2020年衡水市初三数学上期末试题(带答案)

合集下载

(汇总3份试卷)2020年衡水市知名学校九年级上学期数学期末教学质量检测试题

(汇总3份试卷)2020年衡水市知名学校九年级上学期数学期末教学质量检测试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.将抛物线y=3x 2﹣3向右平移3个单位长度,得到新抛物线的表达式为( )A .y=3(x ﹣3)2﹣3B .y=3x 2C .y=3(x+3)2﹣3D .y=3x 2﹣6【答案】A【解析】根据二次函数的图象平移规律:左加右减,上加下减,即可得出.【详解】抛物线233y x =-向右平移3个单位, 得到的抛物线的解析式是()233 3.y x =--故选A.【点睛】本题主要考查二次函数的图象平移规律:左加右减,上加下减.2.一元二次方程的根是( ) A .3x =B .1203x x ==-,C .1203x x ==,D .1203x x ==, 【答案】D【解析】x 2−3x=0,x(x−3)=0,∴x 1=0,x 2=3.故选:D.3.下面的图形中,既是轴对称图形又是中心对称图形的是( ) A . B . C . D .【答案】C【分析】根据轴对称图形和中心对称图形的定义进行判断即可.【详解】解:A 、不是轴对称图形,是中心对称图形,故此选项错误;B 、不是轴对称图形,是中心对称图形,故此选项错误;C 、既是轴对称图形,也是中心对称图形,故此选项正确;D 、是轴对称图形,不是中心对称图形,故此选项错误;故选C.【点睛】本题考查了轴对称图形和中心对称图形的定义,属于基础题型,熟知轴对称图形和中心对称图形的定义是正确判断的关键.4.有人预测2020年东京奥运会上中国女排夺冠的概率是80%,对这个说法正确的理解应该是(). A.中国女排一定会夺冠B.中国女排一定不会夺冠C.中国女排夺冠的可能性比较大D.中国女排夺冠的可能性比较小【答案】C【分析】概率越接近1,事件发生的可能性越大,概率越接近0,则事件发生的可能性越小,根据概率的意义即可得出答案.【详解】∵中国女排夺冠的概率是80%,∴中国女排夺冠的可能性比较大故选C.【点睛】本题考查随机事件发生的可能性,解题的关键是掌握概率的意义.5.若|a+3|+|b﹣2|=0,则a b的值为()A.﹣6 B.﹣9 C.9 D.6【答案】C【解析】根据非负数的性质可得a+3=1,b﹣2=1,解得a=﹣3,b=2,所以a b=(﹣3)2=9,故选C.点睛:本题考查了非负数的性质:几个非负数的和为1时,这几个非负数都为1.6.已知一块圆心角为300︒的扇形纸板,用它做一个圆锥形的圣诞帽(接缝忽略不计)圆锥的底面圆的直径是30cm,则这块扇形纸板的半径是()A.16cm B.18cm C.20cm D.12cm【答案】B【分析】利用底面周长=展开图的弧长可得【详解】设这个扇形铁皮的半径为rcm,由题意得30030 180rππ=解得r=1.故这个扇形铁皮的半径为1cm,故选:B.【点睛】本题考查了圆锥的计算,解答本题的关键是确定圆锥的底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.7.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+【答案】D【解析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.8.下列图形中,既是轴对称图形,又是中心对称图形的是()A.正三角形B.正五边形C.正六边形D.正七边形【答案】C【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】A、此图形不是中心对称图形,是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形既是中心对称图形,又是轴对称图形,故此选项正确;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:C.【点睛】本题主要考查了轴对称图形与中心对称图形,掌握好中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.质检部门对某酒店的餐纸进行调查,随机调查5包(每包5片),5包中合格餐纸(单位:片)分别为4,5,4,5,5,则估计该酒店的餐纸的合格率为()A.95% B.97% C.92% D.98%【答案】C【分析】随机调查1包餐纸的合格率作为该酒店的餐纸的合格率,即用样本估计总体.【详解】解:1包(每包1片)共21片,1包中合格餐纸的合格率4545592%25++++==. 故选:C .【点睛】本题考查用样本估计整体,注意1包中的总数是21,不是1. 10.已知如图,直线AC ,BD 相交于点O ,且OA OD =,添加一个条件后,仍不能判定ABO DCO △≌△的是( ).A .BO CO =B .A D ∠=∠C .AB DC =D .B C ∠=∠【答案】C 【分析】根据全等三角形判定,添加BO CO =或A D ∠=∠或B C ∠=∠可根据SAS 或ASA 或AAS 得到ABO DCO △≌△.【详解】添加BO CO =或A D ∠=∠或B C ∠=∠可根据SAS 或ASA 或AAS 得到ABO DCO △≌△,添加AB DC =属SSA ,不能证ABO DCO △≌△.故选:C 【点睛】考核知识点:全等三角形判定选择.熟记全等三角形的全部判定是关键.11.如图:已知AD ∥BE ∥CF ,且AB =4,BC =5,EF =4,则DE =( )A .5B .3C .3.2D .4【答案】C 【分析】根据平行线分线段成比例定理列出比例式,代入计算即可.【详解】解:∵AD ∥BE ∥CF ,∴AB DE BC EF =,即454DE , 解得,DE =3.2,故选:C .【点睛】本题考查了平行线分线段成比例,正确列出比例式是解题的关键.三条平行线截两条直线,所得的对应线段成比例.12.在Rt △ABC 中,∠C=90°,sinA=32,则∠A 的度数是( ) A .30°B .45°C .60°D .90°【答案】C【解析】试题分析:根据特殊角的三角函数值可得:∠A=60°.二、填空题(本题包括8个小题) 13.如图,是由10个小正三角形构造成的网格图(每个小正三角形的边长均为1),则sin (α+β)=__.【答案】277. 【分析】连接BC,构造直角三角形ABC,由正三角形及菱形的对角线平分对角的性质, 得出∠BCD=α=30°,∠ABC=90°,从而α+β=∠ACB,分别求出△ABC 的边长,【详解】如图,连接BC,∵上图是由10个小正三角形构造成的网格图,∴任意相邻两个小正三角形都组成一个菱形,∴∠BCD =α=30°,∠ABC =90°,∴α+β=∠ACB,∵每个小正三角形的边长均为1,∴AB =2,在Rt △DBC 中,tan 6031BC BC BD ==︒∴BC 3∴在Rt △ABC 中,AC 22437AB BC ++∴sin (α+β)=sin ∠ACB =7AB AC ==,故答案为 . 【点睛】 本题考查了构造直角三角形求三角函数值,解决本题的关键是要正确作出辅助线,明确正弦函数的定义.14.计算cos45°= ________________【答案】1【分析】将cos45°.cos45°12= 故答案为:1.【点睛】此题考查的是特殊角的锐角三角函数值,掌握cos45°=2是解决此题的关键. 15.已知x a =是方程2270x x --=的根,则代数式2241a a -+的值为__________.【答案】1【分析】把x a =代入已知方程,并求得227a a -=,然后将其整体代入所求的代数式进行求值即可.【详解】解:把x a =代入2270x x --=,得2270a a --=,解得227a a -=,所以222412(2)127115a a a a -+=-+=⨯+=.故答案是:1.【点睛】本题考查一元二次方程的解以及代数式求值,注意解题时运用整体代入思想.16.正八边形的每个外角的度数和是_____.【答案】360°.【分析】根据题意利用正多边形的外角和等于360度,进行分析计算即可得出答案.【详解】解:因为任何一个多边形的外角和都是360°,所以正八边形的每个外角的度数和是360°.故答案为:360°.【点睛】本题主要考查多边形的外角和定理,熟练掌握任何一个多边形的外角和都是360°是解题的关键. 17.一元二次方程(x+1)(x-3)=2x-5根的情况_______.(表述正确即可)【答案】有两个正根【分析】将原方程这里为一元二次方程的一般形式直接解方程或者求判别式与0的关系都可解题.【详解】解:(x+1)(x-3)=2x-5整理得:22325x x x --=-,即 2420x x -+=,配方得:2(2)2x -=, 解得:1223x =+>,2220x =->,∴该一元二次方程根的情况是有两个正跟;故答案为:有两个正根.【点睛】此题考查解一元二次方程,或者求判别式与根的个数的关系.18.已知两个相似三角形的周长比是1:3,它们的面积比是________.【答案】1:9【解析】根据相似三角形的性质直接解答即可.解:∵两个相似三角形的周长比是1:3, ∴它们的面积比是21139=(),即1:1. 故答案为1:1. 本题考查的是相似三角形的性质,即相似三角形(多边形)的周长的比等于相似比;面积的比等于相似比的平方.三、解答题(本题包括8个小题)19.矩形ABCD 中,AB =2,AD =3,O 为边AD 上一点,以O 为圆心,OA 为半径r 作⊙O ,过点B 作⊙O 的切线BF ,F 为切点.(1)如图1,当⊙O 经过点C 时,求⊙O 截边BC 所得弦MC 的长度;(2)如图2,切线BF 与边AD 相交于点E ,当FE =FO 时,求r 的值;(3)如图3,当⊙O 与边CD 相切时,切线BF 与边CD 相交于点H ,设△BCH 、四边形HFOD 、四边形FOAB 的面积分别为S 1、S 2、S 3,求123S S S 的值. 【答案】(1)CM =53;(2)r =22﹣2;(3)1. 【分析】(1)如图1中,连接OM ,OC ,作OH ⊥BC 于H .首先证明CM =2OD ,设AO =CO =r ,在Rt △CDO 中,根据OC 2=CD 2+OD 2,构建方程求出r 即可解决问题. (2)证明△OEF ,△ABE 都是等腰直角三角形,设OA =OF =EF =r ,则OE =2r ,根据AE =2,构建方程即可解决问题.(3)分别求出S 1、S 2、S 3的值即可解决问题.【详解】解:(1)如图1中,连接OM ,OC ,作OH ⊥BC 于H .∵OH ⊥CM ,∴MH =CH ,∠OHC =90°,∵四边形ABCD 是矩形,∴∠D =∠HCD =90°,∴四边形CDOH 是矩形,∴CH =OD ,CM =2OD ,设AO =CO =r ,在Rt △CDO 中,∵OC 2=CD 2+OD 2,∴r 2=22+(3﹣r )2,∴r =136, ∴OD =3﹣r =56, ∴CM =2OD =53. (2)如图2中,∵BE是⊙O的切线,∴OF⊥BE,∵EF=FO,∴∠FEO=45°,∵∠BAE=90°,∴∠ABE=∠AEB=45°,∴AB=BE=2,设OA=OF=EF=r,则OE=2r,∴r+2r=2,∴r=22﹣2.(3)如图3中,由题意:直线AB,直线BH,直线CD都是⊙O的切线,∴BA=BF=2,FH=HD,设FH=HD=x,在Rt△BCH中,∵BH2=BC2+CH2,∴(2+x)2=32+(2﹣x)2,∴x=98,∴CH=78,∴S1=17213= 2816⨯⨯S2=193272=28216⨯⨯⨯,S3=132222⨯⨯⨯=3,∴1232127+ 1616==13S SS+.【点睛】本题属于圆综合题,考查了切线的判定和性质,勾股定理,垂径定理,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.20.计算:(1)()213tan6032π-⎛⎫+︒--⎪⎝⎭;(2)解方程:2320x x-+=.【答案】(1)6;(2)x 1=1,x 2=2【分析】(1)根据负整数指数幂,特殊角的三角函数值以及零次幂的相关知识求解即可;(2)用分解因式的方法求解即可.【详解】解:(1)原式=4331+⨯-=4+3-1=6(2)将原方程因式分解可得:(x-1)(x-2)=0,即x-1=0或x-2=0解得,x=1或x=2,所以方程的解为:11x=,22x=.【点睛】本题考查的知识点是实数的运算以及解一元二次方程,掌握负整数指数幂、零次幂、特殊角的三角函数值以及解一元二次方程的方法等知识点是解此题的关键.21.已知,如图,在△ABC中,∠C=90°,点D是AB外一点,过点D分别作边AB、BC的垂线,垂足分别为点E、F,DF与AB交于点H,延长DE交BC于点G.求证:△DFG∽△BCA【答案】见解析【分析】通过角度转化,先求出∠D=∠B,然后根据∠C=∠DFG=90°,可证相似.【详解】∵ DF⊥BC于F,∠C=90°∴∠DFG=∠C=90°又DE⊥AB于点E∴∠DGB+∠B=90°又∠DGB+∠D=90°∴∠B=∠D∴△DFG∽△BCA.【点睛】本题考查证相似,解题关键是通过角度转化,得出∠D=∠B.22.新区一中为了了解同学们课外阅读的情况,现对初三某班进行了“你最喜欢的课外书籍类别”的问卷调查.用“A"表示小说类书籍,“B”表示文学类书籍,“C”表示传记类书籍,“D”表示艺术类书籍.根据问卷调查统计资料绘制了如下两副不完整的统计图.请你根据统计图提供的信息解答以下问题:(1)本次问卷调查,共调查了名学生,请补全条形统计图;(2)在接受问卷调查的学生中,喜欢“C”的人中有2名是女生,喜欢“D”的人中有2名是女生,现分别从喜欢这两类书籍的学生中各选1名进行读书心得交流,请用画树状图或列表法求出刚好选中2名是一男一女的概率.【答案】(1)20;补全图形见解析;(2)12.【分析】(1)根据D的人数除以占的百分比得到调查的总学生数,进而求出C的人数,补全条形统计图即可;;(2)列表可得总的情况数,找出刚好选中一男一女的情况,即可求出所求的概率.【详解】(1)20;补全条形统计图如下:(2)在喜欢C ”的人中2名女生、1名男生分别记作C 女、2C 女、C 男,在喜欢“D ”的人中2名女生、2名男生分别记作1212D D D D 女女男男、、、,列表如下:由表知,共有12种等可能的结果,其中选中一男一女的结果有6种,P (刚好选中2名是一男一女)61122==. 【点睛】此题考查了列表法与树状图法,条形统计图,以及扇形统计图,用到的知识点为:概率=所求情况数与总情况数之比.23.如图 ,梯形ABCD 中,AB CD ∥,点F 在BC 上,连DF 与AB 的延长线交于点G .(1)求证:CDF BGF ∽;(2)当点F 是BC 的中点时,过F 作EF CD ∥交AD 于点E ,若6cm 4cm AB EF ==,,求CD 的长.【答案】(1)证明见解析;(2)2cm【分析】(1)根据梯形的性质,利用平行线的性质得到CDF FGB DCF GBF ∠=∠∠=∠,,然后由相似三角形的判定得到结论;(2)根据点F 是BC 的中点,可得△CDF≌△BGF,进而根据全等三角形的性质得到CD=BG ,然后由中位线的性质求解即可.【详解】(1)证明:∵梯形ABCD ,AB CD ,∴CDF FGB DCF GBF ∠=∠∠=∠,,∴CDF BGF ∽.(2) 由(1)CDF BGF ∽,又F 是BC 的中点,BF FC =∴CDF BGF ≌,∴DF FG CD BG ==,又∵EF CD ,AB CD ,∴EF AG ,得2EF BG AB BG ==+.∴22462BG EF AB =-=⨯-=,∴2cm CD BG ==.【点睛】此题主要考查了相似三角形的性质与判定,全等三角形的性质与判定及中位线的性质,比较复杂,关键是灵活利用平行线的性质解题.24.如图,在ABC ∆中,10,12AB AC BC ===,点D 是BC 边上的动点(不与,B C 重合),点E 在AC 边上,并且满足ADE C ∠=∠.(1)求证:ABD DCE ∆∆;(2)若BD 的长为x ,请用含x 的代数式表示AE 的长;(3)当(2)中的AE 最短时,求ADE ∆的面积.【答案】(1)见解析;(2)21610105AE x x =-+;(3)38425【分析】(1)由等腰三角形的性质可得B C ∠=∠,然后根据三角形的外角性质可得BAD CDE ∠=∠,进而可证得结论;(2)根据相似三角形的对应边成比例可得CE 与x 的关系,进一步即可得出结果;(3)根据(2)题的结果,利用二次函数的性质可得AE 最短时x 的值,即BD 的长,进而可得AD 的长和△ADC 的面积,进一步利用所求三角形的面积与△ADC 的面积之比等于AE 与AC 之比即得答案.【详解】解:(1)∵AB AC =,∴B C ∠=∠,∵ADE C ∠=∠,∴ADE B ∠=∠,∵ADC ADE EDC B BAD ∠=∠+∠=∠+∠,∴BAD CDE ∠=∠,∴ABD DCE ∆∆;(2)∵ABDDCE ∆∆,∴BD AB CE DC =,∴1012x EC x =-, ∴216105CE x x =-+, ∴21610105AE x x ⎛⎫=--+ ⎪⎝⎭21610105x x =-+; (3)∵()216 6.410AE x =-+,∴6x =时,AE 的值最小为6.4,此时6BD CD ==, ∵AB AC =,∴AD BC ⊥,∴221068AD =-=, ∴1242ADC S AD CD ∆=⨯⨯=, ∵ADE ADC S AE S AC ∆∆=,即 6.416241025ADE S ∆==, ∴16384242525ADE S ∆=⨯=. 【点睛】 本题考查了相似三角形的判定和性质、二次函数的性质、勾股定理、等腰三角形的性质和三角形的面积等知识,属于中档题型,熟练掌握相似三角形的判定和性质与二次函数的性质是解题的关键.25.我们规定:方程20ax bx c ++=的变形方程为2(1)(1)0a x b x c ++++=.例如:方程22340x x -+=的变形方程为22(1)3(1)40x x +-++=.(1)直接写出方程2250x x +-=的变形方程;(2)若方程220x x m ++=的变形方程有两个不相等的实数根,求m 的取值范围;(3)若方程20ax bx c ++=的变形方程为2210x x ++=,直接写出a b c ++的值.【答案】(1)2420x x +-=;(2)1m <;(3)1【分析】(1)根据题目的规定直接写出方程化简即可.(2)先将方程变形,再根据判别式解出范围即可.(3)先将变形前的方程列出来化简求出a 、b 、c,相加即可求解.【详解】(1)由题意得()()212150x x +++-=,化简后得:2420x x +-=.(2)若方程220x x m ++=的变形方程为2(1)2(1)0x x m ++++=,即24(3)0x x m +++=.由方程220x x m ++=的变形方程有两个不相等的实数根,可得方程24(3)0x x m +++=的根的判别式>0∆,即244(3)0m -+>.解得1m <(3)2210x x ++=变形前的方程为: ()()212110x x -+-+=,化简后得:x 2=0,∴a=1,b=0,c=0,∴a+b+c=1.【点睛】本题考查一元二次方程的运用,关键在于读题根据规定变形即可.26.某校为响应全民阅读活动,利用节假日面向社会开放学校图书馆,据统计,第一个月进馆200人次,此后进馆人次逐月增加,到第三个月进馆达到288人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不得超过400人次,若进馆人次的月平均增长率不变,到第几个月时,进馆人数将超过学校图书馆的接纳能力,并说明理由.【答案】(1)进馆人次的月平均增长率为20%;(2)到第五个月时,进馆人数将超过学校图书馆的接纳能力,见解析【分析】(1)设进馆人次的月平均增长率为x ,根据第三个月进馆达到288次,列方程求解;(2)根据(1)所计算出的月平均增长率,计算出第五个月的进馆人次,再与400比较大小即可.【详解】(1)设进馆人次的月平均增长率为x ,根据题意,得:200 (1+x)2=288解得:x 1=0.2,x 2=﹣2.2(舍去).答:进馆人次的月平均增长率为20%.(2)第四个月进馆人数为288(1+0.2)=345.6(人次),第五个月进馆人数为288(1+0.2)2=414.1(人次), 由于400<414.1.答:到第五个月时,进馆人数将超过学校图书馆的接纳能力.【点睛】本题考查了一元二次方程的应用-增长率问题,列出方程是解答本题的关键.本题难度适中,属于中档题. 27.在一空旷场地上设计一落地为矩形ABCD 的小屋,10AB BC m +=,拴住小狗的10m 长的绳子一端固定在B 点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为()2S m .(1)如图1,若4BC m =,则S =__________2m .(2)如图2,现考虑在(1)中的矩形ABCD 小屋的右侧以CD 为边拓展一正CDE △区域,使之变成落地为五边形ABCED 的小屋,其他条件不变,则在BC 的变化过程中,当S 取得最小值时,求边BC 的长及S 的最小值.【答案】(1)88π;(2)BC 长为52;S 的最小值为3254π. 【分析】(1)小狗活动的区域面积为以B 为圆心、10为半径的34圆,以C 为圆心、6为半径的14圆和以A 为圆心、4为半径的14圆的面积和,据此列式求解可得; (2)此时小狗活动的区域面积为以B 为圆心、10为半径的34圆,以A 为圆心、x 为半径的14圆、以C 为圆心、10-x 为半径的30360圆的面积和,列出函数解析式,由二次函数的性质解答即可. 【详解】解:(1)如图1,拴住小狗的10m 长的绳子一端固定在B 点处,小狗可以活动的区域如图所示:由图可知,小狗活动的区域面积为以B 为圆心、10为半径的34圆,以C 为圆心、6为半径的14圆和以A 为圆心、4为半径的14圆的面积和, ∴S=34×π•102+14•π•62+14•π•42=88π, 故答案为:88π;(2)如图2,设BC=x ,则AB=10-x ,∴S=34•π•102+14•π•x 2+30360•π•(10-x )2 =3π(x 2-5x+250) =3π(x-52)2+3254π, 当x=52时,S 取得最小值3254π, ∴BC 长为52;S 的最小值为3254π. 【点睛】本题主要考查二次函数的应用,解题的关键是根据绳子的长度结合图形得出其活动区域及利用扇形的面积公式表示出活动区域面积.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,O 的半径等于4,如果弦AB 所对的圆心角等于120,那么圆心O 到弦AB 的距离等于( )A .1B .3C .2D .23【答案】C 【分析】过O 作OD ⊥AB 于D,根据等腰三角形三线合一得∠BOD=60°,由30°角所对的直角边等于斜边的一半求解即可.【详解】解:过O 作OD ⊥AB ,垂足为D,∵OA=OB,∴∠BOD=12∠AOB=12×120°=60°, ∴∠B=30°,∴OD=12OB=12×4=2. 即圆心O 到弦AB 的距离等于2.故选:C.【点睛】本题考查圆的基本性质及等腰三角形的性质,含30°角的直角三角形的性质,根据题意作出辅助线,解直角三角形是解答此题的关键.2.在Rt △ABC 中,∠C=90°,如果1sin 3A =,那么sinB 的值是( ) A .223 B .22C .24D .3【答案】A【解析】一个角的正弦值等于它的余角的余弦值.【详解】∵Rt △ABC 中, ∠C=90°,sinA=13, ∴21sin A -211()3-22,∴∠A+∠B=90°,∴sinB=cosA=22 3.故选A.【点睛】本题主要考查锐角三角函数的定义,根据sinA得出cosA的值是解题的关键.3.某车库出口安装的栏杆如图所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=1.18米,AE=1.2米,那么适合该地下车库的车辆限高标志牌为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.B.C.D.【答案】A【分析】延长BA、FE,交于点D,根据AB⊥BC,EF∥BC知∠ADE=90°,由∠AEF=143°知∠AED=37°,根据sin∠AEDADAE=,AE=1.2米求出AD的长,继而可得BD的值,从而得出答案.【详解】如图,延长BA、FE,交于点D.∵AB⊥BC,EF∥BC,∴BD⊥DF,即∠ADE=90°.∵∠AEF=143°,∴∠AED=37°.在Rt△ADE中,∵sin∠AEDADAE=,AE=1.2米,∴AD=AE•sin∠AED=1.2×sin37°≈0.72(米),则BD=AB+AD=1.18+0.72=1.9(米).故选:A.【点睛】本题考查了解直角三角形的应用,解题的关键是结合题意构建直角三角形,并熟练掌握正弦函数的概念. 4.若将抛物线y=x 2平移,得到新抛物线2(3)y x =+,则下列平移方法中,正确的是( ) A .向左平移3个单位 B .向右平移3个单位 C .向上平移3个单位 D .向下平移3个单位【答案】A【解析】先确定抛物线y=x 1的顶点坐标为(0,0),抛物线y=(x+3)1的顶点坐标为(-3,0),然后利用顶点的平移情况确定抛物线的平移情况.【详解】解:抛物线y=x 1的顶点坐标为(0,0),抛物线y=(x+3)1的顶点坐标为(-3,0), 因为点(0,0)向左平移3个单位长度后得到(-3,0), 所以把抛物线y=x 1向左平移3个单位得到抛物线y=(x+3)1. 故选:A . 【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.如图,在⊙O 中,弦BC =1,点A 是圆上一点,且∠BAC =30°,则BC 的长是( )A .πB .13πC .12πD .16π【答案】B【解析】连接OB ,OC .首先证明△OBC 是等边三角形,再利用弧长公式计算即可. 【详解】解:连接OB ,OC .∵∠BOC =2∠BAC =60°, ∵OB =OC ,∴△OBC 是等边三角形, ∴OB =OC =BC =1,∴BC 的长=6011803ππ⋅⋅=, 故选B . 【点睛】考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型. 6.如图,在Rt △ABC 中,∠C=90°,AC=3,AB=5,则cosB 的值为( )A .45B .34C .43D .35【答案】B【详解】解:在Rt △ABC 中,∠C=90°,AC=3,AB=5,由勾股定理,得: BC=22AB AC -=2253-=1.cosB=BC AB =45, 故选B . 【点睛】本题考查锐角三角函数的定义.7.如图,在平面直角坐标系中,已知点(3,6)A -,(9,3)B --,以原点O 为位似中心,相似比为13,把ABO ∆缩小,则点B 的对应点B '的坐标是( )A .(9,1)-或(9,1)-B .(3,1)--C .(1,2)-D .(3,1)--或(3,1)【答案】D【分析】利用以原点为位似中心,相似比为k ,位似图形对应点的坐标的比等于k 或-k ,把B 点的横纵坐标分别乘以13或-13即可得到点B′的坐标. 【详解】解:∵以原点O 为位似中心,相似比为13,把△ABO 缩小, ∴点B (-9,-3)的对应点B′的坐标是(-3,-1)或(3,1). 故选D . 【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k . 8.已知点()()121,,2,A y B y -都在双曲线3my x+=上,且12y y >,则m 的取值范围是( ) A .m 0< B .0m >C .3m >-D .m 3<-【答案】D【分析】分别将A ,B 两点代入双曲线解析式,表示出1y 和2y ,然后根据12y y >列出不等式,求出m 的取值范围.【详解】解:将A (-1,y 1),B (2,y 2)两点分别代入双曲线3my x+=,得 13y m =--,232my +=, ∵y 1>y 2,332mm +∴-->, 解得3m <-, 故选:D . 【点睛】本题考查了反比例函数图象上点的坐标特征,解不等式.反比例函数图象上的点的坐标满足函数解析式. 9.如图,一个斜坡长130m ,坡顶离水平地面的距离为50m ,那么这个斜坡的坡度为( )A .512B .1213C .513D .1312【答案】A【解析】试题解析:∵一个斜坡长130m ,坡顶离水平地面的距离为50m , 2213050-=10m , ∴这个斜坡的坡度为:50:10=5:1. 故选A .点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h 和水平宽度l 的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i 表示,常写成i=1:m 的形式.10.将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF,若AB=3,则菱形AECF的面积为()A.1 B.22C.23D.4【答案】C【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.【详解】解:∵四边形AECF是菱形,AB=3,∴假设BE=x,则AE=3﹣x,CE=3﹣x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=3﹣x,解得:x=1,∴CE=2,利用勾股定理得出:BC2+BE2=EC2,BC=22-=22EC BE-=3,21又∵AE=AB﹣BE=3﹣1=2,则菱形的面积是:AEBC=23.故选C.【点睛】本题考查折叠问题以及勾股定理.解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.11.抛物线y=﹣x2+1向右平移2个单位长度,再向下平移3个长度单位得到的抛物线解析式是()A .y =﹣(x ﹣2)2+4B .y =﹣(x ﹣2)2﹣2C .y =﹣(x+2)2+4D .y =﹣(x+2)2﹣2【答案】B【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,将抛物线y =﹣x 2+1向右平移2个单位长度所得的抛物线的解析式为:y =﹣(x ﹣2)2+1.再向下平移3个单位长度所得抛物线的解析式为:y =﹣(x ﹣2)2﹣2. 故选:B . 【点睛】本题考查了二次函数图象的平移,其规律是:将二次函数解析式转化成顶点式y=a(x-h)2+k (a ,b ,c 为常数,a≠0),确定其顶点坐标(h ,k),在原有函数的基础上“h 值正右移,负左移; k 值正上移,负下移”. 12.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°得到△DEC ,连接AD ,若∠BAC =26°,则∠ADE 的度数为( )A .13°B .19°C .26°D .29°【答案】B【分析】根据旋转的性质可得AC =CD ,∠CDE =∠BAC ,再判断出△ACD 是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CDA =45°,根据∠ADE =∠CDA ﹣∠CDE ,即可求解. 【详解】∵Rt △ABC 绕其直角顶点C 按顺时针方向旋转90°后得到Rt △DEC , ∴AC =CD ,∠CDE =∠BAC =26°, ∴△ACD 是等腰直角三角形, ∴∠CDA =45°,∴∠ADE =∠CDA ﹣∠CDE =45°﹣26°=19°. 故选:B . 【点睛】本题主要考查旋转的性质和等腰直角三角形的判定和性质定理,掌握等腰直角三角形的性质,是解题的关键,二、填空题(本题包括8个小题)13.如图,A B C 、、是⊙O 上的点,若100AOB ∠=,则ACB ∠=___________度.【答案】130°.【分析】在优弧AB上取点D,连接AD,BD,根据圆周角定理先求出∠ADB的度数,再利用圆内接四边形对角互补进行求解即可.【详解】在优弧AB上取点D,连接AD,BD,∵∠AOB=100°,∴∠ADB=12∠AOB =50°,∴∠ACB=180°﹣∠ADB=130°.故答案为130°.【点睛】本题考查了圆周角定理,圆内接四边形对角互补的性质,正确添加辅助线,熟练应用相关知识是解题的关键.14.如图,已知矩形ABCD的顶点A、D分别落在x轴、y轴,OD=2OA=6,AD:AB=3:1.则点B的坐标是_____.【答案】(5,1)【分析】过B作BE⊥x轴于E,根据矩形的性质得到∠DAB=90°,根据余角的性质得到∠ADO=∠BAE,根据相似三角形的性质得到AE=13OD=2,DE=13OA=1,于是得到结论.【详解】解:过B作BE⊥x轴于E,∵四边形ABCD是矩形,∴∠ADC=90°,。

河北省衡水市九年级上学期数学期末考试试卷

河北省衡水市九年级上学期数学期末考试试卷

河北省衡水市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七下·枣庄期中) 下列图形中,是轴对称图形的为()A .B .C .D .2. (2分)已知反比例函数,下列结论中,不正确的是()A . 图象必经过点(1,2)B . y随x的增大而减少C . 图象在第一、三象限内D . 若x>1,则y<23. (2分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是()A . 4B . 5C . 6D . 94. (2分) (2019九上·大田期中) 若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的值可以是()A . ﹣1B . 1C . 3D . 55. (2分)如图是小明利用等腰直角三角板测量旗杆高度的示意图.等腰直角三角板的斜边BD与地面AF平行,当小明的视线恰好沿BC经过旗杆顶部点E时,测量出此时他所在的位置点A与旗杆底部点F的距离为10米.如果小明的眼睛距离地面1.7米,那么旗杆EF的高度为()A . 10米B . 11.7米C . 10 米D . (5 +1.7)米6. (2分) (2019八下·苏州期中) 菱形的周长为20 cm,两邻角的比为1:2,则较长的对角线长为()A . 5 cmB . 4 cmC . 5 cmD . 4 cm7. (2分)若反比例函数的图象经过点(m,3m),其中m≠0,则此反比例函数图象经过A . 第一、三象限B . 第一、二象限C . 第二、四象限D . 第三、四象限8. (2分) (2019八上·昌平月考) 如果把分式中的a和b都扩大为原来的10倍,那么分式的值()A . 不变B . 缩小10倍C . 是原来的20倍D . 扩大10倍9. (2分)如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是()A . 2cmB . 4cmC . 6cmD . 8cm10. (2分)下列说法中:1)圆心角相等,所对的弦相等2)过圆心的线段是直径3)长度相等的弧是等弧4)弧是半圆5)三点确定一个圆6)平分弦的直径垂直于弦,并且平分弦所对的弧7)弦的垂直平分线必经过圆心正确的个数有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共7题;共7分)11. (1分)(2017·雁塔模拟) 如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为________.12. (1分) (2018九上·渭滨期末) 某种药原来每瓶售价为40元,经过两次降价,现在每瓶售价为25.6元,若设平均每次降低的百分率为,根据题意列出方程为________.13. (1分) (2017八下·重庆期中) 如图,菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EG⊥CD于点G,则∠FGC=________.14. (1分)(2016·成都) 如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为________.15. (1分)如图,在△ABC中,∠C=90°,如果AC:AB=1:3,则cosB=________ .16. (1分)如图,矩形的对角线经过的坐标原点,矩形的边分别平行于坐标轴,点在反比例函数的图象上,若点的坐标为,则的值为________.17. (1分)(2019·齐齐哈尔) 如图,直线l:y= x+1分别交x轴、y轴于点A和点A1 ,过点A1作A1B1⊥l,交x轴于点B1 ,过点B1作B1A1⊥l轴,交直线l于点A2;过点A2作A2B2⊥l,交x轴于点B2 ,过点B2作B2A2⊥x轴,交直线l于点A3 ,依此规律…,若图中阴影△A1OB1的面积为S1 ,阴影△A2B1B2的面积为S2 ,阴影△A3B2B3的面积为S3…,则Sn=________.三、解答题 (共8题;共85分)18. (5分)计算:()﹣2﹣2sin60°+ .19. (10分)(2018·濠江模拟) 如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.20. (10分)(2019·陕西) 现有A、B两个不透明袋子,分别装有3个除颜色外完全相同的小球。

(汇总3份试卷)2020年衡水市知名学校九年级上学期数学期末质量跟踪监视试题

(汇总3份试卷)2020年衡水市知名学校九年级上学期数学期末质量跟踪监视试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在菱形ABCD 中,∠BAD=120°,AB=2,点E 是AB 边上的动点,过点B 作直线CE 的垂线,垂足为F ,当点E 从点A 运动到点B 时,点F 的运动路径长为( )A .43πB .23πC .2D .3【答案】B【分析】如图,根据圆周角定理可得点F 在以BC 为直径的圆上,根据菱形的性质可得∠BCM=60°,根据圆周角定理可得∠BOM=120°,利用弧长公式即可得答案.【详解】如图,取BC 的中点O ,中点M ,连接OM ,BM ,∵四边形ABCD 是菱形,∴BM ⊥AC ,∴当点E 与A 重合时,点F 与AC 中点M 重合,∵90CFB ∠=︒,∴点F 的运动轨迹是以BC 为直径的圆弧BM ,∵四边形ABCD 是菱形,120BAD ∠=︒,∴60BCM ∠=︒,∴120BOM ∠=︒,∴BM 的长120121803ππ⋅⋅==.故选:B.【点睛】本题考查菱形的性质、圆周角定理、弧长公式及轨迹,根据圆周角定理确定出点F 的轨迹并熟练掌握弧长公式是解题关键.2.菱形的两条对角线长分别为6,8,则它的周长是( )A .5B .10C .20D .24【答案】C【分析】根据菱形的对角线互相垂直且平分这一性质解题即可.【详解】解:∵菱形的对角线互相垂直且平分,∴勾股定理求出菱形的边长=5,∴菱形的周长=20,故选C.【点睛】本题考查了菱形对角线的性质,属于简单题,熟悉概念是解题关键.3.如图,河坝横断面的迎水坡AB 的坡比为3:4,BC =6m ,则坡面AB 的长为( )A .6mB .8mC .10mD .12m【答案】C 【分析】迎水坡AB 的坡比为3:4得出3tan 4BAC ∠=,再根据BC =6m 得出AC 的值,再根据勾股定理求解即可.【详解】由题意得3tan 4BAC ∠=∴468tan 3BC AC m BAC ==⨯=∠ ∴22228610AB AC BC m =+=+=故选:C.【点睛】 本题考查解直角三角形的应用,把坡比转化为三角函数值是关键.4.如图,点M 在某反比例函数的图象上,且点M 的横坐标为(0)a a >,若点()1,a y 和()22,a y 在该反比例函数的图象上,则1y 与2y 的大小关系为( )A .12y y >B .12y y <C .12y y =D .无法确定【答案】A【分析】反比例函数在第一象限的一支y 随x 的增大而减小,只需判断a 与2a 的大小便可得出答案.【详解】∵a <2a又∵反比例函数在第一象限的一支y 随x 的增大而减小∴12y y >故选:A .【点睛】本题考查比较大小,需要用到反比例函数y 与x 的增减变化,本题直接读图即可得出.5.下列数学符号中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 【答案】D【分析】根据轴对称图形与中心对称图形的定义即可判断.【详解】A 既不是轴对称图形也不是中心对称图形;B 是中心对称图形,但不是轴对称图形;C 是轴对称图形,但不是中心对称图形;D 既是轴对称图形,又是中心对称图形,故选D.【点睛】此题主要考察轴对称图形与中心对称图形的定义,熟知其定义是解题的关键.6.把分式2a a b-中的a 、b 都扩大3倍,则分式的值( ) A .扩大3倍B .扩大6倍C .不变D .缩小3倍 【答案】C【分析】依据分式的基本性质进行计算即可.【详解】解:∵a 、b 都扩大3倍, ∴()3262333a a a a b a b a b⨯==--- ∴分式的值不变.故选:C .【点睛】本题主要考查的是分式的基本性质,熟练掌握分式的基本性质是解题的关键.7.抛物线2y x bx c =++的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为()2y x 14=--,则b 、c 的值为A .b=2,c=﹣6B .b=2,c=0C .b=﹣6,c=8D .b=﹣6,c=2【答案】B 【详解】函数()2y x 14=--的顶点坐标为(1,﹣4),∵函数()2y x 14=--的图象由2y x bx c =++的图象向右平移2个单位,再向下平移3个单位得到, ∴1﹣2=﹣1,﹣4+3=﹣1,即平移前的抛物线的顶点坐标为(﹣1,﹣1).∴平移前的抛物线为()2y x 11=+-,即y=x 2+2x .∴b=2,c=1.故选B .8.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是( )A .B .C .D .【答案】B【解析】根据勾股定理,AB==2, BC==, AC==,所以△ABC 的三边之比为:2:=1:2:, A 、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故本选项错误;B 、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故本选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故本选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故本选项错误.故选B.9.如图,在△ABC中,D、E分别在AB、AC上,且DE∥BC,AD=12DB,若S△ADE=3,则S四边形DBCE=( )A.12 B.15 C.24 D.27【答案】C【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9,则可求出S△ABC,问题得解.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC是1:9,∵S△ADE=3,∴S△ABC=3×9=27,则S四边形DBCE=S△ABC﹣S△ADE=27﹣3=24.故选:C.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.10.反比例函数y=kx的图象经过点(2,5),若点(1,n)在此反比例函数的图象上,则n等于()A.10 B.5 C.2 D.【答案】A【解析】解:因为反比例函数y=kx的图象经过点(2,5),所以k=2510⨯=所以反比例函数的解析式为y=10x,将点(1,n)代入可得:n=10. 故选:A11.一元二次方程2210x x -+=的一次项系数和常数项依次是( )A .-1和1B .1和1C .2和1D .0和1【答案】A【分析】找出2x 2-x+1的一次项-x 、和常数项+1,再确定一次项的系数即可.【详解】2x 2-x+1的一次项是-x ,系数是-1,常数项是1.故选A.【点睛】本题考查一元二次方程的一般形式.12.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是( )A .23B .1.15C .11.5D .12.5 【答案】C【分析】由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.【详解】解:由题意得:(10×14+15×6)÷20=11.5,故选:C .【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..二、填空题(本题包括8个小题)13.抛物线y =ax 2+bx +c 的部分图象如图所示,则当y <0时,x 的取值范围是_____.【答案】x <﹣1或x >1.【分析】利用二次函数的对称性得到抛物线与x 轴的另一个交点坐标为(1,0),然后写出抛物线在x 轴下方所对应的自变量的范围即可.【详解】∵抛物线的对称轴为直线1x =,而抛物线与x 轴的一个交点坐标为(-1,0),∴抛物线与x 轴的另一个交点坐标为(1,0),∴当0y <时,x 的取值范围为1x <-或3x >.故答案为:1x <-或3x >.【点睛】本题考查抛物线与x 轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.14.某校共1600名学生,为了解学生最喜欢的课外体育活动情况,学校随机抽查了200名学生,其中有92名学生表示喜欢的项目是跳绳,据此估计全校喜欢跳绳这项体育活动的学生有____________人.【答案】736【分析】由题意根据样本数据的比值和相对应得总体数据比值相同进行分析求解即可.【详解】解:设全校喜欢跳绳这项体育活动的学生有m 人,由题意可得: 200160092m=,解得736m =. 所以全校喜欢跳绳这项体育活动的学生有736人.故答案为:736.【点睛】本题考查的是通过样本去估计总体对应的数据,熟练掌握通过样本去估计总体对应数据的方法是解题的关键.15.已知关于x 的方程260--=x kx 的一个根为6,则实数k 的值为__________.【答案】1【分析】将一元二次方程的根代入即可求出k 的值.【详解】解:∵关于x 的方程260--=x kx 的一个根为6∴26660k --=解得:k=1故答案为:1.【点睛】此题考查的是已知一元二次方程的根,求方程中的参数,掌握方程的解的定义是解决此题的关键.16.如图,抛物线y 1=a (x+2)2+m 过原点,与抛物线y 2=12(x ﹣3)2+n 交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C .下列结论:①两条抛物线的对称轴距离为5;②x=0时,y 2=5;③当x >3时,y 1﹣y 2>0;④y 轴是线段BC 的中垂线.正确结论是________(填写正确结论的序号).【答案】①③④【分析】根据题意分别求出两个二次函数的解析式,根据函数的对称轴判定①;令x=0,求出y 2的值,比较判定②;观察图象,判定③;令y=3,求出A 、B 、C 的横坐标,然后求出AB 、AC 的长,判定④.【详解】∵抛物线y 1=a (x+2)2+m 与抛物线y 2=12(x ﹣3)2+n 的对称轴分别为x=-2,x=3, ∴两条抛物线的对称轴距离为5,故①正确;∵抛物线y 2=12(x ﹣3)2+n 交于点A (1,3), ∴2+n=3,即n=1;∴y 2=12(x ﹣3)2+1, 把x=0代入y 2=12(x ﹣3)2+1得,y=112≠5,②错误; 由图象可知,当x >3时,y 1>y 2,∴x >3时,y 1﹣y 2>0,③正确;∵抛物线y 1=a (x+2)2+m 过原点和点A (1,3),∴4093a m a m +=⎧⎨+=⎩, 解得35125a m ⎧=⎪⎪⎨⎪=-⎪⎩, ∴()21312255y x =+-. 令y 1=3,则()23123255x =+-, 解得x 1=-5,x 2=1,∴AB=1-(-5)=6,∴A (1,3),B (-5,3);令y 2=3,则12(x ﹣3)2+1=3, 解得x 1=5,x 2=1,∴C (5,3),∴AC=5-1=4,∴BC=10,∴y 轴是线段BC 的中垂线,故④正确.故答案为①③④.【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,已知函数值求自变量的值. 17.如图,AB 为⊙O 的直径,点P 为AB 延长线上的一点,过点P 作⊙O 的切线PE ,切点为M ,过A 、B 两点分别作PE 的垂线AC 、BD ,垂足分别为C 、D ,连接AM ,则下列结论正确的是___________.(写出所有正确结论的序号)①AM 平分∠CAB ;②AM 2=AC•AB ;③若AB =4,∠APE =30°,则BM 的长为3 ; ④若AC =3,BD =1,则有CM =DM =3.【答案】①②④【解析】连接OM ,由切线的性质可得OM ⊥PC ,继而得OM ∥AC ,再根据平行线的性质以及等边对等角即可求得∠CAM =∠OAM ,由此可判断①;通过证明△ACM ∽△AMB ,根据相似三角形的对应边成比例可判断②;求出∠MOP =60°,利用弧长公式求得BM 的长可判断③;由BD ⊥PC ,AC ⊥PC ,OM ⊥PC ,可得BD ∥AC//OM ,继而可得PB=OB=AO ,PD=DM=CM ,进而有OM=2BD =2,在Rt △PBD 中,PB=BO=OM=2,利用勾股定理求出PD 的长,可得CM =DM =DP =3,由此可判断④.【详解】连接OM ,∵PE 为⊙O 的切线,∴OM ⊥PC ,∵AC ⊥PC ,∴OM ∥AC ,∴∠CAM =∠AMO ,∵OA =OM ,∠OAM =∠AMO ,∴∠CAM =∠OAM ,即AM 平分∠CAB ,故①正确;∵AB 为⊙O 的直径,∴∠AMB =90°,∵∠CAM =∠MAB ,∠ACM =∠AMB ,∴△ACM ∽△AMB , ∴AC AM AM AB=, ∴AM 2=AC•AB ,故②正确;∵∠APE =30°,∴∠MOP =∠OMP ﹣∠APE =90°﹣30°=60°,∵AB =4,∴OB =2,∴BM 的长为60π22π1803⨯=,故③错误; ∵BD ⊥PC ,AC ⊥PC ,OM ⊥PC ,∴BD ∥AC//OM ,∴△PBD ∽△PAC , ∴PB BD 1PA AC 3==, ∴PB =13PA , 又∵AO=BO ,AO+BO=AB ,AB+PB=PA ,∴PB=OB=AO ,又∵BD ∥AC//OM ,∴PD=DM=CM ,∴OM=2BD =2,在Rt △PBD 中,PB=BO=OM=2∴∴CM =DM =DP故答案为①②④.【点睛】本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,综合性较强,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.18.建国70周年大阅兵时,以“同心共筑中国梦”为主题的群众游行队伍某表演方阵有8行12列,后又增加了429人,使得增加的行数和列数相同.请你计算增加了多少行. 若设增加了x 行,由题意可列方程为_______________________ .【答案】()()812128429x x ++-⨯=【分析】根据增加后的总人数减去已有人数等于429这一等量关系列出方程即可.【详解】设增加了x 行,则增加的列数也为x,由题意可得,()()812128429x x ++-⨯=.【点睛】本题考查了由实际问题列一元二次方程,根据题意找出等量关系是解题关键.三、解答题(本题包括8个小题)19.为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表. 组别分数段 频次 频率 A60≤x <70 17 0.17 B70≤x <80 30 a C80≤x <90 b 0.45 D 90≤x <100 8 0.08请根据所给信息,解答以下问题:(1)表中a=______,b=______;(2)请计算扇形统计图中B 组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.【答案】(1)0.3 ,45;(2)108°;(3)16. 【分析】(1)首先根据A 组频数及其频率可得总人数,再利用频数、频率之间的关系求得a 、b ; (2)B 组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a=30100=0.3,b=100×0.45=45(人). 故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B 组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为212=16.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.已知二次函数y=ax2﹣2ax+k(a、k为常数,a≠0),线段AB的两个端点坐标分别为A(﹣1,2),B(2,2).(1)该二次函数的图象的对称轴是直线;(2)当a=﹣1时,若点B(2,2)恰好在此函数图象上,求此二次函数的关系式;(3)当a=﹣1时,当此二次函数的图象与线段AB只有一个公共点时,求k的取值范围;(4)若k=a+3,过点A作x轴的垂线交x轴于点P,过点B作x轴的垂线交x轴于点Q,当﹣1<x<2,此二次函数图象与四边形APQB的边交点个数是大于0的偶数时,直接写出k的取值范围.【答案】(1)x=1;(2)y=﹣x2+2x+2;(3)2<k≤5或k=1;(4)2≤k<94或k<2【分析】(1)根据二次函数y=ax2﹣2ax+k(a、k为常数,a≠2)即可求此二次函数的对称轴;(2)当a=﹣1时,把B(2,2)代入即可求此二次函数的关系式;(3)当a=﹣1时,根据二次函数的图象与线段AB只有一个公共点,分三种情况说明:当抛物线顶点落在AB上时,k+1=2,k=1;当抛物线经过点B时,k=2;当抛物线经过点A时,k=5,即可求此k的取值范围;(4)当k=a+3,根据题意画出图形,观察图形即可求此k的取值范围.【详解】解:(1)二次函数y=ax2﹣2ax+k(a、k为常数,a≠2),二次函数的图象的对称轴是直线x=1.故答案为x=1;(2)当a=﹣1时,y=﹣x2+2x+k把B(2,2)代入,得k=2,∴y=﹣x2+2x+2(3)当a=﹣1时,y=﹣x2+2x+k=﹣(x﹣1)2+k+1∵此二次函数的图象与线段AB只有一个公共点,当抛物线顶点落在AB上时,k+1=2,k=1当抛物线经过点B时,k=2当抛物线经过点A时,﹣1﹣2+k=2,k=5综上所述:2<k≤5或k=1;(4)当k=a+3时,y=ax2﹣2ax+a+3=a(x﹣1)2+3所以顶点坐标为(1,3)∴a+3<3∴a<2.如图,过点A作x轴的垂线交x轴于点P,过点B作x轴的垂线交x轴于点Q,∴P(﹣1,2),Q(2,2)当﹣1<x <2,此二次函数图象与四边形APQB 的边交点个数是大于2的偶数,当抛物线过点P 时,a+2a+a+3=2,解得a =﹣34∴k =a+3=94, 当抛物线经过点B 时,4a ﹣4a+a+3=2,解得a =﹣1,∴k =2,当抛物线经过点Q 时,4a ﹣4a+a+3=2,解得a =﹣3,∴k =2综上所述:2≤k <94或k <2. 【点睛】本题考查了二次函数与系数的关系,解决本题的关键是综合运用一元一次不等式组的整数解、二次函数图象上的点的坐标特征、抛物线与xx 轴的交点.21.解方程:()2155x x +=+.【答案】14x =,21x =-【分析】先移项,再提公因式,利用因式分解法求解即可.【详解】解:移项,得 (x+1) ²-(5x+5)=0提取公因式,得 (x+1)(x+1-5)=0所以有,x+1=0 或者 x+1-5=0所以14x =,21x =-.【点睛】本题考查了分解因式法解一元二次方程,有多种解法,可用自己熟悉的来解.22.计算:﹣1﹣cos61°﹣(1)1.【答案】【解析】利用零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质进行计算即可.【详解】解:原式=1121122--= 【点睛】本题考查了零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质,熟练掌握性质及定义是解题的关键.23.如图,在△ABC 中,AB =AC ,M 为BC 的中点,MH ⊥AC ,垂足为 H .(1)求证:2AM AB AH =⋅;(2)若 AB =AC =10,BC =1.求CH 的长.【答案】(1)详见解析;(2)3.2【分析】(1)证明AMB AHM ∆∆∽,利用线段比例关系可得;(2)利用等腰三角形三线合一和勾股定理求出AM 的长,再由(1)中关系式可得AH 长度,可得CH 的长.【详解】解:(1)证明:∵=AB AC ,M 为BC 的中点,∴=BAM CAM AM BC ∠∠⊥,∴=90AMB ∠︒∵MH AC ⊥∴=90AHM ∠︒∴=AMB AHM ∠∠∴AMB AHM ∆∆∽ ∴=AM AB AH AM∴2=AM AB AH ⋅(2)解:∵==10AB AC ,=12BC ,M 为BC 的中点,∴==6BM CM ,在Rt ABM ∆中,2222=106=8AM AB BM --,由(1)得228===6.410AM AH AB ∴==10 6.4=3.2CH AC AH --.【点睛】本题考查了相似三角形的判定和性质,勾股定理,等腰三角形三线合一的性质,解题的关键是利用相似三角形得到线段比例关系.24.如图,已知ABC ∆的三个顶点坐标为()2,3A -,()6,0B -,()1,0C -.(1)将ABC ∆绕坐标原点O 旋转180︒,画出旋转后的A B C '''∆,并写出点A 的对应点A '的坐标 ;(2)将ABC ∆绕坐标原点O 逆时针旋转90︒,直接写出点A 的对应点Q 的坐标 ; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标 .【答案】(1)()2,3-;(2)()3,2--;(3)()7,3-或()5,3--或()3,3.【解析】(1)根据题意作出图形,即可根据直角坐标系求出坐标;(2)根据题意作出图形,即可根据直角坐标系求出坐标;(3)根据平行四边形的性质作出图形即可写出.【详解】解:(1)旋转后的A B C '''∆图形如图所示,点A 的对应点Q 的坐标为:()2,3-;(2)如图点A 的对应点A ''的坐标()3,2--;(3)如图以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标为:()7,3-或()5,3--或()3,3【点睛】此题主要考查坐标与图形,解题的关键是熟知图形的旋转作图及平行四边形的性质. 25.解方程.(1)1x1﹣6x﹣1=0;(1)1y(y+1)﹣y=1.【答案】(1)1311x+=,2311x-=;(1)y1=﹣1,y1=12.【分析】(1)根据配方法即可求出答案;(1)根据因式分解法即可求出答案;【详解】解:(1)∵1x1﹣6x﹣1=0,∴x1﹣3x=12,∴(x﹣32)1=114,∴x=311±,解得:13112x+=,23112x-=;(1)∵1y(y+1)﹣y=1,∴1y(y+1)﹣y﹣1=0,∴(y+1)(1y﹣1)=0,∴y+1=0或1y﹣1=0,解得:y1=﹣1,y1=1 2 .【点睛】本题考查解一元二次方程,解题的关键是熟练掌握一元二次方程的解法,本题属于基础题型.26.某商场“六一”期间进行一个有奖销售的活动,设立了一个可以自由转动的转盘(如图),并规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).下表是此次促销活动中的一组统计数据:(1)计算并完成上述表格; (2)请估计当n 很大时,频率将会接近__________;假如你去转动该转盘一次,你获得“可乐”的概率约是__________;(结果精确到0.1)(3)在该转盘中,表示“车模”区域的扇形的圆心角约是多少度?【答案】(1)472,0.596;(2)0.6,0.6;(3)144°.【解析】试题分析: 在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率,(1)当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率,(2)利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A 出现的频率,稳定地在某个数值P 附近摆动.这个稳定值P ,叫做随机事件A 的概率,并记为P(A)=P,(3)利用频率估计出的概率是近似值.试题解析: (1)如下表:转动转盘的次数n100 200 400 500 800 1 000 落在“可乐”区域的次数m60 122 240 298 472 604 落在“可乐”区域的频率m n 0.6 0.61 0.6 0.596 0.59 0.604 (2)0.6;0.6(3)由(2)可知落在“车模”区域的概率约是0.4,从而得到圆心角的度数约是360°×0.4=144°.27.已知k 为实数,关于x 的方程222(1)x k k x +=-有两个实数根12,x x .(1)求实数k 的取值范围.(2)若()()12112x x ++=,试求k 的值.【答案】(1)12k ≤.(2)-3. 【分析】(1)把方程化为一般式,根据方程有两个实数根,可得0∆≥,列出关于k 的不等式,解出k 的范围即可;(2)根据一元二次方程根与系数的关系,可得1222x x k +=-,212x x k = ,再将原等式变形为1212()12x x x x +++= ,然后整体代入建立关于k 的方程,解出k 值并检验即可.【详解】(1)解:原方程即为222(1)0x k x k --+=. 224(k 1)4k 0=--≥ ,∴22(k 1)k 0--≥ . ∴2k 10-+≥. ∴12k ≤; (2)解:由根系关系,得1222x x k +=-,212x x k =∵()()12112x x ++=,∴1212()12x x x x +++=∴2221k k +-=.即2230k k +-=.解得1k =,或3k =- ∵12k ≤ ∴3k =-. 故答案为(1)12k ≤.(2)-3. 【点睛】本题考查一元二次方程根的判别式及应用,一元二次方程的根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a - ,x 1x 2=c a.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在Rt ABC ∆中,90C ∠=︒,A ∠、B 的对边分别是a 、b ,且满足2220a ab b --=,则tan A 等于( )A .12B .2C .23D .23 【答案】B【分析】求出a=2b ,根据锐角三角函数的定义得出tanA=a b,代入求出即可. 【详解】解:a 2-ab-2b 2=0,(a-2b )(a+b )=0,则a=2b ,a=-b (舍去),则tanA=a b=2, 故选:B .【点睛】本题考查了解二元二次方程和锐角三角函数的定义的应用,注意:tanA=A A ∠∠的对边的邻边.2.小华同学某体育项目7次测试成绩如下(单位:分):9,7,1,8,1,9,1.这组数据的中位数和众数分别为( )A .8,1B .1,9C .8,9D .9,1【答案】D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,1,1,1,最中间的数是9,则中位数是9;1出现了3次,出现的次数最多,则众数是1;故选D .考点:众数;中位数. 3.抛物线212y x =向左平移1个单位,再向下平移1个单位后的抛物线解析式是( ) A .21(1)12y x =++ B .21(1)12y x =+-C .21(1)12y x =-+D .21(1)12y x =-- 【答案】B【分析】根据向左平移横坐标减,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】解:由“左加右减、上加下减”的原则可知,把抛物线21y=x 2向左平移1个单位,再向下平移1个单位, 则平移后的抛物线的表达式为y =()21-x+1-12. 故选B .【点睛】本题主要考查了二次函数图象与几何变换,掌握二次函数图象与几何变换是解题的关键.4.如图1,点M 从ABC ∆的顶点A 出发,沿A B C →→匀速运动到点C ,图2是点M 运动时,线段AM 的长度y 随时间x 变化的关系图象,其中N 为曲线部分的最低点,则ABC ∆的面积为( )A .22B .35C .37D .42【答案】C 【分析】根据图象可知点M 在AB 上运动时,此时AM 不断增大,而从B 向C 运动时,AM 先变小后变大,从而得出AC=AB ,及AM BC ⊥时AM 最短,再根据勾股定理求出AM BC ⊥时BM 的长度,最后即可求出面积.【详解】解:∵当AM BC ⊥时,AM 最短∴AM=3∵由图可知,AC=AB=4∴当AM BC ⊥时,在Rt ABM 中,227BM AB AM =-∴227BC BM ==∴1372ABC S BC AM ==故选:C .【点睛】本题考查函数图像的认识及勾股定理,解题关键是将函数图像转化为几何图形中各量.5.某公司2017年的营业额是100万元,2019年的营业额为121万元,设该公司年营业额的平均增长率为x ,根据题意可列方程为( )A .()21001121x +=B .()21001121x -= C .()21211100x +=D .()21211100x -= 【答案】A【分析】根据题意2017年的营业额是100万元,设该公司年营业额的平均增长率为x , 则2018年的营业额是100(1+x)万元,2019年的营业额是100(1+x) ²万元,然后根据2019年的营业额列方程即可.【详解】解:设年平均增长率为x , 则2018的产值为:()1?001x + , 2019的产值为:()21?001x +.那么可得方程:()21?001121x +=.故选:A .【点睛】本题考查的是一元二次方程的增长率问题的应用.6.如图,该几何体的主视图是( )A .B .C .D .【答案】D 【解析】试题分析:根据主视图是从正面看到的图形,因此可知从正面看到一个长方形,但是还得包含看不到的一天线(虚线表示),因此第四个答案正确.故选D考点:三视图7.若反比例函数k y x=的图象分布在二、四象限,则关于x 的方程2320kx x -+=的根的情况是 ( ) A .有两个不相等的实数根 B .有两个相等的实数根C .没有实数根D .只有一个实数根 【答案】A 【分析】反比例函数k y x=的图象分布在二、四象限,则k 小于0,再根据根的判别式判断根的情况. 【详解】∵反比例函数k y x =的图象分布在二、四象限∴k <0则()224342980b ac k k =-=--⋅=->则方程有两个不相等的实数根故答案为:A.【点睛】本题考查了一元二次方程方程根的情况,务必清楚240b ac =->时,方程有两个不相等的实数根;240b ac =-=时,方程有两个相等的实数根;240b ac =-<时,方程没有实数根.8.已知点P 在线段AB 上,且AP ∶PB=2∶3,那么AB ∶PB 为( )A .3∶2B .3∶5C .5∶2D .5∶3【答案】D【分析】根据比例的合比性质直接求解即可.【详解】解:由题意AP ∶PB=2∶3,AB ∶PB=(AP+PB )∶PB=(2+3)∶3=5∶3;故选择:D.【点睛】本题主要考查比例线段问题,关键是根据比例的合比性质解答.9.如图,在⊙O 中,直径CD⊥弦AB ,则下列结论中正确的是( )A .AC=ABB .∠C=12∠BODC .∠C=∠BD .∠A=∠B0D【答案】B 【解析】先利用垂径定理得到弧AD=弧BD ,然后根据圆周角定理得到∠C=12∠BOD ,从而可对各选项进行判断.【详解】解:∵直径CD ⊥弦AB ,∴弧AD =弧BD ,∴∠C=12∠BOD . 故选B .【点睛】本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 10.一元二次方程220x x a -+=有实数解的条件( )A .1a ≥B .1a ≤C .1a >D .1a <【答案】B【分析】根据一元二次方程的根的判别式240b ac ∆=-≥即可得.【详解】一元二次方程220x x a -+=有实数解则2(2)410a ∆=--⨯⋅≥,即440a -≥解得1a ≤故选:B .【点睛】本题考查了一元二次方程的根的判别式,熟记根的判别式是解题关键.对于一般形式20(a 0)++=≠ax bx c 有:(1)当240b ac ∆=->时,方程有两个不相等的实数根;(2)当240b ac ∆=-=时,方程有两个相等的实数根;(3)当240b ac ∆=-<时,方程没有实数根. 11.如图所示的物体组合,它的左视图是( )A .B .C .D .【答案】D【分析】通过对简单组合体的观察,从左边看圆柱是一个长方形,从左边看正方体是一个正方形,但是两个立体图形是并排放置的,正方体的左视图被圆柱的左视图挡住了,只能看到长方形,邻边用虚线画出即可.【详解】从左边看圆柱的左视图是一个长方形,从左边看正方体的左视图是一个正方形,从左边看圆柱与正方体组合体的左视图是一个长方形,两图形的邻边用虚线画出,则如图所示的物体组合的左视图如D 选项所示,故选:D .【点睛】本题考查了简单组合体的三视图.解答此题要注意进行观察和思考,既要丰富的数学知识,又要有一定的生活经验和空间想象力.12.下列各数中是无理数的是( )A .0B .12C .2D .0.5 【答案】C【分析】根据无理数的定义,分别进行判断,即可得到答案.【详解】解:根据题意,2是无理数;0,12,0.5是有理数; 故选:C .【点睛】本题考查了无理数的定义,解题的关键是熟记无理数的定义进行解题.二、填空题(本题包括8个小题) 13.如图,起重机臂AC 长60m ,露在水面上的钢缆BC 长302m ,起重机司机想看看被打捞的沉船情况,在竖直平面内把起重机臂AC 逆时针转动15︒到'AC 的位置,此时露在水面上的钢缆''B C 的长度是___________.【答案】3m【解析】首先在Rt △ABC 中,利用正弦值可推出∠CAB=45°,然后由转动角度可得出∠C'AB'=60°,在Rt △C'AB'中利用60°的正弦即可求出B' C'.【详解】再Rt △ABC 中,∵BC 3022sin CAB===AC 602∠∴∠CAB=45°起重机臂AC 逆时针转动15︒到'AC 的位置后,∠C'AB'=∠CAB+15°=60°在Rt △C'AB'中,B' C'=3AC sin C AB =60=303'⋅∠''⨯m 故答案为:303m .【点睛】本题考查了解直角三角形,熟练掌握直角三角形中的边角关系是解题的关键.14.二次函数2(6)8y x =--+的最大值是__________.【答案】1【分析】二次函数的顶点式2()y a x h b =-+在x=h 时有最值,a>0时有最小值,a<0时有最大值,题中函数 10a =-<,故其在6x =时有最大值.【详解】解:∵10a =-<,∴y 有最大值,当6x =时,y 有最大值1.故答案为1.【点睛】本题考查了二次函数顶点式求最值,熟练掌握二次函数的表达式及最值的确定方法是解题的关键. 15..甲、乙、丙、丁四位同学在五次数学测验中他们成绩的平均分相等,方差分别是2.3,3.8,5.2,6.2,则成绩最稳定的同学是______.【答案】甲【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴2222甲乙丁丙<<<S S S S , ∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差的概念,正确理解方差所表示的意义是解题的关键.16.已知三个边长分别为2cm ,3cm ,5cm 的正方形如图排列,则图中阴影部分的面积为_____.。

衡水中学九年级数学试卷+答题卡+答案(2019-2020)第一学期期末试卷上册

衡水中学九年级数学试卷+答题卡+答案(2019-2020)第一学期期末试卷上册

衡水中学2019-2020第一学期九年级教学质量检测数学试卷(考试时间:100分钟 满分:120分)一.选择题(本题共10小题,每小题3分,共30分)1.一元二次方程4x 2+1=4x 的根的情况是( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根2.在正方形、矩形、菱形、平行四边形中,其中是中心对称图形的个数为( ) A .1 B .2 C .3 D .43.如图,四边形ABCD 是⊙O 的内接四边形,若∠A =70°,则∠C 的度数是( ) A .100° B .110° C .120° D .130°第3题 第7题4.⊙O 的半径为5cm , 点A 到圆心O 的距离OA =3cm ,则点A 与圆O 的位置关系为( ) A .点A 在圆内 B .点A 在圆上 C .点A 在圆外 D .无法确定 5.关于反比例函数xy 2-=,下列说法正确的是( ) A .图象过点(1,2) B .图象在第一、三象限C .当0>x 时,y 随x 的增大而减小D .当0<x 时, y 随x 的增大而增大 6.对于二次函数y=﹣x 2+2x ﹣4,下列说法正确的是( ) A .图象开口向上 B .对称轴是x =2 C .当x >1时,y 随x 的增大而减小 D .图象与x 轴有两个交点7.已知二次函数y =ax 2+bx +c 的图像如图所示,那么下列判断不正确的是( )A .b 2-4ac >0 B .a ﹣b +c >0C .b =﹣4aD .关于x 的方程ax 2+bx +c =0的根是x 1=﹣1,x 2=58.在平面直角坐标系中,将A (﹣1,5)绕原点逆时针旋转90°得到A ′,则点A ′的坐标是( )A .(﹣1,5)B .(5,﹣1)C .(﹣1,﹣5)D .(﹣5,﹣1) 9.如图,幼儿园计划用30m 的围栏靠墙围成一个面积为100 m 2的矩形小花园(墙长为15m ),则与墙垂直的边x 为( )A. 10 m 或5 mB. 5 m 或8 mC. 10 mD. 5 m10.如图,在平面直角坐标系中,点P (1,4)、Q (m ,n )在函数(0)ky x x=>的图象上, 当1m >时,过点P 分别作x 轴、y 轴的垂线,垂足为点A 、B x 轴、 y 轴的垂线,垂足为点C 、D .QD 交PA 于点E ,随着m 的增大,四边形ACQE 的面积( ) A .增大 B .减小 C .先减小后增大 D .先增大后减小第9题第10题二.填空题(本题共6小题,每小题4分,共24分)11.已知关于x的方程x2+3x + a =0有一个根为﹣2,则另一个根为.12.抛物线y=-x2+1向右平移2个单位长度,再向下平移3个长度单位得到的抛物线解析式是.13.如图,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为.14.如图是一个可以自由转动的转盘,下表是一次活动中的一组统计数据:转动转盘的次数n100 150 200 500 800 1000落在“铅笔”的次数m68 111 136 345 546 701 转动转盘一次,落在“铅笔”的概率约是(结果保留小数点后一位).15.若圆锥底面圆的周长为8π,侧面展开图的圆心角为90°,则该圆锥的母线长为.16.如图,在平面内2条直线相交最多形成1个交点,3条直线相交最多形成3个交点,4条直线相交最多形成6个交点.现有10条直线相交最多形成个交点.第13题第14题第16题三.解答题(一)(本题共3小题,每小题6分,共18分)17.解方程:23230--=x x18.如图,AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,CD=2,求阴影部分的面积19.王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线21855y x x =-+,其中y (m )是球的飞行高度,x (m )是球飞出的水平距离,结果球离球洞的水平距离还有2m .⑴ 请写出抛物线的顶点坐标.⑵ 若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行、路线应满足怎样的抛物线,求出其解析式.四.解答题(二)(本题共3小题,每小题7分,共21分)20.某钢铁厂计划今年第一季度一月份的总产量为500 t ,三月份的总产量为720 t ,若平均每月的增长率相同. ⑴ 第一季度平均每月的增长率;⑵ 如果第二季度平均每月的增长率保持与第一季度平均每月的增长率相同,请你估计该厂今年5月份总产量能否突破1000 t ?21.如图,在Rt △ABC 中,AB =AC ,D 、E 是斜边BC 上的两点,∠EAD =45°,将△ADC 绕点A 顺时针旋转90°,得到△AFB ,连接EF . ⑴ 求证:EF =ED⑵ 若AB =22,CD =1,求FE 的长22.小明、小刚和小红各自打算随机选择元旦的上午或下午去红花湖景区游玩.画树状图解答下列问题:⑴ 小明和小刚都在元旦上午去游玩的概率为; ⑵ 求他们三人在同一个半天去游玩的概率.五.解答题(三)(本题共3小题,每小题9分,共27分)23. 如图,直线y=-x+1与反比例函数y=kx的图像相交于点A、B,过点A作AC⊥x轴,垂足为点C(-2,0).连接AC、BC.⑴求反比例函数的解析式;⑵求S△ABC⑶利用函数图象直接写出关于x的不等式-x+1 <kx的解集.24. 如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作直线BF,交AC的延长线于点F.⑴求证:BE=CE;⑵若AB=6,求DE的长;⑶当∠F的度数是多少时,BF与⊙O相切.证明你的结论.25.如图,△ABC中,∠ACB=90°,AC=CB=2,以BC为边向外作正方形BCDE,动点M从A点出发,以每秒1个单位的速度沿着A→C→D的路线向D点匀速运动(M不与A、D重合);过点M作直线l⊥AD,l与路线A→B→D相交于N,设运动时间为t秒.⑴填空:当点M在AC上时,BN= (用含t的代数式表示);⑵当点M在CD上时(含点C),是否存在点M,使△DEN为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由;⑶过点N作NF⊥ED,垂足为F,矩形MDFN与△ABD重叠部分的面积为S,求S的最大值.备用图密封线内不要答题衡水中学2019-2020第一学期九年级教学质量检测数学试题答卷说明:1.答卷共4页.考试时间为100分钟,满分120分.2.答卷前必须将自己的姓名、座号等信息按要求填写在密封线左边的空格内一、选择题(本题共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案二、填空题(本题共6小题,每小题4分,共24分)11. 12. 13.14. 15. 16.三、解答题(一)(本题共3小题,每小题6分,共18分)19.解:18.解:17.解:座号学校姓名班别23.解:24.解:密封线内不要答题25.解:备用图1备用图2衡水中学2019-2020第一学期九年级教学质量检测数学试卷参考答案一.选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案CDBADCBDCA二.填空题(每小题4分,共24分)11.-1; 12.()222y x =---; 13. 17°; 14. 0.7; 15.16; 16.45.三.解答题(一)(本题共3小题,每小题6分,共18分)17.解:3a =,2b =-,3c =-()()2242433400b ac -=--⨯⨯-=> ……2分()240110233x --±±==⨯ 11103x +=,21103x -= ……6分18.解:∵∠CDB =30°,∴∠COB =60°, 又∵弦CD ⊥AB ,CD =2,∴CE =, ……2分设OE =x ,则OC =2x()()22232x x +=,得OC =2 ……4分△OEC ≌△OED∴……6分19.⑴ ∵21855y x x =-+=()2116455x --+ ∴抛物线的顶点坐标(4,165) ……2分⑵ 由题意,所求抛物线顶点坐标为(5,165)且经过点(0,0)……4分设()21655y a x =-+∴162505a += ∴16125a =- ∴()2161651255y x =--+ ……6分四.解答题(二)(本题共3小题,每小题7分,共21分)20.解:⑴ 设第1季度平均每月的增长率为x ,由题意,得()25001720x += …3分解得10.2x =,2 2.2x =-(舍去)答:第1季度平均每月的增长率为20%。

河北省衡水市2020年九年级上学期数学期末考试试卷(I)卷

河北省衡水市2020年九年级上学期数学期末考试试卷(I)卷

河北省衡水市2020年九年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2018九上·巴南月考) 下列一元二次方程中,没有实数根的是()A .B .C .D .2. (2分)地球的水资源越来越枯竭,全世界都提倡节约用水,小明把自己家1月至6月份的用水量绘制成折线图,那么小明家这6个月的月平均用水量是()A . 10吨B . 9吨C . 8吨D . 7吨3. (2分) 2018(第七届)绵阳之春国际车展将于2018年4月18日-22日在绵阳国际会展中心盛大举行。

某品牌汽车为了推广宣传,特举行“趣味答题闯关赢大奖”活动,参与者需连续闯过三关方能获得终极大奖。

已知闯过第一关的概率为0.8,连续闯过两关的概率为0.5,连续闯过三关的概率为0.3,已经连续闯过两关的参与者获得终极大奖的概率为()A .B .C .D .4. (2分)如图,AB是⊙O的弦,点C在⊙O上,∠ACB=40°,点P在⊙O的内部,且点C、点P在AB同侧,则∠APB的角度是()A . 大于40°B . 等于40°C . 小于40°D . 无法确定5. (2分)为执行“两免一补”政策,某地区2015年投入教育经费2500万元,预计2017年投入3600万元.设这两年投入教育经费的年平均增长率为,则下列方程正确的是()A .B .C . 2500(1+x)=3600D .6. (2分) (2018九上·金华月考) 对于二次函数的图象,下列说法正确的是()A . 开口向下B . 当时,有最大值是C . 对称轴是D . 顶点坐标是7. (2分) (2015八下·大同期中) 如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为()A .B .C . 1D .8. (2分)(2018九上·库伦旗期末) 已知的图像如图所示,则的方程的两实根,则满足()A .B .C .D .二、填空题 (共8题;共8分)9. (1分)(2017·集宁模拟) 一组数据5,2,3,6,4,这组数据的方差是________.10. (1分)(2019·润州模拟) 已知圆锥的母线长是它底面圆半径的2倍,则它的侧面展开图的圆心角等于________.11. (1分)(2020·松滋模拟) 二次函数的图象与轴相交于和两点,则该抛物线的对称轴是________.12. (1分) (2017九上·五华月考) 已知线段AB=20, 点C是线段上的黄金分割点(AC>BC),则长是________(精确到0.01) .13. (1分)(2016·三门峡模拟) 二次函数y=x2﹣2x的图像的对称轴是直线________.14. (1分)(2020·长宁模拟) 如果直线l把△ABC分割后的两个部分面积相等,且周长也相等,那么就把直线l叫做△ABC的“完美分割线”,已知在△ABC中,AB=AC ,△ABC的一条“完美分割线”为直线l ,且直线l平行于BC ,若AB=2,则BC的长等于________.15. (1分)(2016·大庆) 直线y=kx+b与抛物线y= x2交于A(x1 , y1)、B(x2 , y2)两点,当OA⊥OB 时,直线AB恒过一个定点,该定点坐标为________.16. (1分) (2016九上·余杭期中) 在第一象限内作射线OC,与x轴的夹角为60°,在射线OC上取一点A,过点A作AH⊥x轴于点H,在抛物线y=x2(x>0)上取一点P,在y轴上取一点Q,使得以P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A的坐标是________三、解答题 (共10题;共102分)17. (10分)解方程(1) x2+x﹣1=0;(2)(x﹣1)(x+3)=5.18. (10分)(2018·柳州模拟) 甲、乙两个电子厂在广告中都声称他们的某种电子产品在正常情况下的使用寿命都是5年.质检部门对这两家销售的产品的使用寿命进行了跟踪调查,统计结果如下:(单位:年)甲厂:3,4,5,6,7 乙厂:4,4,5,6,6(1)分别求出甲、乙两厂的该种电子产品在正常情况下的使用寿命的平均数和方差;(2)如果你是顾客,你会选购哪家电子厂的产品?说明理由.19. (2分) (2015八下·召陵期中) 如图,在一次实践活动中,小强从A地出发,沿北偏东60°的方向行进3 千米到达B地,然后再沿北偏西30°方向行进了3千米到达目的地C.(1)求A、C两地之间的距离;(2)试确定目的地C在点A的什么方向?20. (15分)已知二次函数y=﹣x2+2x+3图象的对称轴为直线.(1)请求出该函数图象的对称轴;(2)在坐标系内作出该函数的图象;(3)有一条直线过点P(1,5),若该直线与二次函数y=﹣x2+2x+3只有一个交点,请求出所有满足条件的直线的关系式.21. (10分)(2018·孝感) 如图,中,,以为直径的交于点,交于点,过点作于点,交的延长线于点 .(1)求证:是的切线;(2)已知,,求和的长.22. (10分)(2017·历下模拟) 某校在艺术节宣传活动中,采用了四种宣传形式:A唱歌,B舞蹈,C朗诵,D器乐.全校的每名学生都选择了一种宣传形式参与了活动,小明对同学们选用的宣传形式,进行了随机抽样调查,根据调查统计结果,绘制了如图两种不完整的统计图表:选项方式百分比A唱歌35%B舞蹈aC朗诵25%D器乐30%请结合统计图表,回答下列问题:(1)本次调查的学生共________人,a=________,并将条形统计图补充完整________ ;(2)如果该校学生有2000人,请你估计该校喜欢“唱歌”这种宣传形式的学生约有多少人?(3)学校采用调查方式让每班在A、B、C、D四种宣传形式中,随机抽取两种进行展示,请用树状图或列表法,求某班抽到的两种形式有一种是“唱歌”的概率.23. (5分)(2019·三明模拟) 如图,AB是⊙O的直径,点D , E在⊙O上,∠B=2∠ADE ,点C在BA的延长线上.(Ⅰ)若∠C=∠DAB ,求证:CE是⊙O的切线;(Ⅱ)若OF=2,AF=3,求EF的长.24. (15分)(2017·庆云模拟) 某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.25. (10分)(2018·建湖模拟) 如图1,对称轴为直线x=1的抛物线y= x2+bx+c,与x轴交于A、B两点(点A在点B的左侧),且点A坐标为(-1,0).又P是抛物线上位于第一象限的点,直线AP与y轴交于点D,与抛物线对称轴交于点E,点C与坐标原点O关于该对称轴成轴对称.(1)求点 B 的坐标和抛物线的表达式;(2)当 AE:EP=1:4 时,求点 E 的坐标;(3)如图 2,在(2)的条件下,将线段 OC 绕点 O 逆时针旋转得到OC ′,旋转角为α(0°<α<90°),连接 C ′D、C′B,求 C ′B+ C′D 的最小值.26. (15分)(2017·罗平模拟) 如图,已知抛物线y= x2﹣ x﹣2与x轴交于A,B两点(点A在点B 的右边),与y轴交于点C.(1)求点A,B,C的坐标;(2)点D是此抛物线上的点,点E是其对称轴上的点,求以A,B,D,E为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点P,使得△ACP是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共102分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、。

河北省衡水市 九年级(上)期末数学试卷

河北省衡水市 九年级(上)期末数学试卷

九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.若函数y=有意义,则x的取值范围为()A. B. C. D.3.小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为()A. 10米B. 12米C. 15米D. 米4.如图,在矩形ABCD中,点E为AD中点,BD和CE相交于点F,如果DF=2,那么线段BF的长度为()A. 2B. 3C. 4D. 55.某商店进行“迎五一,大促销”摸奖活动,凡是有购物小票的顾客均可摸球一次,摸到的是白球即可获奖.规则如下:一个不透明的袋子中装有10个黑球和若干白球,它们除颜色不同外,其余均相同,从袋子中随机摸出一个球,记下颜色,再把它放回袋子中摇匀,重复此过程.共有300人摸球,其中获奖的共有180人,由此估计袋子中白球个数大约为()A. 10B. 12C. 15D. 166.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A. B. C. D.7.在△ABC中,∠C=90°,cos A=,那么∠A的度数为()A. B. C. D.8.如图,△ABC的顶点都在正方形网格的格点上,则tan C的值为()A.B.C.D.9.某校在开展“节约每一滴水”的活动中,从八年级的100名同学中任选20名同学汇总了各自家庭一个月的节水情况,将有关数据(每人上报节水量都是整数)整理请你估计这100名同学的家庭一个月节约用水的总量大约是()A. 180tB. 230tC. 250tD. 300t10.如图,在△ABC中,∠A=30°,tan B=,AC=2,则AB的长是()A. 4B.C. 5D.二、填空题(本大题共6小题,共18.0分)11.抛物线y=(x-3)2+4的顶点坐标是______.12.如图,若抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,则Q点的坐标为______.13.一个三角形的两边分别为1和2,另一边是方程x2-5x+6=0的解,则这个三角形的周长是______.14.若△ABC∽△DEF,且对应边BC与EF的比为1:3,则△ABC与△DEF的面积比等于______.15.已知⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8,则AC的长为______.16.如图,等腰Rt△ABC中,斜边AB的长为4,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为______.三、计算题(本大题共1小题,共9.0分)17.近年来,随着城市居民入住率的增加,污水处理问题成为城市的难题.某城市环境保护局协同自来水公司为鼓励居民节约用水,减少污水排放,规定:居民用水量每月不超过a吨时,只需交纳10元水费,如果超过a吨,除按10元收费外,超过部分,另按每吨5a元收取水费(水费+污水处理费).(1)某市区居民2018年3月份用水量为8吨,超过规定水量,用a的代数式表示该用户应交水费多少元;(2)下表是这户居民4月份和5月份的用水量和缴费情况;根据上表数据,求规定用水量a的值.(3)结合当地水资源状况,谈谈如何开展水资源环境保护?如何节约用水?四、解答题(本大题共8小题,共63.0分)18.解方程:(1)x2-6x=7(2)5x+2=3x219.已知抛物线的顶点为(1,4),与y轴交点为(0,3),求该抛物线的解析式.20.如图,正方形ABCD的边长为6,E,F分别是AB,BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM.(2)当AE=2时,求EF的长.21.已知关于x的一元二次方程x2+(2k-1)x+k2=0有两个实根x1和x2.(1)求实数k的取值范围;(2)若方程两实根x1,x2满足x12-x22=0,求k的值.22.如图,AB是⊙O的一条弦,半径OD⊥AB于点C,点E在⊙O上.若∠OAC=38°,求∠DEB的度数.23.如图,长方形ABCD绕顶点A旋转后得到长方形AEFG,点B、A、G在同一直线上,试回答下列问题:(1)旋转角度是多少?(2)△ACF是什么形状的三角形,说明理由?24.小明周末要乘坐公交车到植物园游玩,从地图上查找路线发现,几条线路都需要换乘一次.在出发站点可选择空调车A、空调车B、普通车a,换乘站点可选择空调车C,普通车b、普通车c,且均在同一站点换乘.空调车投币2元,普通车投币1元.(1)求小明在出发站点乘坐空调车的概率;(2)求小明到达植物园恰好花费3元公交费的概率.25.如图1,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF.(1)求证:△ADE≌△CDF;(2)如图2,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.求证:四边形EDFG是正方形.(3)当点E在什么位置时,四边形EDFG的面积最小?直接写出点E的位置及四边形EDFG面积的最小值.答案和解析1.【答案】C【解析】解:A、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B、不是轴对称图形,是中心对称的图形,故本选项不符合题意;C、既是轴对称图形,又是中心对称的图形,故本选项符合题意;D、是轴对称图形,不是中心对称的图形,故本选项不符合题意.故选:C.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.【答案】B【解析】解:根据题意得:x-3≠0,解得:x≠3.故选:B.根据分式有意义的条件:分母不等于0即可求解.此题考查反比例函数的性质,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.【答案】A【解析】解:∵=即=,∴楼高=10米.故选:A.在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.根据相似三角形的对应边的比相等,即可求解.本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.4.【答案】C【解析】解:∵四边形ABCD是矩形,∴AD∥BC,AD=BC∴△DEF∽△BFC,∴,∵点E为AD中点,∴,∴,∴,∴BF=2DF=2×2=4.故选:C.由矩形的性质可知AD∥BC,那么△DEF∽△BFC,利用相似三角形对应边成比例即可求出线段BF的长.本题考查了相似三角形的判定与性质.正确列出相似三角形对应边成比例是解题的关键.5.【答案】C【解析】解:设袋子中白球有x个,根据题意,可得:=,解得:x=15,经检验x=15是原分式方程的解,所以估计袋子中白球大约有15个,故选:C.在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设未知数列出方程求解.本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是根据白球的频率得到相应的等量关系.6.【答案】C【解析】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选:C.根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.7.【答案】B【解析】解:∵∠C=90°,cosA=,∴∠A=60°.故选:B.直接利用特殊角的三角函数值得出答案.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.8.【答案】A【解析】解:AD=2,CD=4,则tanC===.故选:A.根据正切就是直角三角形中角所对的直角边与相邻的直角边的比值,依据定义求解.本题考查了正切函数的定义,正确确定直角三角形是关键.9.【答案】B【解析】解:利用组中值求平均数可得:选出20名同学家的平均一个月节约用水量==2.3,∴估计这100名同学的家庭一个月节约用水的总量大约是=2.3×100=230t.故选:B.利用组中值求样本平均数,即可解决问题.本题考查样本平均数、组中值等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.【答案】C【解析】解:作CD⊥AB于D,如图,在Rt△ACD中,∠A=30°,AC=2,∴CD=AC=,AD=CD=3,在Rt△BCD中,tanB=,∴,∴BD=2,∴AB=AD+BD=3+2=5.故选:C.作CD⊥AB于D,据含30度的直角三角形三边的关系得到CD=,AD=3,再在Rt△BCD中根据正切的定义可计算出BD,然后把AD与BD相加即可.本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.不是直角三角形作辅助线构造出直角三角形11.【答案】(3,4)【解析】解:∵抛物线y=(x-3)2+4是顶点式,∴抛物线的顶点坐标是(3,4),故答案为:(3,4).因为顶点式y=a(x-h)2+k,其顶点坐标是(h,k),对照求二次函数y=(x+2)2-1的顶点坐标即可.本题考查了二次函数的性质,注意:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.12.【答案】(-2,0)【解析】解:∵抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,∴P,Q两点到对称轴x=1的距离相等,∴Q点的坐标为:(-2,0).故答案为:(-2,0).直接利用二次函数的对称性得出Q点坐标即可.此题主要考查了二次函数的性质,正确利用函数对称性得出答案是解题关键.13.【答案】5【解析】解:∵x2-5x+6=0,∴(x-2)(x-3)=0,解得:x1=2,x2=3,∵一个三角形的两边分别为1和2,∴另一边是2,∴这个三角形的周长是:1+2+2=5.故答案为:5.首先利用因式分解法求得方程x2-5x+6=0的解,然后由一个三角形的两边分别为1和2,可求得另一边的长,继而求得这个三角形的周长.此题考查了因式分解法解一元二次方程与等腰三角形的性质.此题难度不大,注意掌握因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.14.【答案】1:9【解析】解:∵△ABC与△DEF的相似比是1:3,∴△ABC与△DEF的面积比等于12:32=1:9.故答案为1:9.根据相似三角形面积的比等于相似比的平方,即可得出△ABC与△DEF的面积比.熟悉相似三角形的性质:相似三角形的面积比是相似比的平方.15.【答案】或【解析】解:连结OA,∵AB⊥CD,∴AM=BM=AB=×8=4,在Rt△OAM中,OA=5,∴OM==3,当如图1时,CM=OC+OM=5+3=8,在Rt△ACM中,AC==4;当如图2时,CM=OC-OM=5-3=2,在Rt△ACM中,AC==2.故答案为4或2.连结OA,由AB⊥CD,根据垂径定理得到AM=4,再根据勾股定理计算出OM=3,然后分类讨论:当如图1时,CM=8;当如图2时,CM=2,再利用勾股定理分别计算即可.本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.16.【答案】2【解析】解:连接OC,OM、CM,如图,∵M为PQ的中点,∴OM=PQ,CM=PQ,∴OM=CM,∴点M在OC的垂直平分线上,∴点M运动的轨迹为△ABC的中位线,∴点M所经过的路线长=AB=2.故答案为2.连接OC,OM、CM,如图,利用斜边上的中线性质得到OM=PQ,CM=PQ,则OM=CM,于是可判断点M在OC的垂直平分线上,则点M运动的轨迹为△ABC的中位线,然后根据三角形中位线性质求解.本题考查了轨迹:通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹.也考查了等腰直角三角形的性质.17.【答案】解:(1)3月份应交水费10+5a(8-a)=10+40a-5a2元;(2)由题意得:5a(7-a)+10=70,解得:a=3或a=45a(5-a)+10=40解得:a=3或a=2,综上,规定用水量为3元;(3)既然我们的水资源比较缺乏,就要提高节水技术、防治水污染、植树造林.【解析】(1)根据总费用=10+超出费用列出代数式即可;(2)根据题意分别列出5a(7-a)+10=70,5a(5-a)+10=40,取满足两个方程的a的值即为本题答案;(3)结合当地水资源状况,叙述合理即可;本题考查了一元二次方程的应用,解题的关键是了解本题的水费收取标准,难度不大.18.【答案】解:(1)x2-6x-7=0,(x-7)(x+1)=0,x-7=0或x+1=0,所以x1=7,x2=-1;(2)3x2-5x-2=0,(3x+1)(x-3)=0,3x+1=0或x-3=0,所以x1=-,x2=3.【解析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)先把方程化为一般式,然后利用因式分解法解方程.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.19.【答案】解:设抛物线解析式为y=a(x-1)2+4,把(0,3)代入得a+4=3,解得a=-1,所以抛物线解析式为y=-(x-1)2+4.【解析】设顶点式y=a(x-1)2+4,然后把(0,3)代入求出a即可.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.20.【答案】(1)证明:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F、C、M三点共线,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在△DEF和△DMF中,,∴△DEF≌△DMF(SAS),∴EF=MF;(2)解:设EF=MF=x,∵AE=CM=2,且BC=6,∴BM=BC+CM=6+2=8,∴BF=BM-MF=BM-EF=8-x,∵EB=AB-AE=6-2=4,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即42+(8-x)2=x2,解得:x=5,则EF=5.【解析】(1)由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS 可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=2,正方形的边长为6,用AB-AE求出EB 的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM-FM=BM-EF=8-x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.此题考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理,利用了转化及方程的思想,熟练掌握性质及定理是解本题的关键.21.【答案】解:(1)∵原方程有两个实数根,∴△=(2k-1)2-4k2=-4k+1≥0,解得:k≤.(2)∵x12-x22=0,即(x1+x2)(x1-x2)=0,∴x1+x2=0或x1-x2=0.当x1+x2=0时,有-(2k-1)=0,解得:k=,∵>,∴k=不合题意,舍去;当x1-x2=0时,x1=x2,∴△=0,即-4k+1=0,解得:k=,∴当x12-x22=0时k=.【解析】(1)根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出实数k的取值范围;(2)由x12-x22=0可得出x1+x2=0或x1-x2=0,当x1+x2=0时,利用根与系数的关系可得出关于k的一元一次方程,解之结合(1)的结论可得出该情况不符合题意;当x1-x2=0时,结合(1)即可求出k值.综上即可得出结论.本题考查了根与系数的关系、根的判别式以及解一元一次方程,解题的关键是:(1)牢记“当△≥0时,方程有实数根”;(2)分x1+x2=0和x1-x2=0两种情况求出k值.22.【答案】解:∵OD⊥AB,∠OAC=38°∴∠AOD=52°,∴∠AED=26°,∵OD⊥AB,∴=∴∠BDE=∠ADE=26°.【解析】由AB⊥OD,故可得出∠AED=90°-∠AOD=26°,根据圆心角、弧、弦的关系得出=,即可求出∠BDE的度数.本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.23.【答案】解:(1)∵长方形ABCD绕顶点A旋转后得到长方形AEFG,∴∠BAD是旋转角∴旋转角为90°(2)△ACF是等腰直角三角形理由如下:∵点C绕点A旋转90°到点F,∴AC=AF,∠CAF=90°∴△ACF是等腰直角三角形【解析】(1)由旋转的性质可得∠BAD是旋转角,即旋转角度为90°;(2)由旋转的性质可得AC=AF,∠CAF=90°,可得结论.本题考查了旋转的性质,矩形的性质,熟练运用旋转的性质是本题的关键.24.【答案】解:(1)∵在出发站点可选择空调车A、空调车B、普通车a,∴小明在出发站点乘坐空调车的概率为:;(2)如图所示:,一共有9种组合,只有Ab,Ac,Bb,Bc,aC组合恰好花费3元,故小明到达植物园恰好花费3元公交费的概率为:.【解析】(1)直接利用概率公式得出答案;(2)首先利用树状图法列举出所有的结果进而得出答案.此题主要考查了概率公式,正确列举出所有的可能是解题关键.25.【答案】解:(1)∵∠ACB=90°,AC=BC=4,∴∠A=∠B=45°,∵点D是AB的中点,∴CD⊥AB,且AD=BD=CD,∴∠DCB=45°,∴∠A=∠DCF,又∵AE=CF,∴△ADE≌△CDF(SAS);(2)∵O是EF的中点,GO=OD,∴四边形EDFG是平行四边形.∵△ADE≌△CDF.∴DE=DF,∠ADE=∠CDF.由DE=DF及四边形EDFG是平行四边形知四边形EDFG是菱形,∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°.∴四边形EDFG是正方形.(3)当DE⊥AC时,线段DE的值最小,四边形EDFG的面积最小,最小值为4.此时,E为线段AC的中点.【解析】(1)由等腰直角三角形的性质知∠A=∠B=45°,结合D为AB中点知CD⊥AB且AD=BD=CD,继而得∠A=∠DCF,结合AE=CF即可证得全等;(2)首先证明四边形EDFG是平行四边形,再证明DE=DF,∠EDF=90°即可;(3)根据垂线段最短即可解决问题.本题是四边形的综合问题,主要考查正方形的性质、全等三角形的判定和性质、等腰直角三角形的性质、垂线段最短等知识.。

┃精选3套试卷┃2020届衡水市知名学校九年级上学期数学期末综合测试试题

┃精选3套试卷┃2020届衡水市知名学校九年级上学期数学期末综合测试试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A.2:3B.2:3 C.4:9 D.16:81 【答案】B【分析】根据面积比为相似比的平方即可求得结果.【详解】解:∵两个相似多边形的面积比为4:9,∴它们的周长比为:49=2 3.故选B.【点睛】本题主要考查图形相似的知识点,解此题的关键在于熟记两个相似多边形的面积比为其相似比的平方. 2.下列图形中,不是中心对称图形的是()A.B.C.D.【答案】B【分析】将一个图形绕某一点旋转180°后能与自身完全重合的图形是中心对称图形,根据定义依次判断即可得到答案.【详解】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选:B.【点睛】此题考查中心对称图形的定义,熟记定义并掌握各图形的特点是解题的关键.3.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )A.23B.29C.13D.19【答案】B【分析】可以采用列表法或树状图求解.可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.【详解】画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,∴一辆向右转,一辆向左转的概率为29;故选B.【点睛】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解4.如图,滑雪场有一坡角α为20°的滑雪道,滑雪道AC的长为200米,则滑雪道的坡顶到坡底垂直高度AB的长为()A.200tan20°米B.200sin20︒米C.200sin20°米D.200cos20°米【答案】C【解析】解:∵sin∠C=ABAC,∴AB=AC•sin∠C=200sin20°.故选C.5.已知x1、x2是关于x的方程x2-ax-1=0的两个实数根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0 C.x1⋅x2>0 D.11x+21x>0【答案】A【解析】根据方程的系数结合根的判别式,可得出△=a1+4>0,进而可得出x1≠x1,此题得解.【详解】∵△=(﹣a)1﹣4×1×(﹣1)=a1+4>0,∴方程x1﹣ax﹣1=0有两个不相等的实数根,∴x1≠x1.故选A.【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.6.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50°B.60°C.80°D.100°【答案】D【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD的度数,再根据圆周角的性质,即可求得答案.【详解】圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°.故选D.【点睛】此题考查了圆周角的性质与圆的内接四边形的性质.此题比较简单,解题的关键是注意数形结合思想的应用,注意辅助线的作法.7.如图,O与正方形ABCD的两边AB,AD相切,且DE与O相切于点E.若O的半径为5,且11AB ,则DE的长度为()A.5 B.6 C.30D.11 2【答案】B【分析】连接OE,OF,OG,根据切线性质证四边形ABCD为正方形,根据正方形性质和切线长性质可得DE=DF.【详解】连接OE,OF,OG,∵AB,AD,DE都与圆O相切,∴DE⊥OE,OG⊥AB,OF⊥AD,DF=DE,∵四边形ABCD为正方形,∴AB=AD=11,∠A=90°,∴∠A=∠AGO=∠AFO=90°,∵OF=OG=5,∴四边形AFOG为正方形,则DE=DF=11-5=6,故选:B【点睛】考核知识点:切线和切线长定理.作辅助线,利用切线长性质求解是关键.8.从1到9这9个自然数中任取一个,既是2的倍数,又是3的倍数的概率是()A.19B.13C.12D.79【答案】A【分析】从1到9这9个自然数中,既是2的倍数,又是3的倍数只有6一个,所以既是2的倍数,又是3的倍数的概率是九分之一.【详解】解:∵既是2的倍数,又是3的倍数只有6一个,∴P(既是2的倍数,又是3的倍数)=19.故选:A.【点睛】本题考查了用列举法求概率,属于简单题,熟悉概率的计算公式是解题关键.9.小明和小华玩“石头、剪子、布”的游戏.若随机出手一次,则小华获胜的概率是()A.13B.23C.29D.12【答案】A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小华获胜的情况数,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有9种等可能的结果,小华获胜的情况数是3种,∴小华获胜的概率是:39=13.故选:A .【点睛】此题主要考查了列表法和树状图法求概率知识,用到的知识点为:概率=所求情况数与总情况数之比. 10.如图,⊙O 是△ABC 的外接圆,已知AD 平分∠BAC 交⊙O 于点D ,AD=5,BD=2,则DE 的长为( )A .35B .425C .225D .45【答案】D【分析】根据AD 平分∠BAC ,可得∠BAD=∠DAC ,再利用同弧所对的圆周角相等,求证△ABD ~△BED ,利用其对应边成比例可得AD BD BD DE =,然后将已知数值代入即可求出DE 的长. 【详解】解:∵AD 平分∠BAC ,∴∠BAD=∠DAC ,∵∠DBC=∠DAC(同弧所对的圆周角相等),∴∠DBC=∠BAD ,∴△ABD ~△BED , ∴AD BD BD DE=, ∴DE=24.5BD AD = 故选D.【点睛】本题考查圆周角定理以及相似三角形的判定与性质,根据其定理进行分析.11.一元二次方程2220x x +-=的常数项是( )A .2-B .0C .1D .2【答案】A【分析】在一元二次方程的一般形式下,可得出一元二次方程的常数项.【详解】解:由2220x x +-=,所以方程的常数项是 2.-故选A .【点睛】本题考查的是一元二次方程的一般形式及各项系数,掌握以上知识是解题的关键.12.下列命题正确的是( )A .对角线相等四边形是矩形B .相似三角形的面积比等于相似比C .在反比例函数3y x=-图像上,y 随x 的增大而增大D .若一个斜坡的坡度为1:30【答案】D【分析】根据矩形的判断定理、相似三角形的性质、反比例函数的性质、坡度的定义及特殊的三角函数值解答即可.【详解】对角线相等的平行四边形是矩形,故A 错误;相似三角形的面积比等于相似比的平方,故B 错误; 在反比例函数3y x=-图像上,在每个象限内,y 随x 的增大而增大,故C 错误;若一个斜坡的坡度为tan 坡角,该斜坡的坡角为30,故D 正确. 故选:D【点睛】本题考查的是矩形的判断定理、相似三角形的性质、反比例函数的性质、坡度的定义及特殊的三角函数值,熟练的掌握各图形及函数的性质是关键.二、填空题(本题包括8个小题)13.若正六边形外接圆的半径为4,则它的边长为_____.【答案】1【分析】根据正六边形的外接圆半径和正六边形的边长将组成一个等边三角形,即可求解.【详解】正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的外接圆半径等于1,则正六边形的边长是1.故答案为:1.【点睛】本题考查了正多边形和圆,利用正六边形的外接圆半径和正六边形的边长将组成一个等边三角形得出是解题的关键.14.将二次函数21:23C y x x =+-的图像向左平移1个单位得到2C ,则函数2C 的解析式为______.【答案】2(2)4y x =+-【分析】直接将函数解析式写成顶点式,再利用平移规律得出答案.【详解】解:223y x x =+-2(1)4x =+-,将二次函数223y x x =+-的图象先向左平移1个单位, ∴得到的函数2C 的解析式为:2(11)4y x =++-2(24)x =+-,故答案为:2(2)4y x =+-.【点睛】此题主要考查了二次函数与几何变换,正确掌握平移规律(上加下减,左加右减)是解题关键. 15.已知23a b =,则a a b +的值是_____. 【答案】25【解析】因为已知23a b =,所以可以设:a=2k ,则b=3k ,将其代入分式即可求解. 【详解】∵23a b =, ∴设a=2k ,则b=3k ,∴22235a k ab k k ==++. 故答案为25. 【点睛】本题考查分式的基本性质.16.如图,抛物线解析式为y =x 2,点A 1的坐标为(1,1),连接OA 1;过A 1作A 1B 1⊥OA 1,分别交y 轴、抛物线于点P 1、B 1;过B 1作B 1A 2⊥A 1B 1分别交y 轴、抛物线于点P 2、A 2;过A 2作A 2B 2⊥B 1A 2,分别交y 轴、抛物线于点P 3、B 2…;则点P n 的坐标是_____.【答案】(0,n 2+n )【分析】根据待定系数法分别求得直线OA 1、A 2B 1、A 2B 2……的解析式,即可求得P 1、P 2、P 3…的坐标,得出规律,从而求得点P n 的坐标.【详解】解:∵点A 1的坐标为(1,1),∴直线OA 1的解析式为y =x ,∵A 1B 1⊥OA 1,∴P 1(0,2),设A 1P 1的解析式为y =kx+b 1,∴11k b 1b 2+=⎧⎨=⎩,解得1k 1b 2=-⎧⎨=⎩, ∴直线A 1P 1的解析式为y =﹣x+2,解22y x y x =-+⎧⎨=⎩求得B 1(﹣2,4), ∵A 2B 1∥OA 1,设B 1P 2的解析式为y =x+b 2,∴﹣2+b 2=4,∴b 2=6,∴P 2(0,6),解26y x y x=+⎧⎨=⎩求得A 2(3,9) 设A 1B 2的解析式为y =﹣x+b 3,∴﹣3+b 3=9,∴b 3=12,∴P 3(0,12),…∴P n (0,n 2+n ),故答案为(0,n 2+n ).【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据一次函数图象上点的坐标特征得出规律是解题的关键.17.抛物线y =(m 2-2)x 2-4mx +n 的对称轴是x =2,且它的最高点在直线y =12x +2上,则m=________,n =________.【答案】-1 -1【分析】由对称轴可求得m 的值,且可求得顶点坐标,再把顶点坐标代入直线解析式可求得n .【详解】∵抛物线y=(m 2−2)x 2−4mx+n 的对称轴是x=2,∴−2422()m m --=2,解得m=2或m=−1, ∵抛物线有最高点,∴m=−1,∴抛物线解析式为y=−x 2+4x+n=−(x−2)2+4+n ,∴顶点坐标为(2,4+n),∵最高点在直线y=12x+2上, ∴4+n=1+2,解得n=−1,故答案为−1,−1.【点睛】本题考查二次函数的性质、一次函数图象上点的坐标特征和二次函数的最值,解题的关键是掌握二次函数的性质、一次函数图象上点的坐标特征.18.若函数21y x a =-+是正比例函数,则a =__________.【答案】1【分析】根据正比例函数的定义即可得出答案.【详解】∵函数21y x a =-+是正比例函数∴-a+1=0解得:a=1故答案为1.【点睛】本题考查的是正比例函数,属于基础题型,正比例函数的表达式为:y=kx(其中k≠0).三、解答题(本题包括8个小题)19.如图,O 的内接四边形ABCD 两组对边的延长线分别相交于点E 、E .(1)若E F ∠=∠时,求证:ADC ABC ∠=∠;(2)若42E F ∠=∠=︒时,求A ∠的度数.【答案】(1)证明见解析;(2)48°.【分析】(1)根据对顶角与三角形的外角定理即可求解;(2)根据圆内接四边形得到ECD A ∠=∠,再根据三角形的内角和及外角定理即可求解.【详解】1E F ∠=∠(),ECD FCB ∠=∠,E ECDF FCB ∴∠+∠=∠+∠,ADC ABC ∴∠=∠;(2)180A BCD ∠+∠=︒,180ECD BCD ∠+∠=︒,A ECD ∴∠=∠.EDC A F ∠=∠+∠,且180EDC E ECD ∠+∠+∠=︒,2180A E F ∴∠+∠+∠=︒,42E F ∴∠=∠=︒,48A ∴∠=︒.【点睛】此题主要考查圆内的角度求解,解题的关键是熟知三角形的内角和及圆内接四边形的性质.20.先化简,再求值231(1)22x x x --÷++的值,其中2sin 453tan30x ︒=-︒. 【答案】11x +;22【分析】先算括号里面的,再算除法,根据特殊角的三角函数值先得出x ,再代入即可.【详解】原式2231()2x 22x x x x +-=-÷+++ 223122x x x x +--=÷++ 21221x x x x -+=⨯+- 122(1)(1)x x x x x -+=⨯++- 11x =+. 当232321x =⨯-⨯=-时, 原式121211x ===+-+. 【点睛】本题考查了分式的化简求值以及特殊角的三角函数值,是基础知识要熟练掌握. 21.如图1,在平面直角坐标系xOy 中,函数m y x=(m 为常数,1m ,0x >)的图象经过点(),1P m 和()1,Q m ,直线PQ 与x 轴,y 轴分别交于C ,D 两点.(1)求OCD ∠的度数;(2)如图2,连接OQ 、OP ,当DOQ OCD POC ∠=∠-∠时,求此时m 的值:(3)如图3,点A ,点B 分别在x 轴和y 轴正半轴上的动点.再以OA 、OB 为邻边作矩形OAMB .若点M 恰好在函数m y x=(m 为常数,1m ,0x >)的图象上,且四边形BAPQ 为平行四边形,求此时OA 、OB 的长度.【答案】(1)45OCD ∠=︒;(2)1m ;(3)12OA OB +== 【分析】(1)根据点P 、Q 的坐标求出直线PQ 的解析式,得到点C 、D 的坐标,根据线段长度得到OCD∠的度数;(2)根据已知条件求出∠QOP=45︒,再由222DQ PC PQ +=即可求出m 的值;(3)根据平行四边形及矩形的性质得到45BAO DCO ∠=∠=︒,OA OB =,设设OA OB n ==,得到点M 的坐标,又由AB PQ =两者共同求出n ,得到结果.【详解】(1)由(),1P m ,()1,Q m ,得()1PQ y x m =-++,∴()0,1D m +,()1,0C m +∴1OC OD m ==+,∴COD ∆为等腰直角三角形,∴45OCD ∠=︒;(2)∵DOQ OCD POC ∠=∠-∠,∴45DOQ POC OCD ︒∠+∠=∠=,∴90()904545QOP DOQ POC ︒︒︒︒∠=-∠+∠=-=易得222DQ PC PQ +=,∴2222221111(1)(1)m m +++=-+-,∴1m (舍负);(3)∵四边形ABPQ 为平行四边形, ∴//AB PQ ,又45DCO ∠=︒,∴45BAO DCO ∠=∠=︒,∴OA OB =.设OA OB n ==.则M 为(),n n 代入m y x =,∴m n n =,∴2m n =, 又AB PQ =,∴()221n m =-,由2m n =,得15n +=(舍负), ∴当15OA OB +==时,符合题意.【点睛】 此题是反比例函数与一次函数的综合题,考查反比例函数的性质,一次函数的性质,勾股定理,矩形的性质,平行四边形的性质.22.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--±.【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA=PE ,PA=AE ,PE=AE 三种情况讨论分析即可.详解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴1640 4206a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:3 4 3 2 6abc⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以二次函数的解析式为:y=233642x x--+;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=122x--,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,233642m m--+),则点F(m,122m--),∴DF=233642m m--+﹣(122m--)=2384m m--+,∴S△ADE=S△ADF+S△EDF=12×DF×AG+12DF×EH=12×DF×AG+12×DF×EH=12×4×DF=2×(2384m m--+)=23250233m-++(),∴当m=23-时,△ADE的面积取得最大值为503.(3)y=233642x x--+的对称轴为x=﹣1,设P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求29n+212n++(),16425+=,分三种情况讨论:当PA=PE 时,29n +=212n ++(),解得:n=1,此时P (﹣1,1); 当PA=AE 时,29n +=16425+=,解得:n=11±,此时点P 坐标为(﹣1,11±);当PE=AE 时,212n ++()=16425+=,解得:n=﹣219±,此时点P 坐标为:(﹣1,﹣219±).综上所述:P 点的坐标为:(﹣1,1),(﹣1,11±),(﹣1,﹣219±).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.23.如图,已知反比例函数y =k x的图象与一次函数y =x+b 的图象交于点A(1,4),点B(﹣4,n). (1)求n 和b 的值;(2)求△OAB 的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.【答案】(1)-1;(2)7.5;(3)x >1或﹣4<x <0.【分析】(1)把A 点坐标分别代入反比例函数与一次函数解析式,求出k 和b 的值,把B 点坐标代入反比例函数解析式求出n 的值即可;(2)设直线y =x+3与y 轴的交点为C ,由S △AOB=S △AOC+S △BOC ,根据A 、B 两点坐标及C 点坐标,利用三角形面积公式即可得答案;(3)利用函数图像,根据A 、B 两点坐标即可得答案.【详解】(1)把A 点(1,4)分别代入反比例函数y =k x ,一次函数y =x+b , 得k =1×4,1+b =4,解得k =4,b =3,∵点B (﹣4,n )也在反比例函数y =4x 的图象上, ∴n =44-=﹣1; (2)如图,设直线y =x+3与y 轴的交点为C ,∵当x =0时,y =3,∴C (0,3),∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=7.5,(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.【点睛】本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y =k x中k 的几何意义,这里体现了数形结合的思想.24.小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)实验. ()1他们在一次实验中共掷骰子60次,试验的结果如下: 朝上的点数1 2 3 4 5 6 出现的次数 7 9 6 8 20 10 ①填空:此次实验中“5点朝上”的频率为________;②小红说:“根据实验,出现5点朝上的概率最大.”她的说法正确吗?为什么?()2小颖和小红在实验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表或画树状图的方法加以说明,并求出其最大概率.【答案】(1)①13;②说法是错误的.理由见解析;(2)1 6. 【解析】(1)①让5出现的次数除以总次数即为所求的频率;②根据概率的意义,需要大量实验才行; (2)列举出所有情况,比较两枚骰子朝上的点数之和的情况数,进而让最多的情况数除以所有情况数的即可.【详解】解:()1①120603÷=; ②说法是错误的.在这次试验中,“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大.因为当试验的次数较大时,频率稳定于概率,但并不完全等于概率.()2 ()1,6()2,6 ()3,6 ()4,6 ()5,6 ()6,6 ()1,5 ()2,5 ()3,5 ()4,5 ()5,5 ()6,5由表格可以看出,总情况数有36种,之和为7的情况数最多,为6种,所以P (点数之和为7)61366==. 【点睛】考查用列表格的方法解决概率问题及概率的意义;用到的知识点为:概率是大量实验下一个稳定的值;数学中概率等于所求情况数与总情况数之比.25.在2019年国庆期间,王叔叔的服装店进回一种女装,进价为400元,他首先在进价的基础上增加100元,由于销量非常好,他又连续两次涨价,结果标价比进价的2倍还多45元,求王叔叔这两次涨价的平均增长率是百分之多少?【答案】30%【分析】设甲卖家这两次涨价的平均增长率为x ,则首次标价为500(1+x ),二次标价为500(1+x )(1+x )即500(1+x )2,据此即可列出方程.【详解】解:设王叔叔这两次涨价的平均增长率为x ,根据题意得, 2(400100)(1)400245++=⨯+x解之得,10.330%x ==,2 2.3x =-(不符合题意,故舍去)∴王叔叔这两次涨价的平均增长率为30%【点睛】本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.26.为倡导节能环保,降低能源消耗,提倡环保型新能源开发,造福社会.某公司研发生产一种新型智能环保节能灯,成本为每件40元.市场调查发现,该智能环保节能灯每件售价y (元)与每天的销售量为x (件)的关系如图,为推广新产品,公司要求每天的销售量不少于1000件,每件利润不低于5元.(1)求每件销售单价y (元)与每天的销售量为x (件)的函数关系式并直接写出自变量x 的取值范围; (2)设该公司日销售利润为P 元,求每天的最大销售利润是多少元?(3)在试销售过程中,受国家政策扶持,毎销售一件该智能环保节能灯国家给予公司补贴m (m ≤40)元.在获得国家每件m 元补贴后,公司的日销售利润随日销售量的增大而增大,则m 的取值范围是(直接写出结果).【答案】(1)y =﹣1100x+70,自变量x 的取值范围1000≤x ≤2500;见解析;(2)每天的最大销售利润是22500元;见解析;(3)20≤m ≤1.【分析】(1)利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;(3)构建二次函数,利用二次函数的性质即可解决问题.【详解】解:(1)设每件销售单价y (元)与每天的销售量为x (件)的函数关系式为y =kx+b ,把()150055,与()200050,代入y =kx+b 得, 150055200050k b k b +=⎧⎨+=⎩, 解得:110070k b ⎧=-⎪⎨⎪=⎩,∴每件销售单价y (元)与每天的销售量为x (件)的函数关系式为y =﹣1100x+70, 当y ≥45时,﹣1100x+70≥45,解得:x ≤2500, ∴自变量x 的取值范围1000≤x ≤2500;(2)根据题意得,P =()()2211140704030150022500100100100y x x x x x x ⎛⎫-=-+-=-+=--+ ⎪⎝⎭, ∵﹣1100<0,P 有最大值, 当x <1500时,P 随x 的增大而增大,∴当x =1500时,P 的最大值为22500元,答:每天的最大销售利润是22500元;(3)由题意得,P =()2117040+30100100x m x x m x ⎛⎫-+-=-++ ⎪⎝⎭,∵对称轴为x =()5030+m ,∵1000≤x ≤2500,∴x 的取值范围在对称轴的左侧时P 随x 的增大而增大,()5030+m ≥2500,解得:m ≥20,∴m 的取值范围是:20≤m ≤1.故答案为:20≤m ≤1.【点睛】本题主要考查的是一次函数与二次函数的综合应用,关键是根据题意得到一次函数表达式,然后根据条件得到关于利润与销量的二次函数表达式,进而利用二次函数的性质求最值.27.如图,在Rt ABC ∆中,90,2BAC AB AC ∠=︒==,点D 为BC 上一点且与B C 、不重合.45ADE ∠=︒,交AC 于E .(1)求证:ABD DCE ∆∆;(2)设,BD x AE y ==,求y 关于x 的函数表达式;(3)当ADE DCE ∆∆时,直接写出AE =_________.【答案】(1)详见解析;(2)21222y x x =-+(022x <<;(3)1 【分析】(1)先根据题意得出∠B =∠C ,再根据等量代换得出∠ADB =∠DEC 即可得证;(2)根据相似三角形的性质得出BD AB CE DC=,将相应值代入化简即可得出答案; (3)根据相似三角形的性质得出90AED DEC ∠=∠=︒,再根据已知即可证明AE=EC 从而得出答案.【详解】解:(1)Rt △ABC 中,∠BAC =90°,AB =AC =2,∴∠B =∠C =45°,BC =2∵∠ADE =45°,∴∠ADB +∠CDE =∠CDE +∠DEC =135°∴∠ADB =∠DEC ,∴△ABD ∽△DCE(2)∵△ABD ∽△DCE ,∴BD AB CE DC=, ∵BD =x ,AE =y ,则DC=x ,代入上式得:()2x x CE =,∴()22x xy =-,即2122y x =+(0x << (3)ADE DCE ∆∆,1180902AED DEC ∴∠=∠=⨯︒=︒ 在Rt ABC ∆中,90,2BAC AB AC ∠=︒== 45C ∴∠=︒ED EC ∴=45ADE ∠=︒DE AE ∴=112122AE EC AC ∴===⨯= 【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握定理是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AB 与⊙O 相切于点A ,BO 与⊙O 相交于点C ,点D 是优弧AC 上一点,∠CDA =27°,则∠B 的大小是( )A .27°B .34°C .36°D .54°【答案】C【分析】由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.【详解】解:∵AB 与⊙O 相切于点A , ∴OA ⊥BA . ∴∠OAB=90°. ∵∠CDA=27°, ∴∠BOA=54°. ∴∠B=90°-54°=36°. 故选C .考点:切线的性质.2.对于实数,a b ,定义运算“*”;()()22*a ab a b a b b ab a b ⎧-≤⎪=⎨->⎪⎩关于x 的方程()()21*1x x t +-=恰好有三个不相等的实数根,则t 的取值范围是( ) A .122t -<<- B .12t >-C .1024t <<D .1204t -<< 【答案】C【分析】设()()21*1y x x =+-,根据定义得到函数解析式22252(2)2(2)x x x y x x x ⎧++≤-=⎨--+>-⎩,由方程的有三个不同的解去掉函数图象与直线y=t 的交点有三个,即可确定t 的取值范围. 【详解】设()()21*1y x x =+-,由定义得到22252(2)2(2)x x x y x x x ⎧++≤-=⎨--+>-⎩,∵方程()()21*1x x t +-=恰好有三个不相等的实数根,∴函数22252(2)2(2)x x x y x x x ⎧++≤-=⎨--+>-⎩的图象与直线y=t 有三个不同的交点,∵22(2)y x x x =--+>-的最大值是4(1)2194(1)4⨯-⨯-=⨯-∴若方程()()21*1x x t +-=恰好有三个不相等的实数根,则t 的取值范围是1024t <<, 故选:C.【点睛】此题考查新定义的公式,抛物线与直线的交点与方程的解的关系,正确理解抛物线与直线的交点与方程的解的关系是解题的关键.3.如图,正六边形ABCDEF 内接于圆O ,圆O 半径为2,则六边形的边心距OM 的长为( )A .2B .23C .4D .3【答案】D【分析】连接OB 、OC ,证明△OBC 是等边三角形,得出3=OM OB 即可求解. 【详解】解:连接OB 、OC ,如图所示:则∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OB=2,∵OM⊥BC,∴△OBM为30°、60°、90°的直角三角形,∴33==2=3⨯OM OB,故选:D.【点睛】本题考查了正多边形和圆、正六边形的性质、垂径定理、勾股定理、等边三角形的判定与性质;熟练掌握正六边形的性质,证明三角形是等边三角形和运用垂径定理求出BM是解决问题的关键.4.方程x2+x-12=0的两个根为()A.x1=-2,x2=6B.x1=-6,x2=2C.x1=-3,x2=4D.x1=-4,x2=3【答案】D【解析】试题分析:将x2+x﹣12分解因式成(x+4)(x﹣1),解x+4=0或x﹣1=0即可得出结论.x2+x﹣12=(x+4)(x﹣1)=0,则x+4=0,或x﹣1=0,解得:x1=﹣4,x2=1.考点:解一元二次方程-因式分解法5.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A.252-B.25-C.251-D.52-【答案】A【解析】根据黄金比的定义得:51APAB-=,得514252AP-=⨯=-.故选A.6.如图,一条抛物线与x轴相交于A、B两点(点A在点B的左侧),其顶点P在线段MN上移动.若点M、N的坐标分别为(-1,-1)、(2,-1),点B的横坐标的最大值为3,则点A的横坐标的最小值为( )A.-3 B.-2.5 C.-2 D.-1.5【答案】C【分析】根据顶点P在线段MN上移动,又知点M、N的坐标分别为(-1,-2)、(1,-2),分别求出对称轴过点M 和N 时的情况,即可判断出A 点坐标的最小值. 【详解】解:根据题意知,点B 的横坐标的最大值为3, 当对称轴过N 点时,点B 的横坐标最大, ∴此时的A 点坐标为(1,0),当对称轴过M 点时,点A 的横坐标最小,此时的B 点坐标为(0,0), ∴此时A 点的坐标最小为(-2,0), ∴点A 的横坐标的最小值为-2, 故选:C. 【点睛】本题主要考查二次函数的综合题的知识点,解答本题的关键是熟练掌握二次函数的图象对称轴的特点,此题难度一般.7.下列方程属于一元二次方程的是( ) A .20x = B .()()23121x y -=-C .2310ax x -+=D .2110x x++= 【答案】A【解析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.【详解】解:A 、20x =该方程符合一元二次方程的定义,符合题意; B 、该方程属于二元二次方程,不符合题意;C 、当a=1时,该方程不是一元二次方程,不符合题意;D 、该方程不是整式方程,不是一元二次方程,不符合题意. 故选:A . 【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx+c=1(且a≠1).特别要注意a≠1的条件.这是在做题过程中容易忽视的知识点. 8.已知二次函数y =ax 2+bx +c (a≠0)图象上部分点的坐标(x ,y )的对应值如下表所示:则方程ax 2+bx +1.37=0的根是( )A .0或4B 4-C .1或5D .无实根【答案】B【分析】利用抛物线经过点(0,0.37)得到c=0.37,根据抛物线的对称性得到抛物线的对称轴为直线x=2,抛物线经过点1)-,由于方程ax 2+bx+1.37=0变形为ax 2+bx+0.37=-1,则方程ax 2+bx+1.37=0的根理解为函数值为-1所对应的自变量的值,所以方程ax 2+bx+1.37=0的根为124x x =. 【详解】解:由抛物线经过点(0,0.37)得到c=0.37, 因为抛物线经过点(0,0.37)、(4,0.37), 所以抛物线的对称轴为直线x=2,而抛物线经过点1)-所以抛物线经过点(41)-方程ax 2+bx+1.37=0变形为ax 2+bx+0.37=-1,所以方程ax 2+bx+0.37=-1的根理解为函数值为-1所对应的自变量的值,所以方程ax 2+bx+1.37=0的根为124x x =. 故选:B . 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质. 9.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .正三角形 B .正五边形C .正六边形D .正七边形【答案】C【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】A 、此图形不是中心对称图形,是轴对称图形,故此选项错误; B 、此图形不是中心对称图形,是轴对称图形,故此选项错误; C 、此图形既是中心对称图形,又是轴对称图形,故此选项正确; D 、此图形不是中心对称图形,是轴对称图形,故此选项错误. 故选:C . 【点睛】本题主要考查了轴对称图形与中心对称图形,掌握好中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 10.一元二次方程4x 2﹣3x+14=0根的情况是( ) A .没有实数根 B .只有一个实数根 C .有两个相等的实数根 D .有两个不相等的实数根【答案】D【分析】根据方程的系数结合根的判别式,即可得出△>0,由此即可得出原方程有两个不相等的实数根.【详解】解:4x2﹣3x+14=0,这里a=4,b=﹣3,c=14,b2﹣4ac=(﹣3)2﹣4×144⨯=5>0,所以方程有两个不相等的实数根,故选:D.【点睛】本题考查的知识点是根据一元二次方程根的判别式来判断方程的解的情况,熟记公式是解此题的关键. 11.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于()A.6 B.63C.33D.9【答案】B【分析】连接DF,根据垂径定理得到DE DF=,得到∠DCF=12∠EOD=30°,根据圆周角定理、余弦的定义计算即可.【详解】解:连接DF,∵直径CD过弦EF的中点G,∴DE DF=,∴∠DCF=12∠EOD=30°,∵CD是⊙O的直径,∴∠CFD=90°,∴CF=CD•cos∠3=3,故选B.。

∥3套精选试卷∥2020年衡水市达标名校九年级上学期数学期末统考试题

∥3套精选试卷∥2020年衡水市达标名校九年级上学期数学期末统考试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列判断正确的是()A.对角线互相垂直的平行四边形是菱形B.两组邻边相等的四边形是平行四边形C.对角线相等的四边形是矩形D.有一个角是直角的平行四边形是正方形【答案】A【分析】利用特殊四边形的判定定理逐项判断即可.【详解】A、对角线互相垂直的平行四边形是菱形,此项正确B、两组对边分别相等的四边形是平行四边形,此项错误C、对角线相等的平行四边形是矩形,此项错误D、有一个角是直角的平行四边形是矩形,此项错误故选:A.【点睛】本题考查了特殊四边形(平行四边形、菱形、矩形、正方形)的判定定理,掌握理解各判定定理是解题关键.2.一元二次方程(x+2)(x﹣1)=4的解是()A.x1=0,x2=﹣3 B.x1=2,x2=﹣3C.x1=1,x2=2 D.x1=﹣1,x2=﹣2【答案】B【解析】解决本题可通过代入验证的办法或者解方程.【详解】原方程整理得:x1+x-6=0∴(x+3)(x-1)=0∴x+3=0或x-1=0∴x1=-3,x1=1.故选B.【点睛】本题考查了一元二次方程的解法-因式分解法.把方程整理成一元二次方程的一般形式是解决本题的关键.3.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A.B.C.D.【答案】B【分析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.故选B.考点:简单概率计算.4.下列反比例函数图象一定在第一、三象限的是( )A .21m y x+= B .1m y x += C .m y x = D .m y x-= 【答案】A 【分析】根据反比例函数的性质,函数若位于一、三象限,则反比例函数系数k >0,对各选项逐一判断即可.【详解】解:A 、∵m 2+1>0,∴反比例函数图象一定在一、三象限;B 、不确定;C 、不确定;D 、不确定.故选:A .【点睛】本题考查了反比例函数的性质,理解反比例函数的性质是解题的关键.5.在平面直角坐标系中,将点()2,3向下平移1个单位长度,所得到的点的坐标是( )A .()1,3B .()2,2C .()2,4D .()3,3【答案】B【解析】横坐标,右移加,左移减;纵坐标,上移加,下移减可得所得到的点的坐标为(2,3-1),再解即可.【详解】解:将点P ()2,3向下平移1个单位长度所得到的点坐标为(2,3-1),即(2,2),故选:B .【点睛】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.6.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是( )A .B .C .D .【答案】D 【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.7.已知如图,直线AC ,BD 相交于点O ,且OA OD =,添加一个条件后,仍不能判定ABO DCO △≌△的是( ).A .BO CO =B .A D ∠=∠C .AB DC =D .B C ∠=∠【答案】C 【分析】根据全等三角形判定,添加BO CO =或A D ∠=∠或B C ∠=∠可根据SAS 或ASA 或AAS 得到ABO DCO △≌△.【详解】添加BO CO =或A D ∠=∠或B C ∠=∠可根据SAS 或ASA 或AAS 得到ABO DCO △≌△,添加AB DC =属SSA ,不能证ABO DCO △≌△.故选:C【点睛】考核知识点:全等三角形判定选择.熟记全等三角形的全部判定是关键.8.设a ,b 是方程x 2+2x ﹣20=0的两个实数根,则a 2+3a+b 的值为( )A .﹣18B .21C .﹣20D .18【答案】D【分析】根据根与系数的关系看得a+b =﹣2,由a ,b 是方程x 2+2x ﹣20=0的两个实数根看得a 2+2a =20,进而可以得解.【详解】解:∵a ,b 是方程x 2+2x ﹣20=0的两个实数根,∴a 2+2a =20,a+b =﹣2,∴a 2+3a+b=a 2+2a+a+b=20﹣2=1则a 2+3a+b 的值为1.故选:D .【点睛】本题主要考查的是一元二次方程中根与系数的关系,掌握一元二次方程的根与系数的关系式解此题的关键.9.在平面直角坐标系中,抛物线223y x x =+-与x 轴交于点A B 、,与y 轴交于点C ,则ABC ∆的面积是 ( )A .6B .10C .12D .15【答案】A【分析】根据题意,先求出点A 、B 、C 的坐标,然后根据三角形的面积公式,即可求出答案.【详解】解:∵抛物线223y x x =+-与x 轴交于点A B 、, ∴令0y =,则223=0+-x x ,解得:11x =,23x =-,∴点A 为(1,0),点B 为(3-,0),令=0x ,则3y =-,∴点C 的坐标为:(0,3-);∴AB=4,OC=3,∴ABC ∆的面积是:S =143=62; 故选:A.【点睛】本题考查了二次函数与坐标轴的交点,解题的关键是熟练掌握二次函数的性质,求出抛物线与坐标轴的交点.10.如图,将AOB 绕点0按逆时针方向旋转45︒后得到A OB ''△,若15AOB ∠=︒,则AOB '∠的度数是( )A .30B .35︒C .40︒D .45︒【答案】A 【分析】根据AOB 绕点0按逆时针方向旋转45︒后得到A OB ''△,可得45BOB '∠=︒,然后根据15AOB ∠=︒可以求出'AOB ∠的度数.【详解】∵AOB 绕点0按逆时针方向旋转45︒后得到''A OB∴45BOB '∠=︒又∵15AOB ∠=︒∴30AOB BOB AOB ''︒∠=∠-∠=【点睛】本题考查的是对于旋转角的理解,能利用定义从图形中准确的找出旋转角是关键.11.抛物线y =(x ﹣4)2﹣5的顶点坐标和开口方向分别是( )A .(4,﹣5),开口向上B .(4,﹣5),开口向下C .(﹣4,﹣5),开口向上D .(﹣4,﹣5),开口向下 【答案】A【解析】根据y =a (x ﹣h )2+k ,a >0时图象开口向上,a <0时图象开口向下,顶点坐标是(h ,k ),对称轴是x =h ,可得答案.【详解】由y =(x ﹣4)2﹣5,得开口方向向上,顶点坐标(4,﹣5).故选:A .【点睛】本题考查了二次函数的性质,利用y =a (x ﹣h )2+k ,a >0时图象开口向上,在对称轴的左侧,y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;a <0时图象开口向下,在对称轴的左侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小,顶点坐标是(h ,k ),对称轴是x =h.12.如图,在四边形ABCD 中,对角线AC ,BD 相交于点O ,且OA OC =,OB OD =.若要使四边形ABCD 为菱形,则可以添加的条件是( )A .AC BD =B .AB BC ⊥ C .60AOB ∠=︒D .AC BD ⊥【答案】D 【分析】根据对角线互相平分的四边形是平行四边形可得四边形ABCD 是平行四边形,再根据菱形的判定定理和矩形的判定定理逐一分析即可.【详解】解:∵在四边形ABCD 中, OA OC =,OB OD =∴四边形ABCD 是平行四边形若添加AC BD =,则四边形ABCD 是矩形,故A 不符合题意;若添加AB BC ⊥,则四边形ABCD 是矩形,故B 不符合题意;若添加60AOB ∠=︒,与菱形的对角线互相垂直相矛盾,故C 不符合题意;若添加AC BD ⊥则四边形ABCD 是菱形,故D 符合题意.故选D.【点睛】此题考查的是平行四边形的判定、矩形的判定和菱形的判定,掌握平行四边形的判定定理、矩形的判定定理和菱形的判定定理是解决此题的关键.二、填空题(本题包括8个小题)13.如图,点A 、B 分别在反比例函数y=1k x (k 1>0) 和 y=2k x(k 2<0)的图象上,连接AB 交y 轴于点P ,且点A 与点B 关于P 成中心对称.若△AOB 的面积为4,则k 1-k 2=______.【答案】1【分析】作AC ⊥y 轴于C ,BD ⊥y 轴于D ,如图,先证明△ACP ≌△BDP 得到S △ACP =S △BDP ,利用等量代换和k 的几何意义得到=S △AOC +S △BOD =12×|k 1|+12|k 2|=4,然后利用k 1<0,k 2>0可得到k 2-k 1的值. 【详解】解:作AC ⊥y 轴于C ,BD ⊥y 轴于D ,如图,∵点A 与点B 关于P 成中心对称.∴P 点为AB 的中点,∴AP=BP ,在△ACP 和△BDP 中ACP BDP APC BPD AP BP ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ACP ≌△BDP (AAS ),∴S △ACP =S △BDP ,∴S △AOB =S △APO +S △BPO =S △AOC +S △BOD =12×|k 1|+12|k 2|=4, ∴|k 1|+|k 2|=1∵k 1>0,k 2<0,∴k 1-k 2=1.故答案为1.【点睛】本题考查了比例系数k 的几何意义:在反比例函数y=k x图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.也考查了反比例函数的性质. 14.如图,已知∠AOB =30°,在射线OA 上取点O 1,以点O 1为圆心的圆与OB 相切;在射线O 1A 上取点O 2,以点O 2为圆心,O 2O 1为半径的圆与OB 相切;在射线O 2A 上取点O 3,以点O 3为圆心,O 3O 2为半径的圆与OB 相切……,若⊙O 1的半径为1,则⊙O n 的半径是______________.【答案】2n−1【分析】作O 1C 、O 2D 、O 3E 分别⊥OB ,易找出圆半径的规律,即可解题.【详解】解:作O 1C 、O 2D 、O 3E 分别⊥OB ,∵∠AOB =30°,∴OO 1=2CO 1,OO 2=2DO 2,OO 3=2EO 3,∵O 1O 2=DO 2,O 2O 3=EO 3,∴圆的半径呈2倍递增,∴⊙On 的半径为2n−1 CO 1,∵⊙O 1的半径为1,∴⊙O 10的半径长=2n−1,故答案为:2n−1.【点睛】本题考查了圆切线的性质,考查了30°角所对直角边是斜边一半的性质,本题中找出圆半径的规律是解题的关键.15.一元二次方程x 2﹣4=0的解是._________【答案】x=±1【解析】移项得x 1=4,∴x=±1.故答案是:x=±1.16.已知关于x 的方程x 2+x+m=0的一个根是2,则m=_____,另一根为_____.【答案】6-;3-.【解析】先把x=2代入方程,易求k ,再把所求k 的值代入方程,可得20x x m ++=,再利用根与系数的关系,可求出方程的另一个解:解:把x=2代入方程20x x m ++=,得22206m m ++=⇒=-.再把6m =-代入方程,得260x x +-=.设次方程的另一个根是a ,则2a =-6,解得a=-3.考点:1.一元二次方程的解;2.根与系数的关系.17.分式方程121x x=-的解是__________. 【答案】2x =【分析】等式两边同时乘以()1x x -,再移项即可求解. 【详解】121x x=- 等式两边同时乘以()1x x -得:22x x =-移项得:2x =,经检验,x=2是方程的解.故答案为:2x =.【点睛】本题考查了解分式方程的问题,掌握解分式方程的方法是解题的关键.18.二次函数2y ax bx c =++(a <0)图象与x 轴的交点A 、B 的横坐标分别为﹣3,1,与y 轴交于点C ,下面四个结论:①16a ﹣4b+c <0;②若P (﹣5,y 1),Q (52,y 2)是函数图象上的两点,则y 1>y 2;③a=﹣13c ;④若△ABC 是等腰三角形,则b=﹣3.其中正确的有______(请将结论正确的序号全部填上) 【答案】①③. 【解析】解:①∵a <0,∴抛物线开口向下,∵图象与x 轴的交点A 、B 的横坐标分别为﹣3,1,∴当x=﹣4时,y <0,即16a ﹣4b+c <0;故①正确;②∵图象与x 轴的交点A 、B 的横坐标分别为﹣3,1,∴抛物线的对称轴是:x=﹣1,∵P (﹣5,y 1),Q (52,y 2),﹣1﹣(﹣5)=4,52﹣(﹣1)=3.5,由对称性得:(﹣4.5,y 3)与Q (52,y 2)是对称点,∴则y 1<y 2;故②不正确;③∵2b a -=﹣1,∴b=2a ,当x=1时,y=0,即a+b+c=0,3a+c=0,a=﹣13c ;④要使△ACB 为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC ,当AB=BC=4时,∵AO=1,△BOC 为直角三角形,又∵OC 的长即为|c|,∴c 2=16﹣9=7,∵由抛物线与y 轴的交点在y 轴的正半轴上,∴c=7,与b=2a 、a+b+c=0联立组成解方程组,解得b=﹣273; 同理当AB=AC=4时,∵AO=1,△AOC 为直角三角形,又∵OC 的长即为|c|,∴c 2=16﹣1=15,∵由抛物线与y 轴的交点在y 轴的正半轴上,∴c=15,与b=2a 、a+b+c=0联立组成解方程组,解得b=﹣215; 同理当AC=BC 时,在△AOC 中,AC 2=1+c 2,在△BOC 中BC 2=c 2+9,∵AC=BC ,∴1+c 2=c 2+9,此方程无实数解.经解方程组可知有两个b 值满足条件.故⑤错误.综上所述,正确的结论是①③.故答案为①③.点睛:本题考查了等腰三角形的判定、方程组的解、抛物线与坐标轴的交点、二次函数2y ax bx c =++的图象与系数的关系:当a <0,抛物线开口向下;抛物线的对称轴为直线x=2b a-;抛物线与y 轴的交点坐标为(0,c ),与x 轴的交点为(x 1,0)、(x 2,0).三、解答题(本题包括8个小题)19.如图,锐角三角形ABC 中,CD ,BE 分别是AB ,AC 边上的高,垂足为D ,E .(1)证明:ACD ABE ∽.(2)若将D ,E 连接起来,则AED 与ABC 能相似吗?说说你的理由.【答案】(1)见解析;(2)能,理由见解析.【分析】(1)根据已知利用有两个角相等的三角形相似判定即可;(2)根据第一问可得到AD :AE=AC :AB ,有一组公共角∠A ,则可根据两组对应边的比相等且相应的夹角相等的两个三角形相似进行判定.【详解】()1证明:ACD ABE ∽.证明:∵CD ,BE 分别是AB ,AC 边上的高,∴90ADC AEB ∠=∠=.∵A A ∠=∠,∴ACD ABE ∽.()2若将D ,E 连接起来,则AED 与ABC 能相似吗?说说你的理由.∵ACD ABE ∽,∴::AD AE AC AB =.∴AD:AC=AE:AB∵A A ∠=∠,∴AED ABC ∽.【点睛】 考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.20.如图,矩形ABCD 中,AB =6cm ,AD =8cm ,点P 从点A 出发,以每秒一个单位的速度沿A→B→C 的方向运动;同时点Q 从点B 出发,以每秒2个单位的速度沿B→C→D 的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t 秒.(1)当t = 时,两点停止运动;(2)设△BPQ 的面积面积为S (平方单位)①求S 与t 之间的函数关系式;②求t 为何值时,△BPQ 面积最大,最大面积是多少?【答案】(1)1;(2)①当0<t <4时,S =﹣t 2+6t ,当4≤t <6时,S =﹣4t+2,当6<t≤1时,S =t 2﹣10t+2,②t =3时,△PBQ 的面积最大,最大值为3【分析】(1)求出点Q 的运动时间即可判断.(2)①的三个时间段分别求出△PBQ 的面积即可.②利用①中结论,求出各个时间段的面积的最大值即可判断.【详解】解:(1)∵四边形ABCD 是矩形,∴AD =BC =8cm ,AB =CD =6cm ,∴BC+AD =14cm ,∴t =14÷2=1,故答案为1.(2)①当0<t <4时,S =12•(6﹣t )×2t =﹣t 2+6t . 当4≤t <6时,S =12•(6﹣t )×8=﹣4t+2.当6<t≤1时,S=12(t﹣6)•(2t﹣8)=t2﹣10t+2.②当0<t<4时,S=12•(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+3,∵﹣1<0,∴t=3时,△PBQ的面积最大,最小值为3.当4≤t<6时,S=12•(6﹣t)×8=﹣4t+2,∵﹣4<0,∴t=4时,△PBQ的面积最大,最大值为8,当6<t≤1时,S=12(t﹣6)•(2t﹣8)=t2﹣10t+2=(t﹣5)2﹣1,t=1时,△PBQ的面积最大,最大值为3,综上所述,t=3时,△PBQ的面积最大,最大值为3.【点睛】本题主要考查了二次函数在几何图形中的应用,涉及了分类讨论的数学思想,灵活的利用二次函数的性质求三角形面积的最大值是解题的关键.21.已知:如图,E,F是正方形ABCD的对角线BD上的两点,且BE DF.求证:四边形AECF是菱形.【答案】见解析【解析】连接AC,交BD于O,由正方形的性质可得OA=OC,OB=OD,AC⊥BD根据BE=DF可得OE=OF,由对角线互相垂直平分的四边形是菱形即可判定,【详解】∵四边形ABCD是正方形,∴OD=OB,OA=OC,BD⊥AC,∵BE=DF,∴DE=BF,∴OE=OF,∵OA=OC,AC⊥EF,OE=OF,∴四边形AECF为菱形.【点睛】本题考查了正方形对角线互相垂直平分的性质,考查了菱形的判定,对角线互相垂直且互相平分的四边形是菱形,熟练掌握菱形的判定方法是解题关键.22.京剧脸谱是京剧艺术独特的表现形式.京剧表演中,经常用脸谱象征人物的性格,品质,甚至角色和命运.如红脸代表忠心耿直,黑脸代表强悍勇猛.现有三张不透明的卡片,其中两张卡片的正面图案为“红脸”,另外一张卡片的正面图案为“黑脸”,卡片除正面图案不同外,其余均相同,将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图或列表的方法,求抽出的两张卡片上的图案都是“红脸”的概率.(图案为“红脸”的两张卡片分别记为A1、A2,图案为“黑脸”的卡片记为B)【答案】4 9【分析】根据题意画出树状图,求出所有的情况数和两次抽取的卡片上都是“红脸”的情况数,再根据概率公式计算即可.【详解】画树状图为:由树状图可知,所有可能出现的结果共有9种,其中两次抽取的卡片上都是“红脸”的结果有4种,所以P(两张都是“红脸”)49 ,答:抽出的两张卡片上的图案都是“红脸”的概率是49.【点睛】本题考查了概率的求法.用到的知识点为数状图和概率,概率=所求情况数与总情况数之比,关键是根据题意画出树状图.23.已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.1.(1)试求出纸箱中蓝色球的个数;(2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在0.5附近波动,请据此估计小明放入的红球的个数.【答案】(1)50;(2)2【解析】(1)蓝色球的个数等于总个数乘以摸到蓝色球的概率即可;(2)因为摸到红球的频率在0.5附近波动,所以摸出红球的概率为0.5,再设出红球的个数,根据概率公式列方程解答即可.【详解】(1)由已知得纸箱中蓝色球的个数为:100×(1﹣0.2﹣0.1)=50(个)(2)设小明放入红球x 个.根据题意得: 200.5100x x+=+ 解得:x=2(个).经检验:x=2是所列方程的根.答:小明放入的红球的个数为2.【点睛】本题考查了利用频率估计概率,大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.关键是根据黑球的频率得到相应的等量关系.24.已知ΔABC 在平面直角坐标系中的位置如图所示.(1)分别写出图中点A 和点C 的坐标;(2)画出ΔABC 绕点C 按顺时针方向旋转;90°后的A B C '''∆.【答案】(1)A(0,4),C(3,1);(2)详见解析【分析】(1)直接从平面直角坐标系写出点A 和点C 的坐标即可;(2)根据找出点A 、B 、C 绕点C 顺时针方向旋转90°后的对应点A'、B'、C'的位置,然后顺次连接即可.【详解】解:(1)由图可得,A (0,4)、C (3,1);(2)如图,△A'B'C'即为所求.【点睛】本题考查了利用旋转变换作图和平面直角坐标系,根据旋转的性质准确找出对应点是解答本题的关键. 25.因抖音等新媒体的传播,西安已成为最著名的网红旅游城市之一,2018年“十一”黄金周期间,接待游客已达1690万人次,古城西安美食无数,一家特色小面店希望在长假期间获得较好的收益,经测算知,该小面的成本价为每碗6元,借鉴以往经验;若每碗小面卖25元,平均每天能够销售300碗,若降价销售,毎降低1元,则平均每天能够多销售30碗.为了维护城市形象,店家规定每碗小面的售价不得超过20元,则当每碗小面的售价定为多少元时,店家才能实现每天盈利6300元?【答案】当每碗售价定为20元时,店家才能实现每天利润6300.【分析】可设每碗售价定为x 元时,店家才能实现每天利润6300元,根据利润的等量关系列出方程求解即可.【详解】设每碗售价定为x 元时,店家才能实现每天利润6300元,依题意有()()63003026[0]530x x -+-=,解得1220,21x x ==,每碗售价不得超过20元,20x ∴=.答:当每碗售价定为20元时,店家才能实现每天利润6300.【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.26.如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C . (1)求这个二次函数的表达式;(2)点P 是直线BC 下方抛物线上的一动点,求△BCP 面积的最大值;(3)直线x=m 分别交直线BC 和抛物线于点M ,N ,当△BMN 是等腰三角形时,直接写出m 的值.【答案】(1)这个二次函数的表达式是y=x 1﹣4x+3;(1)S △BCP 最大=278;(3)当△BMN 是等腰三角形时,m 221,1.【解析】分析:(1)根据待定系数法,可得函数解析式;(1)根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PE 的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案;(3)根据等腰三角形的定义,可得关于m 的方程,根据解方程,可得答案.详解:(1)将A (1,0),B (3,0)代入函数解析式,得309330a b a b ++⎧⎨++⎩==, 解得14a b ⎧⎨-⎩==, 这个二次函数的表达式是y=x 1-4x+3;(1)当x=0时,y=3,即点C (0,3),设BC 的表达式为y=kx+b ,将点B (3,0)点C (0,3)代入函数解析式,得300k b b +⎧⎨⎩==, 解这个方程组,得13k b -⎧⎨⎩== 直线BC 的解析是为y=-x+3,过点P 作PE ∥y 轴,交直线BC于点E(t,-t+3),PE=-t+3-(t1-4t+3)=-t1+3t,∴S△BCP=S△BPE+S CPE=12(-t1+3t)×3=-32(t-32)1+278,∵-32<0,∴当t=32时,S△BCP最大=278.(3)M(m,-m+3),N(m,m1-4m+3)MN=m1-3m,BM=2|m-3|,当MN=BM时,①m1-3m=2(m-3),解得m=2,②m1-3m=-2(m-3),解得m=-2当BN=MN时,∠NBM=∠BMN=45°,m1-4m+3=0,解得m=1或m=3(舍)当BM=BN时,∠BMN=∠BNM=45°,-(m1-4m+3)=-m+3,解得m=1或m=3(舍),当△BMN是等腰三角形时,m的值为2,-2,1,1.点睛:本题考查了二次函数综合题,解(1)的关键是待定系数法;解(1)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用等腰三角形的定义得出关于m的方程,要分类讨论,以防遗漏.27.如图,已知△ABC与△A′B′C′关于点O成中心对称,点A的对称点为点A′,请你用尺规作图的方法,找出对称中心O,并作出△A′B′C′.(要求:尺规作图,保留作图痕迹,不写作法).【答案】见解析【分析】连接AA′,作AA′的垂直平分线得到它的中点O,则点O为对称中心,延长BO到B′,使OB′=OB,延长CO到C′,使OC′=OC,则△A′B′C′满足条件.【详解】如图,点O和△A′B′C′为所作.【点睛】本题考查了根据旋转变化作图的知识,根据作线段的垂直平分线找到对称中心是解决问题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.二次函数y =x 2+(t ﹣1)x+2t ﹣1的对称轴是y 轴,则t 的值为( )A .0B .12C .1D .2 【答案】C【解析】根据二次函数的对称轴方程计算.【详解】解:∵二次函数y =x 2+(t ﹣1)x+2t ﹣1的对称轴是y 轴,∴﹣12t -=0, 解得,t =1,故选:C .【点睛】本题考查二次函数对称轴性质,熟练掌握对称轴的公式是解题的关键.2.把方程2830x x +-=化成2()x m n +=的形式,则,m n 的值分别是( )A .4,13B .-4,19C .-4,13D .4,19【答案】D【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【详解】解:∵x 2+8x-3=0,∴x 2+8x=3,∴x 2+8x+16=3+16,∴(x+4)2=19,∴m=4,n=19,故选:D .【点睛】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.3.如图,在△ABC 中,∠A =75°,AB =6,AC =8,将△ABC 沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .【答案】D【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A 、根据平行线截得的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误; B 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C 、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D 、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;故选:D .【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.4.若点()2,6--在反比例函数k y x =上,则k 的值是( ) A .3B .3-C .12D .12- 【答案】C【分析】将点(-2,-6)代入k y x=,即可计算出k 的值. 【详解】∵点(-2,-6)在反比例函数k y x =上, ∴k=(-2)×(-6)=12,故选:C.【点睛】本题考查了待定系数法求反比例函数解析式,明确函数图象上点的坐标符合函数解析式是解题关键. 5.如图,A 、D 是⊙O 上的两点,BC 是直径,若∠D =40°,则∠ACO =( )A .80°B .70°C .60°D .50°【答案】D 【分析】根据圆周角的性质可得∠ABC=∠D,再根据直径所对圆周角是直角,即可得出∠ACO 的度数.∴∠AOC =2∠D =80°,∵OA =OC ,∴∠ACO =∠OAC =12(180°﹣∠AOC )=50°, 故选:D .【点睛】本题考查圆周角的性质,关键在于熟练掌握圆周角的性质,特别是直径所对的圆周角是直角.6.圆的面积公式S =πR 2中,S 与R 之间的关系是( )A .S 是R 的正比例函数B .S 是R 的一次函数C .S 是R 的二次函数D .以上答案都不对 【答案】C【解析】根据二次函数的定义,易得S 是R 的二次函数,故选C. 7.若0234x y z ==≠,则23x y z+=( ) A .52 B .14 C .1 D .134 【答案】D 【分析】令234x y z ===k ,则x=2k ,y=3k ,z=4k ,再代入分式进行计算即可. 【详解】解:令234x y z ===k ,则x=2k ,y=3k ,z=4k , ∴2322331313444x y k k k z k k +⨯+⨯===. 故选:D .【点睛】本题考查的是分式的化简求值,在解答此类题目时要注意,当条件是连等式,因此可用设参数法,即设出参数k ,得出x ,y ,z 与k 的关系,然后再代入待求的分式化简即可.8.对于函数()229y x =+-,下列结论错误的是( )A .图象顶点是()2,9--B .图象开口向上C .图象关于直线2x =-对称D .图象最大值为﹣9 【答案】D【分析】根据函数解析式和二次函数的性质可以判断各个选项中的说法是否正确,本题得以解决.【详解】解:A .∵函数y=(x+2)2-9,∴该函数图象的顶点坐标是(-2,-9),故选项A 正确;B .a=1>0,该函数图象开口向上,故选项B 正确;2故选:D.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.9.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103B.28×103C.2.8×104D.0.28×105【答案】C【解析】试题分析:28000=1.1×1.故选C.考点:科学记数法—表示较大的数.10.如图是一根空心方管,则它的主视图是()A.B.C.D.【答案】B【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看是:大正方形里有一个小正方形,∴主视图为:故选:B.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意看不到的线画虚线.11.如图,传送带和地面成一斜坡,它把物体从地面送到离地面5米高的地方,物体所经过路程是13米,那么斜坡的坡度为()A.1:2.6 B.1:513C.1:2.4 D.1:512的数据可以得到坡度,本题得以解决.【详解】如图据题意得;AB=13、AC=5,则222213512AB AC -=-=,∴斜坡的坡度i=tan ∠ABC=512AC BC ==1∶2.4, 故选C.12.下列方程是一元二次方程的是( )A .2(1)x x x -=B .x 2=0C .x 2-2y=1D .11x x =- 【答案】B【解析】利用一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程,可求解.【详解】解:A :()21xx x -=,化简后是:x 0-=,不符合一元二次方程的定义,所以不是一元二次方程;B :x 2=0,是一元二次方程;C :x 2-2y=1含有两个未知数,不符合一元二次方程的定义,所以不是一元二次方程;D :11x x=-,分母含有未知数,是一元一次方程,所以不是一元二次方程; 故选:B .【点睛】本题考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.二、填空题(本题包括8个小题)13.在半径为10cm 的圆中,90︒的圆心角所对的弧长是__________cm .【答案】5π 【分析】根据弧长公式:180n r l π=即可求出结论. 【详解】解:由题意可得:弧长=90105180cm ππ⨯= 故答案为:5π.此题考查的是求弧长,掌握弧长公式是解决此题的关键.14.从长度分别是4cm ,8cm ,10cm ,12cm 的四根木条中,抽出其中三根能组成三角形的概率是______. 【答案】34 【分析】四根木条中,抽出其中三根的组合有4种,计算出能组成三角形的组合,利用概率公式进行求解即可.【详解】解:能组成三角形的组合有:4,8,10;4,10,12;8,10,12三种情况,故抽出其中三根能组成三角形的概率是34. 【点睛】本题考查了列举法求概率,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n,构成三角形的基本要求为两小边之和大于最大边. 15.二次函数y =ax 1+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x =1,下列结论:①4a +b =0;②9a +c >3b ;③ 8a +7b +1c >0;④若点A (﹣3,y 1)、点B (12,y 1)、点C (72 ,y 3)在该函数图象上,则y 1<y 3<y 1;⑤若方程a (x +1)(x ﹣5)=﹣3的两根为x 1和x 1,且x 1<x 1,则x 1<﹣1<5<x 1.其中正确的结论有_______个.【答案】2【分析】根据二次函数的图象与系数的关系即可求出答案.【详解】①由对称轴可知:x =−2b a=1, ∴4a +b =0,故①正确;②由图可知:x =−2时,y <0,∴9a−2b +c <0,即9a +c <2b ,故②错误;③令x =−1,y =0,∴a−b +c =0,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)填空:每天可售出书本(用含x的代数式表示);
(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?
23.某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同.
(1)求每次下降的百分率;
(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
利用勾股定理得出AC的长,再利用图中阴影部分的面积=S△ABC−S扇形面积求出即可.
【详解】
解:在Rt△ABC中,∠ABC=90°,AB=8cm,BC=6cm,
∴ cm,
则 =5 cm,
∴S阴影部分=S△ABC−S扇形面积= (cm2),
A.有两个不相等的实数根B.有两个相等的实数根
C.有一个根是x=1D.不存在实数根
9.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )
A. B. C. D.
10.下列函数中是二次函数的为()
A.y=3x-1B.y=3x2-1
C.y=(x+1)2-x2D.y=x3+2x-3
14.已知二次函数y=3x2+2x,当﹣1≤x≤0时,函数值y的取值范围是_____.
15.如图,点 , , 均在 的正方形网格格点上,过 , , 三点的外接圆除经过 , , 三点外还能经过的格点数为.
16.二次函数 上一动点 ,当 时,y的取值范围是_____.
17.从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:
A.“任意画出一个等边三角形,它是轴对称图形”是随机事件
B.某种彩票的中奖率为 ,说明每买1000张彩票,一定有一张中奖
C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为
D.“概率为1的事件”是必然事件
4.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是( )
19.如图,如果一只蚂蚁从圆锥底面上的点B出发,沿表面爬到母线AC的中点D处,则最短路线长为_____.
20.已知二次函数y=a(x+3)2﹣b(a≠0)有最大值1,则该函数图象的顶点坐标为_____.
三、解答题
21.某童装店购进一批20元/件的童装,由销售经验知,每天的销售量y(件)与销售单价x(元)之间存在如图的一次函数关系.
2020年衡水市初三数学上期末试题(带答案)
一、选择题
1.如图,Rt△ABC中,∠ABC=90°,AB=8cm,BC=6cm,分别以A、C为圆心,以 的长为半径作圆,将Rt△ABC截去两个扇形,则剩余(阴影)部分面积为( )
A.(24− )cm2B. cm2
C.(24− )cm2D.(24− )cm2
7.如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为( )
A.6B.8C.10D.12
8.某同学在解关于x的方程ax2+bx+c=0时,只抄对了a=1,b=﹣8,解出其中一个根是x=﹣1.他核对时发现所抄的c是原方程的c的相反数,则原方程的根的情况是( )
A. B. C. D.
5.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为()
A. B. C. D.
6.已知关于 的一元二次方程 的两根为 , ,则一元二次方程 的根为()
A.0,4B.-3,5C.-2,4D.-3,1
24.已知抛物线y=x2-2x-8与x轴的两个交点为A,B(A在B的左侧),与y轴交于点C.
(1)直接写出点A,B,C的坐标;
(2)求△ABC的面积.
25.已知关于x的一元二次方程x2+(m+3)x+m+2=0.
(1)求证:无论m取何值,原方程总有两个实数根;
(2)若x1,x2是原方程的两根,且x12+x22=2,求m的值.
2.已知二次函数y=ax2+bx+c(a>0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x1,x2(0<x1<x2<4)时,对应的函数值是y1,y2,且y1=y2,设该函数图象的对称轴是x=m,则m的取值范围是()
A.0<m<1B.1<m≤2C.2<m<4D.0<m<4
3.下列说法正确的是()
公交车用时
公交车用时的频数
线路
合计
A
59
151
166
124500ຫໍສະໝຸດ B5050
122
278
500
C
45
265
167
23
500
早高峰期间,乘坐_________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.
18.若一元二次方程x2+px﹣2=0的一个根为2,则p=_____,另一个根是_____.
(1)求y与x之间的函数关系;
(2)当销售单价定为多少时,每天可获得最大利润,最大利润是多少?
22.今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:
11.“射击运动员射击一次,命中靶心”这个事件是()
A.确定事件B.必然事件C.不可能事件D.不确定事件
12.二次函数y=3(x–2)2–5与y轴交点坐标为( )
A.(0,2)B.(0,–5)C.(0,7)D.(0,3)
二、填空题
13.一个不透明袋中装有若干个红球,为估计袋中红球的个数,小文在袋中放入10个白球(每个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到白球的频率是 ,则袋中红球约为________个.
相关文档
最新文档