概率论与数理统计教案
概率论与数理统计教案.doc

《概率论与数理统计》课程教案使用教材作者:贺兴时书名:概率论与数理统计第一章随机事件及概率一.本章的教学目标及基本要求(1) 理解随机试验、样本空间、随机事件的概念;(2) 掌握随机事件之间的关系与运算,;(3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算;(4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。
了解概率的公理化定义。
(5) 理解条件概率、全概率公式、Bayes 公式及其意义。
理解事件的独立性。
二.本章的教学内容及学时分配2学时第一章随机事件及概率1.1 随机事件1.2 概率及性质2学时1.3 条件概率与事件的独立性2学时1.4 全概率公式与贝叶斯公式2学时三.本章教学内容的重点和难点1)随机事件及随机事件之间的关系;2)古典概型及概率计算;3)概率的性质;4)条件概率,全概率公式和Bayes公式5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1)使学生能正确地描述随机试验的样本空间和各种随机事件;2)注意让学生理解事件的互斥关系;3)让学生掌握事件之间的运算法则和德莫根定律;4)古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;5)讲清楚抽样的两种方式——有放回和无放回;五.思考题和习题思考题:1. 集合的并运算和差运算-是否存在消去律?2. 怎样理解互斥事件和逆事件?3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章随机变量及其分布一.本章的教学目标及基本要求(1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率;(2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配学时三.本章教学内容的重点和难点a) 随机变量的定义、分布函数及性质;b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布)。
《概率论与数理统计》课程教案

P{a<W(X1,X2,…,Xn;θ)<b}1-α,
注意这里尽量选取置信区间使其长度最短,以达到最佳估计精度。
3°若能从不等式a<W(X1,X2,…,Xn;θ)<b中得到等价的不等式 <θ< ,其中 = (X1,X2,…,Xn), = (X1,X2,…,Xn)都是统计量,那么( , )就是θ的一个置信水平为1-α的置信区间。
解:已知(0-1)分布的均值μ=p,方差σ2=p(1-p)
现在样本容量很大,由棣莫弗-拉普拉斯中心极限定理
样本的和 近似服从正态分布,且有
= ~N(0,1),于是有
≈1-α
而不等式 等价于
(n+ )p2-(2n + )p+n <0
设其两个解为p1,p2,p1<p2
则(p1,p2)即为所求置信水平为1-α的置信区间.
( , )
第三部分两个正态总体的区间估计(30分钟)
(二)两个总体的情况N(μ1,σ12),N(μ2,σ22)
背景:已知产品的某一质量指标服从正态分布,但由于原料、设备、操作人员不同,或工艺过程改变等因素,引起总体均值、总体方差有所改变,需要知道这样的变化有多大,需要考虑两个正态总体的均值差或方差比的估计问题。
设已给定置信水平为1-α,并设X1,X2,…,Xn1是来自第一个总体的样本;Y1,Y2,…,Yn2是来自第二个总体的样本,两个样本相互独立,且设 , 为相应的总体的样本均值, , 分别是两个总体的样本方差。
1°两个总体均值差μ1-μ2的置信区间
(a)σ12,σ22均为已知的情况
, 分别为μ1,μ2的无偏估计,所以 - 是μ1-μ2的无偏估计量
《概率论与数理统计》教案第13课二维随机变量的条件分布

课题二维随机变量的条件分布课时2课时(90min)教学目标知识技能目标:(1)理解二维随机变量的条件分布(2)理解二维离散型随机变量的边缘分布律(3)理解二维连续型随机变量的边缘概率密度素质目标:(1)帮助学生树立正确看待随机现象的世界观,掌握统计估计的思想与方法教学重难点教学重点:二维随机变量的条件分布,二维离散型随机变量的边缘分布律教学难点:二维连续型随机变量的边缘概率密度教学方法讲练结合法、问答法、讨论法教学用具电脑、投影仪、多媒体课件、教材教学过程主要教学内容及步骤课前任务【教师】布置课前任务,和学生负责人取得联系,让其提醒同学通过APP或其他学习软件,搜集并了解二维随机变量条件分布的相关知识【学生】完成课前任务考勤【教师】使用APP进行签到【学生】按照老师要求签到互动导入【教师】提出问题什么是条件分布?【学生】思考、讨论、回答传授新知【教师】通过大家的发言,引入新的知识点,讲解二维随机变量条件分布的相关知识【教师】介绍条件分布的概念对于二维随机变量来说,要描述(X f Y)整体的统计规律,可用联合分布;要描述单个分量的统计规律,可用边缘分布;而当一个分量固定取一个值时,在此条件下考虑另一个分量的统计规律,这就是所谓的条件分布.以下同样分别从离散型和连续型随机变量来讨论它们的条件分布.一、离散型设(X'丫)是二维离散型随机变量,其分布率为P(X=Xi,Y=yj)=Pij(J,j=l,2,)(X'丫)关于X和Y的边缘分布率为P(X三x∕)三ΣPy=Pi.(,=1,2,)J=I9p(y=x)=£p,=p,j(/=1,2,)r=l设R/>°,考虑在事件"=")已经发生的条件下事件(X=XJ 发生的概率,由条件概率公式可得P(X=X,Y=y)P尸-W 而k =方―,)易知上述条件概率具有分布率的性质:P(X=x i ∖Y=y j )...0.∖三/f SP(X=XjlY=X)==—∑⅞-1=1 (2Ji 日Pj P J i=∣Pj于是引入下面的定义.定义1设(X'丫)是二维离散型随机变量,对于固定的j ,若'"=»)>°,则称P(X=x i ∖Y=y)=P(x=X 'tY=>>p =⅛(i=ι,2,) 'PGF Pr (3-U) 为,=为条件下随机变量X 的条件分布率.同样,对于固定的i,若P(X=Xj >°,则称P(X=Xy=y)p始7"“)=Pfn ”2,)为在X=Xi 条件下随机变量Y 的条件分布率.条1牛分布率就是在边缘分布率的基础上都加上"另一个随机变量取定某值”这个条件. 从定义易知,条件分布率也满足非负性和规范性.例1设(X'')的联合分布率如表3-12所示.表3-121 2 00.1 0.3 0.1 1 0.2 0.2 0.1求在y=°条件下,X 的条件分布率;χ=ι条件下Y 的条件分布率.……(详见教材)二、连续型设(x'y)是二维连续型随机变量这时由于对任意的X'),有P(X=X)=°,P(y=y)=()因此不能直接用条件概率公式引入"条件分布函数"了.考虑o ,v3ctll1v 、P(X^χt y<Yy+ε) P(X^∖χ∖y<y y+£)=——-~⅛ ------------------------ U — P(y<y,,y+ε) 当C 很小时,在某些条件下有P(X 别加“y+上瞎爱打:甯必(3-15)∫r÷4 /(χ,y)dy y因此,给出以下定义./(χ,y)定义2设(''V的概率密度为/(“'田,4(y)为Y的边缘密度,对于固定的y,八°,)为在丫=>条件下X的条件概率密度,记为册α∣y)=gι1人⑴,(3.16)并称∕⅛(x∣y)=P(X,,Xly=y)=匚窗II ck为在Y=丁条I牛下X的条件分布函数.类似地,可以定义源(川外-/()JX⑶(3-17)及∕⅛(yI外=P(K,y∖x=χ)=J:由,例2设二维随机变量(X'V具有概率密度r -»X2+J2…1»/(χ>y)=¼0,其他.求/种(Xly)解- 2y j"y?Λ(J)=∫∕*,y)口=π,ιn,.0, 其他.于是,对符合I川”1的一切y,有f(x,y) i----- IXL,Ji y»Λ∣rU∣^)=277f=2√1-/λo0,其他.【学生】聆听、思考、理解、记忆【教师】给出题目,组织学生以小组为单位进行解题把三个球等可能地放入编号为1,2,3的三个盒子中,每盒可容球数无限记X为落入1号盒fi弼激,Y为落入2号盒的屐,求:(1)在Y=O的条件下,X的分布律;拓展训练(2)在X=2的条件下,Y的分布律.【学生】聆听、思考、讨论、解题【教师】公布正确答案,讲解解题步骤【学生】对比答案和解题步骤,提高自身解题技巧课堂小结【教师】简要总结本节课的要点二维随机变量的条件分布二维离散型随机变量的边缘分布律二维连续型随机变量的边缘概率密度【学生】总结回顾知识点作业布置【教师】布置课后作业(I)完邮材中的习题3-3;(2)除APP蝌酵习平相【学生】完成课后任务教学反思。
概率论与数理统计教案(48课时)

概率论与数理统计教案(48课时)Chapter 1: XXX1.Learning Objectives and Basic Requirements:1) Understand the concepts of random experiments。
sample space。
and random events;2) Master the nships and ns een random events;3) Master the basic XXX。
learn how to XXX;4) Understand the concept of event frequency。
know the XXX random phenomena。
and the XXX.5) XXX。
the law of total probability。
Bayes' theorem。
and their XXX.2.Teaching Content and Time n:n 1: XXXn 2: XXX (2 hours)n 3: XXX (Classical Probability) (2 hours)n 4: XXXn 5: Independence of Events (2 hours)3.XXX:1) Random events and nships een random events;2) XXX;3) Properties of probability;4) nal probability。
the law of total probability。
and Bayes' theorem;5) XXX。
XXX。
XXX.4.XXX:1) Enable students to correctly describe the sample space of random experiments and us random events;2) Pay n to helping students understand the specific meanings of events such as A∪B。
国家精品课 概率论与数理统计教案

国家精品课概率论与数理统计教案国家精品课“概率论与数理统计”教案一、课程概述课程名称:概率论与数理统计授课人:XXX授课对象:本科生课程时长:48学时二、教学目标1. 知识目标:掌握概率论与数理统计的基本概念、原理和方法,理解其在实际问题中的应用。
2. 能力目标:培养学生运用概率论与数理统计知识解决实际问题的能力,提高其逻辑思维和创新能力。
3. 情感态度价值观:培养学生对概率论与数理统计的兴趣,增强其科学素养,为其今后学习、工作打下坚实基础。
三、教学内容与要求1. 概率论基础:介绍概率的基本概念、条件概率、独立性等,要求学生掌握概率的计算和实际应用。
2. 随机变量及其分布:介绍随机变量及其分布函数,常见的随机变量分布类型,以及随机变量的数字特征等。
3. 数理统计基础:介绍数理统计的基本概念、参数估计和假设检验等,要求学生掌握参数估计和假设检验的方法。
4. 回归分析与方差分析:介绍一元线性回归分析、多元线性回归分析和方差分析等,要求学生掌握相关分析和回归分析的方法。
5. 课程实践:组织学生进行实际问题的概率论与数理统计应用,提高其解决实际问题的能力。
四、教学方法与手段1. 理论教学:采用讲授法、讨论法等教学方法,帮助学生理解概率论与数理统计的基本概念和原理。
2. 实验教学:通过实验课程和课程实践,让学生亲自动手操作,加深对理论知识的理解。
3. 教学手段:采用多媒体教学、在线学习等手段,丰富课程内容的表现形式,提高学生的学习兴趣。
五、教学评价与反馈1. 作业评价:布置适量的作业,及时批改和反馈,了解学生对课程内容的掌握情况。
2. 测验与考试:定期进行测验和考试,检查学生的学习成果,促使其巩固所学知识。
概率论与数理统计教案(48课时)(最新整理)

( x, y )G
,注意二重积分运算知识点的复习。
d) 二维均匀分布的密度函数的具体表达形式。
五.思考题和习题
思考题:1. 由随机变量 X ,Y 的边缘分布能否决定它们的联合分布?
2. 条件分布是否可以由条件概率公式推导? 3. 事件的独立性与随机变量的独立性是否一致? 4.如何利用随机变量之间的独立性去简化概率计算,试举例说明。 习题:
第四章 随机变量的数字特征 一.教学目标及基本要求
(1)理解数学期望和方差的定义并且掌握它们的计算公式;
(2)掌握数学期望和方差的性质与计算,会求随机变量函数的数学期望,特别是利用
期望或方差的性质计算某些随机变量函数的期望和方差。
(3)熟记 0-1 分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的数学期
第四节 二维随机变量的函数的分布
已知(X,Y)的分布率 pij 或密度函数 (x, y) ,求 Z f ( X ,Y ) 的分布律或密度
函数Z (z) 。特别如函数形式: Z X Y , Z max( X ,Y ), Z min( X ,Y ) 。
2 学时
三.本章教学内容的重点和难点
a) 二维随机变量的分布函数及性质,与一维情形比较有哪些不同之处;
5.列举正态分布的应用。
习题:
第三章 多维随机变量及其分布
一.教学目标及基本要求
(1)了解二维随机变量概念及其联合分布函数概念和性质,了解二维离散型和连续 型随机变量定义及其概率分布和性质,了解二维均匀分布和正态分布。
(2)会用联合概率分布计算有关事件的概率,会求边缘分布。 (3)掌握随机变量独立性的概念,掌握运用随机变量的独立性进行概率计算。 (4)会求两个独立随机变量的简单函数(如函数 X+Y, max(X, Y), min(X, Y))的分布。
《概率论与数理统计电子教案第一章

随机变量的定义
根据随机变量可能取值的性质,可以分为离散型随 机变量和连续型随机变量。
随机变量的分类
离散型随机变量分布律
分布律的定义 二项分布、泊松分布等。
常见离散型随机变量的分布 律
对于一个离散型随机变量X,其所有可能取 的值xi(i=1,2,...)与取这些值的概率 P{X=xi}(i=1,2,...)构成的表格或公式称为 离散型随机变量X的分布律。
叁 多维随机变量函数的概率密度求法
对于多维随机变量的函数,其概率密度可以通过换元法和雅可比行 列式求得。
随机变量数字特征
数学期望与方差概念
数学期望(期望值)
01
描述了随机变量取值的"平均"水平,是概率加权的平均
值。
方差
02
描述了随机变量取值的离散程度,即取值与期望值的偏
离程度。方差越大,说明随机变量的取值越分散。
大数定律应用
大数定律概念
中心极限定理内容及意义
中心极限定理内容
中心极限定理指出,大量相互独立、同分布 的随机变量之和的分布,当变量个数足够大 时,将趋于正态分布。
中心极限定理意义
中心极限定理是概率论和数理统计中的基本 定理之一,为许多统计方法的推导和应用提 供了理论基础,如置信区间、假设检验等。
棣莫弗-拉普拉斯定理
事件的独立性
计算多个事件同时发生的概率。
两个或多个事件的发生互不影响。
条件概率
在给定条件下,某事件发生的概 率。
独立试验
每次试验的结果与其他次试验的 结果无关。
随机变量及其分布
随机变量概念及分类
设随机试验的样本空间为 S={e}, X=X{e}是定义在 样本空间S上的实值单值 函数。称X=X{e}为随机变 量。
概率论与数理统计教案

概率论与数理统计教案【篇一:概率论与数理统计教案】《概率论与数理统计》课程教案第一章随机事件及其概率一.本章的教学目标及基本要求(1) 理解随机试验、样本空间、随机事件的概念; (2) 掌握随机事件之间的关系与运算,;(3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算; (4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。
了解概率的公理化定义。
(5) 理解条件概率、全概率公式、bayes 公式及其意义。
理解事件的独立性。
二.本章的教学内容及学时分配第一节随机事件及事件之间的关系第二节频率与概率 2学时第三节等可能概型(古典概型) 2 学时第四节条件概率第五节事件的独立性 2 学时三.本章教学内容的重点和难点1)随机事件及随机事件之间的关系; 2)古典概型及概率计算;3)概率的性质;4)条件概率,全概率公式和bayes公式 5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1)使学生能正确地描述随机试验的样本空间和各种随机事件;2)注意让学生理解事件a?b,a?b,a?b,a?b,ab??,a…的具体含义,理解事件的互斥关系;3)让学生掌握事件之间的运算法则和德莫根定律;4)古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;5)讲清楚抽样的两种方式——有放回和无放回;五.思考题和习题思考题:1. 集合的并运算?和差运算-是否存在消去律?2. 怎样理解互斥事件和逆事件?3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章随机变量及其分布一.本章的教学目标及基本要求(1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率; (2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节随机变量第二节第二节离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布) 2学时第四节随机变量的分布函数分布函数的定义和基本性质,公式第五节连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质 2学时第六节常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时三.本章教学内容的重点和难点a) 随机变量的定义、分布函数及性质;b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a) 注意分布函数f(x)?p{x?x}的特殊值及左连续性概念的理解; b)构成离散随机变量x的分布律的条件,它与分布函数f(x)之间的关系;c) 构成连续随机变量x的密度函数的条件,它与分布函数f(x)之间的关系; d) 连续型随机变量的分布函数f(x)关于x处处连续,且p(x?x)?0,其中x为任意实数,同时说明了p(a)?0不能推导a??。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本次课的主要内容与目的在于让学生了解和掌握概率论的基本概念,学生对概念的掌握尚可,但对其在实例中的应用尚需多加练习。
上课时间
第二周
上课节次
3节
课型
理论
课题
条件概率与独立性
教学目的
使学生了解条件概率与独立性的基本概念及其应用
教学方法
讲授
重点、难点
全概率公式与贝叶斯公式
时间分配
教学内容
板书或课件版面设计
②规范性:对于必然事件S,有P(S)=1。
③可列可加性:设A1,A2,…是两两互不相容的事件,即对于AiAj= ,i≠j,i,j=1,2,…,有P(A1∪A2∪…∪)=P(A1)+P(A2)+…
概率的性质:
性质1:
性质2(有限可加性):若A1,A2,…,An是两两互不相容的事件,则有P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An)。
P(A)=P(A|B1)P(B1)+ P(A|B2)P(B2)+…+ P(A|Bn)P(Bn)(全概率公式)
定理:设试验E的样本空间为S,A为E的事件,B1,B2,…,Bn为S的一个划分,且P(A)>0,P(Bi)>0(i=1,2,…^,n),则
(贝叶斯(Bayes)公式)
1.6独立性
定义:设A,B是两事件,若满足等式
当且仅当A,B中至少有一个发生时,事件 发生。
③事件 称为事件A与事件B的积事件。
当且仅当A,B同时发生时,事件 发生。 也记作AB。
④事件 称为事件A与事件B的差事件。
当且仅当A发生,B不发生时事件A-B发生。
⑤若 ,则称事件A与B是互不相容的,或互斥的。
基本事件是两两互不相容的。
⑥若 ,则称事件A与事件B互为逆事件。又称事件A与事件B互为对立事件。
A的对立事件记为 。 。
设A,B,C为事件,则有:
交换律:
结合律:
分配率:
摩根率:
1.3频率与概率
(1)频率
定义:在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数nA称为事件A发生的频数。比值nA/n称为事件A发生的频率,并记为fn(A)。
频率具有如下基本性质:
①0≤fn(A)≤1
②fn(S)=1
定义:设S为试验E的样本空间,B1,B2,…,Bn为E的一组事件,若
①BiBj= ,i≠j,i,j=1,2,…,n
②
则称B1,B2,…,Bn是样本空间S的一个划分。
若B1,B2,…,Bn是样本空间S的一个划分,那么对每次试验,事件B1,B2,…,Bn中必有一个且仅有一个发生。
定理:设试验E的样本空间为S,A为E的事件,B1,B2,…,Bn为S的一个划分,且P(Bi)>0(i=1,2,…,n),则
③若A1,A2,…,Ak是两两互不相容的事件,则fn(A1∪A2∪…∪Ak)=fn(A1)+fn(A2)+…+fn(Ak)。
(2)概率
定义:设E是随机试验,S是它的样本空间。对于E的每一事件A赋予一个实数,记为P(A),称为事件A的概率,如果集合函数P(·)满足下列条件:
①非负性:对于每一个事件A,有P(A)≥0。
P(AB)=P(A)P(B),则称事件A,B相互独立,简称A,B独立。
定理:设A,B是两事件,且P(A)>0。若A,B相互独立,则P(B|A)=P(B),反之亦然。
定理:若事件A与B相互独立,则下列各式也相互独立:A与 , 与B, 与 。
定义:设A,B,C是三个事件,若满足等式P(AB)=P(A)P(B),P(BC)=P(B)P(C),P(AC)=P(A)P(C),P(ABC)=P(A)P(B)P(C),则称事件A,B,C相互独立。
1.1随机试验
具有如下特点的试验称为随机试验:
①可以在相同的条件下重复地进行。
②每次试验的结果可能不止一个,并且能事先明确试验的所有可能结果。
③进行一次试验之前不能确定哪一个结果会出现。
1.2样本空间、随机事件
(1)样本空间
若 且 ,即A=B,则称事件A与事件B相等。
②事件 称为事件A与事件B的和事件。
(2)乘法定理
乘法定理:设P(A)>0,则有
P(AB)=P(B|A)P(A)(乘法公式)
一般地,设A1,A2,…,An为n个事件,n≥2,且P(A1A2…An)>0,则有
P(A1A2…An)=P(An|A1A2…An-1)P(An-1|A1A2…An-2)…P(A2|A1)P(A1)
(3)全概率公式和贝叶斯公式
①试验的样本空间只包含有限个元素。
②试验中每个基本事件发生的可能性相同。
若事件A包含k个基本事件,即A={ei1}∪{ei2}∪…∪{eik},其中i1,i2,…,ik是1,2,…,n中某k个不同的数,则等可能概型中事件A的概率计算公式为:
超几何分布的概率公式为:
实际推断原理:概率很小的事件在一次实验中实际上几乎是不发生的。
1.5条件概率
(1)条件概率
定义:设A,B是两个事件,且P(A)>0,称 为在事件A发生的条件下事件B发生的条件概率。
条件概率P(·|A)满足:
①非负性:对于每一事件B,有P(B|A)≥0。
②规范性:对于必然事件S,有P(S|A)=1。
③可列可加性:设B1,B2,…是两两互不相容的事件,则有
概率的性质都适用于条件概率。
性质3:设A,B是两个事件,若 ,则有P(B-A)=P(B)-P(A);P(B)≥P(A)。
性质4:对于任一事件A,P(A)≤1。
性质5(逆事件的概率):对于任一事件A,有 。
性质6(加法公式):对于任意两个事件A,B有 。
1.4等可能概型(古典概型)
具有以下两个特点得试验是大量存在的,这种试验称为等可能概型,也成为古典概型:
概率论与数理统计教案
上课时间
第一周
上课节次
3节
课型
理论
课题
概率论基本概念
教学目的
使学生掌握随机试验、样本空间、随即事件、频率、概率及古典概型等概念
教学方法
讲授
重点、难点
基本概念的掌握与理解
时间分配
教学内容
板书或课件版面设计
在大量重复试验或观察中所呈现出的固有规律性就是我们所说的统计规律性。
在个别试验中其结果呈现出不确定性,在大量重复试验中其结果又具统计规律性的现象,我们称之为随机现象。
一般地,设A1,A2,…,An是n(n≥2)个事件,若对于其中任意2个,任意3个,…,任意n个事件的积事件的概率,都等于各事件概率之积,则称事件A1,A2,…,An相互独立。
推论:
①若事件A1,A2,…,An(n≥2)相互独立,则其中任意k(2≤k≤n)个事件也是相互独立的。