(完整版)一元一次不等式的概念和解法

合集下载

(完整版)一元一次不等式知识点总结

(完整版)一元一次不等式知识点总结

一元一次不等式知识点一:不等式的概念1.不等式:用“<” (或“≤” ),“>” (或“≥” ) 等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1) 不等号的类型:① “≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2)等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。

(3)要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。

2.不等式的解:能使不等式成立的未知数的值,叫做不等式的解。

要点诠释:由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。

3.不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。

求不等式的解集的过程叫做解不等式。

如:不等式x-4<1的解集是x<5. 不等式的解集与不等式的解的区别: 解集是能使不等式成立的未知数的取值范围, 是所有解的集合, 而不等式的解是使不等式成立的未知数的值. 二者的关系是:解集包括解, 所有的解组成了解集。

要点诠释:不等式的解集必须符合两个条件:(1)解集中的每一个数值都能使不等式成立;(2)能够使不等式成立的所有的数值都在解集中。

知识点二:不等式的基本性质基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。

人教版七年级数学下册 9.2 一元一次不等式(一元一次不等式的解法)课件(共30张PPT)

人教版七年级数学下册 9.2 一元一次不等式(一元一次不等式的解法)课件(共30张PPT)

例 已知 1 x2a1 5 0 是关于x的一
3
元一次不等式,则a的值是___1_____.
解析:由 1 x2a1 5 0 是关于x的一 3
元一次不等式得2a-1=1,计算即可 求出a的值等于1.
1 一元一次不等式的定义
小试牛刀 试一试,你会了吗
判断下列方程是否为一元一次不等式:
(1) 3y-2x <z+5 不是
(4)
-1 0 1 2 3
4. 解下列不等式,并把它们的解集在数轴上表示出来: (1) 4x-3 < 2x+7 ;
(2)x
233x
5 4
.
解:(1)原不等式的解集为x<5,在数轴上表示为
-1 0 1 2 3 4 5 6
(2)原不等式的解集为式3x-2a≤-2的解集如图所示,求a的值.

-5x >-10
x=2

x<2
(2)再利用表(一)归纳解一元一次
不等式的一般步骤,并指出每个步骤的根据,完成表(二).
表(二)
步骤
根据

去分母
不等式的基本性质2,3

去括号
单项式乘以多项式法则

移项
不等式的基本性质2

合并同类项
合并同类项法则

两边同除以a
不等式的基本性质2,3
写不等式的解时,要把表示未知数的 字母写在不等号的左边。
(2)2(1 - 3x ) > 3x + 20 ;
(3)x - 4 ≥ 2(x+2) ;
(4)
x
1 2
4x 3
5
.
x < 40
答案: (1)

中考数学专题训练第3讲一次方程与一元一次不等式(知识点梳理)

中考数学专题训练第3讲一次方程与一元一次不等式(知识点梳理)

整式知识点梳理考点01 方程的有关概念一、等式1.等式:用“=”来表示相等关系的式子叫作等式。

2.等式的性质:(1)性质1:等式两边加(或减)同一个数(或式子),结果仍相等(如果b a =,那么c b c a ±=±(c 为一个数或式子))。

(2)性质2:等式两边乘同一个数或除以同一个不为0的数,结果仍相等(如果b a =,那么bc ac =.如果)(0≠=c b a ,那么cb c a =) 3.等式性质的延伸:(1)对称性:等式左右两边互换,所得结果仍相等,即如果b a =,那么a b =。

(2)传递性:如果b a =,c b =,那么c a =。

二、方程的概念和方程的解1.方程的概念:含有未知数的等式叫作方程。

2.方程与等式的区别:方程是等式,但等式中不一定含有未知数,即等式不一定是方程。

3.方程的解:使方程左右两边相等的未知数的值,叫作方程的解。

4.判断一个数(或一组数)是不是某方程的解,只需看两点:(1)它是方程中的未知数的值.(2)将它分别代入方程的左右两边,若左边等于右边,则它是方程的解,否则不是。

5.解方程:求方程解的过程叫作解方程。

6.方程的解和解方程的区别:方程的解是一个结果,解方程则是得到这个结果的一个过程。

7.一元一次方程:只含有一个未知数(元),并且未知数的次数是1,这样的整式方程叫作一元一次方程。

8.一元一次方程知识拓展:(1)“元”是指未知数,“次”是指未知数的次数.(2)一元一次方程满足3个条件:①是整式方程.②只含有一个未知数.③未知数的次数是1.(3)一元一次方程的标准形式:),0(0是已知数、b a a b ax ≠=+。

考点02 解一元一次方程与一元一次方程的应用一、解一元一次方程1.移项:把等式一边的某项变号后移到另一边,叫作移项,注意移项要变号。

2.解一元一次方程的步骤:(1)去分母:把方程两边都乘以各分母的最小公倍数(去分母时,若分子是多项式,要添括号).(2)去括号:先去小括号,再去中括号,最后去大括号(不要漏乘括号里的项,不要弄错符号).(3)移项:把含有未知数的项移到方程的一边,其他项移到另一边(注意移项要变号).(4)合并同类项:把等号两边的同类项分别合并,化成“b ax =”的形式(0≠a ).(5)系数化为1:方程两边同除以未知数的系数a 得方程的解为ab x =。

一元一次不等式与一次函数整理

一元一次不等式与一次函数整理

一元一次不等式与一次函数整理一元一次不等式和一次函数是初中数学中的重要内容,它们在实际生活中有着广泛的应用。

本文将从概念、性质、解法和应用四个方面来介绍一元一次不等式和一次函数。

一、概念一元一次不等式是指只含有一个未知数的一次不等式,例如:ax+b>c,其中a、b、c为已知数,x为未知数。

一次函数是指函数的表达式为y=kx+b,其中k、b为常数,x、y为自变量和因变量。

二、性质1. 一元一次不等式的解集是一个区间,可以用数轴表示出来。

2. 一次函数的图像是一条直线,斜率k表示函数的增长速度,截距b表示函数的起点。

3. 一元一次不等式和一次函数都具有可加性和可减性,即若a>b,则a+c>b+c,a-c>b-c。

三、解法1. 一元一次不等式的解法有两种:图像法和代数法。

图像法是将不等式转化为数轴上的图形,通过观察图形来确定解集。

代数法是通过移项、化简等代数运算来求解。

2. 一次函数的解法是通过求出函数的斜率和截距,然后画出函数的图像,根据图像来确定函数的性质和解析式。

四、应用1. 一元一次不等式和一次函数在经济学中有着广泛的应用,例如:利润、成本、收益等问题都可以用一次函数来描述。

2. 一元一次不等式和一次函数在物理学中也有着重要的应用,例如:速度、加速度、力等问题都可以用一次函数来描述。

3. 一元一次不等式和一次函数在生活中也有着实际的应用,例如:购物打折、优惠券等问题都可以用一元一次不等式来描述,而房价、工资等问题都可以用一次函数来描述。

一元一次不等式和一次函数是初中数学中的重要内容,它们在实际生活中有着广泛的应用。

掌握一元一次不等式和一次函数的概念、性质、解法和应用,对于提高数学素养和解决实际问题都有着重要的意义。

一元一次不等式概念及解法

一元一次不等式概念及解法

解下列的方程:⑴2(1+X)= 3 3、什么叫一元一次不等式?(2)2 2-12 一3 4、如何解一元一次不等式?9.2 —元一次不等式第1课时一元一次不等式的定义和解法学习目标:1.了解一元一次不等式的定义。

2 .会解一元一次不等式,并能将其解集在数轴上表示出来。

学习重点:一元一次不等式的解法.学习难点:不等式性质3的运用课前预习清单1、什么叫一元一次方程?2、解一元一次方程的一般步骤是什么?5.解一元一次不等式的一般步骤:教学过程:一、情景导入:二、课前热身与回顾:三、合作探究探究点一:一元一次不等式的概念问题1观察下面的不等式,它们有哪些共同特征?-x>5C x-7>26 3x<2x+1 -4x>3 3共同特征:1、不等号两边都是整式2、只含有1个未知数3、未知数的次数是1;4、未知数系数不为0得出:一元一次不等式定义:含有一个未知数,未知数的次数是1的不等式叫做一元一次不等式.判别条件:(1)不等号两边都是整式;(2)只含一个未知数;(3)未知数的次数是1;(4)未知数系数不为0.例1:下列式子中是一元一次不等式的有( ): (l)x2 + l>2x; (2)^ +2>0;⑷ 2x<l.A. 1个B* 2个C* 3个 D. 4个随堂练习:1、下列各式中,是一元一次不等式的有_________ .(填序号)2 2 2①-v 3 ② x y ?0X③4a M3b ④ 3xv -2 3⑤x 2+2x+ 1>0 ⑥」x—4沁x2学以致用:A. 士1C.—1D. 0B. 12、若m1 x m+ 2>0是关于x的一元一次不等式,贝U m=( )2+x 2 2x13探究点二:一元一次不等式的解法1、回忆解一元一次方程的依据和基本步骤,解一元一次方程的依据:等式的性质基本的步骤: 1.去分母2 .去括号3 .移项4 .合并同类项5 .系数化为1我们刚刚通过类比的方法学习了一元一次不等式的定义。

初中数学重点梳理:一元一次不等式(组)

初中数学重点梳理:一元一次不等式(组)

一元一次不等式(组)知识定位不等式是一个比较重要的知识点,难度不是很大,在理解的基础上,使用适当的技巧即可解决。

知识梳理一、不等式与不等式的性质1、不等式:表示不等关系的式子。

(表示不等关系的常用符号:≠,<,>)。

2、不等式的性质:(l )不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a > b , c 为实数⇒a +c >b +c(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a >b , c >0⇒ac >bc 。

(3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a >b ,c <0⇒ac <bc.注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。

3、任意两个实数a ,b 的大小关系(三种):(1)a – b >0⇔ a >b(2)a – b=0⇔a=b(3)a–b <0⇔a <b4、(1)a >b >0⇔b a >(2)a >b >0⇔22b a <二、不等式(组)的解、解集、解不等式1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。

不等式的所有解的集合,叫做这个不等式的解集。

不等式组中各个不等式的解集的公共部分叫做不等式组的解集。

2.求不等式(组)的解集的过程叫做解不等式(组)三、不等式(组)的类型及解法1、一元一次不等式:(l )概念:含有一个未知数并且含未知数的项的次数是一次的不等式,叫做一元一次不等式。

(2)解法:与解一元一次方程类似,但要特别注意当不等式的两边同乘以(或除以)一个负数时,不等号方向要改变。

2、一元一次不等式组:(l )概念:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。

(2)解法:先求出各不等式的解集,再确定解集的公共部分。

注:求不等式组的解集一般借助数轴求解较方便。

一元一次不等式知识点总结

一元一次不等式知识点总结

一元一次不等式重点:不等式的性质和一元一次不等式的解法。

难点:一元一次不等式的解法和一元一次不等式解决在现实情景下的实际问题。

知识点一:不等式的概念1. 不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号的类型:①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。

(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。

2.不等式的解:能使不等式成立的未知数的值,叫做不等式的解。

要点诠释:由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,一般地,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。

3.不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。

求不等式的解集的过程叫做解不等式。

如:不等式x-4<1的解集是x<5. 不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值.二者的关系是:解集包括解,所有的解组成了解集。

要点诠释:不等式的解集必须符合两个条件:(1)解集中的每一个数值都能使不等式成立;(2)能够使不等式成立的所有的数值都在解集中。

一元一次不等式知识点总结

一元一次不等式知识点总结

一元一次不等式知识点一:不等式的概念1. 不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号的类型:①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。

(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。

2.不等式的解:能使不等式成立的未知数的值,叫做不等式的解。

要点诠释:由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。

3.不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。

求不等式的解集的过程叫做解不等式。

如:不等式x-4<1的解集是x<5. 不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值.二者的关系是:解集包括解,所有的解组成了解集。

要点诠释:不等式的解集必须符合两个条件:(1)解集中的每一个数值都能使不等式成立;(2)能够使不等式成立的所有的数值都在解集中。

知识点二:不等式的基本性质基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不等式教学设计(第1课时)
安徽省淮南市平圩中学 李芬
教学目标:
(1)了解一元一次不等式的概念,掌握一元一次不等式的解法,并能在数轴上
表示出解集
(2)在依据不等式的性质探究一元一次不等式的解法的过程中,加深对类比和
化归思想的体会.

教学重点:
一元一次不等式的解法.
解一元一次不等式与解一元一次方程在本质上是相同的,即依据不等式的性质,
逐步将不等式化为x>a或x<a的形式,从而确定未知数的取值范围,这一化繁
为简的过程,充分体现了化归的思想。
教学难点:
解一元一次不等式步骤的确定
通过前面的学习,学生已掌握一元一次方程概念及解法,对解一元一次方程的化
归思想有所体会但还不够深刻.因此,运用化归思想把形式复杂的不等式转化为
x>a或x<a的形式,对学生有一定的难度.所以,教师需引导学生类比解一元
一次方程的步骤,分析形式复杂的一元一次不等式的结构特征,并与化简目标进
行比较,逐步将不等式变形为最简形式.
教学过程设计
(一)引课
课件展示鲁班发明锯子的过程,提出类比思想
温故知新
给“一元一次方程”一个完美的定义
1.什么叫一元一次方程 ?
答:只含一个未知数、并且未知数的指数是1的方程.
2.一元一次方程是一个等式,请问一元一次方程的(等号)两边都是怎样的式子?
答:一元一次方程的(等号)两边都是整式、只含一个未知数,并且未知数的指数
是1.
3.一元一次方程的(完美) 定义:
【一元一次方程 】“只含一个未知数、并且未知数的指数是1”的整式方程.
知识讲解
观察下列不等式:
(1)2x-2.5≥15; (2)x≤8.75;
(3)x<4; (4)5+3x>240.
这些不等式有哪些共同特点?
共同特点: 这些不等式的两边都是整式,只含一个未知数、并且未知数的(最高)
指数是1 .
学生回答,教师可以引导学生从不等式中未知数的个数和次数两个方面去观察不
等式的特点,并与一元一次方程的定义类比.
师生共同归纳获得:含有一个未知数,未知数的次数是1的不等式,叫做一元一
次不等式.
设计意图:引导学生通过观察给出不等式,归纳出它们的共同特征,进而得到一
元一次不等式的定义,培养学生观察、归纳的能力.
课件展示相关练习。
(二)通过类比,研究解法
【问题1】你会解下面的方程吗?

解一元一次方程的步骤:
1.去分母
2.去括号
3. 移项
4. 合并同类项
5. 系数化为1
设问1:解一元一次方程的依据和一般步骤是什么?
学生回忆解一元一次方程的依据是等式的性质.一般步骤是:去分母,去括号,
移项,合并同类项,系数化为1.
设问2:解一元一次不等式能否采用类似的步骤?
学生讨论解一元一次不等式是否可以采用类似的步骤,教师再指出:利用不等式
的性质,采取与解一元一次方程类似的步骤,就可以求出一元一次不等式的解集.
设计意图:通过回忆解一元一次方程的依据和一般步骤,让学生思考解一元一次
不等式能否采用同样步骤,从而获得解一元一次不等式的思路.
【问题2】你会解下面的一元一不等式吗?

特别注意:当不等式的两边都乘(或除以)同一个负数时,不等号的方向改变。
归纳提升
解一元一次不等式和解一元一次方程类似,有
去分母——去括号——移项——合并同类项
——系数化为1 等步骤.
区别在哪里?
在去分母和系数化为1的两步中,要特别注意不等式的两边都乘以(或除以)同一
个负数时,不等号的方向必须改变.
例:小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2.2元,她
买了2个笔记本.请你帮她算一算,她还可能买几支笔?
随堂练习
课件展示两个选择题
例题讲解,规范步骤
例1.解不等式

312X—6110X≥4
5
X-5

并把它的解集在数轴上表示出来.

3122
2xx
3122
2xx
教师着重讲解解题步骤,再强调:系数化为1时要看未知数系数的符号,若未知
数的系数是正数,则不等号的方向不变,若是负数,则不等号的方向要改变

例2.解不等式
2X-3<31X
并把解集在数轴上表示出来.
学生尝试独立完成练习
(三) 归纳提高,深化认识
设问1:解一元一次不等式和解一元一次方程有哪些相同和不同处?
学生在教师的引导下将解一元一次不等式的过程与解一元一次方程的过程进行
比较,思考二者的相同和不同处.
相同之处:基本步骤相同:去分母、去括号、移项、合并同类项、系数化为1.基
本思想相同:都是运用化归思想,都要变为最简形式.
不同之处:解法依据不同:解不等式是依据不等式的性质,解方程依据等式的性
质.最简形式不同:解一元一次不等式:最简形式是x>a或x<a,一元一次方
程的最简形式是x=a.
设计意图:在归纳出一元一次不等式的解法之后,引导学生对比一元一次方程的
解法,思考二者的异同,加深对一元一次不等式解法的理解,体会化归思想和类
比思想.
设问2: 解一元一次不等式每一步变形的依据是什么?
学生作答,教师再引导学生体会结合例题的解题过程思考每一步变形的依据.
设计意图:通过具体操作,归纳出解一元一次不等式的基本步骤及每一步变形的
依据,提高学生的总结、归纳能力.
(四)归纳小结,反思提高
教师和学生一起回顾本节课的学习主要内容,并请学生回答以下问题:
(1)怎样解一元一次不等式?解一元一次不等式和解一元一次方程有哪些相同
和不同处?
(2)解一元一次不等式运用了哪些数学思想?
设计意图:通过问题引导学生再次回顾本节课,从数学知识,数学思想方法等层
面,提升对本节课所研究内容的认识.
(五)布置作业,课外反馈
教科书习题9.2第1,3题
设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对
教学进度和方法进行适当的调整.

相关文档
最新文档