光纤温度传感器在电力系统中的应用现状综述
详细剖析光纤温度传感器的工作原理和应用场景

详细剖析光纤温度传感器的工作原理和应用场景温度是度量物体冷热程度的物理量,许多物理现象和化学过程都是在一定温度下进行,人们的日常生活也和温度密切相关。
随着科学技术的迅猛发展,对温度的测量也提出了更多更高的要求。
以电信号为工作基础的传统的光纤温度传感器特点光纤测温传感器测量温度的方法光纤传感器的基本原理几种光纤温度传感器的原理基于布里渊散射的分布式光纤传感技术基于布里渊光频域分析(BOFDA)技术的分布式光纤传感器光纤温度传感器的应用光纤温度传感自问世以来, 主要应用于电力系统、建筑、化工、航空航天、医疗以至海洋开发等领域,并已取得了大量可靠的应用实绩。
1、光纤温度传感器在电力系统有着重要的应用,电力电缆的表面温度及电缆密集区域的温度监测监控; 高压配电装置内易发热部位的监测; 发电厂、变电站的环境温度检测及火灾报警系统; 各种大、中型发电机、变压器、电动机的温度分布测量、热动保护以及故障诊断; 火力发电厂的加热系统、蒸汽管道、输油管道的温度和故障点检测; 地热电站和户内封闭式变电站的设备温度监测等等。
2、光纤温度传感特别是光纤光栅温度传感器很容易埋入材料中对其内部的温度进行高分辨率和大范围地测量, 因而被广泛的应用于建筑、桥梁上。
美国、英国、日本、加拿大和德国等一些发达国家早就开展了桥梁安全监测的研究, 并在主要大桥上都安装了桥梁安全监测预警系统, 用来监测桥梁的应变、温度加速度、位移等关键安全指标。
1999 年夏, 美国新墨西哥Las Cruces 10 号州际高速公路的一座钢结构桥梁上安装了120 个光纤光栅温度传感器,创造了单座桥梁上使用该类传感器最多的记录。
3、航空航天业是一个使用传感器密集的地方,一架飞行器为了监测压力、温度、振动、燃料液位、起落架状态、机翼和方向舵的位置等, 所需要使用的传感器超过100 个, 因此传感器的尺寸和重量变得非常重要。
光纤传感器从尺寸小和重量轻的优点来讲, 几乎没有其他传感器可以与之相比。
光纤温度传感器在电力系统中的应用

光纤温度传感器在电力系统中的应用电力系统是一个复杂的工程系统,需要对其进行实时监测和管理,以确保其安全稳定运行。
而温度是电力系统中一个重要的参数,对其进行准确的测量和监测可以有效地预防和避免电力系统中的故障和事故。
而光纤温度传感器作为一种高精度的温度测量设备,已被广泛应用于电力系统中。
光纤温度传感器是一种基于光纤传感技术的温度测量设备。
它通过光纤的材料特性和温度的热学特性来实现温度的测量。
光纤温度传感器的原理是利用光纤的材料特性,将光波从光纤中传输,当光纤受到温度变化时,光波的传输速度也会发生变化,通过测量光波传输的速度变化,即可计算出温度的变化。
光纤温度传感器在电力系统中的应用主要有以下几个方面:1.变电站温度监测变电站是电力系统中最重要的环节之一,其中的各种设备需要在严格的温度范围内工作。
如果温度过高或过低,将会影响设备的正常工作,甚至导致设备的故障和事故。
因此,在变电站中安装光纤温度传感器可以实时监测各种设备的温度变化,及时发现并处理温度异常情况,保证设备的正常运行。
2.发电机温度监测发电机是电力系统中最重要的设备之一,其工作稳定性和安全性对系统的运行起着至关重要的作用。
而发电机的温度变化会直接影响到其工作稳定性和安全性。
因此,在发电机中安装光纤温度传感器可以实时监测发电机的温度变化,及时发现并处理温度异常情况,保证发电机的正常运行。
3.电缆温度监测电缆是电力系统中贯穿各个环节的重要组成部分,起着输送电能的重要作用。
而电缆在工作过程中会受到温度的影响,如果温度过高或过低,将会影响电缆的正常运行。
因此,在电缆中安装光纤温度传感器可以实时监测电缆的温度变化,及时发现并处理温度异常情况,保证电缆的正常运行。
4.输电线路温度监测输电线路是电力系统中输送电能的重要组成部分,其工作稳定性和安全性对系统的运行起着至关重要的作用。
而输电线路在工作过程中会受到温度的影响,如果温度过高或过低,将会影响输电线路的正常运行。
光纤温度传感器简介

光纤温度传感器摘要:本文分析了光纤温度传感器在温度探测中的优势,分别介绍了分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器的工作原理,最后综述了光纤温度感器在现代工业及生活的应用。
关键字:光纤传感温度应用1引言在科研和生产中,有很多温度测量问题,传统的温度传感器有热电偶,热电阻温度传感器,热敏电阻温度传感器,半导体温度传感器等等。
光纤温度传感器是20世纪70年代发展起来的一种新型传感器。
与传统的温度传感器相比,它具有灵敏度高,体积小,质量轻,易弯曲,不产生电磁干扰,不受电磁干扰,抗腐蚀性好等等优点,特别适用于易燃,易爆,空间狭窄和具有腐蚀性强的气体,液体以及射线污染等苛刻环境下的温度检测。
2光纤温度传感器分类光纤温度传感器按照调制机理可分为相位调制,振幅调制,偏振态调制;按工作原理分,光纤温度传感器可分为功能性和传输型两种。
功能型温度传感器中光纤作为传感器的同时也是光信号的载体,而传输型温度传感器中光纤则只传输光信号。
传光型与传感型相比,虽然灵敏度稍差,但可靠性高,实用的传感器大多是这种类型。
目前主要的光纤温度传感器包括分布式光纤温度传感器、光纤光栅温度传感器、光纤荧光温度传感器、干涉型光纤温度传感器等。
2.1光纤光栅温度传感器光纤光栅温度传感器是利用光纤材料的光敏性在光纤纤芯形成的空间相位光栅来进行测温的。
光纤光栅以波长为编码,具有传统传感器不可比拟的优势,近年来光纤光栅成为发展最为迅速,最具代表性的光纤无源器件之一,已广泛用于建筑、航天、石油化工、电力行业等。
光纤光栅温度传感器主要有Bragg光纤光栅温度传感器和长周期光纤光栅传感器。
Bragg光纤光栅是指单模掺锗光纤经紫外光照射成栅技术而形成的全新光纤型Bragg光栅,成栅后的光纤纤芯折射率呈现周期性分布条纹并产生Bragg 光栅效应,其基本光学特性就是以共振波长为中心的窄带光学滤波器,满足如下光学方程:=2nA式中:为Bragg波长,A为光栅周期,n为光纤模式的有效折射率。
光纤传感技术在电力系统中的应用

光纤传感技术在电力系统中的应用随着科技的不断进步,光纤传感技术在电力系统中的应用越来越广泛。
光纤传感技术是一种基于光学原理的传感技术,通过利用光纤的特殊性能,实现对电力系统中各种参数的高精度、实时监测和测量。
本文将重点探讨光纤传感技术在电力系统中的应用,并分析其优势和挑战。
一、光纤传感技术在电力系统监测中的应用1. 光纤温度传感技术光纤温度传感技术可以通过测量光纤的光学信号变化来实现对电力系统中的温度进行实时监测。
在电力系统中,温度是一个重要的参数,对电力设备的正常运行和安全性具有重要影响。
光纤温度传感技术可以实现对电力设备的温度分布进行全面、高精度的监测,提前发现温度异常,预防设备故障和事故的发生。
2. 光纤应力传感技术光纤应力传感技术可以通过测量光纤的应变变化来实现对电力系统中的应力进行监测。
在电力系统中,应力是一个重要的参数,对电力设备的结构安全和稳定性具有重要影响。
光纤应力传感技术可以实现对电力设备的应力分布进行实时监测,提供准确的应力数据,为电力设备的设计和运行提供重要参考。
3. 光纤振动传感技术光纤振动传感技术可以通过测量光纤的振动变化来实现对电力系统中的振动进行监测。
在电力系统中,振动是一个重要的参数,对电力设备的安全和可靠运行具有重要影响。
光纤振动传感技术可以实现对电力设备的振动情况进行实时监测,提供准确的振动数据,帮助预防设备的损坏和故障。
二、光纤传感技术的优势和挑战光纤传感技术在电力系统中的应用具有以下优势:1. 高精度:光纤传感技术可以实现对电力系统中各种参数的高精度测量,提供准确的数据支持。
2. 实时监测:光纤传感技术可以实时监测电力系统中各种参数的变化,及时发现异常情况,提供预警和故障诊断。
3. 多参数监测:光纤传感技术可以同时监测多个参数,如温度、应力、振动等,提供全面的监测和分析。
然而,光纤传感技术在电力系统中的应用还面临一些挑战:1. 成本:光纤传感技术的设备和安装成本较高,需要投入大量的资金和人力资源。
光纤温度传感器在电力系统中的应用现状综述

光纤温度传感器在电力系统中的应用现状综述一、本文概述随着科技的不断进步和工业的快速发展,电力系统对设备的安全性和运行效率要求越来越高。
其中,温度监控作为确保电力设备正常运行的重要手段,一直是研究的热点。
光纤温度传感器以其独特的优势,如高精度、快速响应、抗电磁干扰等,在电力系统中得到了广泛应用。
本文旨在对光纤温度传感器在电力系统中的应用现状进行综述,探讨其在实际运行中的效果与挑战,以期为相关研究和应用提供有益的参考。
文章首先介绍了光纤温度传感器的基本原理和类型,然后重点分析了其在电力系统中的几个主要应用领域,包括变压器温度监测、电缆温度监控、发电机和电动机的温度检测等。
接着,文章通过案例分析和数据统计,详细阐述了光纤温度传感器在这些领域的具体应用情况,以及取得的成效。
文章还讨论了光纤温度传感器在应用中遇到的主要问题和挑战,如成本、安装和维护的困难等,并提出了相应的解决方案和改进建议。
通过本文的综述,读者可以全面了解光纤温度传感器在电力系统中的应用现状和发展趋势,为其在实际工程中的应用提供有益的参考和启示。
二、光纤温度传感器原理及分类光纤温度传感器利用光纤作为传感元件,通过测量光纤中光信号的变化来间接获取温度信息。
与传统的电学温度传感器相比,光纤温度传感器具有抗电磁干扰、耐腐蚀、测量范围宽、精度高等优点,因此在电力系统中得到了广泛的应用。
光纤温度传感器的原理主要基于光纤中的光波传播特性随温度变化的规律。
光纤由纤芯和包层组成,光在光纤中传播时,会受到温度、压力等外部环境的影响,导致光波的传播特性(如光强、相位、偏振态等)发生变化。
光纤温度传感器通过测量这些光波传播特性的变化来反推温度的变化。
(1)分布式光纤温度传感器:这类传感器可以沿着光纤的长度连续测量温度分布,具有测量范围广、分辨率高等特点。
其原理通常基于光纤中的拉曼散射或布里渊散射效应,通过测量散射光的强度或频率变化来推算温度分布。
(2)点式光纤温度传感器:这类传感器通常用于测量特定点的温度,具有较高的测量精度和稳定性。
试论光纤传感器在电力新能源中的应用

试论光纤传感器在电力新能源中的应用光纤传感技术是一种基于光学原理的传感技术,通过光纤的传输和反射来实现对物理量的测量和探测。
近年来,随着新能源的发展和电力系统的变革,光纤传感技术在电力新能源领域中的应用也得到了越来越多的关注和重视。
本文将从光纤传感技术的原理、电力新能源的现状以及光纤传感技术在电力新能源中的应用等方面进行论述。
一、光纤传感技术的原理光纤传感技术是利用光纤的传输特性和光的特性来实现对物理量的测量和探测的一种技术。
光纤传感技术主要包括光纤光栅传感技术、光纤拉曼散射技术、光纤布里-珀罗干涉技术等多种技术。
光纤光栅传感技术是目前应用最为广泛的一种技术,它利用周期性的光折射现象来实现对物理量的测量。
光纤传感技术具有抗干扰能力强、测量范围广、体积小、重量轻、易于集成和实时监测等优点,因此在电力新能源领域中有着广阔的应用前景。
二、电力新能源的现状电力新能源是指以太阳能、风能、水能、地热能等自然能源为主要能源的电力发电方式。
随着环境保护意识的增强和可再生能源产业的快速发展,电力新能源在能源领域中的地位越来越重要。
目前,我国的电力新能源发电规模不断扩大,太阳能光伏发电和风力发电已成为我国发展最快的领域之一。
电力新能源发电存在着不稳定性和不可控制性的问题,如何提高电力新能源的可靠性和稳定性成为当前亟待解决的问题。
1. 光纤传感技术在光伏发电中的应用光伏发电是指利用光电效应将光能转化为电能的一种发电方式。
光伏发电系统在运行过程中会受到温度、湿度、光照强度等环境因素的影响,而光纤传感技术可以实时监测这些环境因素的变化情况,为光伏发电系统的运行提供及时准确的数据支持,从而提高光伏发电系统的性能和效率。
四、光纤传感技术在电力新能源中的发展趋势随着电力新能源产业的不断发展和光纤传感技术的不断进步,光纤传感技术在电力新能源领域的应用前景将会更加广阔。
未来,光纤传感技术将会进一步完善和优化,大幅降低成本,提高测量精度和灵敏度,同时将会逐步扩大应用范围,实现对多种物理量的测量和探测,从而为电力新能源领域提供更为全面和有效的技术支持。
光纤传感技术在电力系统中的应用

光纤传感技术在电力系统中的应用光纤传感技术是一种新型的传感技术,它的原理是利用光学测量的手段对物理量进行检测,广泛应用于电力系统领域。
电力系统可以说是国民经济中最重要的一环,而光纤传感技术在电力系统中的应用,不仅可以提高电力系统的安全性和可靠性,还可以提高电力系统的效率和节能效果。
下面,我们将就光纤传感技术在电力系统中的应用进行更深入的探讨。
一、光纤传感技术在电力监测中的应用电力系统的移动性和全方位受到了广泛的关注,因为这些特性使得电力系统非常容易受到外界环境影响和损伤。
而光纤传感技术的应用可以有效地维护电力系统,同时监测电力系统的状态和水平。
在监测电力系统时,光纤传感技术可用于对电力线周围环境温度、电磁场强度、开关接头温度等物理量进行感应测量,以提高电力系统的可靠性和安全性。
二、光纤传感技术在强电场检测中的应用电力系统中强电场的检测也是一项非常关键的技术,因为强电场的误差和事故会直接影响电力系统的效率和安全性。
利用光纤传感技术可以在发生强电场时立即检测到其信号,并在第一时间组织防护措施,保护电力系统。
同时,传感器中的光纤探头能够实时监测电力系统中存在的局部问题,以减少损失。
三、光纤传感技术在电力接头检测中的应用电力系统中的接头应该说是最容易损毁的地方,因为接头需要频繁进行拆卸和连接,所以它们的质量和状态对整个电力系统来讲非常重要。
而利用光纤传感技术对电力接头进行监测,可以帮助我们及时了解其状况,确保电力系统的运行顺畅和清洁。
四、光纤传感技术在电力耐压试验中的应用在电力设备上进行耐压试验是一项非常重要的工作,它能够有效地发现设备的缺陷,提高整个电力系统的可靠性。
而利用光纤传感技术在耐压试验中发现缺陷,并通过控制绝缘材料和装置条件减少损害,可以提高整个电力系统的效率和安全性。
总之,光纤传感技术的应用对电力系统的确保运行是有很大帮助的,借助光纤传感技术的手段,在电力系统的安全检测、负荷调度和调峰等管理工程活动中,能够为完善电力系统安全控制体系,提高电力系统的质量和可靠性提供极大的帮助。
分布式光纤传感器在电力系统中的应用

分布式光纤传感器在电力系统中的应用随着电力系统的不断发展和智能化的推进,传感器技术作为电力系统中的重要组成部分,发挥着越来越关键的作用。
其中,分布式光纤传感器作为一种新型的传感器技术,具有很大的潜力和广阔的应用前景。
本文将重点介绍分布式光纤传感器在电力系统中的应用。
分布式光纤传感器在电力系统中可以用于实时监测电力设备的温度。
在电力输电过程中,电力设备的温度是一个关键参数,过高的温度可能导致设备的损坏甚至发生火灾。
传统的温度监测方法往往需要安装多个传感器,而分布式光纤传感器可以通过在电力设备周围布设光纤,实现对温度的全方位、实时的监测。
通过分析光纤中的光信号的变化,可以准确地判断电力设备是否存在温度异常情况,并及时采取措施进行处理,确保电力系统的安全运行。
分布式光纤传感器还可以用于检测电力设备的振动。
在电力系统中,电力设备的振动情况是一个重要的指标,可以反映设备的运行状态和健康状况。
传统的振动监测方法往往需要安装多个振动传感器,而分布式光纤传感器可以通过测量光纤中的光信号的强度和相位变化,实现对电力设备振动的监测。
通过对振动信号的分析,可以及时判断设备是否存在异常振动,从而提前采取措施进行维修或更换,避免设备故障和事故的发生。
分布式光纤传感器在电力系统中还可以用于检测电力设备周围的湿度和气体浓度。
湿度和气体浓度是影响电力设备运行和绝缘性能的重要因素。
传统的湿度和气体浓度监测方法往往需要安装多个传感器,而分布式光纤传感器可以通过在电力设备周围布设光纤,实现对湿度和气体浓度的实时监测。
通过分析光纤中的光信号的变化,可以准确地判断电力设备周围的湿度和气体浓度是否超过了安全范围,并及时采取措施进行处理,避免设备的故障和事故的发生。
分布式光纤传感器还可以用于电力系统中的故障检测和定位。
在电力系统中,故障的检测和定位是非常重要的,可以帮助运维人员及时判断故障位置并采取措施进行修复。
传统的故障检测和定位方法往往需要安装多个传感器,而分布式光纤传感器可以通过在电力系统中布设光纤,实现对电力设备的全方位、实时的故障检测和定位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤温度传感器在电力系统中的应用现状综述摘要:首先介绍了光纤温度传感器的优点及发展现状,并重点介绍了应用最为广泛的分布式光纤温度传感器与光纤光栅温度传感器的基本原理。
概述了当前光纤温度传感器在电力系统中基本的应用模式,并综述了光纤温度传感器对电力系统主要设备进行温度监测的现状与意义。
针对光纤温度传感器在电力系统中应用存在的问题与不足,提出了相应的解决方案并对其前景进行了展望。
关键词:分布式光纤温度传感器;光纤光栅;温度监测;故障诊断;电力系统Application situation of temperature monitoring of optic fiber sensor in power systemLI Qiang1,WANG Yan-song2,LIU Xue-min2(OC Research Center, Beijing 100027, China; 2.College of Information and Control Engineering, China University of Petroleum,Dongying 257061,China)Abstract:The advantages and development of temperature monitoring of optic fiber sensor is presented, and the working principle of fiber optic distributed temperature sensor,f iber grating sensor are respectively introduced,which are most popular in industry use .I n the paper, the basic application model of temperature monitoring of optic fiber in power system are presented.Importantly ,t he applied situation and importance that the optic fiber sensor is used to monitor the temperature of electric equipment are summarized.Aiming at defects of application currently ,s ome applied solutions are presented and their application prospects has prospected. Key words:distributed optic fiber sensor; optical fiber grating ;t emperature monitoring; fault diagnosis; power system0 引言温度是电力设备的重要运行参数,通过监测电力设备温度信息获取电力设备的运行状况是电力系统故障预报与诊断的研究热点,研究内容包括各种新型的温度传感器的应用、电力设备的故障预报与诊断方法等。
[1]其中光纤温度传感器在电力系统中的应用是近年来研究的热点,已广泛应用于发电厂、变电站等[2-3]。
光纤传感器具有绝缘、抗电磁干扰、耐高电压、耐化学腐蚀,安全等特点[4]。
本文对电力系统温度监测的基本内容进行了概述,研究了当前光纤温度传感器在电力系统中的应用,并对其发展趋势进行了展望。
1 光纤温度传感器光纤温度传感器是上世纪 70 年代发展起来的一门新型的测温技术。
它基于光信号传送信息,具有绝缘、抗电磁干扰、耐高电压等优势特征[5]。
在国外,光纤温度传感器发展很快,形成了多种型号的产品,并已应用到多个领域,取得了很好的效果。
国内在这方面的研究也如火如荼,多个大学、研究所与公司展开合作,研发了多种光纤测温系统投入到了现场应用。
按工作原理分,光纤温度传感器可分为功能性和传输型两种。
功能型温度传感器中光纤作为传感器的同时也是光信号的载体,而传输型温度传感器中光纤则只传输光信号。
目前主要的光纤温度传感器包括分布式光纤温度传感器、光纤光栅温度传感器、光纤荧光温度传感器、干涉型光纤温度传感器等。
其中应用最多当属分布式光纤温度传感器与光纤光栅温度传感器。
(1)分布式光纤温度传感器[6-7]分布式光纤传感器最早是在 1981 年由英国南安普敦大学提出的。
激光在光纤传送中的反射光主要有瑞利散射(Rayleigh scatter)、拉曼散射(Raman scatter)、和布里渊散射(Brillouin scatter)三部分,如图 1 所示。
分布式光纤传感器经历从最初的基于后向瑞利散射的液芯光纤分布式温度监控系统,到- 136 - 电力系统保护与控制基于光时域(OTDR)拉曼散射的光纤测温系统,以及基于光频域拉曼散射光纤测温系统(ROFDA)等等。
目前其测量距离最长可达 30 km,测量精度最高可达0.5℃,空间定位精度最高可达 0.25 m,温度分辨率最高可达到0.01℃左右。
图 1 分布式光纤温度传感器基本原理Fig.1 Basic principle of fiber optic distributed temperaturesensor目前,分布式光纤温度传感器主要基于拉曼散射效应及光时域反射计(OTDR)技术实现连续分布式测量,如 York Sensa、Sensornet 等公司产品。
基于布里渊散射光时域及光频域系统也是当前光纤传感器领域研究的热点,LIOS、MICRION OPTICS等公司已有相应的产品。
(2)光纤光栅点式温度传感器光纤光栅温度传感器是利用光纤材料的光敏性在光纤纤芯形成的空间相位光栅来进行测温的。
光纤光栅以波长为编码,具有传统传感器不可比拟的优势,已广泛用于建筑、航天、石油化工、电力行业等[8-9] 。
光纤光栅温度传感器主要有 Bragg 光纤光栅温度传感器和长周期光纤光栅传感器。
Bragg 光纤光栅是指单模掺锗光纤经紫外光照射成栅技术而形成的全新光纤型 Bragg 光栅,成栅后的光纤纤芯折射率呈现周期性分布条纹并产生 Bragg 光栅效应,其基本光学特性就是以共振波长为中心的窄带光学滤波器,满足如下光学方程:bλ = 2nΛ (1)式中:bλ 为 Bragg 波长;Λ为光栅周期;n为光纤模式的有效折射率。
长周期光纤光栅是一种特殊的光纤光栅,其传光原理是将前向传输的基模耦合到前向传输的包层模中。
由于其宽带滤波、极低的背景发射等特点引起人们的重视,是一种新型的宽带带阻滤波器。
2 光纤温度传感器在电力系统中的应用电力系统中大量设备需要检测温度信息,从而确定电力设备的运行情况,以便运行调度人员及时采取措施,消除异常,避免设备的损坏和事故的发生[10-11]。
早期通过示温蜡片、数字温度传感器、红外温度仪等获取电力设备温度信息。
但是示温蜡片与红外测温仪需要人工巡查,不能满足现代数字化电力系统的要求。
数字温度传感器大多基于电量传送,受电磁场影响较大,只能测量关键点,有一定的局限性。
光纤温度传感器则克服了以上缺点与不足,具有通信迅速、报警设置灵活、适应恶劣环境等优点。
目前,光纤温度传感器在电力行业中基本的应用模式如图 2 所示,现场工程机 1 为基于分布式光纤温度测温仪,现场工程机 2 为基于光纤光栅测温仪,多台工程机可通过网络将数据上传到集控室的上层机构成测温系统,实现集中控制显示。
其主要内容包括:1)分布式光纤或者光纤光栅作为温度传感器紧贴在电气设备上;2)通过采集光信号进行相应计算得到温度分布;3)开发与设备相应的分析、报警软件;4)通过温度信息分析电气设备运行状态,从而保证电气设备运行在安全区域,避免事故的发生。
在国内外,主要有以下几个应用领域。
图 2 光纤温度传感器在电力系统应用示意图Fig.2 Scheme of application of temperature monitoring of optic fiber sensor in electric power system2.1 电厂温度监控光纤温度传感器代替传统的温度传感器实现电厂某些关键设备的温度监测是当前的研究热点问题。
主要有:(1) 利用光纤光栅实现汽轮机内湿蒸汽的湿度与温度测量,若采用多点监测可动态确定汽轮机内温度场和湿度场的分布[12]。
(2) 同步调相机转子温度的测量[13]。
(3) 光纤温度-压力混合传感器用于核电站第四代反应堆(Gen-IV)高温、压力监测,可实现系统安李强,等光纤温度传感器在电力系统中的应用现状综述- 137 -全监测[14]。
(4)水电站大坝温度监测,目前已有很多现场应用的实例,如分布式光纤监测系统在长调水电站[15]、景洪电站[16]、云南大理小湾拱坝[17]等的应用。
2.2 电缆隧道火灾监控发电厂和变电站内大量的高压电气设备都是通过电缆连接的,这些电缆都敷设在厂房或变电站下的电缆隧道。
由于电缆隧道环境比较恶劣,且电缆数量较多,容易由于一根电缆的绝缘损坏、局部放电而引起大面积的火灾事故,造成严重的经济损失。
针对电缆隧道易发生火灾的情况,传统的预防措施主要有:1)使用阻燃电缆或者电缆加涂阻燃层;2)隔层之间填充阻燃泥;3)在电缆隧道中通过感温电缆实现温度报警;4)电缆隧道中定距安装悬挂定温式的自动灭火器等[18]。
以上措施并不能及时发现火灾隐患和防止火灾事故的发生。
分布式光纤温度监控系统是近年来应用于电缆隧道监测的一种新技术,它通过在电缆隧道中敷设一条光纤即可实现多条电缆的温度检测与整个电缆隧道的火灾报警[19]。
总的来说,分布式光纤测温系统应用到电缆隧道火灾监控的优点有:1)实时检测光纤沿线温度,测温准确,分辨率较高。
按测温距离与测温精度的不同,一般全线温度更新速度最短10s 左右。
2)存储历史温度数据用于作进一步分析。
3)报警等各项指标设置灵活,可实现多条件报警设置。
目前已有不少成功应用的案例,如在韶关电厂、宁夏石嘴山发电厂、南京扬子石化热电厂、济南钢铁等[20-22]。
2.3 高压电力电缆负荷安全监测温度作为高压电力电缆的一个重要的运行参数越来越受到人们的重视。
通过数字传感器的方式只能实现对电缆接头等重要部分的温度监测[23]。
因此,近年来人们对一些重要的高压动力电缆应用分布式光纤温度监测系统[24-26]和光纤光栅测温系统实现电缆温度监控[27-29]。
分布式光纤测温根据光纤安置在电缆上位置可分为内置式与表贴式两种。
内置式所测温度基本等于电缆缆芯温度,但其需要特殊生产,且敷设复杂[30]。