心间。
圆周角边两条弦,直径和弦端点连。
相交两圆公共弦,圆心切点连成线。
二:圆中常见辅助线的添加:1、遇到弦时(解决有关弦的问题时)(1)、常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。
作用:①利用垂径定理;②利用圆心角及其所对的弧、弦和弦心距之间的关系;③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。
(2)、常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。
作用:①可得等腰三角形;②据圆周角的性质可得相等的圆周角。
2、遇到有直径时常常添加(画)直径所对的圆周角。
作用:利用圆周角的性质,得到直角或直角三角形3、遇到90°的圆周角时常常连结两条弦没有公共点的另一端点。
作用:利用圆周角的性质,可得到直径。
4、遇到有切线时(1)常常添加过切点的半径(见切点连半径得垂直)作用:利用切线的性质定理可得OA⊥AB5、遇到证明某一直线是圆的切线时(1再证垂足到圆心的距离等于半径。
(2再证其与直线垂直。
6、遇到三角形的内切圆时连结内心到各三角形顶点,或过内心作三角形各边的垂线段。
作用:利用内心的性质,可得:(1(2)内心到三角形三条边的距离相等(等面积法求半径要记住)7、作用:外心到三角形各顶点的距离相等。
例题1、如图,已知△ABC内接于⊙O,∠A=45°,BC=2,求⊙O的面积。
例题2、如图,弦AB的长等于⊙O的半径,点C在弧AMB上,则∠C的度数是________.例题3、如图,AB是⊙O的直径,AB=4,弦BC=2,∠B=例题4、如图,AB、AC是⊙O的的两条弦,∠BAC=90°,AB=6,AC=8,⊙O的半径是例题5、如图所示,已知AB是⊙O的直径,AC⊥L于C,BD⊥L于D,且AC+BD=AB。
人教版九年级数学上册例谈圆中常见作辅助线的方法.docx

初中数学试卷马鸣风萧萧例谈圆中常见作辅助线的方法圆是初中几何部分的重要内容之一,与圆有关的大部分几何题型都需要添加辅助线来解决。
只要添上合适的辅助线,不仅会使问题迎刃而解,而且还会有效地培养学生的解题能力与创造性思维能力。
通过对实践教学中的归纳与总结,发现添加辅助线的方法有很多,本文就圆中常见作辅助线的方法归纳如下:一、作弦心距——在与弦有关的计算或证明题时,常作辅助线的方法是作弦心距例1 如图1,AB 为⊙O的直径,PQ 切⊙O于T ,AC ⊥PQ 于C ,交⊙O于D ,AD=2,TC=3.求⊙O的半径。
解:过点O 作OM ⊥AC 于M ,∴AM=MD=AD/2=1.∵PQ 切⊙O于T ,∴OT ⊥PQ .又∵AC ⊥PQ ,OM ⊥AC , ∴∠OTC=∠ACT=∠OMC=90°, ∴四边形OTCM 为矩形.∴OM=TC=3, ∴在Rt △AOM中,2AO =. 即⊙O的半径为2.例2 如图2,已知在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 、D 两点. 求证:AC=BD.证明:过点O 作OE ⊥AB 于E ,则AE=BE ,CE=DE ,∴AE-CE=BE-DE. ∵AC=AE-CE ,BD=BE-DE. ∴AC=BD.二、连半径——与半径和弦有关的简单计算、已知圆中有切线的有关计算和证明时,常作辅助线的方法是连半径例3 如图3,⊙O 的直径CD=20cm ,直线l ⊥CO ,垂足为H ,交⊙O 于A 、B 两点,AB=16 cm ,直线l 平移多少厘米时能于⊙O 相切? 解:连接OA ,· C D AE BO图2A 图1M∵l ⊥CO ,∴OC 平分AB ∴AH=8cm.在Rt △AHO 中,OH==-=-2222810AH AO 6cm. ∴CH=4cm ,DH=16 cm.答:直线l 向左平移4cm ,或向右平移16cm 时能于⊙O 相切。
例4 如图4,PA 是⊙O 的切线,切点是A ,过点A 作AH ⊥OP 于点H ,交⊙O 于点B. 求证:PB 是⊙O 的切线. 证明:连接OA 、OB.∵PA 是⊙O 的切线,∴∠OAP=90°. ∵OA=OB ,AB ⊥OP ,∴∠AOP=∠BOP. 又∵OA=OB ,OP=OP ,∴△AOP ≌△BOP. ∴∠OPB=∠OAP=90°. ∴PB 是⊙O 的切线.三、既作弦心距又连半径——与半径和弦都有关的计算时,常作辅助线的方法是既作弦心距又连半径,利用勾股定理来解决例5 直径为52厘米的圆柱形油槽内装入一些油后,截面如图5,若油最大深度为16厘米.那么油面宽度AB 的长是多少厘米?解:连接OA ,作OC ⊥AB 于C ,则AC=BC=21AB.在Rt △OAC 中,OA=21×52=26厘米,OC=26-16=10厘米,∴AC==-=-22221026OC OA 24厘米.∴AB=2AC=48厘米.四、连弦构造相似三角形或直角三角形——在圆中与弦或其他有关的计算或证明时,常作辅助线的方法是连弦,利用同弧所对的圆周角相等连弦构造相似三角形或利用直径所对的圆周角为直角这个性质连弦构造出直角三角形,从而将问题转化到相似三角形或直角三角形中去计算或证明例6 已知,如图6,在半径为4的⊙O 中,AB ,CD 是两条直径,M 为OB 的中点,CM的延长线交⊙O 于点E ,且EM >MC .连结DE ,(1)求证:AM ·MB=EM ·MC ; (2)求EM 的长; (3)求sin ∠EOB 的值.解:(1)连接AC ,EB ,则∠CAM=∠BEM.又∠AMC=∠EMB, ∴△AMC ∽△EMB .∴ EM MBAM MC =,即AM ·MB=EM ·MC . (2)∵DC 为⊙O 的直径,A 图 4· BPOH A BO·图5C B图6∴∠DEC=90°,EC=7.== ∵OA=OB=4,M 为OB 的中点,∴AM=6,BM=2.设EM=x ,则CM=7-x .代入(1),得 62(7)x x ⨯=-.解得1x =3,2x =4.但EM >MC ,∴EM=4.(3)由(2)知,OE=EM=4,作EF ⊥OB 于F ,则OF=MF=41OB=1.在Rt △EOF 中,,15142222=-=-=OF OE EF∴sin ∠EOB =415=OE EF . 例7 如图7所示,△ABC 是直角三角形,∠ABC=90°,以AB 为直径的⊙O 交AC 于点E ,点D 是BC边的中点,连结DE . (1)求证:DE 与⊙O 相切;(2)若⊙O DE=3,求AE . (1)证明:连结OE ,BE ,∵AB 是直径,∴BE ⊥AC. ∵D 是BC 的中点, ∴DE=DB , ∴∠DBE=∠DEB.又OE=OB , ∴∠OBE=∠OEB , ∴∠DBE+∠OBE=∠DBE+∠OEB. 即∠ABD=∠OED.又∵∠ABC=90°,∴∠OED=90°, ∴DE 是⊙O 的切线.(2)解:∵346)32(2222=+=+=BC AB AC ,∴334632=⨯=⋅=AC BC AB BE ,∴33)32(2222=-=-=BE AB AE .五、作直径构造直角三角形——在圆中牵涉到三角函数的运算或与直径的计算与证明时,常作辅助线的方法是作直径,利用直径所对的圆周角是直角构造直角三角形,从而将问题转化到直角三角形中去解决例8 如图8, 点A 、B 、C 在⊙O 上(AC 不过O 点),若∠ACB=60°,AB=6,求⊙O 半径的长。
圆中常见的辅助线

计算弧长
利用半径和直径,可以计算圆中的 弧长,如半圆、四分之一圆等。
证明定理
半径和直径在证明圆的定理中起到 关键作用,如垂径定理、切线长定 理等。
半径和直径的作法
作半径
从圆心出发,用直尺或圆规画出到圆上任意一点的线段。
作直径
通过圆心,用直尺或圆规画出穿过圆上任意两点的线段。
02 弦
定义与性质
弦的作法
01
02
03
04
通过作弦的中垂线来找到弦的 中点;
通过连接圆心和弦的一个端点 来找到弦;
通过作经过圆上两点的切线来 找到弦;
通过作经过圆心的直线来找到 弦。
03 切线
定义与性质
定义
切线是指与圆只有一个公共点的直线。
性质
切线与半径垂直,切线长度与半径相等,切线到圆心的距离为0。
切线在解题中的作用
定义
连接圆上任意两点的线段被称为圆的 弦。
性质
弦与直径垂直时,弦平分直径;同弦 所对的圆周角相等;弦长与半径成正 比。
弦在解题中的作用
利用弦的性质求角度
利用弦的性质证明定理
通过利用弦所对的圆周角相等,可以 求出某些角度。
通过利用弦的性质,可以证明一些与 圆有关的定理。
利用弦的性质求长度
利用弦长与半径的比例关系,可以求 出某些长度。
圆中常见的辅助线
目 录
• 半径和直径 •弦 • 切线 • 割线
01 半径和直径
定义与性质
定义
半径是连接圆心和圆上任意一点 的线段,直径是穿过圆心且两端 点在圆上的线段。
性质
半径长度等于圆的半径,直径长 度等于圆的直径。
半径和直径在解题中的作用
解题技巧专题圆中辅助线的作法

解题技巧专题圆中辅助线的作法在解题过程中,我们经常会遇到一些问题,例如如何构造等腰三角形、正方形、平行四边形等几何图形,以及如何构造垂直线、角平分线、中位线等几何线段。
这些问题在解决数学问题时非常常见,而圆中辅助线的作法就是一种常用的解决这类问题的技巧。
圆中辅助线的作法是指在解决圆相关的问题时,通过添加一些辅助线来辅助解决问题。
这些辅助线可以增强我们对图形的理解,简化问题的分析过程,使问题更易于解决。
下面将介绍一些常见的圆中辅助线的作法:1.构造圆的切线如果需要构造一条圆的切线,可以先连接圆心与切点,然后再从切点向圆外引一条与半径垂直的线段,两条线段的交点就是切线的切点。
利用这条切线可以帮助我们解决一些关于切线的性质问题。
2.构造垂直线如果需要构造一条与圆上特定点垂直的直线,可以连接该点与圆心,并在圆上引一条经过该点的切线,然后从圆心引一条与切线垂直的线段,两条线段的交点就是所求直线与圆的交点。
利用这条直线可以帮助我们解决一些关于圆的性质问题。
3.构造角平分线如果需要构造一条角的平分线,可以先连接角的两个顶点与圆心,然后再从圆心引一条与角平分线相垂直的线段,两条线段的交点就是所求角的平分线与圆的交点。
利用这条角平分线可以帮助我们解决一些关于角平分线的性质问题。
4.构造中位线如果需要构造一条线段的中位线,可以将线段的两个端点连接到圆心,并在圆上引一条经过中点的切线,然后再从圆心引一条与切线垂直的线段,两条线段的交点就是所求线段的中点。
利用这条中位线可以帮助我们解决一些关于线段中点的性质问题。
5.构造等腰三角形如果需要构造一个等腰三角形,可以先在圆上确定一个顶点,然后连接圆心与该点,并延长线段到圆的另一侧,再将圆切割成两个等弧,然后以切割点为顶点连接圆心,就可以得到一个等腰三角形。
利用这个等腰三角形可以帮助我们解决一些关于等腰三角形的性质问题。
这些是一些常见的圆中辅助线的作法,通过添加这些辅助线,我们可以更好地理解和解决与圆相关的问题。
圆中常见的辅助线的作法分类大全

1. 遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。
或者连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。
作用:1、利用垂径定理;2、利用圆心角及其所对的弧、弦和弦心距之间的关系;3、利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。
4、可得等腰三角形;5、据圆周角的性质可得相等的圆周角。
例:如图,AB是⊙O 的直径,PO ⊥AB 交⊙O 于P 点,弦PN 与AB 相交于点M , 求证:PM •PN=2PO 2.分析:要证明PM •PN=2PO 2,即证明PM •PC =PO 2,过O 点作OC ⊥PN 于C ,根据垂经定理 NC=PC ,只需证明PM •PC=PO 2,要证明PM •PC=PO 2只需证明Rt △POC ∽Rt △PMO. 证明: 过圆心O 作OC ⊥PN 于C ,∴PC=21PN ∵PO ⊥AB, OC ⊥PN ,∴∠MOP=∠OCP=90°. 又∵∠OPC=∠MPO ,∴Rt △POC ∽Rt △PMO. ∴PO PC PM PO即∴PO 2= PM •PC. ∴PO 2= PM •21PN ,∴PM •PN=2PO 2. 【例1】如图,已知△ABC 内接于⊙O ,∠A=45°,BC=2,求⊙O 的面积。
【例2】如图,⊙O 的直径为10,弦AB =8,P 是弦AB 上一个动点,那么OP 的长的取值范围是_________.【例3】如图,弦AB 的长等于⊙O 的半径,点C 在弧AMB 上,则∠C 的度数是________.CBBA2. 遇到有直径时常常添加(画)直径所对的圆周角。
作用:利用圆周角的性质,得到直角或直角三角形。
例 如图,在△ABC 中,∠C=90°,以BC 上一点O 为圆心,以OB 为半径的圆交AB 于点M ,交BC 于点N .(1) 求证:BA ·BM=BC ·BN ;(2) 如果CM 是⊙O 的切线,N 为OC 的中点,当AC=3时,求AB 的值.分析:要证BA ·BM=BC ·BN ,需证△ACB ∽△NMB ,而∠C=90°,所以需要△NMB 中有个直角,而BN 是圆O 的直径,所以连结MN 可得∠BMN=90(1) 证明:连结MN ,则∠BMN=90°=∠ACB ∴△ACB ∽△NMB ∴BNAB BMBC∴AB ·BM=BC ·BN(2) 解:连结OM ,则∠OMC=90° ∵N 为OC 中点∴MN=ON=OM ,∴∠MON=60° ∵OM=OB ,∴∠B=21∠MON=30° ∵∠ACB=90°,∴AB=2AC=2×3=6【例4】如图,AB 是⊙O 的直径,AB=4,弦BC=2,∠B=3. 遇到90°的圆周角时常常连结两条弦没有公共点的另一端点。
圆中常见的辅助线

圆中常见辅助线的做法一.遇到弦时(解决有关弦的问题时)1.常常添加弦心距,或作垂直于弦的半径(或直径)或再连结过弦的端点的半径.作用:①利用垂径定理;②利用圆心角及其所对的弧、弦和弦心距之间的关系;③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。
例:如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 、D 二点。
求证:AC = BD证明:过O 作OE ⊥AB 于E∵O 为圆心,OE ⊥AB∴AE = BE CE = DE∴AC = BD练习:如图,AB 为⊙O 的弦,P 是AB 上的一点,AB = 10cm,PA = 4cm 。
求⊙O 的半径。
2.有等弧或证弧等时常连等弧所对的弦或作等弧所对的圆心角.例:如图,已知AB 是⊙O 的直径,M 、N 分别是AO 、BO 的中点,CM ⊥AB ,DN ⊥AB ,求证: AC BD = 证明:(一)连结OC 、OD∵M 、N 分别是AO 、BO 的中点∴OM =12AO 、ON = 12BO ∵OA = OB ∴OM = ON∵CM ⊥OA 、DN ⊥OB 、OC = OD ∴Rt △COM ≌Rt △DON ∴∠COA = ∠DOB ∴AC BD =(二)连结AC 、OC 、OD 、BD∵M 、N 分别是AO 、BO 的中点 ∴AC = OC BD = OD∵OC = OD ∴AC = BD ∴AC BD =3.有弦中点时常连弦心距例:如图,已知M 、N 分别是⊙O 的弦AB 、CD 的中点,AB = CD ,求证:∠AMN = ∠CNM证明:连结OM 、ON∵O 为圆心,M 、N 分别是弦AB 、CD 的中点∴OM ⊥AB ON ⊥CD ∵AB = CD ∴OM = ON ∴∠OMN = ∠ONM∵∠AMN = 90o-∠OMN ∠CNM = 90o -∠ONM∴∠AMN =∠CNM4.证明弦相等或已知弦相等时常作弦心距。
两圆相交公共弦-常用辅助线作法

两圆相交公共弦常用辅助线作法教学目标:1、深刻理解相交两圆的性质,并能初步运用它解决有关问题。
2、掌握辅助线做法的规律。
教学重点:两圆相交的性质及勾股定理的应用教学难点:灵活的运用口诀添加辅助线。
教学过程:我今天讲的是有关两圆相交公共弦常用辅助线的做法。
例:如图1,半径为5的两个等圆⊙O1与⊙O2相交于A、B,公共弦AB=8.由点O1向⊙O2作切线O1C,切点为C,则O1C的长为图1 图2分析:本题主要考查相交两圆的性质和圆与圆的位置关系的知识点,此题要综合运用相交两圆的性质、切线的性质定理和勾股定理.连接O1O2,O1A,O2C.根据切线的性质定理和勾股定理求解练习1:如图2,⊙O1与⊙O2相交于A、B.已知两圆的半径r1=10,r2=17,圆心距O1O2=21,公共弦AB等于()A.2 B.16 C.6 D.17分析:本题综合考查了圆与圆、相交两圆的性质.注意:相交两圆的连心线,垂直平分公共弦.连接O 1A ,O 2A ,由相交两圆的连心线,垂直平分公共弦可得AB ⊥O 1O 2,且AD=BD ,设AD=x ,O 2D=y ,O 1D=21-y ,根据勾股定理列方程组,求解即可前面两道题是题目体现两圆相交 辅助线的做法求切线和公共弦的问题,下面我们来看求圆心距和相关角的度数。
练习2:已知相交两圆的半径分别为5cm 和4cm ,公共弦长为6cm ,则这两个圆的圆心距是 cm .分析:此题综合运用了相交两圆的性质以及勾股定理.注意此题应考虑两种情况.注意此题应考虑两种情况(图3和图4).练习3如图5,⊙O 1和⊙O 2相交于点A ,B ,它们的半径分别为2和 ,公共弦AB 长为2,若圆心O 1、O 2在AB 的同侧,则∠O 1A O 2= 度.分析:主要考查了相交圆中的相关性质:连心线垂直平分公共弦。
利用特殊直角三角形的性质求角的度数或利用三角函数值求角的度数.有以上例题及练习可得出两圆相交 求切线长,公共弦,连心线的长度及相关角的度数问题,可尝试运用歌诀。
关于圆中常用的辅助线作法

图2A B 关于圆中常用的几种辅助线有关圆的中考,题目变化灵活,在历年各地中考题中均占有较大比例。
在解答与圆有关的题目时,常常需要作辅助线,以便在已知和结论之间“牵线搭桥”,从而使分散条件集中化,隐含条件明显化,难点分散简易化,达到解决问题的目的。
1、有弦时,可从圆心作与弦垂直的线段;或连结半径。
例1:(2006·广东)如图1,AB 是⊙O 的弦,半径OC 、OD 分别交AB 于点E 、F ,且AE=BF ,请你找出线段OE 与OF 的数量关系,并给予证明。
解析:解法1,有弦,可从圆心作与弦垂直的线段,用垂径定理。
OE=OF 。
过点O 作OM ⊥AB 于点M ,则AM=BM ,又AE=BF ,故EM=FM ,从而OM 垂直平分EF ,所以OE=OF 。
解法2,此题也可利用全等来证明。
连结半径OA 、OB ,则OA=OB ,故∠A=∠B ,又AE=BF ,所以△AOE ≌△BOF(SAS),由此OE=OF ; 本题源于课本,巧妙地加以变化,成了一道开放性试题,学生解题时因为有基础铺垫,既增加了自信,又可以提高数学素养。
2、遇到直径时,可作直径所对的圆周角。
例2:(2006·烟台)如图2,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,且⊙O 直径BD=6,连结CD 、AO 。
⑴求证:CD ∥AO ; ⑵设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围。
解析:有直径,可作直径所对的圆周角得直角。
⑴连结BC 交AO 于点E 。
∵AB 、AC 是⊙O 的切线,∴AB=AC ,∠CAO=∠BAO ,∴AO ⊥BC ,∴∠BEO=90°,∵BD 是⊙O 的直径,∴∠BCD=90°,∴∠BCD=∠BEO ,∴CD ∥AO ;⑵∵CD ∥AO ,∴∠D=∠AOB ,∵AB 是⊙O 的切线,BD 是直径,∴∠BCD=∠ABO=90°∴△BCD ∽△ABO ,∴BD ∶AO=CD ∶BO ,∴6∶y=x ∶3,∴y=x18,0<x <6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两圆相交公共弦常用辅助线作法
教学目标:1、深刻理解相交两圆的性质,并能初步运用它解决有关问题。
2、掌握辅助线做法的规律。
教学重点:两圆相交的性质及勾股定理的应用
教学难点:灵活的运用口诀添加辅助线。
教学过程:
我今天讲的是有关两圆相交公共弦常用辅助线的做法。
例:如图1,半径为5的两个等圆⊙O1与⊙O2相交于A、B,公共弦AB=8.由点O1向⊙O2作切线O1C,切点为C,则O1C的长为
图1 图2
分析:本题主要考查相交两圆的性质和圆与圆的位置关系的知识点,此题要综合运用相交两圆的性质、切线的性质定理和勾股定理.连接O1O2,O1A,O2C.根据切线的性质定理和勾股定理求解
练习1:如图2,⊙O1与⊙O2相交于A、B.已知两圆的半径r1=10,r2=17,圆心距O1O2=21,公共弦AB等于()
A.2 B.16 C.6 D.17
分析:本题综合考查了圆与圆、相交两圆的性质.
注意:相交两圆的连心线,垂直平分公共弦.
连接O 1A ,O 2A ,由相交两圆的连心线,垂直平分公共弦可得AB ⊥O 1O 2,且AD=BD ,设AD=x ,O 2D=y ,O 1D=21-y ,根据勾股定理列方程组,求解即可
前面两道题是题目体现两圆相交 辅助线的做法求切线和公共弦的问题,下面我们来看求圆心距和相关角的度数。
练习2:已知相交两圆的半径分别为5cm 和4cm ,公共弦长为6cm ,则这两个圆的圆心距是 cm .
分析:此题综合运用了相交两圆的性质以及勾股定理.注意此题应考虑两种情况.
注意此题应考虑两种情况(图3和图4).
练习3如图5,⊙
O 1和⊙O 2相交于点A ,B ,它们的半径分别为2和 ,公共弦AB 长为2,若圆心O 1、O 2在AB 的同侧,则∠O 1A O 2= 度.
分析:主要考查了相交圆中的相关性质:连心线垂直平分公共弦。
利用特殊直角三角形的性质求角的度数或利用三角函数值求角的度数. 有以上例题及练习可得出两圆相交 求切线长,公共弦,连心线的长度及相关角的度数问题,可尝试运用歌诀。
两圆相交公共弦 ,连心线架桥找角连。
. C A B . . 1
o 2o 图4 图5
图3 2
两圆相交公共弦辅助线作法
徐世明
义和学校。